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Abstract 

A general piezo-magnetic continuum model with gradients of strain, magnetic field and 

piezo-magnetic coupling terms is proposed in this work. An energy variational principle 15 

with strain, strain gradient, magnetic field and magnetic field gradient as independent 

variables is presented to develop the constitutive equations and governing equations. 

Three internal length parameters are introduced to represent the underlying 

microstructure. Finite element implementations are obtained by extending the Ru-

Aifantis ‘operator split’ method from gradient elasticity to gradient magneto-elasticity. 20 

Numerical results and discussions of two-dimensional in-plane problem show the 

effects of gradients on static piezo-magnetic analysis, in particular (1) removal of 

singularities from magnetic fields as well as mechanical fields, and (2) capturing size-

dependent piezo-magnetic response. The individual effects of the mechanical length 

scale, magnetic length scale and coupling length scale on the removal of singularities 25 

from magnetic field and mechanical field and the prediction of size-dependent piezo-

magnetic response are discussed in detail. 

Keywords: piezo-magnetic, strain gradient, magnetic field gradient, finite element, in-

plane problem 
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1. Introduction 

Magneto mechanical materials such as cobalt ferrite, iron-gallium alloys, certain 

earth metals, and certain earth-iron alloys are one of the most important categories of 

magnetic materials[1]. Based on the strong coupling between magnetic and mechanical 

phenomena, magneto-elastic materials have important applications in many areas, 35 

including sensors, head recorders, micro-electro-mechanical systems (MEMS), 

ultrasonic generators, magneto-mechanical transducers, active vibration damping 

system, high-precision linear motor, micro-valves, micro-positioning devices [2][3][4]. 

In order to increase the reliability of these devices, detailed and accurate descriptions 

of the magneto-mechanical coupling effects is required. 40 

The coupling effects are such that the application of mechanical load to a magneto-

mechanical material can cause change in magnetization and magnetic parameters. 

Conversely, the size and mechanical parameters (strain and stress) of magneto-

mechanical material change when magnetized under the action of a magnetic field. It is 

well known that magnetization is achieved by rearrangement of magnetic domains, and 45 

the movement of magnetic domains is strongly influenced by the microstructure of 

material [5]: magnetic parameters such as magnetic field and magnetic flux density are 

sensitive to the microstructure of material. Therefore, for a more accurate determination 

of the mechanical and magnetic parameters, information of microstructure and 

deformation should be included in the description of magneto mechanical coupling 50 

effects. In recent years, more and more micro-miniaturized structures and systems have 

come forth. Some typical applications include magneto strictive-based sensors 

requiring especially low profile or small size sensors [6], micro beams and micro plates 

in MEMS [7], and ultra-thin microscale structural elements [8][9]. However, it is well 

known that, when the characteristic sizes are relatively small, size-dependent 55 

phenomena cannot be ignored [10]. To account for this phenomenon in simulations, 

some material parameters related to the microstructure should be included in the model. 

Based on local assumptions, classical continuum mechanics neglects the interaction 

of material points at finite distance in solids and, therefore, does not suffice for an 

accurate and detailed description of mechanical parameters such as stress and 60 

deformation in the microscopic view [11] – in particular it is unable to capture size-
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dependent phenomena. Moreover, classical elastic singularities as those emerging at the 

application points of concentrated loads or occurring at dislocation lines and crack tips 

cannot be avoided [10]. As the magnetic parameters are sensitive to the microstructure 

of the material, and magnetic parameters are influenced by the mechanical fields, 65 

similar problems are likely to exist for magnetical fields in magneto-mechanical 

coupling. 

An effective and efficient remedy of the above-mentioned shortcomings of the 

classical models of magneto-mechanics is the use of gradient-enriched continuum 

theories on the macro-level, whereby the information of the lower level is appearing in 70 

the form of some additional terms of associated parameters in the constitutive relation 

[10][12]. Among the various gradient theories, the Laplacian-type gradients are 

representative for nonlocal redistribution and diffusion effects, and are arguably the 

most versatile [10]. Mindlin presented a Laplacian-type full gradient theory [13], and 

then simplified it into a gradient model with 3 length scales linked to the underlying 75 

microstructure. Subsequently, Eringen derived a simple gradient theory from his earlier 

integral nonlocal theories [14], with only one length scale; this gradient model is widely 

used in analysis of vibration, buckling bending and wave propagation [15][16]. On the 

other hand, Aifantis, Ru and co-workers proposed a simple strain gradient model 

[17][18][19] which can be demonstrated to be a special case of Mindlin theory [20]. 80 

The Ru-Aifantis theory in particular greatly simplifies further mathematical and 

implementation treatment, demonstrated in [21] via simple and effective finite element 

implementations based on standard C0-continuous interpolations. In this context it is 

noted that novel interpolation strategies based on Iso-Geometric Analysis may also be 

explored. For instance, Rabczuk and co-workers presented an efficient implementation 85 

for an electro-mechanical gradient-enriched continuum which automatically fulfils the 

C1 continuity requirement [22][23][24], which was subsequently extended to 

geometrical and material nonlinearities [25]. However, the focus here is on C0-

continuous implementations based on standard finite element technology. The gradient 

elastic backbone model and its finite element solution strategies have been successfully 90 

used to eliminate strain/stress singularities from dislocation lines and crack tips 

[21][26], explain size effects [27][28][29], and describe wave dispersion in dynamics 

[30][31][32][33][34]. Furthermore, Gitman et al. [12] considered the anisotropy of 



length-scale parameters, and provided a transversely isotropic gradient elasticity 

formulation to analyse bone fracture. 95 

The gradient theories mentioned above are also used in magneto-mechanical 

coupling. Mindlin’s gradient theory [13] is used to size-dependent bending, buckling 

and vibration analysis of micro-bar and nano-plates [9]. Eringen’s gradient theory [14] 

has been used to analyse the effects of magnetic field on the vibration of [35][36][37], 

and wave propagation in [38][39][40], carbon nanotubes and nano-beams. These 100 

applications have one point in common: the magnetic field is just treated as an influence 

factor of mechanics fields, and the magnetic field is coupled to the mechanical response 

by forming an additional external force – namely a Lorentz force, which stems from the 

