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ABSTRACT

Background  There are many proposed benefits of using learning health systems 
(LHSs), including improved patient outcomes. There has been little adoption of LHS 
in practice due to challenges and barriers that limit adoption of new data-driven 
technologies in healthcare. We have identified a more fundamental explanation: 
the majority of developments in LHS are not identified as LHS. The absence of 
a unifying namespace and framework brings a lack of consistency in how LHS 
is identified and classified. As a result, the LHS ‘community’ is fragmented, with 
groups working on similar systems being unaware of each other’s work. This leads 
to duplication and the lack of a critical mass of researchers necessary to address 
barriers to adoption.
Objective  To find a way to support easy identification and classification of 
research works within the domain of LHS.
Method  A qualitative meta-narrative study focusing on works that self-identified 
as LHS was used for two purposes. First, to find existing standard definitions and 
frameworks using these to create a new unifying framework. Second, seeking 
whether it was possible to classify those LHS solutions within the new framework.
Results  The study found that with apparently limited awareness, all current LHS 
works fall within nine primary archetypes. These findings were used to develop 

Research article

Cite this article: McLachlan S, Potts H WW, Dube K, 
Buchanan D, Lean S, Gallagher T, Johnson O,  
Daley B, Marsh W, Fenton N. The Heimdall 
framework for supporting characterisation of 
learning health systems. J Innov Health Inform. 
2018;25(2):77–87.

http://dx.doi.org/10.14236/jhi.v25i2.996

Copyright © 2018 The Author(s). Published by BCS, 
The Chartered Institute for IT under Creative Commons 
license http://creativecommons.org/licenses/by/4.0/ 

Author address for correspondence:
Scott McLachlan
Queen Mary University of London (QMUL)
London E1 4FZ, UK
Email: s.mclachlan@qmul.ac.uk

Accepted May 2018



Journal of Innovation in Health Informatics Vol 25, No 2 (2018)

McLachlan et al.  The Heimdall framework for supporting characterisation of learning health systems  78

a unifying framework for LHS to classify works as LHS, and reduce diversity and 
fragmentation within the domain.
Conclusions  Our finding brings clarification where there has been limited aware-
ness for LHS among researchers. We believe our framework is simple and may 
help researchers to classify works in the LHS domain. This framework may enable 
realisation of the critical mass necessary to bring more substantial collaboration 
and funding to LHS. Ongoing research will seek to establish the framework’s effect 
on the LHS domain.

Keywords: electronic health records, learning health systems, learning 
healthcare systems, precision medicine

INTRODUCTION

Learning health systems (subsequently referred to as LHS) 
are defined by the Institute of Medicine (IoM) as systems 
in which alignment of scientific and cultural tools lead to 
knowledge generation to improve healthcare as a result of 
daily practice.1 Since LHS was conceptualised in 2007, they 
have been the focus of increasing research attention.2–6 The 
opportunity and promise of LHS have resulted in texts pre-
senting collections of LHS-specific research1,7 creation of a 
new journal, Learning Health Systems,8 and new courses of 
academic study.9,10 We believe it could be the most signifi-
cant development in healthcare since the advent of evidence 
based medicine (EBM) and electronic health records (EHRs) 
that support EBM.14–16 EHR has existed for more than 40 
years11–13 and organisations that implemented EHR dis-
covered reductions in costs, clinical testing and patterns of 
repeated and sometimes unneeded prescriptions. Enhanced 
co-ordination and communication between clinicians were 
seen to improve the quality of patient care.12,17–20

Despite the benefits, early EHR systems were considered 
expensive, focused on information gathering rather than 
improving healthcare.20 Development lacked clinical input, 
existed as multiple stand-alone systems, experienced slow 
adoption, suffered from trust and data quality issues, claims 
that systems increase or exacerbate risk for errors, and 
concerns over patient privacy and security.18,20 All of these 
issues are still seen as unresolved barriers to adoption of 
EHR.18,21–27 Despite this, EHRs are the foundation for LHS. 

