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Abstract

In this paper, we prove several mathematical results related to a system of highly

nonlinear stochastic partial differential equations (PDEs). These stochastic equations

describe the dynamics of penalised nematic liquid crystals under the influence of

stochastic external forces. Firstly, we prove the existence of a global weak solution

(in the sense of both stochastic analysis and PDEs). Secondly, we show the pathwise

uniqueness of the solution in a 2D domain. In contrast to several works in the deter-

ministic setting we replace the Ginzburg–Landau function 1|n|≤1(|n|2 − 1)n by an

appropriate polynomial f (n) and we give sufficient conditions on the polynomial f

for these two results to hold. Our third result is a maximum principle type theorem.

More precisely, if we consider f (n) = 1|d|≤1(|n|2 − 1)n and if the initial condition

n0 satisfies |n0| ≤ 1, then the solution n also remains in the unit ball.
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1 Introduction

Nematic liquid crystal is a state of matter that has properties which are between

amorphous liquid and crystalline solid. Molecules of nematic liquid crystals are long

and thin, and they tend to align along a common axis. This preferred axis indicates

the orientations of the crystalline molecules; hence it is useful to characterize its

orientation with a vector field n which is called the director. Since its magnitude has

no significance, we shall take n as a unit vector. We refer to [10,15] for a comprehensive

treatment of the physics of liquid crystals. To model the dynamics of nematic liquid

crystals most scientists use the continuum theory developed by Ericksen [17] and

Leslie [28]. From this theory Lin and Liu [29] derived the most basic and simplest

form of the dynamical system describing the motion of nematic liquid crystals filling

a bounded region O ⊂ R
d , d = 2, 3. This system is given by

vt + (v · ∇)v − μ�v + ∇ p = −λ div(∇n ⊙ ∇n), in (0, T ] × O (1.1)

div v = 0, in (0, T ] × O (1.2)

nt + (v · ∇)n = γ
(

�n + |∇n|2n
)

, in (0, T ] × O (1.3)

n(0) = n0, and v(0) = v0 in O (1.4)

|n|2 = 1, on (0, T ] × O. (1.5)

Here p : R
d → R represents the pressure of the fluid, v : R

d → R
d its velocity and

n : R
d → R

3 the liquid crystal molecules director. By the symbol ∇n ⊙∇n we mean

a d × d-matrix with entries defined by

[∇n ⊙ ∇n]i, j =

3
∑

k=1

∂n(k)

∂xi

∂n(k)

∂x j

, i, j = 1, . . . , d.

We assume that the boundary of O is smooth and equip the system with the boundary

conditions

v = 0 and
∂n

∂ν

= 0 on ∂O, (1.6)

and the initial conditions

v(0) = v0 and n(0) = n0, (1.7)

where v0 and n0 are given mappings defined on O. Here, the vector field ν is the unit

outward normal to ∂O, i.e., at each point x of O, ν(x) is perpendicular to the tangent

space Tx∂O, of length 1 and facing outside of O.

Although the system (1.1)–(1.6) is the most basic and simplest form of equations

from the Ericksen–Leslie continuum theory, it retains the most physical significance

of the Nematic liquid crystals. Moreover, it offers several interesting mathematical

problems. In fact, on one hand, two of the main mathematical difficulties related to

123



Stoch PDE: Anal Comp

the system (1.1)–(1.6) are non-parabolicity of Eq. (1.3) and high nonlinearity of the

term div σ E = −div (∇n ⊙ ∇n). The non-parabolicity follows from the fact that

�n + |∇n|2n = n × (�n × n), (1.8)

so that the linear term �n in (1.3) is only a tangential part of the full Laplacian. Here

we have denoted the vector product by ×. The term div (∇n⊙∇n) makes the problem

(1.1)–(1.6) a fully nonlinear and constrained system of PDEs coupled via a quadratic

gradient nonlinearity. On the other hand, a number of challenging questions about the

solutions to Navier–Stokes equations (NSEs) and Geometric Heat equation (GHE) are

still open.

In 1995, Lin and Liu [29] proposed an approximation of the system (1.1)–(1.6) to

relax the constraint |n|2 = 1 and the gradient nonlinearity |∇n|2n. More precisely,

they studied the following system of equations

vt + (v · ∇)v − μ�v + ∇ p = −λ div(∇n ⊙ ∇n), in (0, T ] × O (1.9)

div v = 0, in [0, T ] × O (1.10)

n(0) = n0 and v(0) = v0 in O, (1.11)

nt + (v · ∇)n = γ

(

�n −
1

ε2
(|n|2 − 1)n

)

in (0, T ] × O, (1.12)

where ε > 0 is an arbitrary constant.

Problem (1.9)–(1.12) with boundary conditions (1.6) is much simpler than (1.1)–

(1.5) with (1.6), but it offers several difficult mathematical problems. Since the

pioneering work [29] the systems (1.9)–(1.12) and (1.1)–(1.5) have been the subject of

intensive mathematical studies. We refer, among others, to [13,19,21,29,31–33,42] and

references therein for the relevant results. We also note that more general Ericksen–

Leslie systems have been recently studied, see, for instance, [9,22,23,25,30,47,48] and

references therein.

In this paper, we are interested in the mathematical analysis of a stochastic version

of problem (1.9)–(1.12). Basically, we will investigate a system of stochastic evolution

equations which is obtained by introducing appropriate noise term in (1.1)–(1.5). In

contrast to the unpublished manuscript [7] we replace the bounded Ginzburg–Landau

function1|n|≤1(|n|2−1)n in the coupled system by an appropriate polynomial function

f (n). More precisely, we set μ = λ = γ = 1 and we consider cylindrical Wiener

processes W1 on a separable Hilbert space K1 and a standard real-valued Brownian

motion W2. We assume that W1 and W2 are independent. We consider the problem

dv(t) +
[

(v(t) · ∇)v(t) − �v(t) + ∇ p
]

dt = − div(∇n(t) ⊙ ∇n(t))dt + S(v(t))dW1(t),

(1.13)

div v(t) = 0, (1.14)

dn(t) + (v(t) · ∇)n(t)dt =
[

�n(t) − f (n)
]

dt + (n(t) × h) ◦ dW2(t),

(1.15)

v = 0 and
∂n

∂ν

= 0 on ∂O, (1.16)
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v(0) = v0 and n(0) = n0, (1.17)

where h : R
d → R

3 is a given function, (n(t) × h) ◦ dW2(t) is understood in the

Stratonovich sense and f is a polynomial function and the above system holds in

OT := (0, T ] × O. We will give more details about the polynomial f later on.

Our work is motivated by the importance of external perturbation on the dynamics

of the director field n. Indeed, an essential property of nematic liquid crystals is

that its director field n can be easily distorted. However, it can also be aligned to

form a specific pattern under some external perturbations. This pattern formation

occurs when a threshold value of the external perturbations is attained; this is the

so-called Fréedericksz transition. Random external perturbations change a little bit

the threshold value for the Fréedericksz transition. For example, it has been found

that with the fluctuation of the magnetic field the relaxation time of an unstable state

diminishes, i.e., the time for a noisy system to leave an unstable state is much shorter

than the unperturbed system. For these results, we refer, among others, to [24,40,

41] and references therein. In all of these works, the effect of the hydrodynamic

flow has been neglected. However, it is pointed out in [15, Chapter 5] that the fluid

flow disturbs the alignment and conversely a change in the alignment will induce a

flow in the nematic liquid crystal. Hence, for a full understanding of the effect of

fluctuating magnetic field on the behavior of the liquid crystals one needs to take into

account the dynamics of n and v. To initiate this kind of investigation we propose a

mathematical study of (1.13)–(1.15) which basically describes an approximation of

the system governing the nematic liquid crystals under the influence of fluctuating

external forces.

In the present paper, we prove some results that are the stochastic counterparts

of some of those obtained by Lin and Liu in [29]. Our results can be described as

follows. In Sect. 3 we establish the existence of global martingale solutions (weak in

the PDEs sense). To prove this result, we first find a suitable finite dimensional Galerkin

approximation of system (1.13)–(1.15), which can be solved locally in time. Our

choice of the approximation yields the global existence of the approximating solutions

(vm, nm). For this purpose, we derive several significant global a priori estimates in

higher order Sobolev spaces involving the following two energy functionals

E1(n, t) := ‖n(t)‖q + q

∫ t

0

‖n(s)‖q−2‖∇n(s)‖2ds + q

∫ t

0

‖n(s)‖q−2‖n(s)‖2N+2

L2N+2 ds

and

E2(v, n, t) := ‖v(t)‖2 + ℓ̃‖n(t)‖2 + ‖∇n(t)‖2 +

∫

O

F(n(t, x)dx

+

(∫ t

0

‖∇v(s)‖2 + ‖�n(s) − f (n(s))‖2

)

ds.

Here F(·) is the antiderivative of f such that F(0) = 0 and ℓ̃ > 0 is a certain

constant. These global a priori estimates, the proofs of which are non-trivial and

require long and tedious calculation, are very crucial for the proof of the tightness
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of the family of distributions {(vm, nm) : m ∈ N}, where (vm, nm) is the solu-

tion of the Galerkin approximation in certain appropriate topological spaces such

as L2(0, T ; L
2(O) × H1(O)). This tightness result along Prokhorov’s theorem and

Skorokhod’s representation theorem will enable us to construct a new probability

space on which we also find a new sequence of processes (v̄m, n̄m, W̄ m
1 , W̄ m

2 ) of solu-

tions of the Galerkin equations. This new sequence is proved to converge to a system

(v, n, W̄1, W̄2) which along with the new probability space will form our weak mar-

tingale solution. To close the first part of our results we show that the weak martingale

solution is pathwise unique in the 2-D case. We prove a maximum principle type

theorem in Sect. 5. More precisely, if we consider f (n) = 1|d|≤1(|n|2 − 1)n instead

and if the initial condition n0 satisfies |n0| ≤ 1, then the solution n also remains

in the unit ball. In contrast to the deterministic case, this result does not follow in a

straightforward way from well-known results. Here the method of proofs are based

on the blending of ideas from [11,16].

To the best of our knowledge, our work is the first mathematical work, which

studies the existence and uniqueness of a weak martingale solution of system (1.13)–

(1.15). Under the assumption that f (·) is a bounded function, the authors proved in the

unpublished manuscript [7] that the system (1.13)–(1.15) has a maximal strong solu-

tion which is global for the 2D case. Therefore, the present article is a generalization

of [7] in the sense that we allow f (·) to be an unbounded polynomial function.

The organization of the present article is as follows. In Sect. 2 we introduce the

notations that are frequently used throughout this paper. In the same section, we also

state and prove some useful lemmata. By using the scheme, we outlined above we show

in Sect. 3 that (1.13)–(1.15) admits a weak martingale solution which is pathwise

unique in the two-dimensional case. The existence results rely on the derivation of

several crucial estimates for the approximating solutions. These uniform estimates

are proved in Sect. 4. In Sect. 5 a maximum principle type theorem is proved when

f (n) = 1|n|≤1(|n|2 − 1)n. In “Appendix” section we recall or prove several crucial

estimates about the nonlinear terms of the system (1.13)–(1.15).

2 Functional spaces and preparatory lemma

2.1 Functional spaces and linear operators

Let d ∈ {2, 3} and assume that O ⊂ R
d is a bounded domain with boundary ∂O

of class C∞. For any p ∈ [1,∞) and k ∈ N, L p(O) and Wk,p(O) are the well-

known Lebesgue and Sobolev spaces, respectively, of R-valued functions. The spaces

of functions v : R
d → R

d (resp. n : R
d → R

3) such that each component of v (resp.

n) belongs to L p(O) or to Wk,p(O) are denoted by L
p(O) or by W

k,p(O) (resp. by

Lp(O) or by Wk,p(O)). For p = 2 the function space W
k,2(O) is denoted by H

k and

its norm is denoted by ‖u‖k . The usual scalar product on L
2 is denoted by 〈u, v〉 for

u, v ∈ L
2 and its associated norm is denoted by ‖u‖, u ∈ L

2. By H
1
0 we mean the

space of functions in H
1 that vanish on the boundary on O; H

1
0 is a Hilbert space when

endowed with the scalar product induced by that of H
1. We understand that the same
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remarks hold for the spaces and Wk,p, H1, L2 and so on. We will also understand that

the norm of Hk (resp. L2) is also denoted by ‖·‖k (resp. ‖·‖).

We now introduce the following spaces

V =
{

u ∈ C
∞
c (O, R

d) such that div u = 0
}

V = closure of V in H
1
0(O)

H = closure of V in L
2(O).

We endow H with the scalar product and norm of L
2. As usual we equip the space

V with the the scalar product 〈∇u,∇v〉 which, owing to the Poincaré inequality, is

equivalent to the H
1(O)-scalar product.

Let 	 : L
2 → H be the Helmholtz-Leray projection from L

2 onto H. We denote

by A = −	� the Stokes operator with domain D(A) = V ∩ H
2. It is well-known

(see for e.g. [45, Chapter I, Section 2.6]) that there exists an orthonormal basis (ϕi )
∞
i=1

of H consisting of the eigenfunctions of the Stokes operator A. For β ∈ [0,∞), we

denote by Vβ the Hilbert space D(Aβ) endowed with the graph inner product. The

Hilbert space Vβ = D(Aβ) for β ∈ (−∞, 0) can be defined by standard extrapolation

methods. In particular, the space D(A−β) is the dual of Vβ for β ≥ 0. Moreover, for

every β, δ ∈ R the mapping Aδ is a linear isomorphism between Vβ and Vβ−δ . It is

also well-known that V 1
2

= V, see [12, page 33].

The Neumann Laplacian acting on R
3-valued function will be denoted by A1, that

is,

D(A1) :=

{

u ∈ H2 :
∂u

∂ν

= 0 on ∂O

}

,

A1u := −

d
∑

i=1

∂2u

∂x2
i

, u ∈ D(A1).

(2.1)

It can also be shown, see e.g. [20, Theorem 5.31], that Â1 = I +A1 is a definite positive

and self-adjoint operator in the Hilbert space L2 := L2(O) with compact resolvent.

In particular, there exists an ONB (φk)
∞
k=1 of L2 and an increasing sequence

(

λk

)∞

k=1
with λ1 = 0 and λk ր ∞ as k ր ∞ (the eigenvalues of the Neumann Laplacian A1)

such that A1φk = λkφk for any j ∈ N.

For any α ∈ [0,∞) we denote by Xα = D(Âα
1 ), the domain of the fractional power

operator Âα
1 . We have the following characterization of the spaces Xα ,

Xα =

{

u =
∑

k∈N

ukφk :
∑

k∈N

(1 + λk)
2α|uk |

2 < ∞

}

. (2.2)

It can be shown that Xα ⊂ H2α , for all α ≥ 0 and X := X 1
2

= H1, see, for instance,

[46, Sections 4.3.3 and 4.9.2].
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For a fixed h ∈ L∞ we define a bounded linear operator G from L2 into itself by

G : L2 ∋ n �→ n × h ∈ L2.

It is straightforward to check that there exists a constant C > 0 such that

‖G(n)‖ ≤ C‖h‖L∞‖n‖, for any n ∈ L2.

Given two Hilbert spaces K and H , we denote by L(K , H) and T2(K , H) the space

of bounded linear operators and the Hilbert space of all Hilbert–Schmidt operators

from K to H , respectively. For K = H we just write L(K ) instead of L(K , K ).

2.2 The nonlinear terms

Throughout this paper B∗ denotes the dual space of a Banach space B. We also denote

by 〈�, b〉B∗,B the value of � ∈ B∗ on b ∈ B.

We define a trilinear form b(·, ·, ·) by

b(u, v, w) =

d
∑

i, j=1

∫

O

u(i) ∂v( j)

∂xi

w( j)dx, u ∈ L
p, v ∈ W

1,q , and w ∈ L
r ,

with numbers p, q, r ∈ [1,∞] satisfying

1

p
+

1

q
+

1

r
≤ 1.

Here ∂xi
= ∂

∂xi
and φ(i) is the i-th entry of any vector-valued φ. Note that in the above

definition we can also take v ∈ W1,q and w ∈ Lr , but in this case we have to take the

sum over j from j = 1 to j = 3.

The mapping b is the trilinear form used in the mathematical analysis of the Navier–

Stokes equations, see for instance [45, Chapter II, Section 1.2]. It is well known, see

[45, Chapter II, Section 1.2], that one can define a bilinear mapping B from V × V

with values in V∗ such that

〈B(u, v), w〉V∗,V = b(u, v, w) for w ∈ V, and u, v ∈ H
1. (2.3)

In a similar way, we can also define a bilinear mapping B̃ defined on H
1 × H1 with

values in (H1)∗ such that

〈B̃(u, v), w〉(H1)∗,H1 = b(u, v, w) for any u ∈ H
1, v, w ∈ H1. (2.4)

Well-known properties of B and B̃ will be given in the “Appendix” section.
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Let m be the trilinear form defined by

m(n1, n2, u) = −

d
∑

i, j=1

3
∑

k=1

∫

O

∂xi
n

(k)
1 ∂x j

n
(k)
2 ∂x j

u(i) dx (2.5)

for any n1 ∈ W1,p, n2 ∈ W1,q and u ∈ W
1,r with r , p, q ∈ (1,∞) satisfying

1

p
+

1

q
+

1

r
≤ 1.