Maxwell relations. Therefore, the length scales linked to the underlying microstructure 

in the coupling models are only affecting the mechanics. In reality, magnetic parameters 105 

themselves are equally sensitive to the microstructure of magnetic material, as 

mentioned above. In reference [41], Raheb and co-workers study magneto-electro-

elastic coupling considering gradients in the mechanical field, electrical field and 

magnetic field based on Eringen’s gradient theory [14], however their analysis is 

restricted to size-dependent mechanical phenomena without studying the effects of 110 

gradients on magnetic parameters or electrical parameters. Yet, for many applications 

including magnetic action, such as magnetic micro wires for sensing applications [42], 

magnetic stress sensor applications [43], magneto elastic resonance sensor for remote 

strain measurements [44], detailed and accurate descriptions of the magnetic fields are 

very important. 115 

This motivates the formulation of a fully-coupled magneto-mechanical model 

enriched with gradient terms that capture the relevant microstructural influence on the 

mechanics as well as the magnetic. Here, we focus on the static magneto-mechanical 

coupling and include the effects of microstructure in a general magneto-mechanical 

continuum model on the basis of Aifantis’ simplified gradient theory. The classical 120 

piezo-magnetic theory was expanded by considering the gradients on strain, magnetic 

field and piezo-magnetic terms. Similarly, Aifantis and co-workers developed a piezo-

electric formulation with strain gradient and electric gradient to analyse anti-plane size 

effects in electromechanical coupling in a piezo-electric material [11]. In this paper, the 

effects of strain gradient, magnetic field gradient and piezo-magnetic gradient for in-125 
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plane problem of magneto mechanical material are discussed. In Section 2, the general 

equations of piezo-magnetic media with strain gradient, magnetic field gradient and 

piezo-magnetic coupling gradient are derived based on the internal energy variation of 

piezo-magnetic media. In Section 3, several sets of finite element equations with 

gradients in two special situations are derived using the Ru-Aifantis ‘operator split’ 130 

method – the concepts of Ru and Aifantis are extended from gradient elasticity to 

gradient magneto-elasticity, leading to a number of novel finite element 

implementations. Numerical examples and discussions of two-dimensional in-plane 

problem are shown in Section 4 and some closing comments are given in Section 5. 

2. Formulation of a piezo-magnetic continuum model with 135 

gradients of strain, magnetic field and piezo-magnetic coupling 

terms 

Following the work of Yue et al. for piezo-electrics [11], in the linear piezo-magnetic 

case the internal energy density function including gradients of strain, magnetic field 

and coupling terms (but ignoring electro-mechanical coupling) can be postulated as the 140 

following simple form 

 
ܹ൫ߝ௜௝ ǡ ௜௝ǡ௞ǡߝ ௜ܪ ǡ ௜ǡ௝൯ܪ ൌ ଵଶ ௞௟ߝ௜௝௞௟ܥ௜௝ߝ െ ௞ܪ௜௝௞ݍ௜௝ߝ െ ଵଶ ௝൅ܪ௜௝ߤ௜ܪ ଵଶ ௞௟ǡ௠ߝ௜௝௞௟ܥ௜௝ǡ௠κଵଶߝ െ ௞ǡ௠ܪ௜௝௞ݍ௜௝Ǥ௠κଶଶߝ െ ଵଶ ௝ǡ௠ܪ௜௝ߤ௜ǡ௠κଷଶܪ  (1) 

with the kinematic relationships 

 ቊߝ௜௝ ൌ ଵଶ ൫ݑ௜ǡ௝ ൅ ௜ܪ௝ǡ௜൯ݑ ൌ െ߮ǡ௜  (2) 

In the above equations, W is the internal energy function, ߝ௜௝ is the strain, ܪ௜  is the 145 

magnetic field, ݑ௜  is the displacement field and ĳ is the magnetic potential. 

Furthermore, ௜௝௞௟ܥ  ௜௝௞ݍ ,  and ߤ௜௝  are, respectively, the standard elastic, piezo-

magnetic and magnetic permeability coefficients, whereas κଵ , κଶ  and κଷ  are new 

material length scale parameters owing to the introduction of strain gradients, magnetic 

gradients and piezo-magnetic coupling gradients, respectively, in the energy function. 150 

In order to obtain the constitutive equations, the variation of internal energy is 

considered: 



ߜ න ܹ൫ߝ௜௝ ǡ ௜௝ǡ௞ߝ ǡ ௜ܪ ǡ ఆߗ௜ǡ௝൯dܪ ൌ න ௜௝ǡߝ൫ܹߜ ௜௝ǡ௞ǡߝ ௜ܪ ǡ ఆൌߗ௜ǡ௝൯dܪ න ௜௝ߝ߲ܹ߲ ௜௝ߝߜ ൅ ௜௝ǡ௞ߝ߲ܹ߲ ௜௝ǡ௞ߝߜ ൅ ௜ܪ߲ܹ߲ ௜ܪߜ ൅ ௜ǡ௝ܪ߲ܹ߲ ఆൌߗ௜ǡ௝dܪߜ න ௜௝ߝ߲ܹ߲ ௜௝ߝߜ ൅ ௞ݔ߲߲ ቆ ௜௝ǡ௞ߝ߲ܹ߲ ௜௝ቇߝߜ െ ௞ݔ߲߲ ቆ ௜௝ǡ௞ቇߝ߲ܹ߲  ఆ155ߗ௜௝dߝߜ

൅ න ௜ܪ߲ܹ߲ ௜ܪߜ ൅ ௝ݔ߲߲ ቆ ௜ǡ௝ܪ߲ܹ߲ ௜ቇܪߜ െ ௝ݔ߲߲ ቆ ௜ǡ௝ቇܪ߲ܹ߲ ఆൌߗ௜dܪߜ න ௜௝ߝߜ ൭߲ܹ߲ߝ௜௝ െ ௞ݔ߲߲ ቆ ௜௝ǡ௞ቇ൱ߝ߲ܹ߲ dߗఆ ൅ ර ݊௞ ௜௝ǡ௞ߝ߲ܹ߲ ௜௝dܵ௰൅ߝߜ න ௜ܪߜ ൭߲ܹ߲ܪ௜ െ ௝ݔ߲߲ ቆ ௜ǡ௝ቇ൱ܪ߲ܹ߲ dߗఆ ൅ ර ௝݊ ௜ǡ௝ܪ߲ܹ߲ ௜dܵ௰ܪߜ  

