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ABSTRACT
This work deals with the capabilities of two synoptic modal decomposition techniques for the identification of the spatial patterns and temporal
dynamics of coherent structures in shallow flows. Using two different experimental datasets it is shown that due to the linear behaviour of large-scale,
quasi-two-dimensional flow structures, there are almost no differences in the identification of dominant modes between the results obtained from a
traditional proper orthogonal decomposition and the more recently developed dynamic mode decomposition. However, it is also shown that nonlinear
dynamics can arise in the transition of these structures to a quasi-two-dimensional behaviour, which can result in the proper orthogonal decomposition
identifying structures composed of multi-frequencies, a sign of a convoluted dynamics. Thus dynamic mode decomposition is recommended instead
for the analysis of such phenomena. In addition, this paper introduces a simple ranking methodology for the use of the dynamic mode decomposition
technique in shallow flows, which is based on the results of the proper orthogonal decomposition.

Keywords: Coherent structures; dynamic mode decomposition (DMD); particle image velocimetry (PIV); proper orthogonal

decomposition (POD); quasi-two-dimensional coherent structures (Q2DCS); shallow flows

1 Introduction

The main effect caused by the forcing of a topographical

obstruction in a turbulent shallow flow is the generation of

highly energetic coherent structures (Jirka, 2001). Due to the

constraints imposed by the water depth on the vertical vor-

tex stretching process, these coherent structures grow side-

wise, developing mainly horizontal dynamics. This means that

their structure is almost two-dimensional everywhere on depth,

except near the bottom where the boundary layer governs the

flow characteristics, i.e. they behave as quasi-two-dimensional

coherent structures (Q2DCS) (Jirka & Uijttewaal, 2004).

Besides the Reynolds number, Q2DCS are mainly characterized

by the shallowness number S = CfD/H , where Cf is the fric-

tion coefficient, D a characteristics length scale and H the water

depth (Chen & Jirka, 1997; Uijttewaal, 2014; Constantinescu

et al., 2009). Due to the high energy of Q2DCS, their dynamics

can be crucial to understand important process such as momen-

tum and mass exchange, and the dynamic loads exerted by a

flow over hydraulics infrastructure. It is because of this that the

description of their spatial characteristics and temporal dynam-

ics is paramount in the context of environmental process and

hydraulic engineering.

There are several techniques that can be used to generate syn-

optic data to investigate the behaviour of topographically forced

shallow flows. These can include data gathered from field or

laboratory image-based velocimetry measurements (Weitbrecht

et al., 2002; Uijttewaal & Jirka, 2003), or those generated by

numerical eddy resolving techniques (Hinterberger et al., 2007;

Rodi, 2017). It is in the context of these large datasets where the
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selection of tools for the identification of statistically meaning-

ful coherent structure can play an important role.

From a general perspective, modal decomposition techniques

can be used to determine regions of dynamical and spatial sig-

nificance (Lumley et al., 1996) from large datasets. A popular

modal decomposition technique is proper orthogonal decom-

position (POD) (Aubry, 1991; Berkooz et al., 1993). This

technique is used to find a set of spatially orthogonal modes

which are ordered by their contribution to the total variance,

i.e. turbulent kinetic energy in the case of velocity time series,

or enstrophy in case of vorticity fields. Previous research has

shown the POD to be an effective method in describing com-

plex processes in open channel flows (Roussinova et al., 2010;

Fox & Belcher, 2011; Higham & Brevis, 2018) and in the con-

text of shallow flows (Brevis & García-Villalba, 2011; Peltier

et al., 2014).

An alternative to POD, the dynamic mode decomposition

(DMD) (Schmid et al., 2009) has been introduced relatively

recently. The main difference with POD is that the method

searches for temporally orthogonal modes. DMD has been suc-

cessfully applied to a number of experimental cases, but its

application has been mainly limited to a range of problems in

fluid mechanics (Schmid et al., 2009; Muld et al., 2012; Tu

et al., 2013). Even though both techniques have offered insights

into complex systems and processes, it is necessary to under-

stand some of their limitations to avoid any misinterpretation of

the physical insights they offer.

