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SUMMARY

Metabolic reprogramming provides critical informa-

tion for clinical oncology. Using molecular data of

9,125 patient samples from The Cancer Genome

Atlas, we identified tumor subtypes in 33 cancer

types based on mRNA expression patterns of seven

major metabolic processes and assessed their clin-

ical relevance. Our metabolic expression subtypes

correlated extensively with clinical outcome: sub-

types with upregulated carbohydrate, nucleotide,

and vitamin/cofactor metabolism most consistently

correlated with worse prognosis, whereas subtypes

with upregulated lipid metabolism showed the oppo-

site. Metabolic subtypes correlated with diverse so-

matic drivers but exhibited effects convergent on

cancer hallmark pathways and were modulated by

highly recurrent master regulators across cancer

types. As a proof-of-concept example, we demon-

strated that knockdown of SNAI1 orRUNX1—master

regulators of carbohydrate metabolic subtypes—

modulates metabolic activity and drug sensitivity.

Our study provides a system-level view of metabolic

heterogeneity within and across cancer types and

identifies pathway cross-talk, suggesting related

prognostic, therapeutic, and predictive utility.

INTRODUCTION

Teleologically, cancer cells must modify their metabolic pro-

grams to adapt to the energy and macronutrient requirements

that support rapid proliferation. Indeed, metabolic reprogram-

ming is a well-established hallmark of cancer (Hanahan and

Weinberg, 2011). For example, alterations in carbohydrate meta-

bolism epitomized by the Warburg effect have been recognized

for decades (Vander Heiden et al., 2009). Although different

metabolic functions are known to be perturbed in cancer, studies

of cancer metabolism usually focus on a specific perturbation

and investigate it in isolation for a specific tumor type. However,

metabolic reprogramming in tumor cells is complex, frequently

consisting of alterations in several metabolic functions that syn-

ergize to promote tumorigenesis and cancer cell proliferation.

Elucidating the full spectrum of metabolic reprogramming that

occurs in human cancers will provide key insights into an essen-

tial aspect of tumor development and will also build a basis for

the rational design of cancer treatments that target metabolism.

During carcinogenesis, somatic alterations in oncogenes

and tumor suppressors transform cells by inducing broad

gene expression changes that subsequently cause metabolic

Cell Reports 23, 255–269, April 3, 2018 ª 2018 The Author(s). 255
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



0 1 2 3 4 5 6

0

1

2

3

4

5

6

Other genes [−log (p value)] 10

P
a

th
w

a
y
 g

e
n

e
s
 [

−
lo

g
(p

 v
a

lu
e

)]
1

0

P
a

th
w

a
y
 g

e
n

e
s

[-
lo

g
(p

 v
a

lu
e

)]
1

0

Terunuma et al.

other genes

{
C

A

B

 Other genes [-log (p value)]10

D

Spearmn’s rank test

 Expression level of gene  j

M
e
ta

b
o
lit

e
 i

Spearmn’s rank test

 Expression level of gene  j

M
e
ta

b
o
lit

e
 i

Spearmn’s rank test

 Expression level of gene  j

M
e
ta

b
o
lit

e
 i

Spearmn’s rank test

 Expression level of gene  j

M
e
ta

b
o
lit

e
 i

Spearmn’s rank test

 Expression level of gene  j

M
e
ta

b
o
lit

e
 i

Spearmn’s rank test

 Expression level of gene  j

M
e
ta

b
o
lit

e
 i

pathway genes

2
9

6
 m

e
ta

b
o

lit
e

s

~
2

0
,0

0
0

 g
e

n
e

s

0 1 2 3 4 5 6

0

2

4

6

8

Other genes [−log (p value)] 10

P
a

th
w

a
y
 g

e
n

e
s
 [
−

lo
g

(p
 v

a
lu

e
)]

1
0

0 1 2 3 4 5 6
0

2

4

6

8

5,6−dihydrouracil

(Nucleotide)