Since d ≤ 4, the integral in (2.5) is well defined for n1, n2 ∈ H2 and u ∈ V. We have

the following lemma.

Lemma 2.1 Let d ∈ [1, 4]. Then, there exist a constant C > 0 such that

|m(n1, n2, u)| ≤ C‖∇n1‖
1− d

4 ‖∇2n1‖
d
4 ‖∇n2‖

1− d
4 ‖∇2n2‖

d
4 ‖∇u‖, (2.6)

for any n1, n2 ∈ H2 and u ∈ V.

Proof of Lemma 2.1 From (2.5) and Hölder’s inequality we derive that

|m(n1, n2, u)| ≤

∫

O

|∇n1||∇n2||∇u|dx .

The above integral is well-defined since ∇ni ∈ L
2d

d−2 , i = 1, 2, ∇u ∈ L
2 and

d−2
d

+ 1
2

≤ 1 for d ≤ 4. When d = 2 we replace 2d/(d − 2) by any q ∈ [4,∞). Note

that for d ≤ 4 we have |∇ni | ∈ L4, i = 1, 2. Hence

|m(n1, n2, u)| ≤ C‖∇n1‖L4‖∇n2‖L4‖∇u‖.

This last estimate and Gagliardo–Nirenberg’s inequality (6.1) lead us to

|m(n1, n2, u)| ≤ C‖∇n1‖
1− d

4 ‖∇2n1‖
d
4 ‖∇n2‖

1− d
4 ‖∇2n2‖

d
4 ‖∇u‖. (2.7)

This concludes the proof of our claim. ⊓⊔

The above result tells us that the mapping V ∋ u �→ m(n1, n2, u) is an element of

L(V, R) whenever n1, n2 ∈ H2. Now, we state and prove the following proposition.

Proposition 2.2 Let d ∈ [1, 4]. There exists a bilinear operator M defined on H2 ×H2

taking values in V∗ such that for any n1, n2 ∈ H2

〈M(n1, n2), u〉V∗,V = m(n1, n2, u) u ∈ V. (2.8)

Furthermore, there exists a constant C > 0 such that

‖M(n1, n2)‖V∗ ≤ C‖∇n1‖
1− d

4 ‖∇2n1‖
d
4 ‖∇n2‖

1− d
4 ‖∇2n2‖

d
4 , (2.9)
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for any n1, n2 ∈ H2. We also have the following identity

〈B̃(v, n), A1n〉 = −〈M(n, n), v〉V∗,V, for any v ∈ V, n ∈ D(A1). (2.10)

Proof The first part and (2.9) follow from Lemma 2.1.

To prove (2.10) we first note that 〈B̃(v, n2), A1n1〉 = b(v, n2, A1n1) is well-defined

for any v ∈ V, n1, n2 ∈ D(A1). Thus, taking into account that v is divergence free

and vanishes on the boundary we can perform an integration-by-parts and deduce that

〈B(v, n), A1n)〉 = −

∫

O

v(i) ∂n(k)

∂xi

∂2n(k)

∂xl∂xl

dx

=

∫

O

∂v(i)

∂xl

∂n(k)

∂xi

∂n(k)

∂xl

dx −

∫

O

v(i) ∂2n(k)

∂xi∂xl

∂n(k)

∂xl

dx

= −

∫

O

∂v(i)

∂xl

∂n(k)

∂xi

∂n(k)

∂xl

dx −
1

2

∫

O

v(i) ∂|∇n|2

∂xi

dx

=

∫

O

∂v(i)

∂xl

∂n(k)

∂xi

∂n(k)

∂xl

dx

= −m(n, n, v) = −〈M(n, n), v〉V∗,V.

In the above chain of equalities summation over repeated indexes is enforced. ⊓⊔

Remark 2.3 1. For any f, g ∈ X1 and v ∈ H we have

〈M(f, g), v〉V∗,V = 〈	[div(∇f ⊙ ∇g)], v〉. (2.11)

In fact, for any f, g ∈ X1 and v ∈ V

〈M(f, g), v〉V∗,V = −〈∇f ⊙ ∇g,∇v〉

= 〈div(∇f ⊙ ∇g),	v〉

= 〈	[div(∇f ⊙ ∇g)], v〉.

Thanks to the density of V in H we can easily show that the last line is still true

for v ∈ H, which completes the proof of (2.11).

2. In some places in this manuscript we use the following shorthand notation:

B(u) := B(u, u) and M(n) := M(n, n),

for any u and n such that the above quantities are meaningful.

We now fix the standing assumptions on the function f (·).

Assumption 2.1 Let Id be the set defined by

Id =

{

N := {1, 2, 3, . . .} if d = 2,

{1}, if d = 3.
(2.12)
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Throughout this paper we fix N ∈ Id and a family of numbers ak , k = 0, . . . , N , with

aN > 0. We define a function f̃ : [0,∞) → R by

f̃ (r) =

N
∑

k=0

akr k, for any r ∈ R+.

We define a mapping f : R
3 → R

3 by f (n) = f̃ (|n|2)n where f̃ is as above.

We now assume that there exists F : R
3 → R a differentiable mapping such that

for any n ∈ R
3 and g ∈ R

3

F ′(n)[g] = f (n) · g.

Before proceeding further let us state few important remarks.

Remark 2.4 Let F̃ be an antiderivative of f̃ such that F̃(0) = 0. Then, as a consequence

of our assumption we have

F̃(r) = aN+1r N+1 + U (r),

where U is a polynomial function of at most degree N and aN+1 > 0.

Remark 2.5 For any r ∈ [0,∞) let f̃ (r) := r − 1. If 1 ∈ Id then the mappings f

and F defined on R
3 by f (n) := f̃ (|n|2)n and F(n) := 1

4
[ f̃ (|n|2)]2 for any n ∈ R

3

satisfy the above set of assumptions.

Remark 2.6 There exist two constants ℓ1, ℓ2 > 0 such that

| f̃ (r)| ≤ ℓ1

(

1 + r N
)

, r > 0, (2.13)

| f̃ ′(r)| ≤ ℓ2

(

1 + r N1

)

, r > 0. (2.14)

Remark 2.7 Let f be defined as in Assumption 2.1.

(i) Then, there exist two positive constants c > 0 and c̃ > 0 such that

| f (n)| ≤ c
(

1 + |n|2N+1
)

and | f ′(n)| ≤ c̃
(

1 + |n|2N
)

for any n ∈ R
3.

(ii) By performing elementary calculations we can check that there exists a constant

C > 0 such that for any n ∈ H2

‖A1n‖2 = ‖A1n + f (n) − f (n)‖2 ≤ 2‖A1n + f (n)‖2 + 2‖ f (n)‖2,

≤ 2‖A1n + f (n)‖2 + C‖n‖
q̃

Lq̃ + C, (2.15)

where q̃ = 4N + 2.
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(iii) Observe also that since the norm ‖·‖2 is equivalent to ‖·‖ + ‖A1·‖ on D(A1),

there exists a constant C > 0 such that

‖n‖2
2 ≤ C(‖A1n + f (n)‖2 + ‖n‖

q̃

Lq̃ + 1), for any n ∈ D(A1). (2.16)

(iv) Finally, since H1 ⊂ L4N+2 for any N ∈ Id , we can use the previous observation

to conclude that n ∈ H2 ⊂ L∞ whenever n ∈ H1 and A1n + f (n) ∈ L2.

2.3 The assumption on the coefficients of the noise

Let (�,F , P) be a complete probability space equipped with a filtration F = {Ft :

t ≥ 0} satisfying the usual conditions, i.e. the filtration is right-continuous and all null

sets of F are elements of F0. Let W2 = (W2(t))t≥0 be a standard R-valued Wiener

process on (�,F , F, P). Let us also assume that K1 is a separable Hilbert space and

W1 = (W1(t))t≥0 is a K1-cylindrical Wiener process on (�,F , F, P). Throughout

this paper we assume that W2 and W1 are independent. Thus we can assume that

W = (W1(t), W2(t)) is a K-cylindrical Wiener process on (�,F , F, P), where

K = K1 × R.

Remark 2.8 If K2 is a Hilbert space such that the embedding K1 ⊂ K2 is Hilbert–

Schmidt, then W1 can be viewed as a K2-valued Wiener process. Moreover, there

exists a trace class symmetric nonnegative operator Q ∈ L(K2) such that W1 has

covariance Q. This K2-valued K1-cylindrical Wiener process is characterised by, for

all t ≥ 0,

Ee
i 〈x∗,W (t)〉K∗

2
,K2 = e

− t
2 |x∗|2K1 , x∗ ∈ K∗

2,

where K∗
2 is the dual space to K2 such that identifying K∗

1 with K1 we have

K∗
2 →֒ K∗

1 = K1 →֒ K2.

Let H̃ be a Hilbert space and M 2(� × [0, T ]; T2(K, H̃)) the space of all equiva-

lence classes of F-progressively measurable processes � : � × [0, T ] → T2(K, H̃)

satisfying

E

∫ T

0

‖�(s)‖2

T2(K,H̃)
ds < ∞.

From the theory of stochastic integration on infinite dimensional Hilbert space, see [35,

Chapter 5, Section 26 ] and [14, Chapter 4], for any � ∈ M 2(� × [0, T ]; T2(K, H̃))

the process M defined by

M(t) =

∫ t

0

�(s)dW (s), t ∈ [0, T ],
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is a H̃-valued martingale. Moreover, we have the following Itô isometry

E
′

(∥

∥

∥

∥

∫ t

0

�(s)dW (s)

∥

∥

∥

∥

2

H̃

)

= E
′

(∫ t

0

‖�(s)‖2

T2(K,H̃)
ds

)

,∀t ∈ [0, T ], (2.17)

and the Burkholder–Davis–Gundy inequality

E
′

(

sup
0≤s≤t

∥

∥

∥

∥

∫ s

0

�(s)dW (s)

∥

∥

∥

∥

q

H̃

)

≤ CqE
′

(∫ t

0

‖�(s)‖2

T2(K,H̃)
ds

)
q
2

,

∀t ∈ [0, T ],∀q ∈ (1,∞). (2.18)

We also have the following relation between Stratonovich and Itô’s integrals, see [5],

G(n) ◦ dW2 =
1

2
G2(n) dt + G(n) dW2,

where G2 = G ◦ G is defined by

G2(n) = G ◦ G(n) = (n × h) × h, for any n ∈ L2.

We now introduce the set of hypotheses that the function S must satisfy in this paper.

Assumption 2.2 We assume that S : H → T2(K1, H) is a globally Lipschitz mapping.

In particular, there exists ℓ3 ≥ 0 such that

‖S(u)‖2
T2

:= ‖S(u)‖2
T2(K1,H) ≤ ℓ3(1 + ‖u‖2), for any u ∈ H. (2.19)

3 Existence and uniqueness of a weakmartingale solution

In this section, we are going to establish the existence of a weak martingale solution

to (1.13)–(1.17) which, using all the notations in the previous section, can be formally

written in the following abstract form

dv(t) +

(

Av(t) + B(v(t), v(t)) + M(n(t))

)

dt = S(v(t))dW1(t), (3.1)

dn(t) +

(

A1n(t) + B̃(v(t), n(t)) + f (n(t)) −
1

2
G2(n(t))

)

dt = G(n(t))dW2(t),

(3.2)

v(0) = v0 and n(0) = n0. (3.3)

For this purpose, we use the Galerkin approximation to reduce the original system

to a system of finite-dimensional ordinary stochastic differential equations (SDEs for

short). We establish several crucial uniform a priori estimates which will be used to

prove the tightness of the family of laws of the sequence of solutions of the system

123



Stoch PDE: Anal Comp

of SDEs on appropriate topological spaces. However, before we proceed further, we

define what we mean by weak martingale solution.

Definition 3.1 Let K1 be as in Remark 2.8. By a weak martingale solution to (3.1)–

(3.3) we mean a system consisting of a complete and filtered probability space

(�′,F ′, F
′, P

′),

with the filtration F
′ = (F ′

t )t∈[0,T ] satisfying the usual conditions, and F
′-adapted

stochastic processes

(v(t), n(t), W̄1(t), W̄2(t))t∈[0,T ]

such that:

1. (W̄1(t))t∈[0,T ] (resp. (W̄2(t))t∈[0,T ]) is a K1-cylindrical (resp. real-valued) Wiener

process,

2. (v, n) : [0, T ] × �′ → V × H2 and P
′-a.e.

(v, n) ∈ C([0, T ]; V−β) × C([0, T ]; Xβ), for any β ∈

(

0,
1

2

)

, (3.4)

E
′ sup

0≤s≤T

[‖v(s)‖ + ‖∇n(s)‖] + E
′

∫ T

0

(

‖∇v(s)‖2 + ‖A1n(s)‖2
)

ds < ∞,

(3.5)

3. for each (�,�) ∈ V × L2 we have for all t ∈ [0, T ] P
′-a.s..

〈v(t) − v0,�〉 +

∫ t

0

〈

Av(s) + B(v(s), v(s)) + M(n(s)),�

〉

V∗,V

ds

=

∫ t

0

〈�, S(v(s))dW̄1(s)〉, (3.6)

and

〈n(t) − n0, �〉 +

∫ t

0

〈

A1n(s) + B̃(v(s), n(s)) + f (n(s)) −
1

2
G2(n(s)),�

〉

ds

=

∫ t

0

〈G(n(s)),�〉dW̄2(s). (3.7)

Now we can state our first result in the following theorem.

Theorem 3.2 If Assumptions 2.2 and 2.1 are satisfied, h ∈ W1,3 ∩ L∞, v0 ∈ H,

n0 ∈ H1, and d = 2, 3, then the system (3.1)–(3.3) has a weak martingale solution in

the sense of Definition 3.1.

Proof The proof will be carried out in Sects. 3.1–3.3. ⊓⊔
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Before we state the uniqueness of the weak martingale solution we should make the

following remark.

Remark 3.3 We should note that the existence of weak martingale solutions stated in

Theorem 3.2 still holds if we assume that the mapping S(·) is only continuous and

satisfies a linear growth condition of the form (2.19).

To close this subsection we assume that d = 2 and we state the following uniqueness

result.

Theorem 3.4 Let d = 2 and assume that (vi , ni ), i = 1, 2 are two solutions of (3.1)

and (3.3) defined on the same stochastic system (�,F , F, P, W1, W2) and with the

same initial condition (v0, n0) ∈ H × H1, then for any t ∈ (0, T ] we have P-a.s.

(v1(t), n1(t)) = (v2(t), n2(t)).

Remark 3.5 Due to the continuity given in (3.4) the two solutions are indistinguishable.

Therefore, uniqueness holds.

Proof The proof of this result will be carried out in Sect. 3.4. ⊓⊔

3.1 Galerkin approximation and a priori uniform estimates

As we mentioned earlier, the proof of the existence of weak martingale solution relies

on the Galerkin and compactness methods. This subsection will be devoted to the

construction of the approximating solutions and the proofs of crucial estimates satisfied

by these solutions.

Recall that there exists an orthonormal basis (ϕi )
n
i=1 ⊂ C∞ of H consisting of the

eigenvectors of the Stokes operator A. Recall also that there exists an orthonormal

basis (φi )
∞
i=1 ⊂ C∞ of L2 consisting of the eigenvectors of the Neumann Laplacian

A1. For any m ∈ N let us define the following finite-dimensional spaces

Hm := linspan{ϕ1, . . . , ϕm},

Lm := linspan{φ1, . . . , φm}.

In this subsection, we introduce the finite-dimensional approximation of the system

(3.1)–(3.3) and justify the existence of solution of such approximation. We also derive

uniform estimates for the sequence of approximating solutions. To do so, denote by πm

(resp. π̂m) the projection from H (resp. L2) onto Hm (resp. Lm). These operators are

self-adjoint, and their operator norms are equal to 1. Remark 6.3, Lemma 6.2 enable

us to define the following mappings

Bm : Hm ∋ u �→ πm B(u, u) ∈ Hm,

B̃m : Hm × Lm ∋ (u, n) �→ π̂m B̃(v, n) ∈ Lm,

Mm : Lm ∋ n �→ πm M(n) ∈ Hm,
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From the definition of Lm and the regularity of elements of the basis (φ)∞i=1 we infer

that for any u ∈ Lm |u|2r u ∈ L2 for any r ∈ {1, . . . , N }. Hence the mapping fm

defined by

fm : Lm ∋ n �→ π̂m f (n) ∈ Lm,

is well-defined. From the assumptions on S and h the following mappings are well-

defined,

Sm : Hm ∋ u �→ πm ◦ S(u) ∈ T2(K1, Hm),

Gm : Lm ∋ n �→ π̂m G(n) ∈ Lm,

G2
m : Lm ∋ n �→ π̂m G2(n) ∈ Lm .

Lemma 3.6 For each m let �m an �m be two mappings on Hm × Lm defined by

�m(u, n) =

(

Au + Bm(u) + Mm(n)

A1n + B̃m(u, n) + fm(n) − 1
2

G2
m(n)

)

, (u, n) ∈ Hm × Lm,

and

�m(u, n) =

(

Sm(u) 0

0 Gm(n)

)

, (u, n) ∈ Hm × Lm .

Then, the mappings �m and �m are locally Lipschitz.

Proof The mapping Sm is globally Lipschitz as the composition of a continuous linear

operator and a globally Lipschitz mapping. Since A, A1, Gm and G2
m are linear, they

are globally Lipschitz. Thus, � is also globally Lipschitz.