(3) 

where ௝݊ and ݊௞ are the outward unit normal vectors on the boundary. We rewrite 160 

Eq. (3) as 

 
׬ ఆߗdܹߜ ൌ ׬ ఆߗ௜௝dߪ௜௝ߝߜ ൅ mechanical boundary conditions൅ ׬ ఆߗ௜ሻdܤ௜ሺെܪߜ ൅ magnetic boundary conditions  (4) 

where ߪ௜௝ is the total stress and ܤ௜  is the total magnetisation flux density, which can 

be defined as 

 ൞ߪ௜௝ ൌ డௐడఌ೔ೕ െ డడ௫ೖ ൬ డௐడఌ೔ೕǡೖ൰െܤ௜ ൌ డௐడு೔ െ డడ௫ೕ ൬ డௐడு೔ǡೕ൰ (5) 165 

Thus, ߪ௜௝ and ܤ௜  satisfy the following equilibrium equations: if the mechanical body 

force is ignored and the magnetic current density is zero, we have 

 ൜ߪ௜௝ǡ௝ ൌ Ͳܤ௜ǡ௜ ൌ Ͳ  (6) 

Note that the second term on the right-hand-side of Eq. (5a) constitutes (the derivative 

of) a higher-order stress tensor, which also appears in the first boundary integral in Eq. 170 

(3). Usually (but not always – see [10] for a discussion) homogeneous natural boundary 

conditions are assumed for this boundary integral, and we will follow this approach 
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here as well. Similarly, homogeneous natural boundary conditions are assumed for the 

higher-order magnetic boundary condition, cf. the second boundary integral in Eq. (3). 

Substituting Eqns. (1) into Eqns. (5), the following gradient-enriched constitutive 175 

equations can be obtained 

 ቊߪ௜௝ ൌ ௞௟ߝ௜௝௞௟൫ܥ െ κଵଶߝ௞௟ǡ௠௠൯ െ ௞ܪ௜௝௞ሺݍ െ κଶଶܪ௞ǡ௠௠ሻܤ௜ ൌ ௝௞ߝ௜௝௞൫ݍ  െ κଶଶߝ௝௞ǡ௠௠൯ ൅ ௝ܪ௜௝ሺߤ െ κଷଶܪ௝ǡ௠௠ሻ  (7) 

Combining the kinematic equations (2), equilibrium equations (6) and constitutive 

equations (7) yields the following gradient-enriched governing equations 

 ቊܥ௜௝௞௟൫ݑ௞ǡ௝௟ െ κଵଶݑ௞ǡ௝௟௠௠൯ ൅ ௜௝௞൫߮ǡ௝௞ݍ െ κଶଶ߮ǡ௝௞௠௠൯ ൌ Ͳݍ௜௝௞൫ݑ௜ǡ௝௞ െ κଶଶݑ௜ǡ௝௞௠௠൯  ൅ ௜௝ሺ߮ǡ௜௝ߤ െ κଷଶ߮ǡ௜௝௠௠ሻ ൌ Ͳ  (8) 180 

To facilitate the finite element formulation of the next section, the above equations 

are written in matrix-vector notation as 

 ൜۱ઽ ൌ ǡܝ୳ۺ۱ ୘ઽۿ ൌ ۶ܝ୳ۺ܂ۿ ൌ െۺ஦߮  (9) 

 ቊۺ୳୘ ો ൌ ૙ۺ஦୘ ۰ ൌ ૙ (10) 

 ቊ ો ൌ ۱ሺઽ െ ݈ଵଶ׏ଶઽሻ െ ሺ۶ۿ െ ݈ଶଶ׏ଶ۶ሻ۰ ൌ ሺઽ܂ۿ  െ ݈ଶଶ׏ଶઽሻ ൅ ሺ۶۾ െ ݈ଷଶ׏ଶ۶ሻ (11) 185 

 ቊ ୳୘ۺ ܝ୳ሺۺ۱ െ ݈ଵଶ׏ଶܝሻ ൅ ୳୘ۺ ஦ሺ߮ۺۿ െ ݈ଶଶ׏ଶ߮ሻ ൌ ૙ۺ஦୘ ܝ୳ሺۺ୘ۿ െ ݈ଶଶ׏ଶܝሻ െ ஦୘ۺ ஦ሺ߮ۺ۾ െ ݈ଷଶ׏ଶ߮ሻ ൌ ૙ (12) 

where C, Q and P are the elastic, piezo-magnetic and magnetic permeability coefficient 

matrixes, respectively. Furthermore, ׏ଶؠ સ୘Ǥ સ is the Laplace operator, ۺ஦ ൌ સ, and ۺ୳ is the usual strain-displacement derivative operator. 

3. Finite element formulations 190 

As discussed in the Introduction, finite element implementations of gradient-

enriched continuum models are usually not straightforward due to the increased 

continuity requirements imposed on the interpolation functions. However, as 

demonstrated by Ru and Aifantis [19] for the case of gradient elasticity (i.e. without 

magnetic or coupling effects), it may be possible to factorise the various derivatives so 195 

as to enable implementation with standard ܥ଴ shape functions. Below, the concepts of 



Ru and Aifantis for gradient elasticity are extended to gradient magneto-elasticity. This 

will be explored for two special cases of the more general piezo-magnetic theory 

developed in the previous section. 

3.1 Case 1: ݈ଵ ൌ ݈ଶ ൌ ݈ଷ ൌ ݈ 200 

Considering ݈ଵ ൌ ݈ଶ ൌ ݈ଷ ൌ ݈ , we define two sets of displacements, ܝ୑ ൌ ୫ܝ ǡandܝ ൌ ܝ െ ݈ଶ׏ଶܝ, as well as two sets of magneto potentials, ߮୑ ൌ ߮ǡ and ߮୫ ൌ߮ െ ݈ଶ׏ଶ߮. Here, superscripts M and m represent macro and micro scale quantities, 

respectively (see [10] for a motivation for the appropriateness of this terminology). 

