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Abstract: Speckle noise can reduce the image quality of synthetic aperture radar (SAR) and complicate

image interpretation. This study proposes a novel three-step approach based on the conventional

probabilistic patch-based (PPB) algorithm to minimize the impact of bright structures on speckle

suppression. The first step improves the calculation accuracy of the weight by pre-processing speckle

noise with a linear minimum mean-square error filter and reassessing similarity between pixels.

In the second step, an iterative method is developed to avoid interfering with bright structures

and acquires a more accurate homogeneous factor by adaptively changing the size of the search

window. In the final step, the spreading and blurring of bright structures is corrected using a

modified bias-reduction technique. Experimental results demonstrate the proposed algorithm

has improved performance for both speckle suppression and preservation of edges and textures,

evaluated by indicators including the equivalent number of looks, the edge preservation index,

the mean, and standard deviation of ratio images.

Keywords: synthetic aperture radar (SAR); speckle noise; non-local filtering; probabilistic

patch-based (PPB)

1. Introduction

Synthetic aperture radar (SAR) is a coherent imaging system [1]. Each pixel in SAR images

represents the coherent addition of scatterers from a corresponding resolution cell. These scatterers

interfere, either constructively or destructively, depending on the phase of the scatterers. As such,

the resulting images exhibit bright and dark pixels and are uneven, even for homogeneous regions.

This phenomenon is called speckle noise and it often reduces the quality of images and complicates

image interpretation [1,2]. This study proposes a novel speckle removal algorithm to not only suppress

speckle noise but also preserve edges and textures.

The simplest speckle removal approach is spatial multi-looking [3], which efficiently suppresses

speckle noise at the cost of resolution loss. Three types of non-multi-looking processing methods

have been proposed to balance spatial resolution and speckle removal performance.

The first is a local spatial filtering method proposed by Lee [4–8]. Representative algorithms

include Kuan [9] and maximum a posteriori (MAP) filtering [10]. Such methods have been

implemented in the spatial domain based on Bayesian criteria and a speckle model. Although

resolution is well-preserved and speckle noise is suppressed, the edges and textures are not maintained

because the speckle model is unsuitable for filtering areas containing strong scattering points.
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The second approach involves transform-domain filtering methods, such as linear minimum

mean-square error (LMMSE) estimation in the wavelet domain [11]. These methods perform

multi-scale decomposition on the image, implement filtering to each decomposition image,

and reconstruct the despeckling result by fusing sub-images. Since transform domain methods

can distinguish edges from homogeneous areas, these techniques can more accurately preserve edges

and textures compared to spatial filtering algorithms. However, these techniques are often worse for

de-noising homogeneous areas than the following approach.

The third approach is adaptive filtering, which includes methods based on partial differential

equations (PDEs) [12] and non-local approaches [13]. This PDE-based approach gradually suppresses

speckle noise during iterative processing and is sensitive to edge preservation. However, repeated

iterations tend to diminish texture, particularly in SAR images. The non-local methods exploit similar

pixels or blocks in images to implement filtering. It obtains the most comprehensive performance

in speckle suppression and preservation of edges and textures. The probabilistic patch-based (PPB)

algorithm is a representative of nonlocal methods. It was proposed by Deledalle et al. in 2009 [14].

In 2015, they proposed a unified nonlocal framework where bias-reduction was introduced to reduce

the spreading of bright structures [15].

Compared with the conventional PPB, the proposed algorithm achieves a more accurate weighting

and homogeneous factor to improve the performance of speckle suppression, with a modified

bias-reduction method to further balance speckle suppression with the correction of bright

structure spreading.

This paper is structured as follows. The conventional PPB algorithm is introduced and analyzed

in Section 2. The three-step algorithm is then proposed to compensate for the limitations of these

existing techniques in Section 3. Section 4 presents and analyzes corresponding results by comparing

the proposed algorithm with conventional PPB, and Section 5 concludes the paper.

