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Microorganisms are the chief primary producers within present-day deep-

sea hydrothermal vent ecosystems, and play a fundamental role in shaping

the ecology of these environments. However, very little is known about the

microbes that occurred within, and structured, ancient vent communities.

The evolutionary history, diversity and the nature of interactions between

ancient vent microorganisms and hydrothermal vent animals are largely

undetermined. The oldest known hydrothermal vent community that

includes metazoans is preserved within the Ordovician to early Silurian

Yaman Kasy massive sulfide deposit, Ural Mountains, Russia. This deposit

contains two types of tube fossil attributed to annelid worms. A re-examin-

ation of these fossils using a range of microscopy, chemical analysis and

nano-tomography techniques reveals the preservation of filamentous micro-

organisms intimately associated with the tubes. The microfossils bear a

strong resemblance to modern hydrothermal vent microbial filaments,

including those preserved within the mineralized tubes of the extant vent

polychaete genus Alvinella. The Yaman Kasy fossil filaments represent the

oldest animal –microbial associations preserved within an ancient hydro-

thermal vent environment. They allude to a diverse microbial

community, and also demonstrate that remarkable fine-scale microbial

preservation can also be observed in ancient vent deposits, suggesting

the possible existence of similar exceptionally preserved microfossils in

even older vent environments.
1. Introduction
Bacteria and archaea are an intrinsic component of modern hydrothermal vent

communities, being the chief primary producers within these ecosystems and

sustaining remarkable biomass in the otherwise largely resource-limited deep

sea [1]. These microorganisms occupy a variety of niches at vents, including

biological and mineral surfaces, hydrothermal plumes and extend into the

sub-seafloor. They also constitute an important food source for grazing animals,

and some bacteria form unique and important associations with vent metazo-

ans such as large tubeworms, including ectosymbiosis, endosymbiosis and

commensalism. In addition, vent microorganisms are highly diverse taxonomi-

cally, comprising many novel lineages of archaea and bacteria, especially

1-Proteobacteria [2–4].

Hydrothermal vents have been suggested as the probable environments

within which life may have originated [5–7], and microbial fossils, in addition

to stromatolites considered to be fossil microbial mats, constitute the earliest

morphological evidence for life on Earth [8–10]. Many of the oldest proposed

microbial fossils occur within hydrothermally influenced settings [11–13], yet
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microbial fossils from ancient high-temperature vents are

extremely rare [14,15]. Filamentous structures, reported

from the 3.24 Ga Sulfur Springs volcanic-hosted massive sul-

fide deposit (VHMS) [14] have been deemed the oldest

example of thermophilic chemotrophic vent biota; however,

the biogenicity of these filaments has subsequently been

questioned [16].

The earliest metazoan fossils from hydrothermal vents

occur in the late Ordovician to early Silurian Yaman Kasy

VHMS deposit. Six species have been described from this

deposit, two of which are worm tube fossil taxa. Possible

fossil microorganisms, reported as 1 mm diameter holes,

have previously been described from the walls of these

tubes [17,18]. Nothing is known of the way metazoans inhab-

iting ancient vent systems would have interacted with

microorganisms, but key to the interpretation of these poss-

ible fossil microorganisms are emerging data from studies

of fossilization processes occurring at modern hydrothermal

vent environments. These have shown that filamentous

microorganisms can be preserved in micrometre-scale detail

in pyrite, and can retain very fine cellular morphological

structures such as septae within filaments [19]. These micro-

organisms are fossilized within, and adjacent to, sulfide-

replaced dwelling tubes of the vent annelid Alvinella sp.,
thereby demonstrating that microbial–animal interactions

can potentially be observed in the fossil record, given similar

preservation processes.