POD is a linear statistical method and as a consequence

assumes that modes can be superimposed for the reconstruc-

tion of the signal. This means that complex nonlinear cases can

cause the low-order POD modes to be convolved with mul-

tiple, high variance, contributing mechanisms. As the DMD

algorithm extracts spatial modes which are temporally orthogo-

nal, the structures described in the modes relate only to discrete

frequencies, thus are unlikely to describe multiple mechanisms.

However, the extracted modes cannot be related directly to a

physical quantity such a enstrophy or kinetic energy, making it

difficult to pinpoint the meaning of the modes in terms of the

types of physics that are often used to inform process insight or

numerical modelling. A number of previous works have aimed

to solve this problem usingoptimization techniques (Jovanović

et al., 2014), or modal reductions (Chen et al., 2012; Wynn

et al., 2013). In this work a simple alternative to these meth-

ods is presented, with a particular application to the use of the

DMD technique for the analysis of Q2DCS in shallow dynam-

ics. Based on the mainly linear, or weakly nonlinear, behaviour

of large Q2DCS in shallow flows for low values of the shal-

lowness number (S ≤ 0.6) (Ghidaoui et al., 2006), POD should

offer a good performance for the identification of coherent struc-

tures. However for larger S or in the region of transition of

these structures to a quasi two-dimensional behaviour, the flow

patterns can be affected by three-dimensional structures, thus

producing a departure from a linear behaviour. Even though

POD cannot capture the full nature of the modes under these

conditions, it can be expected that due to the still dominant

two-dimensionality of the flow, the results will contain enough

information on the dominant dynamics. As explained later in

detail, this information can be found in the temporal coefficients

resulting from a POD, which, after a Fourier spectral analysis,

can guide the search for corresponding modes using the DMD

technique. Thus, the aim of this paper is to not only to demon-

strate the potential utility of DMD in hydraulics research, but

also to show how it can be complemented, and the interpre-

tation of its results enhanced, through the use of information

from POD. Overviews of these two techniques are provided in

the next two sections, with further detail available in the liter-

ature. Results where DMD and POD largely return the same

behaviours are then presented, before considering a case in

greater detail where more complex flow dynamics requires the

use of the two techniques in parallel.

2 Proper orthogonal decomposition

POD was independently derived by a number of individ-

uals, and consequently takes a variety of names in differ-

ent fields such as Karhunen–Loève decomposition, singular

value decomposition (SVD) and principal components anal-

ysis (PCA) (Kosambi, 1943; Loève, 1945; Karhunen, 1946;

Pougachev, 1953; Obukbov, 1954). A set of t = 1, 2, . . . , T tem-

porally ordered velocity/vorticity fields, V(x, y; t), is considered,

each of which is of size X × Y. The method requires the con-

struction of an N × T matrix W from T columns w(t) of length

N = XY , each one corresponding to a column-vector version of

a transformed snapshot V(x, y; t). A POD can be obtained by:

W ≡ �SC∗ (1)

where S is a matrix of size Ω × Ω (Ω are the number of

modes of the decomposition and (·)∗ represents a conjugate

transpose matrix operation). l = diag(S)2/(N − 1) is the vector

containing the contribution to the total variance of each Ω . The

elements in l are ordered in descending rank order, i.e. (l1 ≥
l2 ≥ · · · lΩ ≥ 0). In practical terms the matrix � of size N × Ω

contains the spatial structure of each of the modes and the matrix

C of size Ω × Ω contains the coefficients representing the time

evolution of the modes.

From Eq. (1) and as shown by Brevis and García-

Villalba (2011), each Ci relates to the temporal evolution of

each �i, where i = 1 · · · T. As outlined above, each POD mode

is spatially orthogonal and may contain multiple intertwined

mechanisms; therefore a Fourier spectrum of each Ci should

be able to highlight the peak frequencies relating to these

intertwined periodicities.