2. Conventional PPB Algorithm

As illustrated in Figure 1, Ps represents a pixel to be processed in the SAR image. A search window

(centered on Ps) is defined to estimate the intensity of Ps, as represented by the pink rectangle in the

figure. The conventional PPB algorithm calculates the weight w(Ps, Pi) between Ps and the pixel (Pi)

in the search window and replaces the intensity of Ps with [14]:

ÎPs =

∑
i∈Ds

w(Ps, Pi)IPi

∑
i∈Ds

w(Ps, Pi)
(1)

where Ds represents a set composed of pixels in the search window and IPi
denotes the original

intensity of Pi.

( )

( )
Ⱦ 







Ps

Pi

Search window

Patch

 

Figure 1. The basic elements in the conventional probabilistic patch-based (PPB) algorithm. Ps is the

pixel to be processed. The search window and patch are represented by the pink and cyan rectangles,

respectively. Pi denotes any pixel in the search window.
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This patch region is represented by the cyan rectangle in Figure 1. The weight w(Ps, Pi) can be

calculated as [14]:

w(Ps, Pi) = exp

[

−∑
k

2L − 1

h
log

(

As,k

Ai,k
+

Ai,k

As,k

)

]

(2)

where As,k and Ai,k are the amplitudes of the kth pixels in the two patches centered on Ps and Pi,

respectively. The greater the weight, the more similar Ps and Pi. The term L is the equivalent number of

looks and h is defined as [14]:

h = q − E

[

−∑
k

log p
(

As,k, Ai,k

∣

∣

∣
I∗s,k = I∗i,k

)

]

(3)

and q is given by:

q = F−1
−∑

k
log p(As,k ,Ai,k |I∗s,k=I∗i,k)

(α) (4)

where E(·) and F(·) denote the expectation and cumulative distribution functions, respectively.

A bias reduction method was developed to reduce the spreading of bright structures and the intensity of

Ps was modified as follows [15]:

ÎRB
Ps

= ÎPs + αPs

(

IPs − ÎPs

)

(5)

where ÎRB
Ps

is the intensity after applying bias reduction and IPs is the intensity of Ps in the raw

SAR image. The homogeneous factor (αPs ) corresponding to Ps is given by

αPs = max

(

0, 1 −
Î2
Ps

/L

σPs

)

(6)

and

σPs =

∑
i∈Ds

w(Ps, Pi)I2
Pi

∑
i∈Ds

w(Ps, Pi)
− Î2

Ps
(7)

where αPs is defined on the interval [0, 1]. If Ps is in the completely homogeneous area, αPs equals 0. If

Ps is in the bright structures, αPs tends to 1. A TerraSAR-X image with the resolution of one meter and

the processing results acquired by applying the conventional PPB algorithm are shown in Figure 2.

Figure 2a displays a raw unquantized single-look image, where the maximum and minimum intensities

are 3.68 × 107 and 0, respectively. Figure 2b shows the result processed by Equation (1), and Figure 2c

shows the result processed by Equations (1) and (5).

The comparison between Figure 2a and Figure 2b demonstrates the extent of speckle noise

suppression achievable with Equation (1). However, the high intensity of the strong scattering targets

present in the patches negatively affect the estimation using Equation (1). Figure 2a includes three

patches (centered at P1, P2, and P3) with intensities of IP1
= 900, IP2

= 601, and IP3
= 345, 217,

respectively. The corresponding weights were w(P1, P2) = 0.0255 and w(P1, P3) = 2.4437 × 10−4

by applying Equation (2). It is worth noting that w(P1, P2) > w(P1, P3), which indicates that

P2 is much more similar to P1, whereas the product terms satisfy w(P1, P2) · IP2
< w(P1, P3) · IP3

.

As a result, the contribution of the dissimilar point (P3) is higher when estimating the intensity of P1

in Equation (1). This improves the filtering result, which degrades speckle suppression performance.

This effect is evident near bright structures, and widens edges and increases the size of strong scattering

targets. This effect is referred to as the spreading of bright structures and can be seen in Figure 2b.

The performance of speckle suppression can be further improved by considering the impact of bright

structures, which will be discussed in Section 3.1.