From the bilinearity of B(·, ·), the boundedness of πm and Remark 6.3 we infer

that there exists a constant C > 0, depending on m, such that for any u, v ∈ Hm

‖Bm(u, u) − Bm(v, v)‖ ≤ C[‖u − v‖1‖v‖2 + ‖u‖1‖u − v‖2]. (3.8)

Since the L
2, H

1 and H
2 norms are equivalent on the finite dimensional space Hm we

infer that for any m ∈ N there exists a constant C > 0, depending on m, such that

‖Bm(u, u) − Bm(v, v)‖ ≤ C[‖u − v‖‖v‖ + ‖u‖‖u − v‖], (3.9)

from which we infer that for any number R > 0 there exists a constant CR > 0, also

depending on m, such that

‖Bm(u, u) − Bm(v, v)‖ ≤ CR‖u − v‖,

for any u, v ∈ Hm with ‖u‖, ‖v‖ ≤ R. That is, Bm(·) := Bm(·, ·) is locally Lipschitz.

Thanks to (6.11) one can also use the same idea to show that Mm is locally Lipschitz
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with Lipschitz constant depending on m. Now, for any r ∈ {1, . . . , N } there exists a

constant C > 0 such that for any n1, n2 ∈ Lm

‖|n1|
2r n1 − |n2|

2r n2‖ ≤ C‖|n1|
2r‖L∞‖n1 − n2‖

+C‖n1 − n2‖‖n2

(

2r−1
∑

k=0

|n1|
2r−1−k |n2|

k

)

‖L∞ ,

from which we easily derive the local Lipschitz property of fm .

Finally, thanks to (6.9) there exists a constant C > 0, which depends on m ∈ N,

such that

‖B̃m(u1, n1) − B̃m(u2, n2)‖≤ C [‖u1 − u2‖‖n2‖ + ‖u2‖‖n1 − n2‖] ,

where we have used the equivalence of all norms on the finite dimensional space

Hm × Lm again. Now, it is clear that the mapping � is locally Lipschitz. ⊓⊔

Let n0m = π̂mn0 and v0m = πmv0. The Galerkin approximation to (3.1)–(3.3) is

dvm(t) +
[

Avm(t) + Bm(vm(t)) + Mm(nm(t))
]

dt = Sm(vm(t))dW1(t), (3.10)

dnm(t) +
[

A1nm(t) + B̃m(vm(t), nm(t)) + fm(nm(t))
]

dt

=
1

2
G2

m(nm(t)) + Gm(nm(t))dW2(t). (3.11)

The Eqs. (3.10)–(3.11) with initial condition vm(0) = v0m and nm(0) = n0m form a

system of stochastic ordinary differential equations which can be rewritten as

dym + �m(ym)dt = �m(ym)dW , ym(0) = (v0m, n0m) (3.12)

where ym := (um, nm), W := (W1, W2). Due to Lemma 3.6 the mappings �m and

�m are locally Lipschitz. Hence, owing to [1,38, Theorem 38, p. 303] it has a unique

local maximal solution (vm, nm; Tm) where Tm is a stopping time.

Remark 3.7 In case we assume that S(·) is only continuous and satisfies (2.19), Sm

is only continuous and locally bounded. However, with this assumption, we can still

justify the existence, possibly non-unique, of a weak local martingale solution to

(3.10)–(3.11) by using results in [26, Chapter IV, Section 2, pp 167–177].

We now derive uniform estimates for the approximating solutions. For this purpose,

let τR,m , m, R ∈ N, be a stopping time defined by

τR,m = inf{t ∈ [0, T ]; ‖nm(t)‖2
1 + ‖vm(t)‖2 ≥ R2} ∧ T . (3.13)

Proposition 3.8 If all the assumptions of Theorem 3.2 are satisfied, then for any p ≥ 2

there exists a positive constant C p such that we have for all R > 0 and t ∈ (0, T ]
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sup
m∈N

(

E sup
s∈[0,t∧τR,m ]

‖nm(s)‖p + p

∫ t∧τR,m

0

‖nm(s)‖p−2‖∇nm(s)‖2ds

+ p

∫ t∧τR,m

0

‖nm(s)‖p−2‖nm(s)‖2N+2

L2N+2 ds

)

≤ EG0(T , p), (3.14)

where

G0(T , p) := ‖n0‖
p(C p + C peC p T ). (3.15)

Proof The proof will be given in Sect. 4. ⊓⊔

We also have the following estimates.

Proposition 3.9 If all the assumptions of Theorem 3.2 are satisfied, then there exists

ℓ̃ > 0 such that for all p ∈ [1,∞), for all R > 0 and t ∈ (0, T ]

sup
m∈N

E

[

sup
0≤s≤t∧τR,m

(

‖vm(s)‖2 + ℓ̃‖nm(s)‖2 + ‖∇nm(s)‖2 +

∫

O

F(nm(s, x))dx

)p

+

(∫ t∧τR,m

0

(

‖∇vm(s)‖2 + ‖A1nm(s) + f (nm(s))‖2
)

)p]

≤ G1(T , p), t ∈ [0, T ], m ∈ N, (3.16)

and

sup
m∈N

E

[∫ t∧τR,m

0

‖A1nm(s)‖2ds

]p

≤ G1(T , p · (2N + 1)),

t ∈ [0, T ], m ∈ N, (3.17)

where

G1(T , p) :=

[(

‖v0‖2 + ‖n0‖2 + ‖∇n0‖2 +

∫

O

F(n0(x))dx

)p

+ κT + κG0(T , p)

]

×
[

1 + κT (T + 1)eκ(T +1)T
]

. (3.18)

Here, κ > 0 is a constant which depends only on p and ℓ̃, and G0 is defined in (3.15).

Proof The proof of (3.16) will be given in Sect. 4.

The estimate (3.17) easily follows from (3.16), (3.14) and item (ii) of Remark 2.7 (see

also item (iii) of the same remark). ⊓⊔

In the next step we will take the limit R → ∞ in the above estimates, but before

proceeding further, we state and prove the following lemma.

Lemma 3.10 Let τR,m , R, m ∈ N be the stopping times defined in (3.13). Then we

have for any m ∈ N P–a.s.

lim
R→∞

τR,m = T .
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Proof Since (vm, nm)(· ∧ τR,m) : [0, T ] → Hm × Lm is continuous we have

R2
P(τR,m < t) ≤ E

[

1τR,m<t (‖vm(τR,m)‖2 + ‖nm(τR,m)‖2
1)
]

≤ E

[

1τR,m<t (‖vm(τR,m)‖2 + ‖nm(τR,m)‖2
1)
]

+ E

[

1τR,m≥t (‖vm(τR,m)‖2 + ‖nm(τR,m)‖2
1)
]

= E

[

‖vm(τR,m)‖2 + ‖nm(τR,m)‖2
1

]

,

for any m ∈ N and t ∈ [0, T ]. From the last line of the above chain of inequalities and

Proposition 3.9 we infer that

P(τR,m < t) ≤
1

R2
S1(T , 2). (3.19)

Hence

lim
R→∞

P(τR,m < t) = 0 for all t ∈ [0, T ] and m ∈ N,

which implies that there exists a subsequence τRk ,m such that τRk ,m → T a.s., which

along with the fact that (τR,m)R∈N is increasing, yields that τR,m ր T a.s. for any

m ∈ N. This completes the proof of the lemma. ⊓⊔

We now state the following corollary.

Corollary 3.11 If all the assumptions of Theorem 3.2 are satisfied, then we have

sup
m∈N

(

E sup
s∈[0,T ]

‖nm(s)‖p + p

∫ T

0

‖nm(s)‖p−2‖∇nm(s)‖2ds

+ p

∫ T

0

‖nm(s)‖p−2‖nm(s)‖2N+2

L2N+2 ds

)

≤ EG0(T , p). (3.20)

Furthermore, there exists ℓ̃ > 0 such that for all p ∈ [1,∞)

sup
m∈N

E

[

sup
0≤s≤T

(

‖vm(s)‖2 + ℓ̃‖nm(s)‖2 + ‖∇nm(s)‖2 +

∫

O

F(nm(s, x))dx

)p

+

(∫ T

0

(

‖∇vm(s)‖2 + ‖A1nm(s) + f (nm(s))‖2
)

)p]

≤ G1(T , p), t ∈ [0, T ], m ∈ N, (3.21)

and

sup
m∈N

E

[∫ T

0

‖A1nm(s)‖2ds

]p

≤ G1(T , p · (2N + 1)), t ∈ [0, T ], m ∈ N. (3.22)
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The quantities G0 and G1 are defined in (3.15) and (3.18), respectively.

Proof Thanks to Lemma 3.10 the inequalities (3.20), (3.21) and (3.22) can be estab-

lished by using Fatou’s lemma and passing to the limit (as R → ∞) in (3.14), (3.16)

and (3.17). ⊓⊔

In the next proposition, we prove two uniform estimates for vm and nm which are

very crucial for our purpose.

Proposition 3.12 In addition to the assumptions of Theorem 3.2, let α ∈ (0, 1
2
) and

p ∈ [2,∞) such that 1 − d
4

≥ α − 1
p

. Then, there exist positive constants κ̄5 and κ̄6

such that we have

sup
m∈N

E‖vm‖2
Wα,p(0,T ;V∗) ≤ κ̄5, (3.23)

and

sup
m∈N

E‖nm‖2
Wα,p(0,T ;L2)

≤ κ̄6. (3.24)

Proof We rewrite the equation for vm as

vm(t) = v0m −

∫ t

0

Avm(s)ds −

∫ t

0

Bm(vm(s), vm(s))ds −

∫ t

0

Mm(nm(s))ds

+

∫ t

0

Sm(vm(s))dW1(s),

= v0m +

4
∑

i=1

I i
m(t).

Since A ∈ L(V, V∗), we infer from (3.21) along with Corollary 3.11 that there exists

a certain constant C > 0 such that

sup
m∈N

E‖I 1
m‖2

W 1,2(0,T ;V∗)
= sup

m∈N

E

∥

∥

∥

∥

∫ ·

0

Avm(s)ds

∥

∥

∥

∥

2

W 1,2(0,T ;V∗)

≤ C, m ∈ N. (3.25)

Applying [18, Lemma 2.1] and (2.19) in Assumption 2.2 we infer that there exists a

constant c > 0 such that that for any α ∈ (0, 1
2
) and p ∈ [2,∞)

sup
m∈N

E‖I 4
m‖

p

Wα,p(0,T ;H)
= sup

m∈N

E

∥

∥

∥

∥

∫ ·

0

Sm(vm(s))dW1(s)

∥

∥

∥

∥

p

Wα,p(0,T ;H)

≤ cE

∫ T

0

‖Sm(vm(t))‖
p

T2(K1;H)
dt,

≤ cℓ
p
3 E

∫ T

0

(1 + ‖vm(t)‖p)ds.
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Now, invoking (3.21) and Corollary 3.11 we derive that there exists a constant C > 0

such that

sup
m∈N

E‖I 4
m‖

p

Wα,p(0,T ;H)
≤ C . (3.26)

Now, we treat the term I 3
m(t). From (2.9) we infer that there exists a constant C > 0

such that for any m ∈ N

‖Mm(nm)‖2

L
4
d (0,T ;V∗)

≤ C

(∫ T

0

‖∇nm(t)‖
2(4−d)

d ‖∇2nm(t)‖2dt

)

d
2

≤ C sup
t∈[0,T ]

‖∇nm(t)‖4−d

(∫ T

0

‖∇2nm(t)‖2dt

)

d
2

.

Hence, there exists a constant C > 0 such that

sup
m∈N

E‖Mm(nm)‖2

L
4
d (0,T ;V∗)

≤ C

[

E

(

sup
0≤t≤T

‖∇nm(t)‖2(4−d)

)

E

(∫ T

0
‖nm(t)‖2

2dt

)d] 1
2

,

from which altogether with (3.21), (3.22) and Corollary 3.11 we infer that there exists

a constant C > 0 such that

sup
m∈N

E‖I 3
m‖2

W
1, 4

d (0,T ;V∗)
= sup

m∈N

E

∥

∥

∥

∥

∫ t

0

Mm(nm(s))ds

∥

∥

∥

∥

2

W
1, 4

d (0,T ;V∗)

≤ C . (3.27)

Using (6.8) and an argument similar to the proof of the estimate for I 3
m we conclude

that there exists a constant C > 0 such that

sup
m∈N

E

∥

∥

∥

∥

∫ ·

0

Bm(vm(s), vm(s))ds

∥

∥

∥

∥

2

W
1, 4

d (0,T ;V∗)

≤ C

[

E

(

sup
0≤t≤T

‖vm(t)‖2(4−d)

)

E

(∫ T

0

‖vm(t)‖2
2dt

)d] 1
2

,

from which along with (3.21) and Corollary 3.11 we conclude that there exists a

constant C > 0 such that

sup
m∈N

E‖I 2
m‖2

W
1, 4

d (0,T ;V∗)
= sup

m∈N

E

∥

∥

∥

∥

∫ ·

0

Bm(vm(s), vm(s))ds

∥

∥

∥

∥

2

W
1, 4

d (0,T ;V∗)

< C .

(3.28)

By [44, Section 11, Corollary 19] we have the continuous imbedding

W 1, 4
d (0, T ; V∗) ⊂ W α,p(0, T ; V∗), (3.29)
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for α ∈ (0, 1
2
) and p ∈ [2,∞) such that 1 − d

4
≥ α − 1

p
. Owing to Eqs. (3.25), (3.27),

(3.26) and (3.28) and this continuous embedding we infer that (3.23) holds.

The second equations for the Galerkin approximation is written as

nm(t) = n0m −

∫ t

0

A1nm(s)ds −

∫ t

0

π̂m[B̃m(vm(s), nm(s))]ds −

∫ t

0

fm(nm(s))ds

+
1

2

∫ t

0

G2
m(nm(s))ds +

∫ t

0

Gm(nm(s))dW2(s),

=: n0m +

5
∑

j=1

J
j

m(t).

From (3.22) and Corollary 3.11 we clearly see that

sup
m∈N

E‖J 1
m‖2

W 1,2(0,T ;L2)
= sup

m∈N

E

∥

∥

∥

∥

∫ ·

0

A1nm(s)ds

∥

∥

∥

∥

2

W 1,2(0,T ;L2)

≤ C . (3.30)

From (6.9) we infer that there exists a constant c > 0 such that

‖π̂m[B̃m(vm(s), nm(s))]‖ ≤ c (‖vm(t)‖‖∇nm(t)‖)
4−d

4

(

‖∇vm(t)‖‖∇2nm(t)‖
)

d
4
.

Thus,

‖π̂m[B̃m(vm(s), nm(s))]‖2

L
d
4 (0,T ;L2)

≤ c sup
0≤t≤T

(‖vm(t)‖‖∇nm(t)‖)
4−d

2

[∫ T

0

‖∇vm(t)‖2dt

]
d
4

×

[∫ T

0

(‖nm(t)‖2 + ‖�nm(t)‖2)dt

]
d
4

.

Taking the mathematical expectation and using Hölder’s inequality lead to

sup
m∈N

E‖π̂m[B̃m(vm(s), nm(s))]‖2

L
d
4 (0,T ;L2)

≤ c sup
m∈N

[

E sup
0≤t≤T

‖vm(t)‖2(4−d)
E sup

0≤t≤T

‖∇nm(t)‖2(4−d)

]
1
4

× sup
m∈N

[

E

(∫ T

0

‖∇vm(t)‖2dt

)d

E

(∫ T

0

(‖nm(t)‖2 + ‖�nm(t)‖2)dt

)d] 1
4

,

which along with (3.21), (3.22) and Corollary 3.11 yield
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sup
m∈N

E‖J 2
m‖2

W
1, d

4 (0,T ;L2)
= sup

m∈N

E

∥

∥

∥

∥

∫ ·

0

π̂m[B̃m(vm(s), nm(s))]ds

∥

∥

∥

∥

2

W
1, d

4 (0,T ;L2)

≤ C, (3.31)

for some constant C > 0.

There exists a constant c > 0 such that for any m ∈ N and t ∈ [0, T ] we have

‖G2
m(nm(t))‖ ≤ ‖h‖L∞‖nm(t)‖L∞‖nm(t)‖,

≤ c‖h‖L∞

(

‖nm(t)‖2 + ‖nm(t)‖‖∇nm(t)‖ + ‖nm(t)‖‖�nm(t)‖
)

,

which along with (3.21), (3.22) and Corollary 3.11 yields that there exists a constant

C > 0 such that

sup
m∈N

E‖J 4
m‖2

W 1,2(0,T ;L2)
= sup

m∈N

E

∥

∥

∥

∥

1

2

∫ ·

0

G2
m(nm(s))ds

∥

∥

∥

∥

2

W 1,2(0,T ;L2)

≤ C . (3.32)

For the polynomial nonlinearity f we have: for any N ∈ Id there exists a constant

C > 0 such that

sup
m∈N

E‖J 3
m‖2

W 1,2(0,T ;L2)
≤ CE

(∫ T

0

‖ f (nm(s))‖2ds

)2

≤ CE

(∫ T

0

‖nm(s)‖4N+2

L4N+2 ds

)2

≤ CT E sup
0≤s≤T

‖nm(s)‖8N+2

H1

≤ C, (3.33)

where we have used the continuous embedding H1 ⊂ L4N+2 and the estimates (3.20)

and (3.21) .