Other genes [−log (p value)] 10
P

a
th

w
a

y
 g

e
n

e
s
 [

−
lo

g
(p

 v
a

lu
e

)]
1

0

0 1 2 3 4 5 6
0

2

4

6

8

Other genes [−log (p value)] 10

P
a

th
w

a
y
 g

e
n

e
s
 [

−
lo

g
(p

 v
a

lu
e

)]
1

0

p
h

e
n

o
ls

u
lf
a

te
s
a

rc
o

s
in

e
5

−
m

e
th

y
lt
h

io
a

d
e

n
o

s
in

e
is

o
b

u
ty

ry
lc

a
rn

it
in

e
2

−
h

y
d

ro
x
y
b

u
ty

ra
te

o
p

h
th

a
lm

a
te

3
−

m
e

th
y
lh

is
ti
d

in
e

2
−

m
e

th
y
lb

u
ty

ro
y
lc

a
rn

it
in

e
p

−
c
re

s
o

ls
u

lf
a

te
h

y
d

ro
x
y
is

o
v
a

le
ro

y
lc

a
rn

it
in

e
3

−
m

e
th

y
l−

2
−

o
x
o

v
a

le
ra

te
g

lu
ta

m
in

e
th

re
o

n
in

e
N

−
a

c
e

ty
lis

o
le

u
c
in

e
2

−
a

m
in

o
b

u
ty

ra
te

h
is

ta
m

in
e

k
y
n

u
re

n
in

e
N

−
a

c
e

ty
lm

e
th

io
n

in
e

4
−

h
y
d

ro
x
y
p

h
e

n
y
lp

y
ru

v
a

te
S

−
a

d
e

n
o

s
y
lh

o
m

o
c
y
s
te

in
e

h
is

ti
d

in
e

4
−

m
e

th
y
l−

2
−

o
x
o

p
e

n
ta

n
o

a
te

N
−

a
c
e

ty
lm

a
n

n
o

s
a

m
in

e
la

c
ta

te
ri
b

o
s
e

3
−

p
h

o
s
p

h
o

g
ly

c
e

ra
te

Is
o

b
a

rr
ib

u
lo

s
e

5
−

p
h

o
s
p

h
a

te
x
y
lu

lo
s
e

5
−

p
h

o
s
p

h
a

te
N

−
a

c
e

ty
ln

e
u

ra
m

in
a

te
N

−
a

c
e

ty
lg

lu
c
o

s
a

m
in

e
6

−
p

h
o

s
p

h
a

te
fr

u
c
to

s
e

−
6

−
p

h
o

s
p

h
a

te
e

ry
th

ro
n

a
te

fu
c
o

s
e

g
lu

c
u

ro
n

a
te

m
a

n
n

o
s
e

−
6

−
p

h
o

s
p

h
a

te
N

−
a

c
e

ty
lg

lu
c
o

s
a

m
in

e
fr

u
c
to

s
e

ri
b

it
o

l
g

lu
c
o

s
e

−
6

−
p

h
o

s
p

h
a

te
Is

o
b

a
rf

ru
c
to

s
e

1
6

−
d

ip
h

o
s
p

h
a

te
g

lu
c
o

s
e

1
6

−
d

ip
h

o
s
p

h
a

te
s
e

d
o

h
e

p
tu

lo
s
e

−
7

−
p

h
o

s
p

h
a

te
m

a
n

n
o

s
e

ri
b

u
lo

s
e

s
o

rb
it
o

l
x
y
lit

o
l

p
y
ro

p
h

o
s
p

h
a

te
p

h
o

s
p

h
a

te
b

u
ty

ry
lc

a
rn

it
in

e
g

ly
c
e

ro
l3

−
p

h
o

s
p

h
a

te
2

−
d

e
o

x
y
g

u
a

n
o

s
in

e
5

6
−

d
ih

y
d

ro
u

ra
c
il

N
1

−
m

e
th

y
la

d
e

n
o

s
in

e
u

ra
c
il

a
d

e
n

in
e

h
y
p

o
x
a

n
th

in
e

th
y
m

in
e

p
s
e

u
d

o
u

ri
d

in
e

a
d

e
n

o
s
in

e
3

−
m

o
n

o
p

h
o

s
p

h
a

te
a

d
e

n
o

s
in

e
5

−
m

o
n

o
p

h
o

s
p

h
a

te
u

ri
d

in
e

g
u

a
n

in
e

a
d

e
n

o
s
in

e
2

−
m

o
n

o
p

h
o

s
p

h
a

te
g

u
a

n
o

s
in

e
x
a

n
th

o
s
in

e
2

−
d

e
o

x
y
in

o
s
in

e
c
y
ti
d

in
e

5
−

m
o

n
o

p
h

o
s
p

h
a

te
in

o
s
in

e
N

1
−

m
e

th
y
lg

u
a

n
o

s
in

e
2

−
O

−
m

e
th

y
lg

u
a

n
o

s
in

e
a

d
e

n
o

s
in

e
n

ic
o

ti
n

a
m

id
e

a
d

e
n

in
e

d
in

u
c
le

o
ti
d

e
fl
a

v
in

a
d

e
n

in
e

d
in

u
c
le

o
ti
d

e
a

s
c
o

rb
a

te
p

a
n

to
th

e
n

a
te

Vitamin cofactor
Nucleotide

Lipid
Energy

Carbohydrate
Amino acid

0 5 10 15 20 25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Number of significant hits

D
e

n
s
it
y

0 5 10 15 20 25

0.0

0.5

1.0

1.5

Carbohyrate

Number of significant hits

D
e

n
s
it
y

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Number of significant hits

D
e

n
s
it
y

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

Lipid

D
e

n
s
it
y

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

Nucleotide

Number of significant hits

D
e

n
s
it
y

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Vitamin cofactor

Number of significant hits

D
e

n
s
it
y

Number of significant hits

( p = 0.014 ) ( p = 0.001 ) ( p = 0.05 )

( p = 0.047 ) ( p = 0.006 ) ( p = 0.021 )

Figure 1. The Expression Patterns of Metabolic Pathway Genes Reflect Metabolite Levels in Cancer Patient Samples

(A) The analytic pipeline for assessing whether the expression levels of metabolic pathway genes are correlated with the concentration of a given

metabolite.