Equation (5) was used to correct for the spreading of bright structures by moderately restoring the

original intensities of pixels according to the factor αPs , as shown in Figure 2c. However, speckle noise
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was also restored, particularly near bright structures. This occurred because of the inverse relationship

between speckle suppression and the spreading correction in Equation (5). The value of αPs obtained

from Equation (6) w typically close to 1 for pixels near bright structures. As such, ÎRB
Ps

tends to IPs in

Equation (5), which indicates the processed results are similar to the original image and the speckle

remains mostly unaffected. We investigated this limitation using two approaches.

The first approach involved calculation of a homogeneous factor αPs . There are three search

windows centered on P1, P4, and P5 in Figure 2a. These three points were located in homogeneous areas,

and we set the size of the search window to 25 results in αP1
= 0.9591, αP4

= 0.9977, and αP5
= 0.6476.

As the size of the search window decreased, a sudden decrease occurred in the homogeneous factor,

as shown in Figure 3. For example, as the size of the search window centered on P4 decreased

from 17 to 15, the homogeneous factor decreased from 0.9032 to 0.1942. This occurred because

bright structures were excluded from the search window, as shown in Figure 4. Therefore, a more

accurate value of αPs could be determined by choosing an appropriately-sized search window to avoid

interfering with bright structures. This process is discussed further in Section 3.2. The second approach

involves modifying the form of Equation (5) to balance speckle suppression with the correction of

bright structure spreading, which will be discussed in Section 3.3.



 Ⱦ



 





P4

P5

P2

P1 P3

   
(a) (b) (c) 

Figure 2. Processing results achieved using the conventional PPB algorithm: (a) the raw single look 
Figure 2. Processing results achieved using the conventional PPB algorithm: (a) the raw single look

complex image, (b) the result processed using Equation (1), and (c) the result processed by Equations (1)

and (5). (a) There are three search windows centered on P1, P4, and P5, and three patches centered at

P1, P2, and P3.



P5 

P1 

P4 

Figure 3. A variation in the homogeneous factor with a size matching the search window. The three

curves correspond to P1, P4, and P5 in Figure 2a. The initial window size was 25 and the step size for

the window reduction was 2.
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

Figure 4. Two search windows centered on P4 with outer and inner frame sizes of 25 and 15, respectively.

A bright structure is evident between these two frames, which did not affect the homogeneous factor

calculated using Equation (6) in the inner frame. Homogenous factors of 0.9032 and 0.1942 were

produced by the large and small windows, respectively.

3. Three-Step Algorithm for Speckle Suppression

Figure 5 compares the proposed three-step algorithm with the conventional PPB algorithm.

The conventional PPB algorithm applies Equations (1) and (5) to the raw image. In the proposed

algorithm, the first step improves the calculation accuracy of the weight by pre-processing speckle

noise and reducing the effects of bright structures, and better effect of speckle suppression can be

obtained using Equation (1). In the second step, an iterative method is utilized to obtain a more

accurate value of αPs by adaptively changing the size of the search window. The final step corrects for

spreading and blurring of bright targets using a modified bias-reduction method.

Raw image
Pre-processing speckle 

noise

Reducing  influence of 
bright structures

Iteratively calculating 
homogenous factors

Output image Output image

Filtering using Eq. (1)

Bias-reduction using 

Eq. (5) Modified bias-
reduction using Eq. (9)

Step 1

Step 2

Step 3

Conventional 

PPB

Three-step 

algorithm





Figure 5. An illustration of the three-step algorithm.
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3.1. Speckle Pre-Processing and Weight Correction

The primary objective of speckle pre-processing is to suppress speckle noise in homogeneous

areas without losing edge and texture details, which reduces the influence of speckle noise on

weight calculation. This study adopts the linear minimum mean-square error (LMMSE) filter for

pre-processing [11]. Although the denoising results produced by this algorithm are not ideal, it is highly

suitable for preserving edges and textures.

Then, a threshold was set, which was 25 dB higher than the average intensity of the search

window [16]. Any pixels with an intensity exceeding this threshold were considered to be strong

scattering points. The influence of these points on weight calculation was then considered in four

cases, as demonstrated in Figure 1.