Then Eqns. (12) can be split into two sets of equations using the Ru-Aifantis theorem 205 

 ቊ ୳୘ۺ ୫ܝ୳ۺ۱ ൅ ୳୘ۺ ஦Ǥۺۿ ߮୫ ൌ ૙ۺ஦୘ ୫ܝ୳ۺ୘ۿ െ ஦୘ۺ ஦߮୫ۺ۾ ൌ ૙ (13) 

 ൜ ୑ܝ െ ݈ଶ׏ଶܝ୑ ൌ ୫߮୑ܝ െ ݈ଶ׏ଶ߮୑ ൌ ߮୫ (14) 

The two sets of equations are decoupled – that is, Eqns. (13) can be solved first and 

then used as input for Eqns. (14). Note that replacing Eq. (12) with Eqns. (13) and (14) 

has implications for the boundary conditions; this will be discussed below.  210 

The weak form of Eqns. (13) with domain ȍ and boundary ī, followed by integration 

by parts, gives 

 ቐ ׬ ሺۺ୳ܟ୳ሻ୘۱ۺ୳ܝ୫dߗఆ ൅ ׬ ሺۺ୳ܟ୳ሻ୘ۺۿ஦߮୫dߗఆ ൌ ׬ ׬௰೙߁dܜ୳୘ܟ ሺۺ஦w஦ሻ୘ۿ୘ۺ୳ܝ୫dߗఆ െ ׬ ሺۺ஦w஦ሻ୘ۺ۾஦߮୫dߗఆ ൌ ׬ w஦୘۰ୄd߁௰  (15) 

where ܟ୳and w஦ contain test functions, ܜ are the tractions on the boundary, and ۰ୄ 

is the magnetic traction on the boundary. Using standard finite element shape functions 215 ۼ୳  and ۼ஦  for displacements and magnetic potential, the following system of 

equations is obtained:  

 ൤۹୳୳ ۹୳஦۹஦୳ െ۹஦஦൨ ቂ ୫શ୫ቃ܌ ൌ ቂ۴ʣቃ (16) 

where ܌୫ , શ୫  are, respectively, the micro-scale nodal displacement vector and 

nodal magnetic potential vector via ܝ୫ ൌ ୫ and ߮୫܌୳ۼ ൌ  ஦શ୫. Furthermore, F 220ۼ

and Ɏ are, respectively, the nodal mechanical force vector and nodal magnetic flux 
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vector, and ۹୳୳ ൌ ׬ ۰୳୘۱۰୳dߗఆ ૎ܝ۹ , ൌ ׬ ۰୳୘۰ۿ஦dߗఆ , ۹஦୳ ൌ ׬ ۰஦୘ ఆߗ୘۰୳dۿ , ۹஦஦ ൌ ׬ ۰஦୘ ఆߗ۰஦d۾ , with ۰୳ ൌ ୳ and ۰஦ۼ୳ۺ ൌ  .஦ۼ஦ۺ

The micro displacements and magnetic potential can be solved first according to 

Eqn. (16), and subsequently the macro displacements and magnetic potential can be 225 

solved according to Eqns. (14). Based on different gradient approaches, a displacement 

and magnetic potential-based Ru-Aifantis (u & ĳ-RA) approach and a strain and 

magnetic field-based Ru-Aifantis (İ & H-RA) approach will be developed in the next 

two subsections. 

3.1.1 u & ĳ-RA approach 230 

First, Eqns. (14) are adopted without further modification. The weak form of Eqns. 

(14), followed by integration by parts, gives 

 

۔ۖۖەۖۖ
ۓ ׬ ୑ܝ୳୘ܟ ൅ ݈ଶ ቀడܟ౫౐డ௫ డܝ౉డ௫ ൅ డܟ౫౐డ௬ డܝ౉డ௬ ቁ dߗఆ ൌ׬ ఆߗ୫dܝ୳୘ܟ ൅ ݈ଶ ׬ Ǥܖ୳୘ሺܟ સܝ୑ሻd߁௰׬ ஦୘ɔ୑ܟ ൅ ݈ଶ ൬డܟಞ౐డ௫ డ஦౉డ௫ ൅ డܟಞ܂డ௬ డ஦౉డ௬ ൰ dߗఆ ൌ׬ ఆߗ஦୘ɔ୫dܟ ൅ ݈ଶ ׬ Ǥܖ஦୘ሺܟ સɔ୑ሻd߁௰

 (17) 

where ܖ ൌ ሾܖ୶  .୷ሿ୘ contains the components of the normal vector to the boundaryܖ

Adopting homogeneous natural boundary conditions, the following system of equations 235 

can be obtained:  

 ቈ܂୳ ൅ ݈ଶۯ୳ ͲͲ ஦܂ ൅ ݈ଶۯ஦቉ ൤ ୑શ୑൨܌ ൌ ൤܂୳ ͲͲ ஦൨܂ ቂ  ୫શ୫ቃ (18)܌

where ܌୑ , શ୑  are, respectively, the macro-level nodal displacement vector and 

nodal magneto potential vector via ܝ୑ ൌ ୑܌୳ۼ  and ૎୑ ൌ ஦શ୑ۼ . Furthermore, ܂୳ ൌ ׬ ఆߗ୳dۼ୳୘ۼ ୳ۯ , ൌ ׬ డۼ౫౐డ௫ డۼ౫డ௫ ൅ డۼ౫౐డ௬ డۼ౫డ௬ dߗఆ ஦ۯ , ൌ ׬ డۼಞ౐డ௫ డۼಞడ௫ ൅ డۼಞ౐డ௬ డۼಞడ௬ dߗఆ , 240 

and ܂஦ ൌ ׬ ஦୘ۼ ఆߗ஦dۼ . 

Once ܌୑ and શ୑ are obtained from Eqn. (18), macro-scale strains, stresses and 

magnetic fields can be obtained using standard post-processing techniques. 



3.1.2 İ & H-RA approach 245 

One disadvantage of using Eqns. (14) without modification is that the variationally 

consistent higher-order boundary conditions as given in Eqns. (17) are different in 

nature and format from those of Eqn. (3) – see also the discussion following Eqn. (6). 