3 Dynamic mode decomposition

The dynamic mode decomposition (DMD) algorithm was intro-

duced by Schmid (2010), based on a Arnoldi eigenvalue
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algorithm suggested by Ruhe (1984). The DMD algorithm

approximates the temporal dynamics by fitting a high-degree

polynomial to a Krylov sequence of flow fields (Mezić, 2005;

Schmid et al., 2009). For complex flow systems containing

interactions of turbulent structures and mechanisms, the DMD

algorithm can be used to extract spatial modes with single ‘pure’

frequencies. There are a number of methods to compute a DMD,

and that implemented in the present study is the popular SVD-

based algorithm, which is used to reduce the susceptibility to

experimental noise, through an initial projection on to a orthog-

onal basis (Schmid, 2010). The algorithm is outlined below,

although the reader is directed to Schmid (2010), Jovanović

et al. (2014) and Tu et al. (2013) for the full mathematical

description. The DMD algorithm begins with a similar transfor-

mation as POD, with the difference that two matrices are formed

that are each one column smaller than the full dataset; the idea

is to use the former as a means to predict the data the latter:

WA = {w1, w2, . . . , wτ }, and WB = {w2, w3, . . . , wT} (2)

where τ = (T − 1), and the super-scripts A and B denote the

two W matrices of size N × τ . A SVD of WA is computed,

such that:

WA ≡ �̃S̃C̃∗ (3)

where �̃, S̃ and C̃ are the POD modes, the singular values

and the temporal coefficients of WA respectively, and where ∼
relates to the SVD quantities in the DMD algorithm. The matrix

F, of size (τ × τ), is created by:

G = �̃WBC̃S̃−1 (4)

and its complex eigenvalues, µi, and eigenvectors, zi, are com-

puted where i = 1 · · · τ . At this point the method of Jovanović

et al. (2014) is used, as this creates a set of amplitudes for each

spatial mode. Following Jovanović et al. (2014) a Vandermonde

matrix is created from the complex eigenvalues:

Qi,j = µ
(j −1)

i (5)

where i = 1 · · · τ and j = 1 · · · τ , and the spatial modes are cre-

ated by � = WAZ, where Z is the set of complex eigenvectors

previously computed. Furthermore, a set of amplitudes, Dα , are

created and the original input, WA, can be expressed as:

WA ≡ �DαQ (6)

where Dα is of size τ × τ . Similar to a POD �, the spatial

are modes of size N × τ relating to the spatial structure, α =
diag(Dα) relates to their amplitude �, but not their variance,

and Q contains the coefficients representing the time evolution

of the modes. In practical terms, the angle between the real and

imaginary part of, zi, can be used to describe the frequency, f,

relating to each � and can be expressed by:

Fi = 2π arg{zi} (7)

From Eq. (7), it is clear that each of the modes obtained by

DMD relates to a unique peak frequency. If the Fourier spec-

trum of the POD coefficients is used to identify the frequency

of dominant but intertwined structures, these frequencies can be

used to identify their spatial structure from the DMD results.

There is a main restriction for this methodology. The technique

can be applied only for the identification of low order modes in

shallow flows or in cases where a flow structure clearly governs

the dynamics. In these flows, peak frequencies are expected to

be clearly identified from the Fourier spectrum of the tempo-

ral POD coefficients. These conditions do not hold, for instance,

in three-dimensional turbulent flows, where the contribution of

low order modes can be of a similar magnitude to the contribu-

tion of higher order ones. Thus, any frequency extracted from

the Fourier spectrum might be misleading due to the lack of

capabilities of POD, being spatially orthogonal, to separate non-

linear interactions of structures with similar contributions to the

variance of the signal. It is because of this that the link between

POD and DMD introduced here, is only presented in the context

of shallow flows. Furthermore, a recent contribution by Taira

et al. (2017) also shows that DMD is not suitable for complex

highly anisotropic flows, therefore the use of DMD for shallow

quasi-two dimensional flows seems most logical.

4 Flow visualizations of a shallow cylinder wake

A first experimental dataset was selected to showcase hydro-

dynamic conditions where the DMD does not improve the

identification of Q2DCS in the low order modes, obtained by

POD. The dataset was obtained from the experimental work of

Brevis and García-Villalba (2011), in which the POD of a flow

visualization was used to identify dominant frequencies in the

wake of a cylinder in a shallow flow. All experimental details

can be found in the work of Brevis & García-Villalba (2011).