Case 1: Patches centered on Ps and Pi do not contain any strong scattering points, which indicates

that an influence of strong scattering points on weight calculation does not exist. In this case, the weight

w(Ps, Pi) was calculated using Equation (2).

Case 2: Both Ps and Pi are strong scattering points. It was assumed that these two points are likely

similar. The weight was then calculated using Equation (2).

Case 3: Either Ps or Pi was a strong scattering point (not both). In this instance, the two patches

centered on Ps and Pi were thought to be completely different and the weight was accordingly set to 0.

Case 4: The patches centered on Ps or Pi contained strong scattering points, none of which were

Ps or Pi. In order to reduce the impact of the strong scattering points, the weight was then determined

from Equation (2), in which all intensities for strong scattering points were replaced by the average

intensity of the patch.

3.2. Iteratively Calculating the Homogeneous Factor

As illustrated in Figure 3, the homogeneous factor αPs is dependent on the size of the search

window. Therefore, the simplest approach to improving the accuracy of αPs was to reduce the window

size. However, this also reduces the number of similar pixels and degrades speckle suppression

performance in homogeneous areas. As such, an iterative method was developed to adaptively

maximize the search window without affecting the accuracy of αPs . The details of this process are

as follows.

(1) The initial side length of the search window centered on Ps is set to ∆S0
and the corresponding

homogeneous factor αS0
is calculated using Equation (6). Bright structures have little effect on this

calculation. If αS0
, the estimation of the homogeneous factor for Ps is less than 0.5, which is an empirical

threshold. In this case, αS0
is the final estimation. Otherwise, the iteration continues. This step can

reduce the computational complexity by identifying pixels that require homogeneous factor correction.

(2) Let ∆Si
= ∆Si−1

− 2 (i = 1, 2, . . . ), and the corresponding homogeneous factor αSi
is determined

using Equation (6). If ∆Si
× ∆Si

is less than the minimal size of the search window (i.e., 3 × 3),

the iteration terminates and αSi
represents the final estimation. Otherwise, the process continues to

step (3).

(3) The ratio r1 is calculated as:

r1 = αSi
/αSi−1

The value of αSi
decreases dramatically if the region does not contain any bright structures,

as illustrated in Figure 3. Therefore, if r1 is less than 0.5, indicating the homogeneous factor is less than

half the previous value, the iteration terminates and αSi
is the final estimation. Otherwise, the process

continues to step (2) when i equals 1, or step (4) when i is greater than 1.

(4) The ratio r2 is calculated as:

r2 = αSi
/αSi−2

The iteration terminates if r2 is less than 0.5 and αSi
becomes the final estimation, as in the previous

step. Otherwise, the process returns to step (2).
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3.3. Correcting the Spreading and Blurring of Bright Targets

As aforementioned, the minimum size of the search window was set to 3 × 3. Therefore,

homogeneous factors were updated by applying the methods proposed in Section 3.2., with the

exception of 3 × 3 regions surrounding bright structures. A modified bias-reduction method is

proposed to reduce the spreading of these bright structures.

A new ratio r3 can be defined as:

r3 =
ÎPs

IPs

(8)

which indicates whether significant spreading occurs or not. Equation (5) can be modified to balance

speckle suppression with the correction of bright structure spreading as follows:

ÎRB
Ps

= ÎPs + F(αPs , r3)(IPs − ÎPs), αPs ∈ [0, 1], F(αPs , r3) ∈ [0, 1] (9)

where F(αPs , r3) satisfies the following conditions:

(1) When r3 ≤ 1,

F(αPs , r3) = 0 (10)

Equations (9) and (10) demonstrate that ÎRB
Ps

equals ÎPs in areas that do not exhibit bright structure

spreading. The level of speckle suppression is maintained in such areas.