Here, we document in detail for the first time to our

knowledge, filamentous microorganisms associated with

macrofossils from the Yaman Kasy VHMS deposit. This

study reveals the preservational and morphological charac-

teristics of an essential component of the oldest known

hydrothermal vent community. It also gives insights into

the nature of microbial associations with ancient vent

animals, and the potential for similar preservation of

microorganisms within even older vent deposits.
(a) Geological context and details
The Yaman Kasy VHMS deposit is located in the southern

Ural Mountains, Russia (51.40688 N, 57.69308 E; electronic

supplementary material, figure S1). The age of this deposit

is not particularly well constrained owing to a lack of biostra-

tigraphically useful fossils at the locality, but is considered be

late Ordovician to early Silurian [18,20], approximately

440 Ma. The deposit comprises a lens of Cu-Zn-rich massive

sulfides up to 37 m thick and 90–100 m in diameter within

calc-alkaline volcanic rocks [18,20], interpreted to have

formed within a back-arc basin [21]. Based on fluid inclusion

analyses, the temperatures of the fluids from which sulfide

minerals precipitated ranged from 103 to 3718C and did not

boil, suggesting that the deposit was formed at not less

than approximately 1600 m water depth [22]. Sulfur isotopic

(@34S) analyses of fossil, chimney and mound sulfides indi-

cate an igneous source for positive values, and a probable

bacteriogenic source for the lightest @34S values [22]. @13C

carbon isotope analyses of organic material preserved in the

Yaman Kasy deposit also yield values indicative of microbial

fractionation, as well as biomarkers of potential microbial

origin [23].

The Yaman Kasy metazoan fossils were found within the

upper clastic sulfide sections of this deposit, and co-occur

with colloform pyrite and black smoker (i.e. high
temperature) vent chimney fragments [22]. The fossil assem-

blage comprises a monoplacophoran mollusc (Thermoconus
shadlunae), a lingulate brachiopod (Pyrodiscus lorrainae), an

ambonychiid bivalve (Mytilarca sp.), an indeterminate vetia-

gastropod, as well as two morphotypes of tubes [20]. The

smaller tubes (Eoalvinellodes annulatus) are 0.2–3 mm in

diameter, while the larger tubes (Yamankasia rifeia) range

from 3 to 39 mm in diameter. The original tube walls are

not preserved, but were probably organic in composition

because many of the fossil tubes have folds or wrinkles

[24]. The tube walls are now formed either of framboidal or

colloform pyrite, and also retain fine details of the external

tube wall ornamentation. Eoalvinellodes annulatus tubes often

have thick walls comprising colloform pyrite that is many

layers thick, and have external ornament of transverse, bifur-

cating wrinkles [18,20,25]. Small holes in E. annulatus tube

walls have been interpreted as moulds of microorganisms

[18]. Yamankasia rifeia tubes are either preserved as several

(2–3) layers of pyrite, or by a single layer of colloform

pyrite that is interpreted as having grown onto the outside

of the tube [20]. These tubes show an external ornament of

fine parallel longitudinal striations [18,20]. Yamankasia rifeia
tubes also possess small holes in the colloform pyrite tube

coatings, which have also been suggested to be microbial

fossils [17,18].
2. Methods
Fragments of fossil Y. rifeia and E. annulatus tubes from Yaman

Kasy, a subset of which are housed in the collections of the

Natural History Museum, UK (NHMUK) were embedded in

resin blocks and then polished (finishing with 1 mm diamond).

They were subsequently examined with optical microscopy (in

reflected light), then given approximately 10 nm thick carbon

coating for backscattered electron imaging using an FEI Quanta

650 field emission gun (FEG)-ESEM at NHMUK. Elemental com-

position of mineral phases at various scales was determined

through energy dispersive X-ray spectroscopy (EDS) using a

Bruker Flat Quad 5060F detector fitted within the above scanning

electron microscope (SEM). Tube-scale maps were collected at

12–20 kV. For micrometre-scale element maps, an accelerating

voltage of 10 kV was used, and X-rays collected for 31–

85 min with counts averaging 144 000–160 000 counts per

second for each map. Interaction volumes for all detailed

maps were estimated as 0.4 mm in diameter and 0.4 mm deep

by the Bruker Esprit software used to analyse the data. Electron

probe micro-analysis (EPMA) was also performed to assess the

composition of pyrite directly around microfossils, and in

nearby non-fossiliferous pyrite (see the electronic supplementary

material, methods supplement, for details). Phosphorus content,

which has been posited as a proxy for fossilized organic matter at

vents [26], was also evaluated using this technique.