Efforts towards LHS, coupled with proposed changes to leg-
islation, policy and the ethics of how clinicians engage with 
clinical datasets suggest an entirely new dimension to EHR. 
One in which they are used collectively as ‘big data’ and 
focused using individual patient’s attributes to identify causes 
and optimal treatments strategies for disease.
Descriptions developed in IoM reports are the basis of 

most author definitions and descriptions of LHS.28–33 Medical 
information systems that can be predictive, preventative, per-
sonalised and participatory represent the core principles of 
4P medicine.34 According to the IoM, these systems have the 
potential to identify groups at greatest risk of complications 
for purposes of targeting interventions.7 In parallel, maturing 
technologies such as large datasets, machine learning, and 
enhanced processing power further enable the concept of 
LHS.2,34,35

The IoM promoted EBM as the primary driver for LHS,7 yet 
their definition fails to describe LHS attributes which contrib-
ute to quality, safety, efficiency and effectiveness of patient 
care.36 The four fundamental attributes37 listed in Figure 1 
provide tangible metrics to compare and contrast LHS efforts. 
These attributes were not included in the IoM definition, but 
are widely found in LHS. They clarify the use of large EHR 
datasets as the source of knowledge for LHS achieving the 
goal of improving quality in individual patient care.
There are numerous examples of proposed benefits of 

LHS. For clinicians, these include assessing which laboratory 
or imaging tests may be more diagnostic given a patient’s 
presenting symptomology38; reducing risk from prescribing 

1.  An organizational architecture that facilitates formation of communities of patients, families, front-line
     clinicians, researchers and health system leaders who collaborate to produce and use big data;

2.  Large electronic health and health care data sets (big data);

3.  Quality improvement for each patient at the point of care brought about by the integration of relevant new
     knowledge generated through research; and

4.  Observational research and clinical trials done in routine clinical care settings.

Adapted from: [37]

Figure 1 Four elements of an LHS
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errors31 and increasing awareness of pharmacogenetics.39 It 
is claimed that patients would benefit from advanced knowl-
edge developed from the experiences and diagnoses of past 
patients, which saves time and reduces costs.38,40,41 A learn-
ing healthcare organisation culture supports EBM, while suc-
cessful integration of research into practice is what enables 
it.42 The ability to use technology to record, compare, contrast 
and present information in almost real-time enhances the 
input, analysis and decision phases of the learning lifecycle. 
Alternatively, it is said that the financial burden to implement 
and support health technology43–45 along with a persistent 
need for data and systems standardisation,45–48 interoper-
ability46,49,50 and integration49,51 have all acted as barriers to 
broad LHS adoption.
In our group’s recent letter to the editor of this journal,52 

we demonstrated the lack of awareness and barriers for 
researchers to appropriately identify their efforts as LHS solu-
tions. We believe that this results from a number of significant 
problems in the domain. The lack of adequate classification 
and standardisation results in groups working on comparable 
systems not identifying their efforts as LHS, and may be the 
cause of unnecessary duplication of efforts and the observ-
able lack of collaboration. The absence of a unifying frame-
work means the domain is yet to generate a necessary critical 
mass, limiting efforts to resolve barriers and challenges to 
the adoption of LHS and constraining funding availability. We 
were only able to identify one primary article that attempted 
to consolidate and analyse the current state of knowledge in 
LHS.36 We extend that effort drawing on a larger collection of 
works to establish a unifying framework for LHS.

METHOD

Our study sought first to define a comprehensive framework 
and taxonomy for LHS, and then to demonstrate its applica-
tion to self-identified literature from the LHS domain. The 

literature search used identical plain language search terms 
as Foley and Vale36: ‘LHS’ and ‘learning healthcare sys-
tem’ drawing articles from Scopia, Science Direct, PubMed, 
EBSCOhost, DOAJ and Elsevier (n = 1083). These works 
were all authored in the decade since the IoM’s initial LHS 
report.7 Figure 2 shows this literature, by year, in orange 
(the drop in 2017 is due to reporting only up to July); con-
trasted with literature identified by Foley and Vale36 shown 
in grey. The leap in publications in 2011 followed the first53 
and second54 meetings of the Committee on the Learning 
Healthcare System in America, both proceedings published 
during 2011. More than 50% of LHS publications were gen-
erated since 2013.
We undertook this review following the identification of 

seminal sources approach of meta-narrative reviewing.27,55 
An initial read of abstracts was used to reject duplicates and 
papers not related to the central topic, including those using 
the search term in context of learning in the academic or edu-
cation sense.56,57 This reduced the collection source pool 
(n = 542). Conclusions and methods were reviewed, seeking 
to reject papers that did not present or propose an LHS; for 
example, those exploring the medicolegal, ethical or societal 
aspects of LHS.31,58,59 The resulting core pool (n = 230) was 
then comprehensively reviewed. Of these, 53% proposed a 
potential solution compared to 47% that presented an exist-
ing solution.
We used content and thematic analysis60 to recognise and 

classify LHS uses while also identifying common barriers and 
thematic concepts for investigation. Formal concept analy-
sis61 was used to identify the frequency and interrelation-
ships between the identified concepts. The elements of both 
analysis methods were identified inductively during the first 
full reading of the core pool of literature and used to develop 
spreadsheets for analysis. A second full reading was per-
formed to data mine the literature and populate spreadsheets 
for further analysis during framework development. Table 1 
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Figure 2 LHS publications by year
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provides examples of attributes identified for the formal con-
cept analysis.