(2) When r3 > 1, indicating the presence of spreading, the following condition is satisfied:

F(αPs , r3) = (1 − 1

r3
)αPs +

1

r3
f (αPs) (11)

where

f (αPs) = α

n
n−(n−1)αPs
Ps

(12)

when 0 < αPs < 1, f (αPs) is less than αPs , as illustrated in Figure 6, where n is a parameter to

balance speckle suppression with the correction of bright structure spreading. In the conventional PPB

algorithm, F(αPs , r3) = αPs , which corrects for the spreading of bright structures but degrades speckle

noise suppression, as discussed in Section 2. In contrast, for F(αPs , r3) = f (αPs), ÎRB
Ps

tends to ÎPs ,

which improves the performance of speckle suppression but induces obvious bright structure

spreading. Equation (11) makes f (αPs) ≤ F(αPs , r3) ≤ αPs , which results in more balanced performance

with some suppression of both spreading and speckle.

Figure 7 demonstrates the impact of n on the speckle suppression and correction for the

spreading of bright structures. From left to right, the values of n for these images are 1, 5, 10, 20,

and 50. When n = 1, the speckle noise in the corresponding image was the most serious. As n increased,

the speckle noise was more effectively suppressed, while the spreading of bright structures worsened.

When the value of n was between 5 and 10, a more balanced performance was obtained. In this study,

the value of n was set to 5.

In the filtering process described by Equation (9), the bright structures are also suppressed and

blurred. A matrix denoted by αfinal was developed to recover these structures. This matrix is the

same size as the image, and each element in this matrix corresponds to the homogeneous factor of a

pixel. Bright structures in SAR images can be positioned from the matrix αfinal by the canny operator,

after which ÎRB
Ps

is directly set to the original intensity of these bright structures.
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Figure 6. Variations in f (αPs
) with αPs

and n. f (αPs
) is defined in Equation (12). αPs

is the

homogeneous factor and n is a parameter to balance speckle suppression with the correction of

bright structure spreading.

     

(a1) (a2) (a3) (a4) (a5) 

     

(b1) (b2) (b3) (b4) (b5) 

ΐr Ηr

ΐr Ηr
-- 

 × 1

90 

71 

-- 

×10

32 

77 

-- 

 × 1

02 

14 

-- 

 × 1

46 

27 

Figure 7. Impact of n in Equation (12) on the speckle suppression and correction for the spreading of

bright structures. There are two groups of experimental results: (a1) to (a5) and (b1) to (b5). For (a1)

and (b1), n is set to 1. And for the second, third, fourth, and fifth columns, the values of n are 5, 10,

20 and 50, respectively.

4. Experimental Results and Analysis

Four TerraSAR-X images were used to validate the proposed algorithm, as illustrated in the first

column of Figure 8. Among these, Figures 8a1 and 8b1 exhibit clear edges and uniform backgrounds,

whereas Figures 8c1 and 8d1 include complex structures. All these images contain strong scattering

points. These characteristics help demonstrate the comprehensive performance of the proposed

technique. The results achieved using the fast non-local means algorithm [17], conventional PPB

algorithm, and proposed three-step algorithm are shown in the second, third, and fourth columns of

Figure 8, respectively.
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Several quantitative metrics were used to evaluate Figure 8: the equivalent number of looks

(ENL) [18], the edge preservation index (EPI) [19], the mean µr, and the standard deviation σr of the

ratio image [20,21]. The results of this evaluation are presented in Table 1. The terms ENL1 and ENL2

were calculated using the areas enclosed by the red frames, labeled 1 and 2, respectively.

Processing and evaluation results indicated that all three algorithms significantly suppress speckle

noise. The fast non-local and conventional PPB algorithms have basically the same ability in speckle

suppression, which is indicated by the ENL value. The fast non-local algorithm performed the worst

in edge preservation. The proposed algorithm produced the highest ENL and EPI values, indicating

that it was most successful in both preserving edges and suppressing speckle.

Table 1. Evaluation results.