Measurements of the potential fossil microorganisms

(hereafter referred to as ‘microfossils’) were made from SEM

images using the software IMAGEJ v. 1.46r [27]. Only micro-

structures with a distinctly circular or elliptical cross section,

i.e. those likely to have a biogenic in origin, were measured.

For statistical tests, diameter measurements from microfossils

were divided into four data groups based on their location of

occurrence. Shapiro –Wilk normality tests were used to deter-

mine if microfossil diameters were normally distributed,

and F-tests to compare variances between data pairs. Two-

sample Kolmogorov –Smirnov tests were subsequently used

to compare the cumulative distributions of diameter

http://rspb.royalsocietypublishing.org/
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Figure 1. Sections of fossilized tubes from the Yaman Kasy deposit associated with microfossils. (a,d,g) reflected light images (tube rims and areas containing
microfossils are highlighted), (b,e,h) elemental maps, (c,f,i) detail of areas where microfossils occur. (a) Transverse section of a Yamankasia rifeia tube (Yr_61633) in
which only a section of colloform pyrite that formed on the outer tube surface has been preserved, scale is 3 mm; insert—left, an example of a Y. rifeia tube in
hand specimen, scale bar is 10 mm; insert—right, key to colours in (a, d and g). (b) Elemental map of (a); insert, key to elemental maps (b, e and h). (c) SEM
image of boxed area in (b) showing the colloform pyrite band in greater detail, and where microfossils occur within it. Small filaments occur along the inner surface
of the band, and larger filaments are found along its outer edge (yellow arrows), scale bar is 500 mm. (d ) Longitudinal section of an additional Y. rifeia tube
(Yr_OR6468), in which microfossils occur in approximately 2 mm thick band of pyrite located on the outside of the fossilized tube, scale bar is 3 mm. (e) Elemental
map of section in (d). ( f ) Detail of boxed area in (e) showing abundant microbial clumps in this region (yellow arrow), scale bar is 100 mm. (g) Transverse section
of an Eoalvinellodes annulatus tube (Eo_YKB1), in which microfossils occur in a small area of colloform pyrite forming the tube wall, scale bar is 400 mm; insert,
example of an E. annulatus tube in hand specimen, scale bar is 1 mm. (h) Elemental map of section in (g). (i) Detail of boxed area in (h) showing tube wall
containing microfossils (yellow arrow), scale bar is 100 mm.
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measurements between data pairs. All three types of statistical

test were performed in R [28].

Modern unmineralized and recently mineralized microbial

filaments occurring on the tubes of the hydrothermal vent poly-

chaete Alvinella sp. were imaged using SEM, for comparison with

the Yaman Kasy microfossils. Unmineralized microorganisms

were coated with 20 nm gold-palladium, while mineralized

microbes were embedded in resin blocks, polished and coated

with carbon as for the Yaman Kasy material.

Three-dimensional reconstructions of microfossils associated

with both mineralized Alvinella and Yaman Kasy tubeworms

were made through focused ion beam-SEM (FIB-SEM) tomogra-

phy, using an FEI Quanta 3D FEG, at The NanoVision Centre,

Queen Mary University of London, UK. Regions of interest

within fossil tube walls prepared as polished blocks were

selected using SEM, and were subsequently coated with plati-

num via ion beam induced chemical vapour deposition.