For any h ∈ L∞(O), using the embedding H2 →֒ L∞ we have

‖h × nm(t)‖p ≤ ‖h‖
p

L∞‖nm(t)‖p, (3.34)

from which along with [18, Lemma 2.1], (3.34), (3.21) and Corollary 3.11 we derive

that there exists a constant C > 0 such that for any α ∈ (0, 1
2
) and p ∈ [2,∞)

sup
m∈N

E‖J 5
m‖

p

Wα,p(0,T ;L2)
= sup

m∈N

E

∥

∥

∥

∥

∫ ·

0

Gm(nm(s))dW2

∥

∥

∥

∥

p

Wα,p(0,T ;L2)

≤ C . (3.35)

Combining all these estimates complete the proof of our proposition. ⊓⊔
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3.2 Tightness and compactness results

This subsection is devoted to the study of the tightness of the Galerkin solutions and

derive several weak convergence results. The estimates from the previous subsection

play an important role in this part of the paper.

Let p ∈ [2,∞) and α ∈ (0, 1
2
) be as in Proposition 3.12. Let us consider the spaces

X1 = L2(0, T ; V) ∩ W α,p(0, T ; V∗),

Y1 = L2(0, T ; H2) ∩ W α,p(0, T ; Lr ).

Recall that Vβ , β ∈ R, is the domain of the of the fractional power operator Aβ .

Similarly, Xβ is the domain of (I + A1)
β . If γ > β, then the embedding Vγ ⊂ Vβ

(resp. Xγ ⊂ Xβ ) is compact. We set

X2 = L∞(0, T ; H) ∩ W α,p(0, T ; V∗),

Y2 = L∞(0, T ; H1) ∩ W α,p(0, T ; L2),

and for β ∈ (0, 1
2
)

S1 = L2(0, T ; H) ∩ C([0, T ]; V−β),

S2 = L2(0, T ; H1) ∩ C([0, T ]; Xβ).

We shall prove the following important result.

Theorem 3.13 Let p ∈ [2,∞) and α ∈ (0, 1
2
) be as in Proposition 3.12 and β ∈ (0, 1

2
)

such that pβ > 1. The family of laws {L(vm, nm) : m ∈ N} is tight on the Polish

space S1 × S2.

Proof We firstly prove that {L(vm) : m ∈ N} is tight on L2(0, T ; H). For this aim, we

first observe that for a fixed number R > 0 we have

P
(

‖vm‖X1
> R
)

≤ P

(

‖vm‖L2(0,T ;V) >
R

2

)

+ P

(

‖vm‖Wα,p(0,T ;V∗) >
R

2

)

,

≤
4

R2
E

(

‖vm‖2
L2(0,T ;V)

+ ‖vm‖Wα,p(0,T ;V∗)

)

,

from which along with (3.21), (3.23), and (3.24) we infer that

sup
m∈N

P
(

‖vm‖X1
> R
)

≤
4C

R2
. (3.36)

Since X1 is compactly embedded into L2(0, T ; H), we conclude that the laws of vm

form a family of probability measures which is tight on L2(0, T ; H). Secondly, the

same argument is used to prove that the laws of nm are tight on L2(0, T ; H1). Next,

123



Stoch PDE: Anal Comp

we choose β ∈ (0, 1
2
) and p ∈ [2,∞) such that pβ > 1 is satisfied. By [43, Corol-

lary 5 of Section 8] the spaces X2 and Y2 are compactly imbedded in C([0, T ]; V−β)

and C([0, T ]; Xβ), respectively. Hence the same argument as above provides us with

the tightness of {L(vm) : m ∈ N} and {L(nm) : m ∈ N} on C([0, T ]; V−β) and

C([0, T ]; Xβ). Now we can easily conclude the proof of the theorem. ⊓⊔

Throughout the remaining part of this paper we assume that α, p and β are as in

Theorem 3.13. We also use the notation from Remark 2.8.

Proposition 3.14 Let S = S1 × S2 × C([0, T ]; K2) × C([0, T ]; R). There exist a

Borel probability measure μ on S and a subsequence of (vm, nm, W1, W2) such that

their laws weakly converge to μ.

Proof Thanks to the above lemma the laws of {(vm, nm, W1, W2) : m ∈ N} form a

tight family on S. Since S is a Polish space, we get the result from the application of

Prohorov’s theorem. ⊓⊔

The following result relates the above convergence in law to almost sure convergence.

Proposition 3.15 Let α, β ∈ (0, 1
2
) be as in Theorem 3.13. Then, there exist a complete

probability space (�′,F ′, P
′) and a sequence of S-valued random variables, denoted

by {(v̄m, n̄m, W m
1 , W m

2 ) : m ∈ N}, defined on (�′,F ′, P
′) such that their laws are

equal to the laws of {(vm, nm, W1, W2) : m ∈ N} on S. Also, there exists an S-

random variable (v, n, W̄1, W̄2) defined on (�′,F ′, P
′) such that

L(v, n, W̄1, W̄2) = μ on S, (3.37)

v̄m → v for m → ∞ in L2(0, T ; H) P
′-a.s., (3.38)

v̄m → v for m → ∞ in C([0, T ]; V−β) P
′-a.s., (3.39)

n̄m → n for m → ∞ in L2(0, T ; H1) P
′-a.s., (3.40)

n̄m → n for m → ∞ in C([0, T ]; Xβ) P
′-a.s., (3.41)

W̄ m
1 → W̄1 for m → ∞ in C([0, T ]; K2) P

′-a.s., (3.42)

W̄ m
2 → W̄2 for m → ∞ in C([0, T ]; R) P

′-a.s. (3.43)

Proof Proposition 3.15 is a consequence of Proposition 3.14 and Skorokhod’s Theo-

rem. ⊓⊔

Let X3 = L∞(0, T ; H) ∩ L2(0, T ; V) and Y3 = L∞(0, T ; H1) ∩ L2(0, T ; H2).

Proposition 3.16 If all the assumptions of Theorem 3.2 are verified, then for any p ≥ 2

and m ∈ N the pair of processes (v̄m, n̄m) satisfies the following estimates on the new

probability space (�′,F ′, P
′):
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sup
m∈N

(

E
′

[

sup
t∈[0,T ]

‖n̄m(t)‖p + p

∫ T

0

‖n̄m(s)‖p−2‖∇n̄m(s)‖2ds

+ p

∫ t

0

‖n̄m(s)‖p−2‖n̄m(s)‖2N+2

L2N+2 ds

])

≤ G0(T , p), (3.44)

E
′

[

sup
0≤s≤T

(

‖v̄m(s)‖2 + ℓ̃‖n̄m(s)‖2 + ‖∇n̄m(s)‖2 +

∫

O

F(n̄m(s, x))dx

)p

+

∫ T

0

(

‖∇v̄m(s)‖2 + ‖A1n̄m(s) + f (n̄m(s))‖2
)

]p

≤ G1(T , p), (3.45)

E
′

[∫ T

0

‖A1n̄m(s)‖2ds

]p

≤ G1(T , p · (2N + 1)), (3.46)

where G0(T , p), ℓ̃ and G1(T , p) are defined in Propositions 3.8 and 3.9, respectively.

Furthermore, there exists a constant C > 0 such that

sup
m∈N

E
′

[∫ T

0

‖Bm(v̄m(t), v̄m(t)‖
4
d

V∗dt

]
d
2

≤ C, (3.47)

sup
m∈N

E
′

[∫ T

0

‖Mm(n̄m(t))‖
d
4

V∗dt

]
d
2

≤ C, (3.48)

sup
m∈N

E
′

[∫ T

0

‖B̃m(v̄m(t), n̄m(t))‖
d
4

L2 dt

]
d
2

≤ C, (3.49)

sup
m∈N

E
′

∫ T

0

‖ fm(n̄m(t))‖r
Lr dt ≤ C, (3.50)

where r = 2N+2
2N+1

.

Proof Consider the function �(u, e) on X3 × Y3 ⊂ S1 × S2 defined by

�(u, e) = sup
0≤s≤T

[

‖u(s)‖2p + ‖∇e(s)‖2p
]

+ κ̃0

[∫ T

0

(

‖∇u(s)‖2 + ‖�e(s)‖2
)

ds

]p

� is on S1 × S2 a continuous function, thus Borel measurable. Thanks to (3.37) for

any m ∈ N the processes (vm, nm) and (v̄m, n̄m) are identical in law. Therefore, we

derive that

E�(vm, nm) = E
′�(v̄m, n̄m), m ∈ N,

which altogether with the estimates (3.21), (3.22) and Corollary 3.11 yield (3.45). The

estimates (3.47), (3.48) and (3.49) can be shown using similar idea to the proof of

(3.28), (3.27), (3.31). The estimate (3.50) easily follows from the continuous embed-

ding L2 ⊂ Lr , r = 2n+2
2N+1

∈ (1, 2), and (3.33). ⊓⊔

We prove several convergence results which are for the proof of our existence result.
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Proposition 3.17 Let β ∈ (0, 1
2
). We can extract a subsequence {(v̄mk

, n̄mk
) : k ∈ N}

from {(v̄m, n̄m) : m ∈ N} such that

v̄mk
→ v strongly in L2(�′ × [0, T ]; H ), (3.51)

v̄mk
→ v strongly in L4(�′; C([0, T ]; V−β) ), (3.52)

n̄mk
→ n strongly in L2(�′ × [0, T ]; H1 ), (3.53)

n̄mk
→ n weakly in L2(�′ × [0, T ]; H2 ), (3.54)

n̄mk
→ n strongly in L4(�′; C([0, T ]; Xβ) ) (3.55)

n̄mk
→ n strongly in S2 P

′-a.s., (3.56)

n̄mk
→ n for almost everywhere (x, t) and P

′-a.s.. (3.57)

Proof From (3.45) and Banach–Alaoglu’s theorem we infer that there exists a subse-

quence v̄mk
of v̄m satisfying

v̄mk
→ v weakly in L2p(�′; L2(0, T ; H)), (3.58)

for any p ∈ [2,∞). Now let us consider the positive nondecreasing function ϕ(x) =

x2p, p ∈ [2,∞), defined on R+. The function ϕ obviously satisfies

lim
x→∞

ϕ(x)

x
= ∞. (3.59)

Thanks to the estimate E
′ supt∈[0,T ] ‖v̄mk

‖2p ≤ C (see (3.45)), we have

sup
k≥1

E
′(ϕ(‖v̄mk

‖L2(0,T ;H))) < ∞, (3.60)

which along with the uniform integrability criteria in [27, Chapter 3,Exercice 6] implies

that the family {‖v̄mk
‖L2(0,T ;H) : m ∈ N} is uniform integrable with respect to the

probability measure. Thus, we can deduce from Vitali’s Convergence Theorem (see,

for instance, [27, Chapter 3,Proposition 3.2]) and (3.38) that

E
′‖v̄mk

‖2
L2(0,T ;H)

→ E
′‖v‖2

L2(0,T ;H)
.

From this and (3.58) we derive that

v̄mk
→ v strongly in L2(�′ × [0, T ]; H ). (3.61)

Thanks to (3.40)–(3.43) in Proposition 3.15 and (3.45) we can use the same argu-

ment as above to show the convergence (3.52)–(3.55). By the tightness of the laws of

{n̄m : m ∈ N} on S2 we can extract a subsequence still denoted by {n̄mk
: k ∈ N}

such that (3.56) and (3.57) hold. ⊓⊔

The stochastic processes v and n satisfy the following properties.
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Proposition 3.18 We have

E
′ supt∈[0,T ] ‖v(t)‖p < ∞, (3.62)

E
′ supt∈[0,T ] ‖n(t)‖

p

H1 < ∞, (3.63)

for any p ∈ [2,∞).

Proof One can argue exactly as in [6, Proof of (4.12), page 20], so we omit the details.

⊓⊔

Proposition 3.19 Let d ∈ {2, 3} and T ≥ 0. There exist four processes B1, M ∈

L2(�′; L
4
d (0, T ; V∗)), B2 ∈ L2(�′; L

d
4 (0, T ; L2)) and f ∈ L

2N+2
2N+1 (�′ ×[0, T ]×O)

such that

Bmk
(v̄mk

, v̄mk
) → B1, weakly in L2(�′; L

d
4 (0, T ; V∗)), (3.64)

Mmk
(n̄mk

) → M, weakly in L2(�′; L
d
4 (0, T ; V∗)), (3.65)

B̃mk
(v̄mk

, n̄mk
) → B2, weakly in L2(�′; L

d
4 (0, T ; L2)), (3.66)

fmk
(n̄mk

) → f, weakly in L
2N+2
2N+1 (�′ × [0, T ] × O; R

3). (3.67)

Proof Note that Proposition 3.16 remains valid with n̄m replaced by n̄mk
. Thus, Propo-

sition 3.19 follows from Eqs. (3.47)–(3.50) and application of Banach–Alaoglu’s

theorem. ⊓⊔

3.3 Passage to the limit and the end of proof of Theorem 3.2

In this subsection we prove several convergences which will enable us to conclude that

the limiting objects that we found in Proposition 3.15 are in fact a weak martingale

solution to our problem.

Proposition 3.17 will be used to prove the following result.

Proposition 3.20 For any process � ∈ L2(�′; L
4

4−d (0, T ; V)), the following identity

holds

lim
k→∞

E
′
∫ T

0
〈Bmk (v̄mk (t), v̄mk (t)),�(t)〉V∗,Vdt = E

′
∫ T

0
〈B1(t),�(t)〉V∗,Vdt,

= E
′
∫ T

0
〈B(v(t), v(t)),�(t)〉V∗,Vdt .

(3.68)

Proof Let

D =

{

� =

k
∑

i=1

1Di
1Ji

ψi : Di ⊂ �, Ji ⊂ [0, T ] is measurable, ψi ∈ V

}

.
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Owing to [49, Proposition 21.23] and the density of D in L2(�, P; L
4

4−d (0, T ; V))

(see, for instance, [39, Theorem 3.2.6]), in order to show that the identity (3.68) holds

it is enough to check that

lim
k→∞

E
′

∫ T

0

1J (t)1D〈Bmk
(v̄mk

(t), v̄mk
(t)) − B(v(t), v(t)), ψ〉V∗,Vdt = 0,

for any � = 1D1J ψ ∈ D. For this purpose we first note that

〈

Bmk
(v̄mk

, v̄mk
(t)) − B(v, v), ψ

〉

V∗,V
=
〈

B̃mk
(v̄mk

− v, v̄mk
), ψ
〉

V∗,V

+
〈

B̃mk
(v, v̄mk

− v), ψ
〉

V∗,V
,

= I1 + I2.

The mapping 〈Bmk
(u, ·), ψ〉V∗,V from L2(�′; L2(0, T ; V) into L2(�′; L

4
d (0, T ; R))

is linear and continuous. Therefore if v̄mk
converges to v weakly in L2(�′; L2(0, T ; V)

then I2 converges to 0 weakly in L2(�′; L
4
d (0, T ; R)). To deal with I1 we recall that

∣

∣

∣

∣

E
′

∫ T

0

1J1D(ω′, t)〈Bmk
(v̄mk

(t) − v(t), v̄mk
(t)), ψ〉V∗,Vdt

∣

∣

∣

∣

≤ ‖ψ‖L∞

[

E
′

∫ T

0

‖∇v̄mk
(t)‖2dt

]
1
2

×

[

E
′

∫ T

0

‖v̄mk
(t) − v(t)‖2dt

]
1
2

.

Thanks to (3.45) and the convergence (3.51) we see that the right-hand side of above

inequality converges to 0 as mk goes to infinity. Hence I1 converges to 0 weakly in

L2(�′; L
4
d (0, T ; R)). This ends the proof of our proposition. ⊓⊔

In the next proposition we will prove that M coincides with M(n).

Proposition 3.21 Assume that d < 4. For any process � ∈ L2(�′; L
4

4−d (0, T ; V)),

the following identity holds

E
′

∫ T

0

〈M(t),�(t)〉V∗,Vdt = E
′

∫ T

0

〈M(n(t)),�(t)〉V∗,Vdt . (3.69)

Proof Sinceπm strongly converges to the identity operator I d in L2(�′; L
d
4 (0, T ; V∗)),

it is enough to show that (3.69) is true for M(n̄mk
(t)) in place of Mmk

(n̄mk
(t)). By the

relation (2.5) we have
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〈M(n̄mk
(t)) − M(n(t)), ψ〉V∗,V

=
∑

i, j,k

∫

O

∂x j
ψ i∂xi

n̄(k)
mk

(t)
(

∂x j
n̄(k)

mk
(t) − ∂xi

n(k)(t)
)

dx

+
∑

i, j,k

∫

O

∂x j
ψ i∂x j

n(k)(t)
(

∂xi
n̄(k)

mk
(t) − ∂xi

n(k)(t)
)

dx,

(3.70)

for any ψ ∈ V . From this inequality we infer that

∣

∣

∣

∣

E
′

∫ T

0

1J (ω′, t)〈M(n̄mk
(t)) − M(n(t)), ψ〉V∗,Vdt

∣

∣

∣

∣

≤ C‖∇ψ‖

[

E
′

∫ T

0

‖∇(n̄mk
(t) − n(t))‖2dt

]
1
2

×

([

E
′ sup

0≤t≤T

‖∇n̄mk
(t)‖2

]
1
2

+

[

E
′ sup

0≤t≤T

‖∇n(t)‖2

]
1
2
)

.