Algorithm Image ENL1 ENL2 EPI µr σr

Raw image

1

0.9996 0.9682 – – –
Fast non-local algorithm 12.7594 12.3647 0.5134 1.5448 × 1010 1.4475 × 1012

Conventional PPB 16.9518 12.7141 0.8685 0.8648 0.6390
Three-step algorithm 36.3338 26.3064 0.9484 0.9484 0.8271

Raw image

2

0.9983 1.0154 – – –
Fast non-local algorithm 22.1223 4.8051 0.2603 7.9030×1010 1.9913×1012

Conventional PPB 17.3786 15.0505 0.8278 0.8473 0.6132
Three-step algorithm 40.2398 26.0787 0.9435 0.9458 0.7977

Raw image

3

1.042 1.0051 – – –
Fast non-local algorithm 17.5744 2.5683 0.2936 3.3912 × 1011 1.4966 × 1013

Conventional PPB 10.7677 4.651 0.9180 0.8055 0.4402
Three-step algorithm 67.2727 36.5582 0.9480 0.9631 0.8314

Raw image

4

1.0044 1.0147 – – –
Fast non-local algorithm 15.7269 11.3674 0.3532 3.1675 × 1011 9.9027 × 1012

Conventional PPB 13.2521 12.7311 0.9174 0.8292 0.4846
Three-step algorithm 33.0672 47.3125 0.9491 0.9598 0.8227

ENL1 and ENL2 represent the equivalent number of looks calculated using the areas enclosed by the red frames,
labeled 1 and 2, in Figure 8. EPI represents the edge preservation index. µr and σr are the mean and standard
deviation of ratio images shown in Figure 9.

A point-to-point comparison of the texture preservation results is shown in Figure 9. These images

were produced using the ratio between raw and de-speckled data, with corresponding evaluation

results shown in the last two columns of Table 1. The application of an ideal despeckling algorithm

would produce a ratio image containing only speckle points, indicating that the mean and standard

deviation of the ratio image would be 1 and
√

1/L, respectively, for an L-look raw image [3]. As all raw

SAR images in this study were single-look complex images, the ideal mean and standard deviation

were both one. As shown in the second column of Figure 9, the ratio images obtained by the fast

non-local algorithm contained bright structures, so the mean and standard deviation of the ratio

images were far from one. Ratio images corresponding to the conventional PPB algorithm are shown

in the third column of Figure 9. They contain obvious geometric structures related to the original

images, indicating that not only speckle noise but also textures were removed by the conventional PPB

algorithm. In contrast, the ratio images produced using the proposed technique exhibited much weaker

geometric structure, as shown in the fourth column. This indicates that the proposed algorithm can

preserve texture details, with a mean and standard deviation of ratio images closer to one compared

with the conventional PPB algorithm. These results demonstrate the superior performance of the

proposed method.
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(d1) (d2) (d3) (d4) 
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2 

Figure 8. Despeckling results. (a1), (b1), (c1) and (d1) show raw SAR images. (a2), (b2), (c2) and (d2)

illustrate results obtained by the fast non-local algorithm. (a3), (b3), (c3) and (d3) illustrate results

obtained by the conventional PPB algorithm. (a4), (b4), (c4) and (d4) illustrate results obtained by the

proposed three-step algorithm.
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(a1) (a2) (a3) (a4) 

    

(b1) (b2) (b3) (b4) 

    

(c1) (c2) (c3) (c4) 
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Figure 9. Ratio images. (a1), (b1), (c1) and (d1) show raw SAR images. (a2), (b2), (c2) and (d2) show

ratio images corresponding to the fast non-local means algorithm. (a3), (b3), (c3) and (d3) illustrate

ratio images corresponding to the conventional PPB algorithm. (a4), (b4), (c4) and (d4) represent ratio

images corresponding to the proposed algorithm.

5. Conclusions

In this study, we developed a novel three-step technique based on the conventional PPB algorithm.

The proposed algorithm improved the calculation accuracy of the weighting by pre-processing speckle

noise with the LMMSE filter and reducing the influence of bright structures. The algorithm also

improves upon the accuracy of the homogeneous factor by adaptively changing the size of the search

window, and then corrects for the spreading and blurring of bright structures. TerraSAR-X images

with clear edges, uniform backgrounds, and complicated internal structures were used to validate this

technique. This algorithm has the advantages of the conventional PPB and has better performance for

both speckle suppression and the preservation of edges and textures. In a future study, deep neural



Sensors 2018, 18, 3643 12 of 13

networks, such as generative adversarial networks, which have adaptive and strong filtering abilities,

will be used to further improve the performances. In particular, we expect that suppressing bright

structure spreading can be achieved without weakening the denoising effect.
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