In particular, the higher-order mechanical natural boundary conditions of Eqn. (3) are 

in terms of a higher-order stress quantity with the units of N/m, whereas the natural 250 

mechanical boundary conditions of Eqns. (17) are a strain-type variable that is 

dimensionless – a clear mismatch, the impact of which will be studied in Section 4.  

As a partial remedy of this mismatch, Askes et al. [21] suggested to take the 

derivative of Eqn. (14a) and pre-multiplying the result with the relevant constitutive 

matrices, which will adopted here for Eqns. (14a) as well as (14b):  255 

 ቊ ۱ሺઽ୑ െ ݈ଶ׏ଶઽ୑ሻ ൌ ሺ۶୑۾୫ܝ୳ۺ۱ െ ݈ଶ׏ଶ۶୑ሻ ൌ െۺ۾஦߮୫ (19) 

The weak form of Eqns. (19), followed by integration by parts, yields 

 

۔ۖۖەۖۖ
׬ۓ க୘۱ઽ୑ܟ ൅ ݈ଶ ቀడܟ಍౐డ௫ ۱ డઽ౉డ௫ ൅ డܟ಍౐డ௬ ۱ డઽ౉డ௬ ቁ dߗ        ఆ ൌ ׬ ఆߗ୫dܝ୳ۺக୘۱ܟ ൅ ݈ଶ ׬ Ǥܖக୘ሺܟ સ۱ઽ୑ሻd߁     ௰׬ ۶୑۾ୌ୘ܟ ൅ ݈ଶ ൬డܟౄ౐డ௫ ۾ డ۶౉డ௫ ൅ డܟౄ౐డ௬ ۾ డ۶౉డ௬ ൰ dߗఆ ൌ ׬ ఆߗ஦૎୫dۺ۾ୌ୘ܟ ൅ ݈ଶ ׬ Ǥܖୌ୘ሺܟ સ۶۾୑ሻd߁௰

 (20) 

where ܟக and ܟୌ  are vectors with test functions. The integrands of the boundary 

integral are very similar (though admittedly not identical) to the higher-order stresses 260 

and higher-order magnetisation flux densities discussed in Section 2. 

  Adopting again homogeneous natural boundary conditions, finite element 

discretisation leads to 

 ൤۵க ൅ ݈ଶۯக ͲͲ ۵ୌ ൅ ݈ଶۯୌ൨ ൤૓୑ܐ୑൨ ൌ ൤܂க ͲͲ െ܂ୌ൨ ቂ  ୫શ୫ቃ (21)܌

where ۵க ൌ ׬ ఆߗகdۼக୘۱ۼ கۯ ൌ ׬ డۼ಍౐డ௫ ۱ డۼ಍డ௫ ൅ డۼ಍౐డ௬ ۱ డۼ಍డ௬ dߗఆ ǡ க܂ ൌ265 ׬ க୘۱۰୳dȳఆۼ , ۵ୌ ൌ ׬ ఆߗୌdۼ۾ୌ୘ۼ ୌۯ , ൌ ׬ డۼౄ౐డ௫ ۾ డۼౄడ௫ ൅ డۼౄ౐డ௬ ۾ డۼౄడ௬ dߗఆ  and ܂ୌ ൌ׬ ఆߗ۰஦d۾ୌ୘ۼ . 
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Since there are more strain components than displacement components, Eqn. (21) is 

larger than Eqn. (18) – this constitutes a modest disadvantage of this İ & H-RA 

approach. 270 

3.2 Case 2:  ݈ଵ ് ݈ଷǡ ݈ଶ ൌ Ͳ 

Next, the case will be considered where ݈ଶ ൌ Ͳ but with potentially different length 

scales for the mechanic response and the magnetic response, i.e. ݈ଵ ് ݈ଷ. When ݈ଶ ൌͲ, Eqns. (12) can be split into two sets of equations using the Ru-Aifantis theorem as 

 ቊ ୳୘ۺ ୫ܝ୳ۺ۱ ൅ ୳୘ۺ ஦ɔ୑ۺۿ ൌ ૙ۺ஦୘ ୑ܝ୳ۺ୘ۿ െ ஦୘ۺ ஦ɔ୫ۺ۾ ൌ ૙ (22) 275 

 ቊ ୑ܝ െ ݈ଵଶ׏ଶܝ୑ ൌ ୫ɔ୑ܝ െ ݈ଷଶ׏ଶɔ୑ ൌ ɔ୫ (23) 

Note that the two sets of equations are fully coupled, which is in contrast with Eqns. 

(13) and (14). Again, a u & ĳ-RA approach and a İ & H-RA approach will be 

considered next. 

3.2.1 u & ĳ-RA approach 280 

The weak forms of above two sets of equations, followed by integration by parts, 

gives 

 

ەۖۖ
۔ۖۖ
ۓۖۖ ׬ ሺۺ୳ܟ୳ሻ୘۱ۺ୳ܝ୫dߗఆ ൅ ׬ ሺۺ୳ܟ୳ሻ୘ۺۿ஦߮୑dߗఆ ൌ ׬ ׬௰߁dܜ୳୘ܟ ሺۺ஦ܟ஦ሻ୘ۿ୘ۺ୳ܝ୑dߗఆ െ ׬ ሺۺ஦ܟ஦ሻ୘ۺ۾஦߮୫dߗఆ ൌ ׬ ׬௰߁஦୘۰ୄdܟ ୑ܝ୳୘ܟ ൅ ݈ଵଶ ቀడܟ౫౐డ௫ డܝ౉డ௫ ൅ డܟ౫౐డ௬ డܝ౉డ௬ ቁ dߗఆ ൌ׬ ఆߗ୫dܝ୳୘ܟ ൅ ݈ଵଶ ׬ Ǥܖ୳୘ሺܟ સܝ୑ሻd߁௰׬ ஦୘ɔ୑ܟ ൅ ݈ଷଶ ൬డܟಞ౐డ௫ డ஦౉డ௫ ൅ డܟಞ౐డ௬ డ஦౉డ௬ ൰ dߗఆ ൌ׬ ఆߗ஦୘ɔ୫dܟ ൅ ݈ଷଶ ׬ Ǥܖ஦୘ሺܟ સɔ୑ሻd߁௰

 (24) 