Trenches were milled around these, after which the regions of

interest were sequentially milled and imaged in approximately

14–20 nm thick slices. A total of 126–575 slices were generated
for each region of interest. Slices were stacked, aligned and

microfossils within these were segmented using AMIRA software

(ThermoFisher Scientific).
3. Results
(a) Occurrence of microfossils
Microfossils were found in three sections of tubes from

Yaman Kasy. They occurred in pyrite with colloform (or

finely layered) growth, and fine-grained non-colloform

pyrite. Tubes preserved by framboidal pyrite had no micro-

fossils. Microfossils were found in a transverse and a

longitudinal section of two separate Y. rifeia tubes

(figure 1a– f ) and a transverse section of an E. annulatus
tube (figure 1g–i). In the Y. rifeia transverse section

(Yr_61633; figure 1a–c), microfossils occurred within an

approximately 2 mm thick layer of colloform pyrite that is

http://rspb.royalsocietypublishing.org/
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Figure 2. FIB-SEM reconstructions of microfossils. (a) Microfossils preserved within Yaman Kasy fossil specimen Yr_OR6468, scale bar is 2 mm; and (b) microfossils
preserved within recently mineralized tube walls of Alvinella spp., scale bar is 2 mm. (Online version in colour.)
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considered to have grown on the exterior tube wall surface

[20]. Within this layer, small microfossils occurred along the

inner rim closest to where the original outer tube wall

would have been, and slightly larger microfossils occurred

towards the outer rim of the pyrite layer (figure 1a,c). Micro-

fossils (figure 1f ) in the Y. rifeia longitudinal section

(Yr_OR6468; figure 1d ) were found within an approximately

3 mm thick layer of fine-grained pyrite in which spaces were

infilled by silica (figure 1e). This pyrite layer is also posi-

tioned on the outside of the fossil tube wall (figure 1f ). In

the E. annulatus tube transverse section (Eo_YKB1;

figure 1g), microfossils occurred within a section of the

fossil tube wall preserved as finely interlayered colloform

pyrite and silica (figure 1h– i). Many of these microfossils

were observed to crosscut the pyrite-silica banding.

(b) Morphology and preservation of microfossils
The Yaman Kasy microfossils occur in a variety of orien-

tations, with FIB-SEM tomography three-dimensional

reconstructions, and occasional microfossil longitudinal sec-

tions, revealing filamentous morphologies (figures 2a and

3). They generally formed clusters of filaments with a similar

diameter, but their density within these clusters varied

between the four locations where microfossils were found.

(The four locations being: Yr_61633 inner rim of colloform

pyrite (figure 3a–c); Yr_61633 outer rim of colloform

pyrite (figure 3d–f ); Yr_OR6468 (figure 3g–i); Eo_YKB1

(figure 3j– l); electronic supplementary material, figure S2.)

The distributions of microfossil diameter measurements

also varied between the four above locations (electronic sup-

plementary material, figure S2), and were significantly

different for all location data pairs (electronic supplementary

material, tables S1–S3). Occasionally, filaments with visibly

different diameters were preserved alongside each other,

such as the orange-arrowed filament in figure 3b, and the

adjacent smaller, vertically oriented filaments.

The filamentous microfossils were often curved

(figure 3a–e,h–j), and a subset was cross-cut by transverse

septae that occurred at regular intervals (figure 3b,e,h,k).

Distances between septae (in relation to filament diameter)

were visibly greater for microfossils in Yr_OR6468 than in

Yr_61633 and Eo_YKB1. In addition, individual Yr_OR6468

‘cells’ (figure 3g–h) had a rod-like appearance, whereas the

endings of ‘cells’ of septate microfossil filaments from

Yr_61633 and Eo_YKB1 showed a large area of attachment

to one another. A microfossil filament in figure 3b (arrowed)
appears to be sheathed, owing to the encasement of cell-like

bodies within a tubular structure.