(3.71)

Owing to the estimate (3.45) and the convergence (3.53) we infer that the left hand

side of the last inequality converges to 0 as mk goes to infinity. Now, arguing as in the

proof of (3.68) we easily conclude the proof of the proposition. ⊓⊔

Proposition 3.22 Let d ∈ {2, 3}. Then,

B2 = B̃(v, n) in L2(�′; L
d
4 (0, T ; L2)).

Proof The statement in the proposition is equivalent to say that {B̃mk
(v̄mk

(t), n̄mk
(t)) :

k ∈ N} converges to B̃(v(t), n(t)) weakly in L2(�′; L
d
4 (0, T ; L2)) as k → ∞ . To

prove this we argue as above, but we consider the set

D = {� = 1J1D1K : J ⊂ �′, D ⊂ [0, T ], K ⊂ O is measurable}.

For any � ∈ D we have

∣

∣

∣

∣

E
′

∫

[0,T ]×O

B̃mk
(v̄mk

(t), n̄mk
(t)) − B̃(v(t), n(t))�(ω′, t, x)dxdt

∣

∣

∣

∣

≤

[

E
′

∫ T

0

‖v̄mk
(t) − v(t)‖2dt

]
1
2
[

E
′

∫ T

0

‖∇n̄mk
(t)‖2dt

]
1
2

+

[

E
′

∫ T

0

‖v(t)‖2dt

]
1
2
[

E
′

∫ T

0

‖∇
(

v̄mk
(t) − v(t)

)

‖2dt

]
1
2

(3.72)

Thanks to (3.45) and (3.53) we deduce that the left hand side of the last inequality

converges to 0 as mk goes to infinity. This proves our claim. ⊓⊔

The following convergence is also important.
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Proposition 3.23 Let r be as in Proposition 3.12, i.e., r = 2N+2
2N+1

∈ (1, 2), and β ∈

(0, 1). Then,

f = f (n) in Lr (�′ × [0, T ] × O; R
3). (3.73)

Proof To prove (3.73), first remark that by definition the embedding Xβ ⊂ Lr is

continuous for any β ∈ (0, 1
2
). The convergence (3.57) implies that for any k =

0, . . . , N

|n̄mk
|2k n̄mk

→ |n|2kn for almost everywhere (x, t) and P
′-a.s.. (3.74)

Since f (n̄mk
) is bounded in Lr (�′ × [0, T ] × O; R

3) we can infer from [34, Lemma

1.3, pp. 12] and the convergence (3.74) that

f (n̄mk
) → f (n) weakly in Lr (�′ × [0, T ] × O; R

3),

which with the uniqueness of weak limit implies the sought result. ⊓⊔

To simplify notation let us define the processes M1
mk

(t) and M2
mk

(t), t ∈ [0, T ]

by

M
1
mk

(t) = v̄mk
(t) − v̄mk

(0)

+

∫ t

0

(

Av̄mk
(s) + B̃mk

(v̄mk
(s), v̄mk

(s)) − Mmk
(n̄mk

(s))

)

ds,

and

M
2
mk

(t) = n̄mk (t) − n̄mk (0) +

∫ t

0

(

A1n̄mk (s) + B̃mk (v̄mk (s), n̄mk (s)) − fmk (n̄mk (s))

)

ds

−

∫ t

0
G2

mk
(n̄mk (s))ds.

Proposition 3.24 Let M1(t) and M2(t), t ∈ [0, T ], be defined by

M
1(t) = v(t) − v0 +

∫ t

0

(

Av(s) + B(v(s), v(s)) − M(n(s))

)

ds, (3.75)

M
2(t) = n(t) − n0 +

∫ t

0

(

A1n(s) + B̃(v(s), n(s)) − f (n(s))

)

−

∫ t

0

G2(n(s))ds,

(3.76)

for any t ∈ (0, T ]. Then, for any t ∈ (0, T ]

M
1
mk

(t) converges weakly in L2(�′; V∗) to M
1(t),

M
2
mk

(t) converges weakly in L2(�′; L2) to M
2(t),
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as k → ∞.

Proof Let t ∈ (0, T ], we first prove that M1
mk

(t) → M1(t) weakly in L2(�′; V∗) as

k goes to infinity. To this end we take an arbitrary ξ ∈ L2(�′; V). We have

E
′
[

〈M1
mk

(t), ξ〉V∗,V

]

= E
′
[

〈v̄mk (t) − v̄mk (0), ξ〉 −

∫ t

0
〈∇v̄mk (s),∇ξ〉ds −

∫ t

0
〈Mmk (n̄mk (s)), ξ〉V∗,V ds

]

+ E
′
[∫ t

0
〈Bmk (v̄mk (s), v̄mk (s)), ξ〉V∗,V ds

]

.

Thanks to the pointwise convergence in C([0, T ]; V−β), thus in C([0, T ]; V∗), and

the convergences (3.64), (3.68), (3.65) and (3.69) we obtain

lim
m→∞

E
′

[

〈M1
mk

(t), ξ 〉V∗,V

]

= E
′

[

〈v(t) − v0, ξ 〉 −

∫ t

0

〈∇v(s),∇ξ 〉ds −

∫ t

0

〈M(n(s)), ξ 〉V∗,Vds

]

+ E
′

[∫ t

0

〈B(v(s), v(s)), ξ 〉V∗,Vds

]

,

which proves the sought convergence.

Second, we prove that for any t ∈ (0, T ] M2
mk

(t) → M2(t) weakly in L2(�′; L2)

as k tends to infinity. For this purpose, observe that G2
mk

(·) is a linear mapping from

L2(�′; C([0, T ]; L2)) into itself and it satisfies

E
′‖G2

mk
(n)‖

p

C([0,T ];L2)
≤ c‖h‖2

L∞E
′‖n‖

p

C([0,T ];L2)
, (3.77)

for any p ∈ [2,∞). So it is not difficult to show that

Gmk
(n̄mk

) → G(n) strongly in L2(�′; C([0, T ]; L2)). (3.78)

Thanks to this observation, the convergences (3.55), (3.73), (3.66) and Proposition 3.22

we can use the same argument as above to show that

lim
m→∞

〈M2
mk

(t), ξ 〉 = 〈M2(t), ξ 〉, (3.79)

for any t ∈ (0, T ] and ξ ∈ L2(�′; L2). This completes the proof of Proposition 3.24. ⊓⊔

Let N be the set of null sets of F ′ and for any t ≥ 0 and k ∈ N, let

F̂
mk
t := σ

(

σ

(

(v̄mk
(s), n̄mk

(s), W̄
mk

1 (s), W̄
mk

2 (s)); s ≤ t

)

∪ N

)

,

F
′
t := σ

(

σ
(

(v(s), n(s), W̄1(s), W̄2(s)); s ≤ t
)

∪ N

)

. (3.80)
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Let us also define the stochastic processes M1
mk

and M2
mk

by

M
1
mk

(t) =

∫ t

0

Smk
(v̄mk

(s))dW̄
mk

1 (s)

M
2
mk

(t) =

∫ t

0

Gmk
(n̄mk

(s))dW̄
mk

2 (s),

for any t ∈ [0, T ].

From Proposition 3.24 we see that (v, n) is a solution to our problem if we can

show that the processes W̄1 and W̄2 defined in Proposition 3.15 are Wiener processes

and M1, M2 are stochastic integrals with respect to W̄1 and W̄2 with integrands

(S(v(t)))t∈[0,T ] and (G(n(t)))t∈[0,T ], respectively. These will be the subjects of the

following two propositions.

Proposition 3.25 We have the following facts:

1. the stochastic process
(

W̄1(t)
)

t∈[0,T ]
(resp.

(

W̄2(t)
)

t∈[0,T ]
) is a K1-cylindrical K2-

valued Wiener process (resp. R-valued standard Brownian motion) on (�′,F ′, P
′).

2. For any s and t such that 0 ≤ s < t ≤ T , the increments W̄1(t) −

W̄1(s) and W̄2(t) − W̄2(s) are independent of the σ -algebra generated by

v(r), n(r), W̄1(r), W̄2(r), r ∈ [0, s].

3. Finally, W̄1 and W̄2 are mutually independent.

Proof We will just establish the proposition for W̄1, the same method applies to W̄2. To

this end we closely follow [6], but see also [36, Lemma 9.9] for an alternative proof.

Proof of item (1). By Proposition 3.15 the laws of (vmk
, nmk

, W1, W2) are equal to

those of the stochastic process (v̄mk
, n̄mk

, W̄
mk

1 , W̄
mk

2 ) on S. Hence, it is easy to

check that W̄
mk

1 (resp. W̄
mk

2 ) form a sequence of K1-cylindrical K2-valued Wiener

process (resp. R-valued Wiener process). Moreover, for 0 ≤ s < t ≤ T the increments

W̄
mk

1 (t)−W̄
mk

1 (s) (resp. W̄
mk

2 (t)−W̄
mk

2 (s)) are independent of theσ -algebra generated

by the stochastic process
(

v̄mk
(r), n̄mk

(r), W̄
mk

1 (r), W̄
mk

2 (r)
)

, for r ∈ [0, s].

Now, we will check that W̄1 is a K1-cylindrical K2-valued Wiener process by showing

that the characteristic function of its finite dimensional distributions is equal to the

characteristic function of a Gaussian random variable. For this purpose let k ∈ N and

s0 = 0 < s1 < · · · < sk ≤ T be a partition of [0, T ]. For each u ∈ K∗
2 we have

E
′

[

e
i
∑k

j=1 〈 u,W̄
mk
1 (s j )−W̄

mk
1 (s j−1)〉K∗

2
,K2

]

= e
− 1

2

∑k
j=1 (s j −s j−1)|u|2K1 ,

where i2 = −1. Thanks to (3.42) and the Lebesgue Dominated Convergence Theorem,

we have

lim
m→∞

E
′

[

e
i
∑k

j=1 〈 u,W̄
mk
1 (s j )−W̄

mk
1 (s j−1)〉K∗

2
,K2

]

= E
′

[

e
i
∑k

j=1 〈 u,W̄1(s j )−W̄1(s j−1)〉K∗
2
,K2

]

= e
− 1

2

∑k
j=1(s j −s j−1)|u|2K1
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from which we infer that the finite dimensional distributions of W̄1 follow a Gaussian

distribution. The same idea can be carried out to prove that the finite dimensional

distributions of W̄2 are Gaussian.

Proof of item (2). Next, we prove that the increments W̄1(t) − W̄1(s) and W̄2(t) −

W̄2(s), 0 ≤ s < t ≤ T are independent of the σ -algebra generated by
(

v(r), n(r), W̄1(r), W̄2(r)
)

for r ∈ [0, s]. To this end, let us consider {φ j : j =

1, . . . , k} ⊂ Cb(V−β × H1) and {ψ j : j = 1, . . . , k} ⊂ Cb(K2 × R), where for any

Banach space B the space Cb(B) is defined

Cb(B) = {φ : B → R, φ is continuous and bounded}.

Also, let 0 ≤ r1 < · · · < rk ≤ s < t ≤ T , ψ ∈ Cb(K2), and ζ ∈ Cb(R). For each

k ∈ N, there holds

E
′

[( k
∏

j=1

φ j (v̄mk
(r j ), n̄mk

(r j ))
∏

j=1

ψ j (W̄
mk

1 (r j ), W̄
mk

2 (r j ))

)

× ψ(W̄
mk

1 (t) − W̄
mk

1 (s))ζ(W̄
mk

2 (t) − W̄
mk

2 (s))

]

= E
′

[ k
∏

j=1

φ j (v̄mk
(ri ), n̄mk

(r j ))
∏

j=1

ψ j (W̄
mk

1 (r j ), W̄
mk

2 (r j ))

]

× E
′
(

ζ(W̄
mk

1 (t) − W̄
mk

1 (s))
)

E
′
(

ψ(W̄
mk

2 (t) − W̄
mk

2 (s))
)

.

Thanks to (3.39), (3.41), (3.42), (3.43) and the Lebesgue Dominated Convergence The-

orem, the same identity is true with (v, n, W̄1, W̄2) in place of (v̄mk
, n̄mk

, W̄
mk

1 , W̄
mk

2 ).

This completes the proof of the second item of the proposition.

Proof of item (3). By using the characteristic functions of the process W̄
mk

1 , W̄
mk

2 , W̄1

and W̄2 , item (3) can be easily proved as in the proof of item (1), so we omit the

details. ⊓⊔

Proposition 3.26 For each t ∈ (0, T ] we have

M
1(t) =

∫ t

0

S(v(s))dW̄1(s) in L2(�′, V∗), (3.81)

M
2(t) =

∫ t

0

(n(s) × h)dW̄2(s) in L2(�, Xβ). (3.82)

Proof The same argument given in [6] can be used without modification to establish

(3.82), thus we only prove (3.81). The proof we give below can also be adapted to the

proof of (3.82).

We will closely follow the idea in [4] to establish (3.81). For this purpose, let us fix

t ∈ (0, T ] and for any ε > 0 let ηε : R → R be a standard mollifier with support in

(0, t). For R ∈ {S, Smk
}, u ∈ {v̄mk

, v} and s ∈ (0, t] let us set
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Rε(u(s)) = (ηε⋆R(u(·)))(s)

=

∫ ∞

−∞

ηε(s − r)R(u(r))dr .

We recall that, since R is Lipschitz, Rε is Lipschitz. We also have the following two

important facts, see, for instance, [2, Section 1.3]:

(a) for any p ∈ [1,∞) there exists a constant C > 0 such that for any ε > 0 we have

∫ t

0

‖Rε(u(s))‖
p

T2(K1,H)
ds ≤ C

∫ t

0

‖R(u(s))‖
p

T2(K1,H)
ds. (3.83)

(b) For any p ∈ [1,∞), we have

lim
ε→0

∫ t

0

‖Rε(u(s)) − R(u(s))‖
p

T2(K1,H)
ds = 0. (3.84)

Now, let Mε
mk

and Mε be respectively defined by

M
ε
mk

(t) =

∫ t

0

Sε
mk

(v̄mk
(s))dW̄

mk

1 (s),

M
ε(t) =

∫ t

0

Sε(v(s))dW̄1(s),

for t ∈ (0, T ]. From the Itô isometry, (3.83) and some elementary calculations we

infer that there exists a constant C > 0 such that for any ε > 0 and mk ∈ N

E
′‖Mmk

(t) − M
ε
mk

(t)‖2 = E
′

∫ t

0

‖S(v̄mk
(s)) − Sε

mk
(v̄mk

(s))‖2
T2(K1,H)ds,

≤ CE
′

∫ t

0

‖S(v̄mk
(s)) − S(v(s))‖2

T2(K1,H)ds (3.85)

+ CE
′

∫ t

0

‖S(v(s)) − Sε(v(s))‖2
T2(K1,H)ds. (3.86)

From Assumption 2.2 and (3.51) we derive that the first term in the right hand side of

the last estimate converges to 0 as mk → ∞. Owing to (3.83) and (3.62) the sequence

in the second term of (3.86) is uniformly integrable with respect to the probability

measure P
′. Thus, from (3.84) and the Vitali Convergence Theorem we infer that

lim
ε→0

E
′

∫ t

0

∥

∥S(v(s)) − Sε(v(s))
∥

∥

2

T2(K1,H)
ds = 0.

Hence, for any t ∈ (0, T ]

lim
ε→0

lim
k→∞

E
′
∥

∥Mmk
(t) − M

ε
mk

(t)
∥

∥

2
= 0. (3.87)
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In a similar way, we can prove that

lim
ε→0

lim
k→∞

E
′
∥

∥

∥
M

2(t) − M
ε(t)

∥

∥

∥

2
= 0. (3.88)

Next, we will prove that

lim
ε→0

lim
k→∞

E
′
∥

∥M
ε
mk

(t) − M
ε(t)
∥

∥

2
= 0. (3.89)

To this end, we first observe that

M
ε
mk

(t) − M
ε(t) =

∫ t

0

Sε
mk

(v̄mk
(s))W̄

mk

1 (s) −

∫ t

0

Sε
mk

(v(s))dW̄1(s)

+

∫ t

0

Sε
mk

(v(s))dW̄1(s) −

∫ t

0

Sε(v(s))dW̄1(s)

= I ε
mk ,1

(t) + I ε
mk ,2

(t).

(3.90)

Second, by integration by parts we derive that

I ε
mk ,1

(t) =

∫ t

0

[

η′
ε⋆Smk

(v(·))
]

(s)W̄1(s)ds −

∫ t

0

[

η′
ε⋆Smk

(v̄mk
(·))
]

(s)W̄
mk

1 (s)ds

=

∫ t

0

[

η′
ε⋆Smk

(v̄mk
(·))
]

(s)
[

W̄
mk

1 (s) − W̄1(s)
]

ds

+

∫ t

0

[

Sε
mk

(v̄mk
(s)) − Sε

mk
(v(s))

]

dW̄1(s)

= J ε
mk ,1

(t) + J ε
mk ,2

(t).

On one hand, by Proposition 3.25 the processes W̄
mk

1 and W̄1 are both K1-cylindrical

K2-valued Wiener processes, thus, for any integer p ≥ 4 there exists a constant C > 0

such that

sup
mk∈N

E
′ sup

s∈[0,T ]

(

‖W̄
mk

1 (s)‖
p
K2

+ ‖W̄1(s)‖
p
K2

)

≤ C QT
p
2 .