Adopting homogeneous natural boundary conditions for ܝ୑ and ɔ୑ leads to 

ێێێۏ 
۹୳୳ۍ ૙ ૙ ۹୳஦െ܂୳ ୳܂ ൅ ݈ଵଶۯ୳ ૙ ૙૙ ۹஦୳ െ۹஦஦ ૙૙ ૙ െ܂஦ ஦܂ ൅ ݈ଷଶۯ஦ۑۑۑے

ې ൦ ୑શ୫શ୑൪܌୫܌ ൌ ቎ ۴૙ʣ૙቏ (25) 285 



where ܌୫ , શ୫  are, respectively, nodal displacement vector and nodal magneto 

potential vector in micro via ܝ୫ ൌ ୫ and ߮௠܌୳ۼ ൌ  .஦શ୫ۼ

3.1.2 İ & H-RA approach 

Following similar arguments on variationally consistent boundary conditions as 

made in Section 3.1, Eqns. (23) will be recast in terms of strains and magnetic fields. 290 

To do so, first Eqns. (22) are rewritten as  

 ቊ ୳୘ۺ ୫ܝ୳ۺ۱ െ ୳୘ۺ ۶୑ۿ ൌ ૙ۺ஦୘ ୘ઽ୑ۿ െ ஦୘ۺ ஦ɔ୫ۺ۾ ൌ ૙ (26) 

which is then solved alongside 

 ቊ ۱ሺઽ୑ െ ݈ଵଶ׏ଶઽ୑ሻ ൌ ሺ۶୑۾୫ܝ୳ۺ۱ െ ݈ଷଶ׏ଶ۶୑ሻ ൌ െۺ۾஦߮୫ (27) 

Taking weak forms and integrating these by parts results in  295 

ەۖۖ
۔ۖۖ
ۓۖۖ ׬ ሺۺ୳ܟ୳ሻ୘۱ۺ୳ܝ୫dߗఆ െ ׬ ሺۺ୳ܟ୳ሻ୘۶ۿ୑dߗఆ ൌ ׬ ׬௰߁dܜ୳୘ܟ ሺۺ஦ܟ஦ሻ୘ۿ୘ઽ୑dߗఆ െ ׬ ሺۺ஦ܟ஦ሻ୘ۺ۾஦߮୫dߗఆ ൌ ׬ ׬௰߁஦୘۰ୄdܟ க୘۱ઽ୑ܟ ൅ ݈ଵଶ ቀడܟ಍౐డ௫ ۱ డઽ౉డ௫ ൅ డܟ಍౐డ௬ ۱ డઽ౉డ௬ ቁ dߗఆ ൌ׬ ఆߗ୫dܝ୳ۺக୘۱ܟ ൅ ݈ଵଶ ׬ Ǥܖக୘ሺܟ સ۱ઽ୑ሻd߁௰׬ ۶୑۾ୌ୘ܟ ൅ ݈ଷଶ ൬డܟౄ౐డ௫ ۾ డ۶౉డ௫ ൅ డܟౄ౐డ௬ ۾ డ۶౉డ௬ ൰ dߗఆ ൌെ ׬ ఆߗ஦૎୫dۺ۾ୌ୘ܟ ൅ ݈ଷଶ ׬ Ǥܖୌ୘ሺܟ સ۶۾୑ሻd߁௰

 (28) 

which yields 

ێێۏ 
۹୳୳ۍ ૙ ૙ െ۹୳ୌെ܂க ۵க ൅ ݈ଵଶۯக ૙ ૙૙ ۹஦୳ െ۹஦஦ ૙૙ ૙ ୌ܂ ۵ୌ ൅ ݈ଷଶۯୌۑۑے

ې ൦ ୑ܐ୫૓୑શ୫܌ ൪ ൌ ቎ ۴૙ʣ૙቏ (29) 

where ۹۶ܝ ൌ ׬ ۰୳୘ۼۿୌdߗఆ , ۹஦க ൌ ׬ ۰஦୘ ఆߗகdۼ୘ۿ . Note that homogeneous natural 

higher-order boundary conditions have again been adopted. 300 

4. Numerical results and discussion 

In this section, we will employ the finite elements formulations derived in the 

previous section to show the advantages of gradient-enriched piezo-magnetic analysis: 
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(1) removal of singularities from magnetic and mechanical fields, and (2) capture of the 

size-dependent piezo-magnetic response. We consider a plate in plane stress state. 305 

Throughout, simulations are carried out with a MATLAB code developed in-house, 

spatial discretisation is performed with three-node linear triangular finite elements, and 

a transversely isotropic material (Terfenol-D)-epoxy mixed components (MSCP) is 

chosen. Assuming that MSCP is polarized along the z-direction (3 direction) and has 

the xy-plane (1-2 plane) as the plane of isotropy, the material parameters are listed in 310 

Table 1 [45][46]. 

 

Table1  

material parameters of MSCP 

 

 

Elastic constants [GPa] 

C11 31.1 

C12 15.2 

C13 15.2 

C33 35.6 

C44=C55 13.6 

 

Piezo-magnetic constants [N/Am] 

q31 156.8 

q33 108.3 

q15=q24 -60.9 

Magnetic permeability [10-4Ns2/C2] ȝ11=ȝ22 0.054 

ȝ33 0.054 

 315 

4.1 Removal of singularities 

In classical elasticity, singularities may appear where abrupt changes in the boundary 

conditions occur or at non-convex corners in the domain. These singularities can be 

avoided when gradient elasticity is used with appropriate boundary conditions, as has 

been demonstrated on many occasions [19][20][21][47][48]. Here we will study the 320 

effects of gradient-enrichment in removing singularities from the mechanic field and 

magnetic field appearing at the tips of sharp cracks. 



Mode I loading of a piezo-magnetic specimen is considered as shown in Fig.1, with 

plate thickness 5mm. The plate is subjected to a uniform in-plane load q=10MPa and 

in-plane magnetic field H0=100A/m. A typical mesh is shown in Fig.2; for the magnetic 325 

response the air in the crack is treated as an inclusion, with vacuum magnetic 

permeability, zero elastic constants and zero piezo-magnetic constants, in addition to 

zero values for all three length scales, and the mechanical degrees of freedom for the 

relevant nodes have been removed. The size of element is taken smallest at the tip of 

the crack and increases more or less linearly as the distance from the tip of crack 330 

increases.  