Detailed EDS maps of the Yaman Kasy microfossils show

that they are mainly preserved by iron sulfides (figure 3c,f,i,l;
confirmed to be pyrite using reflected light microscopy) as

hollow moulds delineated by pyrite, with silica infilling

cells within one of the specimens (figure 3l ). Occasionally,

the microfossils were also infilled by pyrite (figure 3b,h
insert), and septae were also formed of pyrite. There

appeared to be no clear variation in pyrite composition of

sample areas containing microfossils, and those that did

not. Phosphorus was not detected around microfossils in

either Yr_61633 or Yr_OR6468 by EPMA (electronic

supplementary material, figures S3–S6 and tables S4–S5).
4. Interpretations and discussion
The microfossils found in association with fossil tubes from

Yaman Kasy meet many of the suggested criteria for genuine

microbial fossils [29]. Importantly, they occur within an

appropriate context, as a diverse range of microorganisms

are often found growing on the surfaces of annelid tubes

and vent chimney sulfides in modern vent environments

[30–32]. All of the Yaman Kasy microfossils occur as a popu-

lation of filaments of a similar size and morphology, which

are often clustered together (figure 3a,d,g) and thus resemble

clumps of modern vent microbial filaments [19]. The small

filaments within sample Yr_61633 have a mat-like appear-

ance, as they are distributed within a very narrow zone of

pyrite that is thought to have grown directly onto the outer

tube wall [20]. The microfossils themselves have tubular mor-

phologies with mostly constant diameters. The curvature of

the filaments suggests that they were originally flexible, and

had mostly hollow interiors apart from where infilled by

silica or pyrite. In addition, the septate divisions within

many of the filaments delineate spaces indicative of cells.

The observed microfossil textures are not the result of

microbial leaching of pyrite [33,34] as they occur throughout

the pyrite matrix in which they are preserved, and are present

in a range of orientations (figure 2a).

The interpretation of the Yaman Kasy microfossils as fos-

silized microorganisms is further supported by both their

very close resemblance to modern day hydrothermal vent

filamentous microorganisms (figures 2b and 4), and studies

which have shown that microorganisms as small as 1 mm in

http://rspb.royalsocietypublishing.org/
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Figure 3. Morphology and elemental composition of microfossils associated with Yaman Kasy worm tube fossils. (a – c) Microfossils found along the inner rim of the
colloform pyrite band within Yr_61633: (a) cluster of filamentous microfossils, scale bar is 5 mm; (b) detail of filamentous microfossils in (a), showing preservation
of many hollow filaments (yellow arrow) as well as one which appears to retain a sheath (orange arrow), scale bar is 2 mm; and (c) elemental map of Yr_61633
inner pyrite rim microfossils, scale bar is 5 mm (note (a – c) are all of different areas). (d – f ) Microfossils found along the outer rim of the colloform pyrite band
within Yr_61633: (d ) cluster of filamentous microfossils, scale bar is 20 mm (locations of (e and f ) are shown); (e) detail of a microfossil with septae (blue arrow),
scale bar is 4 mm; and ( f ) elemental map of Yr_61633 outer pyrite rim microfossils, scale bar is 10 mm. (g – i) Microfossils preserved in Y. rifeia longitudinal
section (Yr_OR6468): (g) cluster of filamentous microfossils resembling chains of rods, scale bar is 5 mm; (h) detail of microfossils of the type pictured in (g), scale
bar is 2 mm, insert, microfossil infilled by pyrite ( purple arrow), scale bar is 2 mm; and (i) elemental map of Yr_OR6468 microfossils, scale bar is 10 mm (note
(g – i) are all of different areas). ( j – l ) Microfossils preserved in E. annulatus transverse section (Eo_YKB1): ( j ) cluster of septate filamentous microfossils, scale bar is
10 mm; (k) detail of a septate microfossil from Eo_YKB1, scale bar is 5 mm; and (l ) elemental map of Eo_YKB1 microfossils, scale bar is 10 mm (note ( j – l) are all
of different areas).
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diameter can be fossilized with high fidelity by pyrite at