Figure 1 shows the results obtained from the POD analysis. In

this case the spatial modes �1&2 are paired, indicating a peri-

odic shedding behaviour with a different phase in these two

modes. Figure 1a only shows �1 as reference. The modes in

Fig. 1a and b reveal the advection of patches of dye trans-

ported by vortical structures. Modes �3&4 (Fig. 1c and d), are

also paired but show a different structure. According to Bre-

vis and García-Villalba (2011) these modes correspond to the

spanwise alternated motion of the vortex behind the cylinder.

Figure 1e and f show the evolution of the temporal coefficients

is clearly sinusoidal; consequently a peak at f = {0.2, 0.4 Hz}
can be observed in the Fourier power spectra for modes �1&2

and �3&4. Due to the size of the region analysed, it is expected

that the Q2DCS will govern most for the spatial flow features.
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t t

f

Figure 1 POD results of flow visualizations of a shallow cylinder wake. (a–d) The spatial modes �1−4. (e, f) The temporal coefficients C1 and C3

in black and C2 and C4 in grey. (g) Fourier power spectrum of the temporal coefficients C1 (black) and C3 (grey). The red dashed lines highlight the

frequencies extracted using the DMD

In addition S = 0.06, thus it is expected to see a highly linear

dynamic of the dominant modes. This can be seen in Fig. 2a–

d where the results of the DMD analysis are given; the spatial

structure of the modes is very similar to that obtained by the

POD. However, different to the POD analysis, in the DMD spa-

tial modes the advection of the patches of the transported dye

can be seen between the real and imaginary components of the

spatial modes. As shown in Fig. 2e and f in both cases the

coefficients show a sinusoidal shape, although noticeably there

is a sharper peak in the Fourier spectra in Fig. 2g, highlighting

the better localization of the DMD method.

5 Shallow flow obstructed by a groyne

A shallow turbulent flow obstructed by a single groyne is a

common occurrence in fluvial shallow flow hydraulics. The

selected case corresponds to a flow topology similar to the one

described by Talstra (2011). The flow that developed down-

stream of the obstacle is characterized by the formation of a

shear layer bounding a low velocity recirculation region formed

by a primary clockwise gyre, located in the downstream part

of the recirculation zone, and an anti-clockwise secondary gyre,

of smaller size, located immediately downstream the obstacle.
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t t

f

Figure 2 DMD results of flow visualizations of a shallow cylinder wake. (a–d) The real and imaginary components of the spatial modes �f =0.2 Hz

and �f =0.4 Hz respectively. (e, f) The real and imaginary temporal coefficients relating to Qf =0.2 Hz and Qf =0.4 Hz where the black line is the real

component and the grey line is the imaginary component. (g) The Fourier power spectra of the temporal coefficients shown in (e) and (f). Qf =0.2 Hz

(black) and Qf =0.4 Hz (grey)

The structures populating the shear layer in the near field are

expected to be generated by both vortex shedding from the

tip of the obstacle and by the strong velocity gradient pro-

duced between the main channel and the secondary gyre inter-

face. From a general observation of the derived vorticity fields

sequence, it is expected that the vortices associated with the

velocity gradient are of a larger size as the mechanism of gen-

eration seems to be more energetic than vortex shedding. Even

though S ≤ 0.6, the region analysed here is the near field, where

vortices are not expected to behave as a Q2DCS, but are in

a transitional stage, still governed by quasi two-dimensional

features, but also influenced by three-dimensional ones.

The dataset in the present study is a subset of the data

presented in (Higham, Brevis, Keylock, & Safarzadeh, 2017).

The experiments were carried out in a tilting shallow flume

of 18 m × 1.82 m located at the Institute for Hydromechanics,

Karlsruhe Institute of Technology, Germany. A single rectan-

gular obstacle of length D = 0.25 m and cross section 0.05 ×
0.05 m was placed perpendicular to the main flow direction, at

the side-wall of the flume, and at 12 m downstream from the

channel entrance. The flow rate Q was set to 0.0135 m3s−1, and

the flume slope was inclined to 0.001 m m−1 resulting in a water

depth H = 0.04 m (see Fig. 3). The Reynolds number was, R =
U0H/ν = 29, 680, where U0, ρ and ν are the bulk flow velocity,
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Figure 3 Illustration of the experimental set-up of the single groyne. Measurement section highlighted in white. (Not to scale.)