 

Fig.1. A plate with a mode I crack. (Units: mm) 

 

   335 

Fig.2. Mesh of the plate
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Simulations have been carried out based on the u & ĳ-RA approach and the İ & H-

RA approach, considering the cases l1=l2=l3=l and ݈ଵ ് ݈ଷ, l2=0. In a mesh refinement 

study, the element sizes at the crack tip (denoted with “esize” in the Figures below) 

decreased from 1.6mm by successive halving to 0.1mm. In particular, the effects of the 340 

various length scales on the distributions of u, ĳ, İ and H components along the x-axis 

have been analysed, with specific focus on singularities in the mechanical strain İ and 

the magnetic field H. 

Fig.3 shows distributions of u, ĳ, İ and H components along the x-axis for different 

element sizes, based on the u & ĳ-RA approach with Case 1, i.e. when 345 

l1=l2=l3=l=0.5mm. As can be verified in Fig.3 (a)-(c), an excellent convergence upon 

mesh refinement is observed for u and ĳ: the distribution lines are smooth and remain 

finite around the crack tip. However, it is observed from Fig.3 (d)-(h) that the 

distributions of İ and H components are spiky and unbounded at the crack tip as the 

element size decreases. Thus, it can be concluded that using the u & ĳ-RA approach 350 

for Case 1 removes the singularities from the primary variables u and ĳ but not from 

the derived quantities İ and H. 

 

 



355 

 

 

Fig.3. u, ĳ, İ and H distributions along the x-axis based on u & ĳ-RA approach 

(l =0.5mm) 

Fig.4 shows distributions of İ and H components along the x-axis for different 360 

element sizes based on İ & H-RA approach for Case 1, again taking l1=l2=l3=l=0.5mm. 

It is observed that all İ and H components converge to finite, albeit occasionally spiky, 

values – compare also the vertical axes ranges between Figures 3 and 4. Thus, it is 
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concluded that the singularities of all İ and H components can be removed effectively 

using the İ & H-RA approach for Case 1. 365 

 

Fig.4. İ and H distributions along the x-axis based on İ & H-RA approach (l=0.5mm) 

 370 

Next, the effects of the various length scales in removing the singularities from strain 

and magnetic field will be analysed: Case 2 will be investigated, whereby l2=0 but l1 



and l3 may adopt different values. Given the superiority of the İ & H-RA approach over 

the u & ĳ-RA approach shown for Case 1, only the İ & H-RA approach will be 

investigated for Case 2 and compared (where applicable) to Case 1. Fig.5 shows the Hx 375 

and Hz distributions along the x-axis, whereas Fig.6 shows the İxx and İzz distributions 

along the x-axis. 

 380 
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Fig.5. Hx and Hz distributions along the x-axis based on İ & H-RA method 



385 

 

Fig.6. İxx and İzz distributions along the x-axis based on İ & H-RA method 

Fig.5 (a) and (b) show Hx and Hz distributions when l1=l2=l3=0.5mm, and Fig.5 (c) 

and (d) show Hx and Hz distributions when l2=0, l1=l3=0.5mm. A good convergence 

upon mesh refinement is observed for Hx and Hz in both situations. When l2=0, l1= 390 

l3=0.5mm, the convergence seems to be a bit faster, which suggests that l2 has a slight 

negative effect on removing the singularities of magnetic field H.  

Fig.5 (e) and (f) show Hx and Hz distributions when l1=0.5mm, l2= l3=0. Fig.5 (g) and 

(h) show Hx and Hz distributions when l3=0.5 mm, l1= l2=0. An excellent convergence 

upon mesh refinement is observed for Hx in both situations: Hx distributions remain 395 

smooth and bounded. However, the Hz distribution at the crack tip in Fig.5 (f) is spiky, 

and it is unbounded and singular (confirmed by a Richardson extrapolation analysis, 

not shown here). Although the Hz distribution shown in Fig.5 (h) is a little spiky at the 

crack tip, it is still bounded and convergent (again confirmed by a Richardson 

extrapolation analysis) – merely, its convergence speed is slower compared with the 400 

results in Fig.5 (b) and (d). These results indicate that the presence of the l1 term alone 
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is insufficient to remove all singularities from H; the l3 term is essential to remove the 

singularities from H. 

Fig.6 (a) and (b) show the İxx and İzz distributions when l1=l2=l3=0.5mm, while Fig.6 

(c) and (d) show the İxx and İzz distributions when l2=0, l1= l3=0.5mm. Good 405 

convergence upon mesh refinement is observed for İxx and İzz in both situations. Fig.6 

(e) and (f) show the İxx and İzz distributions when l1=0.5 mm, l2=l3=0. Compared with 

Fig.6 (c) and (d), the two cases are virtually identical.  Finally, Fig.6 (g) and (h) show 

the İxx and İzz distributions when l3=0.5 mm, l1= l2=0. Here, the strains are clearly 

unbounded as the element size decreases, and it is clear that the singularities have not 410 

been removed. Thus, it can be concluded that l1 plays a critical role in removing 

singularities from the strain İ, whereas l2 and l3 have no effect. 

The effects of the three length scales on removing the singularities from the 

mechanical and magnetic fields can thus be summarized as follows: l1 is essential to 

remove the singularities from the strain İ; l2 has no decisive effect on removing 415 

singularities; l3 is essential to remove the singularities from the magnetic field H.  

4.2 Size effects 

Next, the effects of gradient-enriched piezo-magnetic coupling on size-dependent 

mechanical and magnetic responses will be studied, considering a square plate with a 

circular void embedded in a piezo-magnetic matrix. As shown in Fig.7, L is the length 420 

of side and r is the radius of the circular void. The plate is subjected to the uniform in-

plane mechanical traction q, and in-plane magnetic field H0. When calculating the 

mechanical parameters, such as displacements, strains and stress, the computational 

model is a plate with hole, whereas for the calculation of the magnetic parameters, such 

as magnetic potential, magnetic field and magnetic flux density, the computational 425 

model is a plate with a circular inclusion (with the material of the inclusion being air, 

treated similarly to the notch of Section 4.1). 