vents [19]. Like the Yaman Kasy microfossils, modern vent

microbial filaments can be tapered as well as septate

[31,35,36]. For example, septate, non-septate, chain-of-rods

(figure 4a) and tapering (figure 4b) microbial morphologies

can all be observed on the surfaces of Alvinella tubes. Follow-

ing mineralization, the clustering (figures 3a and 4c) and mat-

like (figure 4d ) growth habits of these microorganisms are

maintained. At modern vents, pyrite and silica also preserve

fine details such as septae, microbial sheaths and cell contents

(figure 4e–f ), and occasionally infill microfossils preserved as

moulds (figure 4e–f; electronic supplementary material,

figure S7). While phosphorus was not detected around the

Yaman Kasy microfossils (electronic supplementary material,

figures S3–S6; tables S4–S5), the retention of this element

during the mineralization of organic matter at modern

vents (Maginn et al. [26]) may be specific to Alvinella tubes

and their particular microbial community.

Based on the observed Yaman Kasy microfossil mor-

phologies, there are a number of preservational pathways

and original microbial growth-types from which the micro-

fossils could have resulted (figure 5). Bacteria are known to
concentrate minerals along with their surfaces [37,38] and

may also induce mineralization at vents [39,40]. Thus, the

range of preservations observed in ancient and recently

mineralized microorganisms may also be linked to preferen-

tial mineral accumulations within various parts of the

microbial filaments/cells. Empty filamentous microfossil

pyrite moulds (e.g. figure 2b) may have either formed from

filaments that contained no cells, or if cells were present, min-

eralization may have been concentrated along the outer

sheath walls, thus preventing mineralization of inner cells

(figure 5a). For microfossils that exhibit septate divisions

but no sheath (figure 2e,h,k), there may have originally been

a sheath that was completely replaced by pyrite, while min-

eralization appears to have been concentrated along the cell

walls (figure 5b). Infilling of cells was probably contempora-

neous with cell wall mineralization [39], while the empty

nature of some cells could have resulted from their cell

walls mineralizing before vent fluids were able to penetrate

into the cell interior. Microfossils that demonstrate preser-

vation of both cells and sheaths (figure 2b) indicate that the

sheath and cell walls had similar resistance and were prob-

ably mineralized at the same time (figure 5c). Microbial

http://rspb.royalsocietypublishing.org/
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Figure 4. Microorganisms and microbial fossils associated with the tubes of the hydrothermal vent annelid Alvinella sp. (a,b) Unmineralized filamentous micro-
organisms from the inside surface of an Alvinella sp. tube exhibiting a variety of morphologies, including non-septate filaments (green), septate filaments (blue),
‘chain-of-rods’-type filament (orange) and a tapering filament ( purple). Scale bars are 5 mm in (a) and 10 mm in (b). (c – f ) Microorganisms mineralized alongside
Alvinella sp. tubes: (c) clump of filaments in a variety of orientations, scale bar is 10 mm; (d ) filaments arranged longitudinally within a band of pyrite thereby
demonstrating mat-like growth, scale bar is 10 mm (some of the filaments appear hollow (yellow arrow), whereas others exhibit septae (blue arrow) as well as
replacement of a microbial sheath by pyrite (orange arrow)); (e) detail of area in (c) showing hollow filaments (yellow arrow), filaments with septae formed of
pyrite (blue arrow), septae and sheath formed of silica (orange arrow), as well as filaments infilled by pyrite ( purple arrow) and others infilled by silica (green
arrow), scale bar is 5 mm; and ( f ) filamentous microorganisms preserved in exceptional detail by both pyrite and silica (silica—dark grey, pyrite—light grey), that
reveals sub-cellular aspects, scale bar is 5 mm.
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Figure 5. Fossilization models for hydrothermal vent microorganisms. In scenario (a), the resulting microfossil is an empty filament moulded of pyrite. There could
be two starting microorganism types for this: a filament containing cells in which the cells are not preserved, and a filament that does not contain cells. With both
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along the cell walls, with the cell volume also being infilled in some cases. The microfossil that results in scenario (c) shows preservation of both microbial cells and
an outer sheath, therefore the starting filament must have contained both of these features. Both the cell walls and sheath walls probably had equal persistence,
and cell volumes may also be infilled as these filaments are mineralizing.
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sheaths were only well preserved in a subset of recently