RESULTS

Taxonomy for LHS
We found only three papers36,62,63 that proposed classifi-
cation systems for LHS. Surveillance and Comparative 
Effectiveness Research were the only types common to 
all three. Figure 3 unifies the knowledge identified from all 
three papers into a taxonomy of nine LHS classification 
types, indicating abbreviations (initials) and the primary ref-
erence for each.
Cohort identification (CI) seeks patients with similar attri-

butes, used to determine the feasibility of studies and quan-
tify numbers of potential patients that may be helped.62 CI is 
also the first operational step of most other LHS types.

Positive deviance (PD) uses outcome data to benchmark 
clinical care. PD identifies elements of safer, more effective, 
timely and patient-centred care, recognising beneficial behav-
iours for incorporation into another clinician’s practice.64 PD 
can also identify common traits of patients benefiting from 
a treatment, using these to identify others who may benefit 
from the same intervention.62

Negative deviance (ND) identifies instances of sub-optimal 
care outcomes. ND presupposes some particular clinical 
behaviour negatively impacted patient care and the resulting 
outcome. The clinician critically evaluates the care provided, 
investigating causes for sub-optimal results.63

Predictive patient risk modelling (PPRM) uses patterns dis-
covered in patient datasets to identify cohorts at higher risk 
for future adverse events. PPRM can use routine health data 
to identify ‘triple fail’ events; where treatment fails to improve 
patient care experiences, population health, or lower health-
care costs.65

Predictive care risk and outcome model (PCROM) algo-
rithms identify situations of high risk for ‘unsafe’, ‘delayed’ 
or ‘inefficient’ care, providing estimates of the effectiveness 
of different interventions.36 Geisinger Health Systems have 
incorporated PCROM approaches into clinical software, iden-
tifying when spikes in hospital activity or patient non-atten-
dance may occur.66

Clinical decision support systems (CDSSs) are active 
knowledge systems where two or more characteristics 
of the patient are matched to computerised knowledge 
bases with algorithms generating patient-specific treatment 
recommendations.67–69

Comparative effectiveness research (CER) compares 
interventions and outcomes within an EHR dataset to deter-
mine the most effective treatment, using a method consid-
ered more efficient than randomised control trials.36 CER 
isolates patients with similar attributes to the current patient, 

Table 1 LHS formal concept analysis attributes

Proposes LHS solution
Presents LHS solution

Promotes LHS
LHS related Law/Legislation/Policy

Ethics for LHS
Patient engagement

Clinician engagement
Patient confidentiality

Privacy
Security

Quality Improvement/Metrics
Country

LHS type
LHS project name

LHS

Intelligent
Automation

Decision Making

Intelligent
Assistance

Cohort
Identification

Positive Deviance

Nagative Deviance

Predictive Patient Risk
Modelling

Predictive Care Risk and
Outcome Models

Surveillance

Clinical Decision Support
Systems

Comparative Effectiveness
Research

Risk ModellingCI

IA

S

CDSS

PPRM

ND

PD

PCROM

CER

Deviance

First paper to describe

Freidman et al, 2010
Deeny et al, 2015
Foley et al, 2017

Figure 3 LHS taxonomy



Journal of Innovation in Health Informatics Vol 25, No 2 (2018)

McLachlan et al.  The Heimdall framework for supporting characterisation of learning health systems  81

returning knowledge on treatments that deliver optimum 
health outcomes.70

Intelligent assistance (IA) uses data sources to automate 
routine processes such as prepopulating pathology orders 
and clinical notes, or summarising patient case notes prior 
to consultations.36

Surveillance (S) monitors EHR data for outbreaks of dis-
ease (e.g., measles) or treatment issues (e.g., contaminated 
medicines or increased frequency for post-surgical infec-
tions). Examples observed include health and demographic 
surveillance systems used in sub-Saharan Africa.71