Hence, the sequence
∫ t

0 ‖W̄
mk

1 (s) − W̄1(s)‖
2
K2

ds is uniformly integrable with respect

to the probability measure P
′, and from (3.42) and the Vitali Convergence Theorem

we infer that

lim
mk→∞

E
′

∫ t

0

‖W̄
mk

1 (s) − W̄1(s)‖
2
K2

ds = 0. (3.91)

On the other hand, for any ε > 0 there exists a constant C(ε) such that

E
′

∫ t

0

∥

∥

[

η′
ε⋆Smk

(v̄mk
(·))
]

(s)
∥

∥

2

T2(K1,H)
ds ≤ C(ε)T E

′ sup
t∈[0,T ]

∥

∥Smk
(v̄mk

(t))
∥

∥

2

T2(K1,H)
,
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from which along with Assumption 2.2 and (3.44) we infer that for any ε > 0 there

exists a constant C > 0 such that for any mk ∈ N we have

E
′

∫ t

0

∥

∥

[

η′
ε⋆Smk

(v̄mk
(·))
]

(s)
∥

∥

2

T2(K1,H)
ds ≤ C(ε)T .

Thus, from these two observation along with (3.91) we derive that

lim
ε→0

lim
k→∞

E
′
∥

∥J ε
mk ,1

(t)
∥

∥

2
= 0, t ∈ (0, T ].

Using the same argument as in the proof of (3.87) and (3.88) we easily show that

lim
ε→0

lim
k→∞

(

E
′‖J ε

mk ,2
(t)‖2 + E

′‖I ε
mk ,2

(t)‖2
)

= 0.

Hence, we have just established that

lim
ε→0

lim
k→∞

E
′‖I ε

mk ,1
(t)‖2 + ‖I ε

mk ,2
(t)‖2 = 0, t ∈ (0, T ], (3.92)

which along with (3.90) implies that

lim
ε→0

lim
k→∞

E
′‖Mε

mk
(t) − M

ε(t)‖2 = 0. (3.93)

The identities (3.87), (3.88) and (3.93) imply that for any t ∈ (0, T ]

lim
k→∞

E
′‖M1

mk
(t) − M

1(t)‖2 = 0. (3.94)

To conclude the proof of the proposition we need to show that P
′-a.s.

M
1
mk

(t) −

∫ t

0

Smk
(v̄mk

(s))dW̄
mk

1 (s) = 0, (3.95)

for any t ∈ (0, T ]. To this end, let M1
m and Mε

m be the analogue of M1
mk

and Mε
mk

with mk and v̄mk
replaced by m and v̄m , respectively. For any u ∈ L2(0, T ; V∗) we

set

ϕ(u) =

∫ T

0 ‖u(s)‖2
V∗ds

1 +
∫ T

0 ‖u(s)‖2
V∗ds

.

Since (v̄mk
, n̄mk

, W̄
mk

1 ) and (v̄m, n̄m, W1) have the same law and ϕ(·) is continuous

as a mapping from S1 × S2 × C([0, T ]; K1) into R, we infer that

Eϕ
(

M
1
m − M

ε
m

)

= E
′ϕ
(

M
1
mk

− M
ε
mk

)

.
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Note that arguing as above we can show that as ε → 0 we have

Eϕ
(

M
1
m − M

1
m

)

= E
′ϕ
(

M
1
mk

− M
1
mk

)

,

where

M
1
m(·) =

∫ ·

0

Sm(v̄m(s))dW1(s).

Since v̄m and n̄m are the solution of the Galerkin approximation, we have P-a.s.

ϕ(M1
m − M1

m) = 0, from which we infer that

E
′ϕ
(

M
1
mk

− Mmk

)

= 0.

This last identity implies that P
′-a.s. M1

mk
(t) − Mmk

(t) = 0 for almost all t ∈

(0, T ]. Since the mappings M1
mk

(·) Mmk
(·) are continuous in V∗ and agree for almost

everywhere t ∈ (0, T ], necessarily they agree for all t ∈ (0, T ]. Thus, we have proved

the identity (3.95) which along with (3.94) implies the desired equality (3.75). ⊓⊔

Now we give the promised proof of the existence of a weak martingale solution.

Proof of Theorem 3.2 Endowing the complete probability space (�′,F ′, P
′) with the

filtration F
′ = (F ′

t )t≥0 which satisfies the usual condition, and combining Propo-

sitions 3.24, 3.25 and 3.26 we have just constructed a complete filtered probability

space and stochastic processes v(t), n(t), W̄1(t), W̄2(t) which satisfy all the items of

Definition 3.1. ⊓⊔

3.4 Proof of the pathwise uniqueness of the weak solution in the 2-D case

This subsection is devoted to the proof of the uniqueness stated in Theorem 3.4.

Before proceeding to the actual proof of this pathwise uniqueness, we state and prove

the following lemma.

Lemma 3.27 For any α8 > 0 and α9 > 0 there exist C(α8) > 0, C1(α9) > 0 and

C2(α9) > 0 such that

|〈 f (n1) − f (n2), n1 − n2〉| ≤ α8‖∇n1 − ∇n2‖
2 + C(α8)‖n1 − n2‖

2ϕ(n1, n2),

(3.96)

|〈 f (n1) − f (n2), A1n1 − A1n2〉| ≤ α9‖A1n1 − A1n2‖
2

+ C1(α9)‖∇n1 − ∇n2‖
2ϕ(n1, n2)

+ C2(α9)‖n1 − n2‖
2ϕ(n1, n2), (3.97)

where

ϕ(n1, n2) := C
(

1 + ‖n1‖
2N
L4N+2 + ‖n2‖

2N
L4N+2

)2
.
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Proof of Lemma 3.27 It is enough to prove the estimate (3.96) for the special case

f (n) := aN |n|2N n. For this purpose we recall that

|n1|
2N n1−|n2|

2N n2=|n1|
2N (n1−n2) + n2(|n1|−|n2|)

(

2N−1
∑

k=0

|n1|
2N−k−1|n2|

k

)

,

from which we easily deduce that

|〈 f (n1) − f (n2), n1 − n2〉| ≤ C

∫

O

(

1 + |n1|
2N + |n2|

2N
)

|n1 − n2|
2dx,

for any n1, n2 ∈ L
2N+2(O). Now, invoking the Hölder, Gagliardo–Nirenberg and

Young inequalities we infer that

|〈 f (n1) − f (n2), n1 − n2〉| ≤ C‖n1 − n2‖
2
L4

(

1 + ‖n1‖
2N
L4N+2 + ‖n2‖

2N
L4N+2

)

≤ C‖n1 − n2‖‖∇ (n1 − n2) ‖
(

1 + ‖n1‖
2N
L4N+2 + ‖n2‖

2N
L4N+2

)

≤ α8‖∇ (n1 − n2) ‖2 + C(α8)‖n1 − n2‖
2
(

1 + ‖n1‖
2N
L4N+2 + ‖n2‖

2N
L4N+2

)2
.

The last line of the above chain of inequalities implies (3.96).

Using the fact that H1 ⊂ L4N+2 for any N ∈ N and the same argument as in the

proof of (3.96) we derive that

|〈 f (n1) − f (n2), A1n1 − A1n2〉|

≤ C

∫

O

(

1 + |n1|
2N + |n2|

2N
)

|n1 − n2||A1 (n1 − n2) |dx

≤ C‖n1 − n2‖L4N+2‖A1[n1 − n2]‖
(

1 + ‖n1‖
2N
L4N+2 + ‖n2‖

2N
L4N+2

)

≤ C‖n1 − n2‖H1‖A1 [n1 − n2] ‖
(

1 + ‖n1‖
2N
L4N+2 + ‖n2‖

2N
L4N+2

)

≤ α9‖A1 [n1 − n2] ‖2 + C(α9)‖n1 − n2‖
2
H1

(

1 + ‖n1‖
2N
L4N+2 + ‖n2‖

2N
L4N+2

)2
.

From the last line we easily deduce the proof of (3.97). ⊓⊔

Now, we give the promised proof of the uniqueness of our solution.

Proof of Theorem 3.4 Let v = v1 − v2 and n = n1 − n2. These processes satisfy

(v(0), n(0)) = (0, 0) and the stochastic equations

dv(t)+

(

Av(t)+B(v(t), v1(t))+B(v2(t), v(t))

)

dt

= −

(

M(n(t), n1(t)) + M(n2, n)

)

dt

+ [S(v1(t)) − S2(v2(t))]dW1(t),
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and

dn(t)+

(

A1n(t)+B̃(v(t), n1(t))+B̃(v2(t), n(t))

)

dt = −[ f (n2(t))− f (n1(t))]dt

+
1

2
G2(n(t))dt + G(n(t))dW2(t).

Firstly, from Young’s inequality and (6.8) we infer that for any α1 > 0 there exists a

constant C(α1) > 0 such that

|〈B(v, v1), v〉V∗,V| ≤ α1‖∇v‖2 + C(α1)‖v1‖
2‖∇v1‖

2‖v‖2.

Secondly, Young’s inequality and (2.9) yield that for any α2 > 0, α3 > 0, α4 > 0 and

α7 > 0 there exist constants C(α2, α3) > 0 and C(α7, α4) > 0 such that

|〈M (n2, n) , v〉V∗,V| ≤ ‖∇v‖‖∇n2‖
1
2 (‖n2‖ + ‖A1n2‖)

1
2 ‖∇n‖

1
2 (‖n‖ + ‖A1n‖)

1
2

≤ α2‖∇v‖2 + α3

(

‖A1n‖2 + ‖n‖2
)

+ C (α2, α3) ‖∇n2‖2
(

‖A1n2‖2 + ‖n2‖2
)

‖∇n‖2,

|〈M (n, n1) , v〉V∗,V| ≤ α7‖∇v‖2 + α4

(

‖A1n‖2 + ‖n‖2
)

+ C (α7, α4) ‖∇n1‖2
(

‖A1n1‖2 + ‖n1‖2
)

‖∇n‖2. (3.98)

Thirdly, from Young’s inequality and (6.9) we derive that for any α5 > 0 there exists

a constant C(α5) > 0 such that

|〈B̃ (v2, n) , A1n〉| ≤ (‖n‖ + ‖A1n‖)
3
2 ‖v2‖

1
2 ‖∇v2‖

1
2 ‖∇n‖

1
2

α5

(

‖A1n‖2 + ‖n‖2
)

+ C (α5) ‖v2‖
2‖∇v2‖

2‖∇n‖2. (3.99)

From Hölder’s inequality, Gagliardo–Nirenberg’s inequality (6.1) and the Sobolev

embedding H2 ⊂ L∞ we infer that for any α6 > 0 there exists C(α6) > 0 such that

|〈B̃(v, n1), n〉| ≤ ‖v‖‖∇n1‖‖n‖L∞ ,

≤ α6

(

‖n‖2 + ‖A1n‖2
)

+ C(α6)‖v‖2‖∇n1‖
2.

From the proof of Proposition 3.9 we see that there exists a constant C > 0 which

depends only on ‖h‖W1,3 and ‖h‖L∞ such that

‖∇G (n) ‖2 ≤ C
(

‖∇n‖2 + ‖n‖2
)

,

‖∇G2 (n) ‖2 ≤ C
(

‖∇n‖2 + ‖n‖2
)

,

|〈∇G2 (n) ,∇n〉| ≤ C
(

‖∇n‖2 + ‖n‖2
)

.
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Owing to the Lipschitz property of S we have

‖S(v1) − S(v2)‖
2
T2(K1,H) ≤ C‖v‖2. (3.100)

Now, let ϕ(n1, n2) be as in Lemma 3.27 and

�(t) = e−
∫ t

0 (ψ1(s)+ψ2(s)+ψ3(s))ds, for any t > 0,

where

ψ1(s) := C(α1)‖v1(s)‖
2‖∇v1(s)‖

2 + C(α6)‖∇n1(s)‖
2,

ψ3(s) := [C(α8) + C2(α9)]ϕ(n1(s), n2(s)),

and

ψ2(s) := C(α2, α3)‖∇n2(s)‖
2(‖n2(s)‖

2 + ‖A1n2(s)‖
2)

+ C(α7, α4)‖∇n1(s)‖
2(‖n1(s)‖

2 + ‖A1n1(s)‖
2)

+ C(α5)‖v2(s)‖
2‖∇v2(s)‖

2 + C1(α9)ϕ(n1(s), n2(s)).

Now applying Itô’s formula to ‖n(t)‖2 and �(t)‖n(t)‖2 yield

d
[

�(t)‖n(t)‖2
]

= −2�(t)‖∇n(t)‖2dt − 2�(t)〈B̃(v(t), n1(t)), n(t)〉

− 2〈 f (n2(t)) − f (n2(t)), n(t)〉dt + � ′(t)‖n(t)‖2.

Using the same argument we can show that �(t)‖∇n(t)‖2 and �(t)‖v(t)‖2 satisfy

d
[

�(t)‖∇n(t)‖2
]

= �(t)

(

−‖A1n(t)‖2 + 〈B̃(v(t), n1(t)) + B̃(v2(t), n(t)), A1n(t)〉

)

dt

+ �(t)

(

2〈 f (n2(t)) − f (n1(t)), A1n(t)〉 + 〈∇G2(n(t)),∇n(t)〉

)

dt

+ ‖G(n(t))‖2dt + � ′(t)‖∇n(t)‖2dt + 2�(t)〈∇G(n(t)),∇n(t)〉dW2(t),

and

d[�(t)‖v(t)‖2] = −2�(t)

(

‖∇v(t)‖2 + 〈B(v(t), v1(t)) + M(n(t), n1(t)), v(t)〉V∗,V

)

dt

− 2�(t)M(n2(t), n(t)), v(t)〉V∗,Vdt + �(t)‖S(v1(t)) − S(v2(t))‖2
T2

dt

+ � ′(t)‖v(t)‖2dt

+ 2�(t)〈v(t), [S(v1(t)) − S(v2(t))]dW1(t)〉.

Summing up these last three equalities side by side and using the inequalities (3.97)–

(3.100) imply
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d
[

�(t)
(

‖v(t)‖2 + ‖n(t)‖2 + ‖∇n(t)‖2
)]

+ 2�(t)
[

‖∇v(t)‖2 + ‖∇n(t)‖2 + ‖A1n(t)‖2
]

dt

≤ 2�(t)
(

C
[

‖v(t)‖2 + ‖n(t)‖2 + ‖∇n(t)‖2
]

dt + 〈∇G(n(t)),∇n(t)〉dW2(t)
)

+ 2�(t)

⎛

⎝〈v(t), [S(v1(t)) − S(v2(t))] dW1(t)〉 +

⎡

⎣α9 +

6
∑

j=3

α j

⎤

⎦ ‖A1n(t)‖2

⎞

⎠

+ �(t)
[

ψ2(t)‖∇n(t)‖2 + ψ1(t)‖v(t)‖2 + ψ3(t)‖n(t)‖2
]

dt

+ � ′(t)
(

‖v(t)‖2 + ‖n(t)‖2 + ‖∇n(t)‖2
)

dt

+ (α1 + α2 + α7)‖∇v(t)‖2 + α8‖∇n(t)‖2dt .

Notice that by the choice of � we have

�(t)
[

ψ2(t)‖∇n(t)‖2 + ψ1(t)‖v(t)‖2 + ψ3(t)‖n(t)‖2
]

+ � ′(t)

(

‖v(t)‖2 + ‖n(t)‖2 + ‖∇n(t)‖2

)

≤ 0.

Hence by choosing α j = α9 = 1
10

, j = 3, . . . , 6, αi = α7 = 1
6
, i = 2, 3 and α8 = 1

2
we see that

d[�(t)
(

‖v(t)‖2 + ‖n(t)‖2 + ‖∇n(t)‖2
)

] + �(t)
[

‖∇v(t)‖2 + ‖A1n(t)‖2 + ‖∇n(t)‖2
]

dt

≤ 2�(t)

(

C

[

‖v(t)‖2 + ‖n(t)‖2 + ‖∇n(t)‖2

]

dt + 〈∇G(n(t)),∇n(t)〉dW2(t)

+ 〈v(t), [S(v1(t)) − S(v2(t))]dW1(t)〉

)

.

Next, integrating and taking the mathematical expectation yield

E

[

�(t)
(

‖v(t)‖2 + ‖n(t)‖2 + ‖∇n(t)‖2
)

]

+ E

∫ t

0

�(s)
[

‖∇v(s)‖2 + ‖A1n(s)‖2 + 2‖∇n(s)‖2
]

ds

≤ C

∫ t

0

E

[

�(s)
(

‖v(s)‖2 + ‖n(s)‖2 + ‖∇n(s)‖2
)

]

ds,

from which along with Gronwall’s inequality we infer that for any t ∈ [0, T ]

E

(

�(t)‖v(t)‖2 + ‖n(t)‖2 + ‖∇n(t)‖2
)

= 0.

⊓⊔
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4 Uniform estimates for the approximate solutions

This section is devoted to the crucial uniform estimates stated in Propositions 3.8

and 3.9.

Proof of Proposition 3.8 Let us note that for the sake of simplicity we write τm instead

of τR,m . Let �(·) be the mapping defined by �(n) = 1
2
‖n‖p for any n ∈ L2. This

mapping is twice Fréchet differentiable with first and second derivatives defined by

� ′(n)[g] = p‖n‖p−2〈n, g〉,

� ′′[g, k] = p(p − 2)‖n‖p−4〈n, k〉〈n, g〉 + p‖n‖p−2〈g, k〉.