water density and kinematic viscosity respectively. These condi-

tions gave a low Froude number, F = U0/
√

gh = 0.29, where g

is the acceleration of gravity, which ensured minimal surface

disturbances (Uijttewaal, 2005). The friction factor was esti-

mated to be 0.03, thus S = 0.18. The dynamic of the Q2CS was

quantified by means of large scale particle image velocimetry

(LSPIV) measurement. The PIV system consisted of a camera

with a 1200 × 1200 pixel CCD-sensor and 12 bit resolution. The

flow was seeded with floating 2.5 mm particles using a pneu-

matic particle dispenser. It has been previously shown that the

use of these tracer particles is effective in capturing the large

scale turbulent motions (Weitbrecht et al., 2002). The camera

was mounted directly above the water surface at a height of

1.5 m and was set to capture an area of 0.5 × 0.45 m downstream

of the obstacle. A total of 700 snapshots were recorded with

an acquisition frequency of 7.5 Hz. The image sequence was

analysed using the PIV lab (Thielicke & Stamhuis, 2014), using

multi-pass and image deformation techniques (Scarano, 2002),

and the raw PIV results were filtered using the PODDEM

algorithm (Higham, Brevis, & Keylock, 2016).

Both the POD and DMD calculations were undertaken on

all 700 snapshots. The POD was calculated over the snapshots

of the fluctuating velocity field, while the DMD was performed

over the instantaneous velocity snapshots. The reasoning behind

this is related to the stability of the DMD solution, as discussed

by Tu et al. (2013) and Chen et al. (2012).

t t

f

Figure 4 POD results of the near vorticity field of the shear layer generated by a lateral groyne in a shallow flow (groyne highlighted in white). (a)

The time averaged vorticity field 〈V〉. (b, c) The POD spatial modes, �1 and �2. (d, e) The POD temporal coefficients of C1 and C2 respectively,

where the grey line denotes the mode which forms the conjugate pair. (f) The Fourier power spectra of the temporal coefficients shown in (d) and (e).

C1 (black) and C2 (grey). The red dashed lines highlight the frequencies of importance; extracted using the DMD



802 J.E. Higham et al. Journal of Hydraulic Research Vol. 56, No. 6 (2018)

In Fig. 4b and c the first two POD modes, �1&2, of the

vorticity field are presented. These top two spatial modes

have similar energy, contributing to ∼ 35% of the total vari-

ance. As shown by Rempfer and Fasel (1994) and Brevis and

García-Villalba (2011), two modes of similar energy can show

analogous, but shifted, spatial and temporal features. In this

particular case, these shifted features appear to be related, as

expected, to the advection of vortices resulting from a Kelvin–

Helmholtz instability.

In Fig. 4d and e the temporal coefficients, C1&2, of the

first two modes are presented. The evolution of the coefficients

appears to correspond to the presence of multiple dynamical

processes. This is further revealed by the Fourier spectrum of

C1&2 (see Fig. 4f), which shows the presence of a broad band

of frequencies but with clear peaks, at different energy levels,

and frequencies of f = {0.21, 0.32, 0.39 Hz}. After performing

the DMD analysis on the data, the modes associated to these

peak frequencies were identified. The imaginary components of

the DMD spatial modes are shown in Fig. 5a–c and the real

components in Fig. 5d–f. The temporal coefficients relating to

these modes are presented in Fig. 5g–i where the black lines

are the real components and the grey lines are the imaginary

components. Figure 5j highlights how sharply the identified fre-

quencies are expressed in the DMD modes. In Fig. 5a and d in

x/D x/D x/D

x/D x/D x/D

y
/D

y
/D

y
/D

y
/D

y
/D

y
/D

f = 0.21 Hz

f 
=

 0
.2

1
 H

z

f 
=

 0
.3

2
 H

z

f 
=

 0
.4

0
 H

z

f = 0.32 Hz f = 0.40 Hz

f = 0.21 Hz f = 0.32 Hz f = 0.40 Hz

t t t

f

Figure 5 DMD results of the near vorticity field of the shear layer generated by a lateral groyne in a shallow flow. (a–f) The real and imaginary

components of the DMD spatial modes �f = 0.21 Hz, �f = 0.32 Hz and �f = 0.39 Hz respectively. (g–i) The real and imaginary temporal coefficients