mineralized vent microorganisms (figure 4d–f ), suggesting

that this type of preservation may be less common. While

the preservation of microfossils also appears to not affect

pyrite composition at EPMA detection scale (electronic sup-

plementary material, figures S3–S6 and tables S4–S5), finer

scale analyses that target pyrite directly delineating microfos-

sils could shed insights into any effects of microbial presence

on mineral precipitation.

Microorganisms from modern vent environments are lar-

gely described using molecular and not morphological

methods (e.g. Schrenk et al., [41]; Anderson et al., [42]),

making it difficult to determine the probable taxonomic iden-

tity of the Yaman Kasy microfossils. Microorganisms can also

exhibit convergent morphologies, and microbial mor-

phologies may vary in relation to environmental conditions

[43]. Archaea, 1-Proteobacteria and Aquificales have all been

identified as prominent members of modern vent microbial

communities [1,2], and while bacteria are more likely to

occur as filaments, Archaea can occasionally also take this

form [44]. Nevertheless, the Yaman Kasy microfossils are per-

haps more likely those of bacteria, as bacteria are more

abundant in modern vents and often form mats of filaments

in this environment.

The occurrence of both ‘chain-of-rods’ microfossils

(figure 3) with curved endings resembling a Streptobaccillus-

type morphology, and microfossils resembling microbial tri-

chomes [45] (figure 3b,e,k), as well as mixing of different

sizes of filaments (figure 3b), alludes to a diversity of different

microorganisms associated with the Yaman Kasy tubes. The

original microbial diversity of the Yaman Kasy palaeocom-

munity was undoubtedly greater than the microfossils

described here suggest, as microbial morphologies such as

coccoids that are observed to occur within modern vent

environments [3,46] were probably not fossilized. In addition

to their morphologies, Yaman Kasy microfossils from the

four locations where they were observed (figure 1c,f,i) exhibit

different diameter distributions as well as variations in micro-

fossil density. This reflects the characteristics of microbial

mats within modern day hydrothermal vent environments,

which are often diverse and exhibit spatial variation in the

degree to which microorganisms of a particular type are

mixed in with other sizes and morphotypes of microorgan-

isms [2] (figure 4a,b). This results from the wide range of

niches available at vents, and this study demonstrates, to

our knowledge, the first evidence that microorganisms, in

association with large metazoan animals, were taking
advantage of the assortment of niches available at vents

approximately 440 Ma.

The locations of a subset of the Yaman Kasy microfossils

(figure 1a,e) suggest that microorganisms were living on and

around metazoan tube surfaces and were fossilized alongside

the tubes, very similar to the preservation of annelid tubes

and their epiphytic microorganisms recently observed

within modern vent environments [19]. This preservation

demonstrates that associations between microorganisms and

animals that have been observed within modern vents, such

as commensalism and episymbioses [32,47,48], may also be

detected within the fossil record of ancient vent communities.

With regard to the palaeoecology of the Yaman Kasay vent,

our data confirm suggestions that the large tubeworms

associated with this vent may have been living in close proxi-

mity to high-temperature venting [20], given the clear

similarities of the microbial associations with modern alvinel-

lid tubeworms. This implies that adaptation to the highest-

temperature part of the vent habitat occurred soon after

metazoans were first able to adapt to the vent conditions.

For some of the resulting microfossils, such as those for

which pyrite may preserve cellular details, it may also be

possible to gain a good understanding of what the original

microorganisms looked like (figure 5). These results also

show that microbial colonization of metazoan tubes is an

association that has a very long fossil history, stretching back

to the earliest known hydrothermal vent community, and

demonstrates the potential for detailed microbial preservation

within even older hydrothermal vent deposits.
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