By straightforward calculations one can check that if g ∈ L2 and g ⊥R3 n then

� ′(n)[g] = 0 and � ′′(n)[g, g] = p‖n‖p−2‖g‖2.

Note that by the self-adjointness of π̃m we have

〈

π̂m Xm, nm

〉

= 〈Xm, nm〉 ,

where Xm ∈ {G(nm), G2(nm), B̃(vm, nm), f (nm)}. Thanks to Assumption 2.1 we

also have

π̂m f (n) = f (n), for any n ∈ Lm .

Since vm is a divergence free function it follows from lemma 6.1 that

〈π̂m B̃(vm, nm), nm(t)〉 = 〈B̃(vm, nm), nm〉 = 0.

Now, applying Itô’s formula to �(nm(t ∧ τm)) yields

�(nm(t ∧ τm)) = �(nm(0)) −

∫ t∧τm

0

� ′(nm(s))[Anm(s)

+ B̃(vm(s), nm(s) + f (nm(s))]

+
1

2

∫ t∧τm

0

(

� ′(nm(s))[G2(nm(s))] + � ′′(nm(s))[G(nm(s), G(nm(s)]
)

ds

+

∫ t∧τm

0

� ′(nm(s))[G(nm(s))]dW2(s).

The stochastic integral vanishes because nm × h ⊥ nm in R
3 and

〈G(nm), nm〉 = 〈(nm × h), nm〉,

= 〈nm × h, nm〉,

= 0.

Since vm is a divergence free function it follows from (6.10) that

〈B̃(vm, nm), nm〉 = 0.
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From the identity

〈(b × a) × a, b〉R3,R3 = −‖a × b‖2
R3 ,

we infer that

� ′(nm)[G2(nm)] + � ′′(nm)[G(nm), G(nm)]

= 2p‖nm‖2(p−1)
[

〈G2(nm), nm〉 + ‖G(nm)‖2
]

= 0.

Consequently,

‖nm(t ∧ τm)‖p = ‖nm(0)‖p − p

∫ t∧τm

0

‖nm(s)‖p−2‖∇nm(s)‖2ds

− p

∫ t∧τm

0

‖nm(s)‖p−2〈 f (nm(s)), nm(s)〉ds.

(4.1)

Now, by Assumption 2.1 that there exists a polynomial F̃(r) =
∑N+1

l=1 blr
l with

F̃(0) = 0 and bN+1 > 0 such that

〈 f (nm), nm〉 =

∫

O

F̃
(

|nm(x)|2
)

dx .

In fact, it follows from Assumption 2.1 that

〈

f̃ (|nm |2)nm, nm

〉

=

∫

O

f̃
(

|nm(x)|2
)

|nm(x)|2dx

=

∫

O

N
∑

k=0

ak

(

|nm(x)|2
)k+1

dx

=

∫

O

N+1
∑

l=1

al−1

(

|nm(x)|2
)l

dx .

Thanks to this observation we can use [8, Lemma 8.7] to infer that there exists c > 0

such that

aN+1

2

∫

O

|nm(x)|2N+2dx − c

∫

O

|nm(x)|2dx ≤ 〈 f (nm), nm〉.

From this estimate and (4.1) we deduce that there exists a constant C > 0 independent

of m ∈ N such that
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‖nm(t ∧ τm)‖p + p

∫ t∧τm

0

‖nm(s)‖p−2‖∇nm(s)‖2ds

+ p

∫ t∧τm

0

‖nm(s)‖p−2‖nm(s)‖2N+2

L2N+2 ds

≤ C

∫ t∧τm

0

‖nm(s)‖pds + ‖nm(0)‖p,

(4.2)

from which along with the fact that ‖nm(0)‖ = ‖π̃mn0‖ ≤ ‖n0‖ and an application

of the Gronwall lemma we complete the proof of our proposition. ⊓⊔

Proof of Proposition 3.9 Let us note that that for the sake of simplicity we write τm

instead of τR,m . By the self-adjointness of πm we have

〈π̂mYm, vm〉 = 〈Ym, vm〉,

where Ym ∈ {B(vm, vm), M(nm, nm)}. A similar remark holds for those operators

involving π̂m (see the proof of Proposition 3.8).

Application of Itô’s formula to �(vm(t ∧ τm)) = 1
2
‖vm(t ∧ τm)‖2, t ∈ [0, T ),

yields

1

2
‖vm(t ∧ τm)‖2−‖πmv0‖

2 = −

∫ t∧τm

0

〈

Avm(s)+B(vm(s))+M(nm(s)), vm

〉

ds

+
1

2

∫ t∧τm

0

‖S(vm)‖2
T2(K1,H) ds +

∫ t∧τm

0

〈vm(s), S(vm(s))dW1(s)〉 .

(4.3)

We now introduce the mapping � defined by

�(n) =
1

2
‖∇n‖2 +

1

2

∫

O

F(|n(x)|2) dx, n ∈ H1.

Thanks to Assumption 2.1 one can apply [8, Lemma 8.10] to infer that the mapping

�(·) is twice Fréchet differentiables and its first and second derivatives of � are given

by

� ′(n)g = 〈∇n,∇g〉 + 〈 f (n), g〉,

� ′′(n)(g, g) = 〈∇g,∇g〉 +

∫

O

f̃ (n)|g|2dx +

∫

O

[ f̃ ′(n)][n · g]2 dx,

for all n, g ∈ H1. Observe that if g ⊥ n in R
3, then

� ′′(n)(g, g) = 〈∇g,∇g〉 +

∫

O

f̃ (n)|g|2dx .

Note also that

� ′(n)g = 〈−A1n, g〉 + 〈 f (n), g〉,

123



Stoch PDE: Anal Comp

for all n ∈ H2 and g ∈ H1. Before proceeding further we should also recall that it was

proved in [8, Lemma 8.9] that there exists ℓ̃ > 0 such that

‖∇n‖2 + ‖n‖2 ≤ 2�(n) + ℓ̃‖n‖2, (4.4)

for any n ∈ H1.

Now, by Itô’s formula we have

�(nm(t ∧ τm)) − �(π̂mn0)

=

∫ t∧τm

0

(

−‖A1nm(s) + f (nm(s))‖2 +
1

2

∫

O

f̃ (nm(s))|G(nm(s))|2
)

ds

+

∫ t∧τm

0

〈(

1

2
G2(nm(s)) − B̃(vm(s), nm(s))

)

, f (nm(s)) + A1nm(s)

〉

ds

+
1

2
‖∇G(nm(s))‖2 + 〈G(nm(s)), f (nm(s)) + A1nm(s)〉dW2(s),

which is equivalent to

�(nm(t ∧ τm)) − �(π̂mn0)

=

∫ t∧τm

0

(

−‖A1nm(s) + f (nm(s))‖2 +

∫

O

f̃ (nm(s))|G(nm(s))|2 dx

)

ds

+

∫ t∧τm

0

(

〈
1

2
G2(nm(s)), f (nm(s)) + A1nm(s)〉 − 〈B̃(vm(s), nm(s)), A1nm(s)〉

)

ds

+
1

2

∫ t∧τm

0
‖∇G(nm(s))‖2ds +

∫ t∧τm

0
〈G(nm(s)), f (nm(s)) + A1nm(s)〉dW2(s).

Here we used the fact that

〈vm · ∇nm, f (nm)〉 =
∑

i, j

∫

O

v(i)
m (x)

∂n
( j)
m (x)

∂xi

f̃ (|nm(x)|2)nm
( j)(x)dx

=
1

2

d
∑

i=1

∫

O

v(i)
m (x)

∂ F̃(|nm(x)|2)

∂xi

dx

= 〈vm,∇ F̃(|nm |2)〉

= 0, because div vm = 0.

Now, let us observe that

1

2

∣

∣

∣

∣

∫

O

f̃
(

|nm(x)|2
)

|G(nm(x))|2dx

∣

∣

∣

∣

≤
1

2
‖h‖2

L∞

∫

O

| f̃
(

|nm(x)|2
)

| |nm(x)|2dx .

Next, by setting f̄ (r) =
∑N

k=0 bkr k with bk = |ak |, k = 0, . . . , N , we derive that

there exists a polynomial Q̃ of degree N such that
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f̄ (r)r = aN r N+1 + Q̃(r).

From this last identity and the former estimate we derive that

1

2

∣

∣

∣

∣

∫

O

f̃ (|nm |2)|G(nm)|2dx

∣

∣

∣

∣

≤
1

2
‖h‖2

L∞

[

aN

∫

O

|nm(x)|2N+2dx +

∣

∣

∣

∣

∫

O

Q̃(|nm(x)|2)dx

∣

∣

∣

∣

]

,

from which along with [8, Lemma 8.7] we deduce that there exists a constant C > 0

which depends only on ‖h‖L∞ such that

1

2

∣

∣

∣

∣

∫

O

f̃ (|nm |2)|G(nm)|2dx

∣

∣

∣

∣

≤ C
(

∫

O

F(|nm(x)|2)dx + ‖nm‖2
)

.

Thus,

1

2

∣

∣

∣

∣

∫

O

f̃ (|nm |2)|G(nm)|2dx

∣

∣

∣

∣

≤ C
(

�(nm) + ‖nm‖2
)

,

and

�(nm(t ∧ τm)) + �(π̂mn0) ≤

∫ t∧τm

0

(

−‖A1nm(s) + f (nm(s))‖2

+ C
[

�(nm(s)) + ‖nm(s)‖2
])

ds

+

∫ t∧τm

0

(〈

1

2
G2(nm(s)), f (nm(s)) + A1nm(s)

〉

−〈B̃(vm(s), nm(s)), A1nm(s)〉
)

ds

+
1

2

∫ t∧τm

0

‖∇G(nm(s))‖2ds + 〈G(nm(s)), f (nm(s)) + A1nm(s)〉dW2(s).

(4.5)

Thanks to (2.10) we derive that

−〈B̃(vm, nm), A1nm〉 − 〈M(nm), vm〉 = 0.

From Lemma 6.1 we also derive that

〈B(vm, vm), vm〉 = 0.

Thus, adding up inequality (4.3) and inequality (4.5) and using the last two identities

we see that

[

�(nm) +
1

2
‖vm‖2

]

(t ∧ τm) −
[

�(π̂mn0) + ‖πmv0‖L2

]
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+

∫ t∧τm

0

[

‖∇vm(s)‖2 − (�(nm(s)) + ‖nm(s)‖2)
]

ds

≤
1

2

∫ t∧τm

0

(

−‖A1nm(s) + f (nm(s))‖2 + ‖S(vm(s))‖2
T2

(4.6)

+‖G2(nm(s))‖2 + ‖∇G(nm(s))‖2

)

ds

+

∫ t∧τm

0

〈vm(s), S(vm(s))dW1(s)〉 + 〈G(nm(s)), f (nm(s)) + A1nm(s)〉dW2(s).

Since G(nm) = nm × h, we have

‖∇G(nm)‖2 ≤ ‖G(nm)‖2
H1 ,

≤ ‖∇(nm × h)‖2 + ‖nm × h‖2

≤ 2[‖∇nm × h‖2 + ‖nm × ∇h‖2] + ‖nm × h‖2

≤ C‖h‖2
L∞(‖∇nm‖2 + ‖nm‖2) + ‖nm × ∇h‖2. (4.7)

From Hölder’s inequality and the Sobolev embedding H1 ⊂ L6 (true for d = 2, 3!)

we obtain

‖nm × ∇h‖2 ≤ ‖nm‖2
L6‖∇h‖2

L3 ,

≤ c
(

‖∇nm‖2 + ‖nm‖2
)

‖∇h‖2
L3 .

By plugging this last inequality into (4.7), we infer the existence of a constant C > 0

which depend only on ‖h‖W1,3 such that

‖∇G(nm)‖2 ≤ C(‖∇nm‖2 + ‖nm‖2).

In a similar way one can prove that there exists C > 0 which depends only on ‖h‖L∞

such that

‖G2(nm)‖2 ≤ C‖nm‖2 ≤ C
(

‖∇nm‖2 + ‖nm‖2
)

.

From the last two estimates, (4.4) and the linear growth assumption (2.2) we derive

that there exists a constant C > 0 such that

1

2

(

‖S(vm)‖2
T2(K1,H) + ‖G2(vm)‖2 + ‖∇G(nm)‖2

)

≤ C‖vm‖2 + 2C�(nm) + ℓ̃C‖nm‖2. (4.8)

From this inequality and (4.6) we derive that there exists C > 0 such that

E sup
s∈[0,t∧τm ]

[

�(nm(s)) +
1

2
‖vm(s))‖2

]
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+E

∫ t∧τm

0

(

‖∇vm(s))‖2 +
1

2
‖A1nm(s) + f (nm(s))‖2

)

ds

≤ CE

∫ t∧τm

0

[

‖vm(s)‖2 + �(nm(s)) + ℓ̃‖nm(s)‖2
]

ds (4.9)

+ E sup
s∈[0,t∧τm ]

∣

∣

∣

∣

∫ s∧τm

0

〈vm(r), S(vm(r))dW1(r)〉

∣

∣

∣

∣

+ E sup
s∈[0,t∧τm ]

∣

∣

∣

∣

∫ s∧τm

0

〈G(nm(r)), f (nm(r)) + A1nm(r)〉dW2(r)

∣

∣

∣

∣

+ E

(

1

2
‖v0‖

2 + �(nm(0))

)

.

Thanks to the Burkholder–Davis–Gundy, Cauchy–Schwarz and Cauchy inequali-

ties we infer that

E sup
s∈[0,t∧τm ]

∣

∣

∣

∣

∫ s∧τm

0

〈G(nm(r)), f (nm(r)) + A1nm(r)〉dW2(r)

∣

∣

∣

∣

≤ CE

(∫ t∧τm

0

[〈G(nm(s)), A1nm(s) + f (nm(s))〉]2ds

)
1
2

≤ CE

[

sup
s∈[0,t∧τm ]

‖G(nm(s))‖

(∫ t∧τm

0

‖A1nm(s) + f (nm(s))‖2ds

)
1
2
]

≤ CE sup
s∈[0,t∧τm ]

‖G(nm(s))‖2 +
1

4
E

∫ t∧τm

0

‖A1nm(s) + f (nm(s))‖2ds

≤ C‖h‖2
L∞E sup

s∈[0,t∧τm ]

‖nm(s)‖2 +
1

4
E

∫ t∧τm

0

‖A1nm(s) + f (nm(s))‖2ds.

(4.10)

By making use of a similar argument and (2.2) one can prove that

E sup
s∈[0,t∧τm ]

∣

∣

∣

∣

∫ s∧τm

0

〈vm(r), S(vm(r))dW1(r)〉

∣

∣

∣

∣

≤
1

4
E sup

s∈[0,t∧τm ]

‖vm(s))‖2

+ CE

∫ t∧τm

0

‖vm(s))‖2ds. (4.11)
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Note that from (4.4) we easily derive that ‖vm‖2 + ‖nm‖2
H1 ≤ ‖vm‖2 + 2�(nm) +

ℓ̃‖nm‖2. Hence, using (4.10) and (4.11) in (4.9) we infer that

E sup
s∈[0,t∧τm ]

[

�(nm(s)) +
1

2
‖(vm(s))‖2

]

+ E

∫ t∧τm

0

(

‖∇vm(s))‖2 +
1

2
‖A1nm(s) + f (nm(s))‖2

)

ds

≤ CE

∫ t∧τm

0

(

‖vm(s))‖2 + �(nm(s))
)

ds + Cϕ(t ∧ τm),

where ϕ(·) is the non-decreasing function defined by

ϕ(t) = E

(

‖v0‖
2 + �(nm(0))

)

+ E sup
s∈[0,t]

‖nm(s)‖2 + E

∫ t

0

‖nm(s)‖2ds.

Now, it follows from Gronwall’s lemma that

E sup
s∈[0,t∧τm ]

[

�(nm(s)) +
1

2
‖(vm(s))‖2

]

+ E

∫ t∧τm

0

(

‖∇vm(s))‖2 +
1

2
‖A1nm(s) + f (nm(s))‖2

)

ds

≤ ϕ(t ∧ τm)
(

1 + T eCT
)

,

which altogether with Proposition 3.8 completes the proof of Proposition 3.9 for the

case p = 1.

For the case p ≥ 4N + 2 we first observe that from (4.6) and (4.8) we easily see

that

�(nm(t ∧ τm)) + ℓ̃‖nm(t ∧ τm)‖2 + ‖vm(t ∧ τm)‖2

+

∫ t∧τm

0

(

2‖∇vm(s))‖2 + ‖A1nm(s) + f (nm(s))‖2

)

ds

≤ �(n0) + ‖v0‖
2 + ℓ̃[‖n0‖

2 + ‖nm(t ∧ τm)‖2]

+ C

∫ t∧τm

0

(

2�(nm(s)) + ℓ‖nm(s)‖2 + ‖vm(s))‖2
)

ds

∣

∣

∣

∣

∫ t∧τm

0

〈vm(s), S(vm(s))dW1(s)〉

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t∧τm

0

〈G(nm(s)), f (nm(s)) + A1nm(s)〉dW2(s)

∣

∣

∣

∣

.