Taking loads q=10MPa and H0=50A/m and keeping the ratio L/r=20, 5 geometrically 

proportional models via L = [80, 40, 20, 10, 5] mm, r = [4, 2, 1, 0.5, 0.25] mm, plate 

thickness T = [8, 4, 2, 1, 0.5] mm are analysed. The meshes for the solid component 430 



and the hole are shown in Fig. 8. The mesh density in the hole is uniform, and the 

element size in the matrix increases linearly as the distance from the circumference of 

the void increases. Following (and extrapolating) the recommendations of Bennett and 

Askes [49] for gradient elasticity, we have taken the element size in the hole equal to 

the value of the length scale(s). A mesh refinement study did not show appreciable 435 

differences, and its results have been omitted accordingly. 

 

Fig.7.: A square plate with a circular void embedded in a piezo magnetic matrix 

 

Fig.8. Meshes of the solid and the hole 440 

Fig.9 shows Hx distributions along x-axis and Hz distributions along z-axis after 

normalization with the radius of the void. Note that the former is two orders of 

magnitude smaller than the latter, which suggests that its more noisy behaviour should 
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be deemed less relevant. The dotted lines show magnetic field distributions without 

gradient (i.e. classical theory) for different void sizes. The size-dependent behaviour of 445 

the magnetic field H in the void as well in the matrix material will be discussed first. It 

is observed from Fig.9 (a), (c), (e) and (g) that the Hx distribution lines in the void 

remain unchanged and overlap with the prediction of the classical theory (the dotted 

line) in each graph. In the void, the H component parallel to the external magnetic field 

H0 is not influenced by microstructure of solid (length scales) and the size of void 450 

(radius r). However, the H component perpendicular to the external magnetic field H0 

(i.e. Hz) in the void is size-dependent when l2=0, as shown in Fig. 9 (d), (f) and (h): the 

smaller the void, the bigger the discrepancy between the Hz distributions considering 

gradients (solid line) and the prediction of the classical theory (dotted line). 

Furthermore, studying Fig. 9 (b), (d), (f) and (h) that represent the various cases, it is 455 

found that l3 has little effect on Hz in the void, whereas l1 has a much stronger influence 

on Hz in the void. Finally, the larger l1, the more sensitive Hz is to the void size r.  

Next, the size-dependent behaviour of H in the matrix is investigated. For the 

magnetic field near the edge of void, both H components perpendicular to and parallel 

to the external magnetic field H0 are strongly size-dependent as shown in Fig. 9: the 460 

smaller the void, the larger the difference between classical (dotted line) and gradient 

(solid line) solutions. In addition, length scales influence the size effect of magnetic 

field near the edge of void too. Studying the individual figures that represent the various 

cases, it is found that l2 has a negative effect: the larger l2, the less sensitive the magnetic 

field near the void to r. Both l1 and l3 have a positive effect: the larger l1 and l3, the more 465 

sensitive the magnetic field near the void to r, and the combined effect of l1 and l3 is 

much stronger than their individual effects. 

It is observed in all cases that the solid-air interface leads to strong oscillations around 

this interface, particularly in the void. The reason is that in the void all length scales are 

taken equal to zero, even if they are non-zero in the matrix; thus, the smoothing effect 470 

of the gradients does not occur in the void. Furthermore, inside the void only magnetic 

effects are accounted for, since the mechanical degrees of freedom are deactivated. The 

observed size effects in the void are thus due to boundary layer effects at the solid-air 

interface. 



475 
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Fig.9. Hx distributions along x-axis and Hz distributions along z-axis after 

normalization with the radius of the void 480 

Next, the İxx distributions along the x-axis and the İzz distributions along the z-axis 

in the matrix is analysed, shown in Fig.10. The dotted lines show the İ distributions 

without gradient (i.e. classical theory). It is found from Fig.10 (a)-(f) that the value of 

the void radius r has an obvious effect on the distribution of strain near the void; only 

when the void is relatively large the size effect on the mechanical field becomes 485 

negligible. Furthermore, studying the individual figures that represent the various cases, 

it is found that l1 influences the size effect of strain significantly, while l2 and l3 have 

much less effect in comparison. 
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Fig.10. İxx distributions along x-axis and İzz distributions along z-axis in the solid 

The size-dependent behaviour of the magnetic field H and strain İ are summarized 

as follows: only when the void is relatively small are the size effects on the magnetic 495 

field and mechanic field obvious. Furthermore, length scales influence the size effect: 

l1 influences the size effect of both strain and magnetic field; l2 and l3 influence the size 
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effect of magnetic field but have much less effect on strain in comparison. This would 

indicate that the magnetic field is more sensitive to microstructure than strain 

5. Conclusions 500 

In this paper, a continuum model for piezo-magnetic material has been developed 

that includes gradients of strain, magnetic field and piezo-magnetic coupling terms. 

Numerical solution schemes based on the finite element method and the Ru-Aifantis 

theorem are also presented.  

The general observations are that the inclusion of higher-order gradients in static 505 

piezo-magnetic analysis removes the singularities from the magnetic field as well as the 

mechanical field, and that size-dependent piezo-magnetic response can be predicted. 

More specifically, we have found the following: 

 The study of singularity removal demonstrated that the Ru-Aifantis theorem based 

on secondary variables (strains and magnetic field) is more effective than that 510 

based on primary variables (displacements and magnetic potential) in removing all 

singularities.  

 Both the singularity study and the size effect study showed that there was limited 

effect of the mechanical length scale on the magnetic effects, and vice versa – thus, 

for effective removal of all singularities and effective inclusion of all size effects, 515 

both the mechanical and the magnetic length scale terms need to be included.  

 Compared to the mechanical and magnetic length scales, the effect of the coupling 

length scale is relatively limited and certainly not essential for singularity removal 

nor for capturing size-dependent response, although this length scale does have 

some quantitative effects. 520 

In this study, we have focussed on a qualitative understanding of the various length 

scales that appear in gradient magneto-elasticity. In a follow-up work, we will explore 

these effects more quantitatively, in particular focussing on micro-mechanical 

interpretations and experimental validation of the various length scales. This will then 

allow us to assess the relative importance of every contribution on certain observed 525 

response. 
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