relating to Qf = 0.2 Hz and Qf = 0.4 Hz, where the black line is the real component and the grey line is the imaginary component. (j) The Fourier power

spectra of the temporal coefficients shown in (e) and (f). Qf = 0.21 Hz (black), Qf = 0.32 Hz (grey) and Qf = 0.32 Hz (light grey)
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both the real and the imaginary components the spatial DMD

modes, �f =0.21 Hz, resemble the structures seen in the two first

POD modes; however, the DMD spatial modes highlight that

this single frequency is related to a flapping motion of the shear

layer, a feature also highlighted by Talstra (2011) for a similar

geometry. In Fig. 5b and e �f = 0.32 Hz reveals the presence of an

advecting motion along the shear layer; this advection is high-

lighted between the real and the imaginary components of the

DMD spatial modes. Finally, in Fig. 5c and f the third mode

�f = 0.39 Hz shows structures of smaller size, but with about twice

the frequency of the first mode, which are shed from the tip

of the obstacle. For a full physical insight into these mecha-

nisms, the reader is directed to Higham et al. (2017), where a

more in-depth analysis of a larger domain is undertaken. This

example highlights the advantages of the presented approach

of combining the DMD algorithm with a POD based search

criterion; because turbulent shear layer formulation and eddy

shedding are typically complex and nonlinear, a mixing of fre-

quencies is clear in the POD temporal coefficients. Using DMD,

one can seek these frequencies and discern the flow processes

that drive this dynamic behaviour; determining structures which

are temporally orthogonal but also spatially important.

6 Conclusions

In the present study methodology has been introduced for

enhancing understanding of fluvial and hydraulic processes in

shallow flows using two modal decomposition methods. The

physical basis for the approach derives from the fact that

the POD undertakes a decomposition that is proportional to the

variance in the data and, consequently, is related to energy or

enstrophy in the measurements. However, for complex flows,

POD mixes together multiple frequencies. The Fourier spec-

trum of a POD mode provides the information to search through

the DMD to find the relevant frequencies. The spatial DMD

modes corresponding to these frequencies can then be used

to elucidate the relevant mechanisms. The application of the

method is discussed in terms of flows where the low order

modes which make a very large contribution to the total vari-

ance. The results of the test cases agree with the expected

performance of the decomposition methods. POD shows great

potential to explain the dynamics of Q2DCS, as their behaviour

is spatially important, i.e. spatially orthogonal in the far field.

However, it is shown that in the near field, where vortices are in

transition towards a Q2DCS behaviour, POD has the potential

to convolve the dynamics of different flow structures. How-

ever, their spatial structure can be extracted from the signal if

their associated frequencies are identified and then extracted

from the DMD results. In summary, the use of the POD as a

search criteria for the DMD allows the determination of spa-

tial modes which are both spatially important and temporally

orthogonal. The search criteria proposed here is not expected

to be valid for three-dimensional flows because of the linear

nature of the additive separation. However, for shallow flows, it

improves existing methods for extracting physically significant

turbulence behaviour from experimental or numerical datasets

based on modal decompositions. (For the readers information,

an implementation of the POD-DMD method is available on the

MathWorks repository.)
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Notation

Cf = Friction coefficient (–)

F = Froude number (–)

R = Reynolds number (–)

S = Shallowness number (–)

C = matrix of POD temporal coefficients (–)

Dα = matrix of DMD amplitudes (–)

Q = matrix of DMD temporal coefficients (–)

V(x, y; t) = matrix of velocity / vorticity fields (m s−1) /

(s−1)

W = matrix of column transformed velocity fields

(m s−1)

� = matrix of POD spatial modes (–)

� = matrix of DMD spatial modes (–)

f = frequency (Hz)

F = vector of DMD Frequencies (Hz)

z = complex eigenvectors (–)

α = DMD amplitudes (–)

µ = complex eigenvalues (–)

Ω = number of POD modes (–)

D = characteristic length scale (m)

g = gravity acceleration (m s−2)

H = depth of water (m)

PSD = power spectral density (–)

t = time (s)

x = x-direction spatial coordinate (m)

y = y-direction spatial coordinate (m)

ν = kinematic viscosity (m2 s)

U0 = bulk velocity (m)
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