Second, rising both sides of this estimate to the power p and taking the supremum over

s ∈ [0, t ∧ τm] and the mathematical expectation imply that there exists a constant

C > 0 depending only in p such that

E sup
s∈[0,t∧τm ]

[ψ(s)]p − E[ψ(0)]p
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+ E

[∫ t∧τm

0

(

2‖∇vm(s))‖2 + ‖A1nm(s) + f (nm(s))‖2

)

ds

]p

≤ CE sup
t∈[0,T ]

‖nm(t)‖2p + CT E

∫ t∧τm

0

[ψ(s)]pds (4.12)

+ CE sup
s∈[0,t∧τm ]

∣

∣

∣

∣

∫ s∧τm

0

〈vm(r), S(vm(r))dW1〉

∣

∣

∣

∣

p

+ CE sup
s∈[0,t∧τm ]

∣

∣

∣

∣

∫ s∧τm

0

〈G(nm(r)), f (nm(r)) + A1nm(r)〉dW2

∣

∣

∣

∣

p

,

where, for the sake of simplicity, we have put

ψ(t) = �(nm(t)) + ℓ‖nm(t)‖2 + ‖vm(t))‖2.

Now by making use of the Burkholder–Davis–Gundy, Cauchy–Schwarz, Cauchy

inequalities and the linear growth assumption (2.2) we derive that

E sup
s∈[0,t∧τm ]

∣

∣

∣

∣

∫ s∧τm

0
〈vm(r), S(vm(r))dW1〉

∣

∣

∣

∣

p

≤ CE

(∫ t∧τm

0
‖vm(s))‖2‖S(vm(s)))‖2

T2
ds

)
p
2

≤ CE

[

sup
s∈[0,t∧τm ]

[ψ(s)]
p
2

(∫ t∧τm

0
(1 + ‖vm(s))‖2)ds

)
p
2
]

≤
1

4
E sup

s∈[0,t∧τm ]
[ψ(s)]p + CT + CE

∫ t∧τm

0
[ψ(s)]pds. (4.13)

By using a similar argument we obtain

E sup
s∈[0,t∧τm ]

∣

∣

∣

∣

∫ s∧τm

0

〈G(nm(r)), f (nm(r)) + A1nm(r)〉dW2

∣

∣

∣

∣

p

≤ CE

(∫ t∧τm

0

‖G(nm(s))‖2‖A1nm(s) + f (nm(s))‖2ds

)
p
2

≤ CE sup
s∈[0,t∧τm ]

‖nm(s) × h‖p +
1

2
E

(∫ t∧τm

0

‖A1nm(s) + f (nm(s))‖2ds

)p

.

From the last line we easily derive that

E sup
s∈[0,t∧τm ]

∣

∣

∣

∣

∫ s∧τm

0
〈G(nm(r)), f (nm(r)) + A1nm(r)〉dW2

∣

∣

∣

∣

p

− CE sup
s∈[0,t∧τm ]

‖nm(s)‖2p

≤
1

2
E

(∫ t∧τm

0

(

2‖∇vm(s))‖2 + ‖A1nm(s) + f (nm(s))‖2
)

ds

)p

.

(4.14)
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Plugging (4.13) and (4.14) in (4.12) yields that

E sup
s∈[0,t∧τm ]

[ψ(s)]p + E

[∫ t∧τm

0
2‖∇vm(s))‖2 + ‖A1nm(s) + f (nm(s))‖2

)

ds

]

≤ 2E[ψ(0)]p + CT + CE sup
s∈[0,t∧τm ]

‖nm(s)‖2p + C(t ∧ τm + 1)E

∫ t∧τm

0
[ψ(s)]pds,

from which altogether with the Gronwall lemma implies that

E sup
s∈[0,t∧τm ]

[ψ(s)]p + E

[∫ t∧τm

0

2‖∇vm(s))‖2 + ‖A1nm(s) + f (nm(s))‖2

)

ds

]

≤

[

2E[ψ(0)]p + CT + CE sup
s∈[0,t∧τm ]

‖nm(s)‖2p

]

(

1 + CT (T + 1)eC(T +1)T
)

.

This along with (3.20) complete the proof of the proposition. ⊓⊔

5 Maximum principle type theorem

In this section we replace in the system (3.1)–(3.3) the general polynomial f (n) by the

bounded Ginzburg–Landau function1|n|≤1(|n|2−1)n. All our previous result remains

true and the analysis are even easier. In the case f (n) = 1|n|≤1(|n|2 − 1)n, we will

show that if the initial value n0 is in the unit ball, then so are the values of the vector

director n. That is, we must show that |n(t)|2 ≤ 1 almost all (ω, t, x) ∈ �×[0, T ]×O.

In fact we have the following theorem.

Theorem 5.1 Assume that d ≤ 3 and that a process (v, n) = (v(t), n(t))t∈[0,T ], is a

solution to problem (3.1)–(3.3) with initial condition (v0, n0) such that |n0|
2 ≤ 1 for

almost all (ω, x) ∈ �×O. Then |n(t)|2 ≤ 1 for almost all (ω, t, x) ∈ �×[0, T ]×O.

Proof We follow the idea in [11, Lemma 2.1] and [16, Proof of Theorem 4, Page 513].

Let ϕ : R → [0, 1] be an increasing function of class C∞ such that

ϕ(s) = 0 iff s ∈ (−∞, 1],

ϕ(s) = 1 iff s ∈ [2,+∞).

Let {ϕ̃m : m ∈ N} and {φ̃m : m ∈ N} be two sequences of function R defined by

ϕ̃m(a) = ϕ(ma), a ∈ R, (5.1)

φ̃m(a) = a2ϕ(ma), a ∈ R. (5.2)

We also set

ϕm(u) = ϕ̃m(|u|2 − 1), u ∈ R
3, (5.3)

φm(u) = φ̃m(|u|2 − 1), u ∈ R
3. (5.4)
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For each m ∈ N let �m : H2 → R be a function defined by

�m(u) = ‖φm ◦ u‖L1 ,

=

∫

O

(

|u(x)|2 − 1
)2

[ϕm(u(x))]dx, u ∈ H2. (5.5)

The mapping �m is twice (Fréchet) differentiable and its first and second derivatives

satisfy

� ′
m(u)(k) = 4

∫

O

(

|u(x)|2 − 1)ϕm(u(x))[u(x) · k(x)]
)

dx

+ 2m

∫

O

(

|u(x)|2 − 1
)2

ϕ′
(

m
(

|u(x)|2 − 1
))

(u(x) · k(x))dx,

for u ∈ H2, k ∈ L2,

(5.6)

and,

� ′′
m(u)(k, f) = 4m2

∫

O

[

(|u(x)|2 − 1)2ϕ′′
m(m(|u(x)|2 − 1))(u(x) · k(x))(u(x) · f(x))

]

dx

+ 16m

∫

O

[

(|u(x)|2 − 1)ϕ′(m(|u(x)|2 − 1))(u(x) · k(x))(u(x) · f(x))
]

dx

+ 8

∫

O

[

ϕm(u(x))(u(x) · k(x))(u(x) · f(x))

]

dx

+ 2m

∫

O

[

|u(x)|2 − 1)2ϕ′(m(|u(x)|2 − 1))(k(x) · f(x)
]

dx

+ 4

∫

O

[

ϕm(u(x))(|u(x)|2 − 1)(k(x) · f(x))
]

dx,

for u ∈ H2 and k, f ∈ L2. In particular, if u ∈ H2 and k, f ∈ L2 are such that

k(x) ⊥ u(x) and f(x) ⊥ u(x) for all x ∈ O,

then

� ′
m(u)(k) = 0, (5.7)

and

� ′′
m(u)(k, f) = 4

∫

O

[

(|u(x)|2 − 1)ϕm(u(x))(k(x) · f(x))
]

dx

+ 2m

∫

O

[

(|u(x)|2 − 1)2ϕ′(m(|u(x)|2 − 1))(k(x) · f(x))
]

dx .

(5.8)
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It follows from Itô’s formula (see [37, Theorem I.3.3.2, Page 147]) that

d[�m(n)] = �m(n)

(

−A1n − B̃(v, n) −
1

ε2
f (n) +

1

2
G2(n)

)

dt

+
1

2
� ′′

m(n)(G(n), G(n))dt .

The stochastic integral vanishes because G(n) ⊥R3 n. Since G2(n) = (n × h) × h

and G(n) = n × h, we infer from (5.6) and the identity

−|a × b|2
R3 = a · ((a × b) × b) , a, b ∈ R

3,

that

� ′(n)(G2(n)) = −2m

∫

O

(|n(x)|2 − 1)ϕ′(m(|n(x)|2 − 1))|G(n(x))|2dx

− 4

∫

O

(|n(x)|2 − 1)ϕm(n(x))|G(n(x))|2dx,

which along with the fact that G(n(x)) ⊥ n(x) for any x ∈ O and (5.8) we infer that

1

2
� ′′

m(G(n), G(n)) +
1

2
� ′

m(G2(n)) = 0.

Hence

d[�m(n)] = �m(n)

(

−A1n − B̃(v, n) −
1

ε2
f (n)

)

dt . (5.9)

Now, observe that from the assumptions on ϕ and the definition of φ̃m, m ∈ N we can

show that for any a ∈ R,

φ̃m(a) → (a+)2 and mϕ′(ma) → 0 as m → ∞, (5.10)

where a+ := max(a, 0). Observe also that there exists a constant C > 0 such that for

all m ∈ N and a ∈ R

|φ̃m(a)| ≤ Ca2 and |mϕ′(ma)| ≤ C |a|. (5.11)

We now easily infer from (5.10), (5.11) and the Lebesgue Dominated Convergence

Theorem that for u ∈ H2, k ∈ L2

lim
m→∞

�m(u) =

∥

∥

∥

∥

(

|u|2 − 1
)

−

∥

∥

∥

∥

2

,

lim
m→∞

� ′
m(u)(k) = 4

∫

O

[

(

|u(x)|2 − 1
)

−
(u(x) · k(x))

]

dx .
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Hence, setting y(t) = ‖
(

|n(t)|2 − 1
)

+
‖2 we obtain from letting ℓ → ∞ in (5.9)

that for almost all (ω, t) ∈ � × [0, T ]

y(t) − y(0) + 4

∫ t

0

(∫

O

[

A1n + (v · ∇)n +
1

ε2
f (n)

]

·

[

n
(

|n|2 − 1
)

+

]

dx

)

ds = 0.

Let us set ξ =
(

|n|2 − 1
)

+
, it follows from [3, Exercise 7.1.5, p 283] that ξ ∈ H1

if n ∈ H1. Thus, since ∂n
∂ν

= 0 we derive from integration-by-parts that

4

∫ t

0

(∫

O

A1n · n
(

|n|2−1
)

+
dx

)

ds=

∫ t

0

(∫

O

(

2∇(|n|2) · ∇ξ+4ξ |∇n|2
)

dx

)

ds.

Since ξ ≥ 0 and |∇n|2 ≥ 0 a.e. (t, x) ∈ O × [0, T ] we easily derive from the above

identity that

4

∫ t

0

(∫

O

A1n · n
(

|n|2 − 1
)

+
dx

)

ds ≥ 2

∫ t

0

(∫

O

∇(|n|2 − 1) · ∇ξdx

)

ds.

Thanks to [3, Exercise 7.1.5, p 283] we have

∫ t

0

(∫

O

∇(|n|2 − 1) · ∇ξdx

)

ds =

∫ t

0

∫

O

|∇(|n|2 − 1)|21{|n|2>1}dx ds,

which implies

4

∫ t

0

(∫

O

A1n · n
(

|n|2 − 1
)

+
dx

)

ds ≥

∫ t

0

∫

O

|∇(|n|2 − 1)|21{|n|2>1}dx ds.

We also have

4

∫ t

0

(∫

O

[(v · ∇)n] · [n
(

|n|2 − 1
)

+
]dx

)

ds

= 2

∫ t

0

(∫

O

[(v · ∇)(|n|2)][
(

|n|2 − 1
)

+
]dx

)

ds

=

∫ t

0

(∫

O

(v · ∇)ξdx

)

ds

= 0.

Since f (n) = 0 for |n|2 > 1 and ξ f (n) = 0 for |n|2 ≤ 1 we have

4

∫ t

0

(∫

O

ξ f (n) · n dx

)

ds = 0.
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Therefore we see that y(t) satisfies the estimate

y(t) + 2

∫ t

0

∫

{|n|2>1}

|∇(|n|2 − 1)+|2ds ≤ y(0),

for almost all (ω, t) ∈ � × [0, T ]. Since the second term in the left hand side of the

above inequality is positive and y(0) = ‖(|n0|
2 − 1)+‖2 and by assumption |n0|

2 ≤ 1

for almost all (ω, t, x) ∈ � × [0, T ] × O we derive that

y(t) = 0,

for almost all (ω, t) ∈ � × [0, T ], T ≥ 0. Hence we have |n|2 ≤ 1 a.e. (ω, t, x) ∈

� × [0, T ] × O, T ≥ 0. ⊓⊔
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6. Appendix: Some important estimates

In this section we recall or establish some crucial estimates needed for the proof of

our mains results.

First, let d ∈ [1, 4] and put a = d
4

. Then the following estimates, valid for all

u ∈ W
1,4, are special cases of Gagliardo–Nirenberg’s inequalities:

‖u‖L4 ≤ ‖u‖1−a‖∇u‖a, (6.1)

‖u‖L∞ ≤ ‖u‖1−a

L4 ‖∇u‖a
L4 . (6.2)

The inequality (6.1) can be written in the spirit of the continuous embedding

H
1 ⊂ L

4. (6.3)
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It follows from (6.2) and (6.3) that for u ∈ H
2

‖u‖L∞ ≤ ‖u‖1−a
1 ‖u‖a

2 . (6.4)

All these facts hold as well for the corresponding spaces Lr , r = 4,∞, and Hℓ,

ℓ = 1, 2. Next we give some properties of the bilinear form B and B̃ defined in Sect. 2

(see Eqs. (2.3) and (2.4) on page 6, respectively).

Lemma 6.1 The bilinear mapping B(·, ·) mappings continuously V × H
1 into V∗ and

〈B(u, v), w〉V∗,V = b(u, v, w), for any u ∈ V, v ∈ H
1, w ∈ V, (6.5)

〈B(u, v), w〉V∗,V = −b(u, w, v) for any u ∈ V, v ∈ H
1, w ∈ V, (6.6)

〈B(u, v), v〉V∗,V = 0 for any u ∈ V, v ∈ V, (6.7)

‖B(u, v)‖V∗ ≤ C0‖u‖1− d
4 ‖∇u‖

d
4 ‖v‖1− d

4 ‖∇v‖
d
4 , for all u ∈ V, v ∈ H

1. (6.8)

Proof This lemma is well-known and we refer to [45, Chapter II, Section 1.2] for its

proof. ⊓⊔

With an abuse of notation, we again denote by B̃(·, ·) the restriction of B̃(·, ·) to

V × H2.

Lemma 6.2 The bilinear operator B̃ mappings continuously V×H2 into L2 and there

exists C1 > 0 such that

‖B̃(v, n)‖ ≤ C1‖v‖1− d
4 ‖∇v‖

d
4 ‖∇n‖1− d

4 ‖∇2n‖
d
4 , for any v ∈ V, n ∈ H2. (6.9)

Moreover, we have

〈B̃(v, n), n〉 = 0, for any v ∈ V, n ∈ H2. (6.10)

Proof We can argue as in the proof of (6.8) (see also [45, Chapter II, Section 1.2]) to

establish the estimate (6.9). The identity (6.10) easily follows by integration-by-parts

and by taking into account that div v = 0 and v is zero on the boundary. ⊓⊔

Remark 6.3 Using the same arguments as in the proof of Lemma 6.2 we can also prove

that B(·, ·) mappings continuously V × D(A) into H. Furthermore, B satisfies (6.9)

with (v, n) ∈ V × H2 replaced by (u, v) ∈ V × D(A).

We finally close this appendix with the following lemma.

Lemma 6.4 There exist some positive constants c1 and c2 such that for any ni ∈ H3,

i= 1, 2 we have, with a = d
4

,

‖M(n1) − M(n2)‖ ≤ c2

(

‖n1 − n2‖2‖n1‖
1−a
2 ‖n1‖

a
3

+ ‖n1 − n2‖
1−a
2 ‖n1 − n2‖

a
3‖n2‖2

)

.

(6.11)
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Note that we used the shorthand notation M(n) := M(n, n).

Proof From elementary calculi we infer the existence of a constant C > 0 such that

‖M(f, g)‖ ≤ C‖D2f‖‖∇g‖L∞ + C‖∇f‖L4‖D2g‖L4 .

Owing to the embedding (6.3) it is not difficult to check that

‖M(f, g)‖ ≤ C‖f‖2

(

‖∇g‖L∞ + ‖D2g‖L4

)

.

Owing to (6.1) and (6.4) and the embedding (6.3) we obtain that

‖M(f, g)‖ ≤ C‖f‖2‖g‖1−a
2 ‖g‖a

3, a =
d

4
. (6.12)

Now, note that

M(n1) − M(n2) = M(n1 − n2, n1) + M(n2, n1 − n2).

From this last identity and (6.12) we easily deduce the inequality (6.11). This ends the

proof of Lemma 6.4. ⊓⊔
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6. Brzeźniak, Z., Goldys, B., Jegaraj, T.: Weak solution of a stochastic Landau–Lifshitz–Gilbert equation.

Appl. Math. Res. Express 1, 33 (2012)
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