The Heimdall-integrated LHS framework
Just as the Norse God Heimdall was said to be the son of 
nine mothers, we started from our nine LHS classifications 
to develop the integrated LHS framework in Figure 4. The 
diagram’s conical structure demonstrates the use of technol-
ogy (large datasets and processing systems) to record, store, 
index and present information that flows into and improves 
the learning processes used in EBM, focusing clinical prac-
tice towards delivery of precision medicine (PM). This enables 
the learning healthcare organisation to engage in decisions 
individualised to match unique patient characteristics.
PM results from enhancing the generalised population 

health approach using attributes in the EHR to constrain 
analysis for diagnosis and treatment options to cohort pre-
dominately matching the presenting patient’s profile. As the 
clinician enters attributes about the current patient, the speed 

and accuracy of decisions increase as illustrated by arrows 
in Figure 4. LHS draws knowledge from a reducing cohort 
whose attributes predominately match the current patient as 
illustrated by the circular design. In examining a cross-sec-
tion of Figure 4, the larger white circle represents the entire 
population used to select the most effective common treat-
ment. The light grey circle reduces that population to those 
who share some basic attributes with the patient that would 
normally be identified in the slower learning organisation 
approach of EBM. The inner dark circle further reduces the 
population to a significant cohort with clinical, genetic and 
socioeconomic attributes predominately matching the patient 
at the centre. The interrelationship between the Heimdall 
framework and our taxonomy is shown down the right side 
of the conical portion of the diagram. While LHS is technol-
ogy solutions, the majority operate in the context of either the 
treatment provider’s learning organisation, or the clinician’s 
primary patient-facing role.
Within this framework, we incorporate the concept of a 

clinical lifecycle as shown in Figure 5 and adapted from mul-
tiple works in this review.63,66,70 The right side of the diagram 
represents largely clinician-driven aspects, while the left 
side identifies those aspects where LHS technology delivers 
improvements. The more challenging barriers to LHS regard-
ing data quality, interoperability and standardisation all result 
from activities on the right side of the lifecycle.
This cycle is repeated, both for surveilling the proposed 

transformation and to seek further items of knowledge.63,66,70 
LHS engenders a close relationship between care, research 
and knowledge translation, aimed at providing a platform for 
integrating various data to better understand patients.72 LHS 
is commonly described using an iterative lifecycle similar to 
many other EBM processes where: (a) patient data is collected 
by clinicians; (b) aligned, transformed and amalgamated into 
larger data sets; (c) a problem is defined and (d) analysis per-
formed; (e) with evidence data returned and (f) made into new 
knowledge, that is, (g) used to transform clinical practice.
The taxonomy and Heimdall framework provided a tool-

kit for characterising LHS literature in terms of the following 
thematic and analytical aspects to assess whether the LHS 
demonstrates:

•• Taxonomic consistency – conforms to the taxonomy.
•• Patient focused – ensures personalised health care, 
known as PM.

•• Technology usage – uses health IT with big data, 
machine learning algorithms and automation.

•• Decision support – near real-time support to 
clinicians, bringing recent scientific advances, 
machine learning and EBM together at point-of-care.

•• Application of LHS – goes beyond selecting ‘most 
likely treatment for a population’, to selecting the 
‘most applicable treatment for an individual’.

•• Barriers and further observations – challenges limiting 
implementation.

What follows is a survey and discussion using the Heimdall 
framework to identify and resolve key questions from within 

Population
Health

Learning Health
Organisation

Precision
Medicine
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Fast
Accuracy

Precision

LHS

LEARING
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TECHNOLOGY

System-Based LHS
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Figure 4 The LHS unifying framework
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the domain of LHS. Answers to these questions were 
resolved through applying the framework to the broader lit-
erature cohort.

Validation of the LHS taxonomy
To validate our taxonomy, proposed or presented solutions 
were reviewed and classified using the taxonomic descrip-
tions. Some proposed solutions were incompletely described, 
but we found that the intention of the authors was always 
clear from the information presented. All LHS solutions con-
formed easily to one of our identified taxonomic types. We 
believe this validates the taxonomy as we have presented. 
Our validation of the taxonomy also found that CER were 
the most prevalent type of LHS presented in the literature, 
as identified in Table 2. CER was followed at some distance 
by stand-alone CI, although it should be noted that this clas-
sification type had not been identified by either Deeny and 
Steventon63 or Foley and Vale36.

DISCUSSION

A number of themes emerged during this analysis and are 
discussed in the following section, which includes topical 
analysis to investigate their effect on the LHS domain.

Patient focused
While clinicians argue they always practiced patient-focused 
medicine, normal clinical practice follows population medi-
cine-based EBM.73 PM extends diagnostic practices with pro-
filing techniques and therapies tailored to the individual.74,75 
Patient focus is a key dimension that LHS improve.36 PM 
approaches can be retrospective, as in CER, and prospective, 
when genotyping for treatment selection.74,75 Patient-centred 

care encourages data use in optimising care for individuals.76 
Aggregated patient records enable LHS to identify cohorts 
similar to the patient.77 LHS is an efficient tool for integrating 
PM into practice. As the clinician enters attributes about the 
patient, the LHS refines a cohort of prior similar patients. It 
assesses the treatments they received to recommend one 
most likely to produce an optimal outcome.

Technology usage
The focus for health IT has shifted from issues of adoption to 
identifying how to best use technology to improve healthcare 
delivery and outcomes.78 This shift is significant in creating 
LHS and elevates issues in EMR/EHR interoperability, data 
standardisation and quality that must be resolved if LHS is 
to be truly practical and ubiquitous.78–80 Health IT’s ability to 
improve healthcare service delivery quality and efficiency is 
recognised.81,82 Enabling necessary data flow and integration 
of data sources are key abilities technology can deliver, rep-
resenting core requirements to enabling LHS.72,83 Integration 
of learning into technology is observed in every LHS solution 

Patient Data
is

Collected

Patient Data
Amalgamated

Problem
Defined

Analysis
Performed

Evidence
Returned

Knowledge
Identified

Clinical
Practice

Transformed

Figure 5 An example of the clinical lifecycle

Table 2 Distribution of LHS solutions (per 100 publications)

CER 44
CI 14
CDSS 13
PPRM 10
PD 8
IA 3
ND 3
S 3
PCROM 2
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reviewed. Technology is fundamental to LHS. As EBM evolves 
from paper-based roots, clinicians and healthcare providers 
will realise benefits from coupling technology to Learning 
Health Organisations, thus realising LHS.79,84

Decision support
Healthcare providers evolved from considering health IT as 
a billing and documentation facilitator, to contemplating its 
active participation and capabilities to answer complex ques-
tions in care delivery.85 LHS brings opportunities for improv-
ing speed and efficiency of clinical decision support.83,85,86 
LHS solutions are context-sensitive, incorporating CI and 
risk modelling in real time to identify interventions for improv-
ing individual patient outcomes.87,88 LHS has potential to 
rapidly perform retrospective comparative effectiveness tri-
als, evaluating treatment options against each other where 
they have been provided to similar patients.88,89 In contrast 
with randomised clinical trials, LHS is considered safer, and 
engenders greater confidence in accuracy of the treatment 
choice.88,89

Application of LHS
Clinical epidemiology is an example of learning healthcare. 
EBM evolved from clinical epidemiology: statistically identi-
fying the optimal treatment which becomes best practice for 
that condition.90,91 Conversely, the focus for PM is select-
ing from available interventions the treatment that will best 
serve the individual. The primary driver towards population 
medicine was economic: maximising benefit while minimising 
cost, harm and waste.90 While meant for benefiting the indi-
vidual patient, population medicine has disadvantages in that 
the individual’s best interests may conflict with those of the 
population and it is difficult to reconcile the two.76,90 Individual 
patients may be denied higher priced precision interventions in 
favour of lower cost population-optimised interventions.90 The 
Heimdall framework demonstrates that LHS focus healthcare 
using population medicine and EBM directly onto the present-
ing patient. While EBM selects one treatment for all patients, 
LHS produces a cohort with attributes similar to the presenting 
patient, identifying the treatment most likely to be effective for 
this individual patient. LHS in this way delivers PM.

Barriers and further observations
Most authors discuss barriers to implementation. The most 
common are cost,32,92,93 data interoperability and standardi-
sation,94–96 poor data quality and integrity,63,97,98 informed 
consent and ethics review complications,99–101 privacy and 
security issues70,95 and slow technology adoption.95,102,103 
These issues are seen in the same context for adopting 

EHR/EMR. This suggests LHS is inheriting problems from 
the EHR/EMR on which they depend.

CONCLUSION

LHS represents a significant improvement on the present 
learning organisation, evidence-based practice and population 
medicine approaches. LHS improves the focus on the individ-
ual patient, bringing efficient and expedient PM solutions. LHS 
is a significant evolution to EBM, and the natural next step in 
realising the benefits that were expected from implementing 
EHR/EMR. However, the lack of taxonomy for classifying and 
describing LHS may be a significant reason for fragmented and 
duplicated research and solutions in LHS that has impeded 
widespread adoption. Many authors presenting solutions fail to 
identify them as LHS. Our research has presented a taxonomy 
and framework to address this problem, and may help address 
the challenges in realising all that LHS promise.
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