(legend continued on next page)
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reprograming (Vander Heiden and DeBerardinis, 2017). Thus,

gene expression represents a molecular dimension of particular

interest in studying cancer metabolism since it bridges between

oncogenic drivers and metabolic phenotypes. Some pioneering

studies have analyzed large-scale gene expression data across

multiple cancer types (Haider et al., 2016; Hu et al., 2013; Nilsson

et al., 2014; Reznik and Sander, 2015). Focusing on comparisons

of tumor and adjacent normal tissue, those studies show

widespread transcriptional dysregulation of metabolic genes.

Although such studies have provided significant insight into

alteredmetabolic pathways of cancer cells, the clinical relevance

of the results may be limited since tumor and normal tissues

usually contain very different cell compositions (e.g., fraction of

epithelial cells). Gaude and Frezza (2016) took a more pertinent,

pathway-focused approach to the analysis of data from clinical

samples and identified several differentially expressedmetabolic

pathways that distinguish patients by clinical outcomes. Those

and many other studies have revealed considerable metabolic

heterogeneity, both within and among cancer types, underscor-

ing the importance of patient stratification in a context-specific

manner. However, it remains unclear how to stratify cancer

patients most effectively into different subtypes (groups) based

on the expression patterns of metabolic genes. More impor-

tantly, the utility of such tumor subtypes in guiding clinical

practice and therapeutic development remains a major ques-

tion. Here, using the comprehensive molecular data recently

compiled in The Cancer Genome Atlas (TCGA) (Weinstein

et al., 2013), we focused on seven metabolic super-pathways

and characterized metabolic expression subtypes in 33 TCGA

cancer types (9,125 samples; Table S1) to address those ques-

tions in a systematic way.

RESULTS

Expression Patterns of Metabolic Genes Reflect

Metabolic Activities in Cancer Patients

To gain an incisive view of metabolic heterogeneity in cancer, we

curated the gene sets of sevenmetabolic super-pathways based

on the latest Reactome annotations (Fabregat et al., 2016).

Included were amino acid metabolism (348 genes), carbohy-

drate metabolism (286 genes), integration of energy (110 genes),

lipid metabolism (766 genes), nucleotide metabolism (90 genes),

tricarboxylic acid cycle (TCA cycle, 148 genes) and vitamin &

cofactor metabolism (168 genes) (Table S2). Those gene sets

are largely independent of each other, with only a few genes of

overlap, and they collectively represent major metabolic

processes.

One key question is whether the expression patterns of meta-

bolic pathway genes reflect actual metabolic activities in pa-

tients. Since data on the metabolites themselves are not avail-

able for TCGA samples, we obtained a published dataset that

contains parallel metabolite profiling and gene expression data

on 60 breast cancer patient samples (Terunuma et al., 2014)

and focused on the 296 metabolites that had been annotated

to 6 out of the 7 metabolic super-pathways that we surveyed.

For each metabolite, we calculated the correlation of its abun-

dance with gene expression levels in the corresponding meta-

bolic pathway, then compared the resultant p value distribution

with the background distribution calculated from other genes

(Figure 1A). In total, we detected 73metabolites that significantly

correlated with the expression of corresponding metabolic

pathway genes (false discovery rate [FDR] < 0.15), including

22 metabolites involved in amino acid metabolism, 22 in carbo-

hydrate metabolism, 21 in nucleotide metabolism, 4 in vitamin &

cofactor metabolism, 2 in integration of energy, and 2 in lipid

metabolism (Figure 1B shows four representative cases from

different pathways; Figure 1C provides the full list of significant

metabolites). To assess the statistical significance of the number

of significant hits detected, we performed a simulation analysis

to compare the number of metabolites with significant signals

from each pathway with those based on random gene sets of

the same size. Strikingly, all six metabolic pathways showed

higher numbers of significant metabolites than expected by

chance (p < 0.05, Figure 1D). For example, the number of signif-

icant carbohydrate metabolites for the real pathway gene set

was 22, whereas the expected number for a random gene set

was only 0.3 (p < 0.001). These results indicate that the expres-

sion patterns of metabolic pathway genes do reflect metabolic

activities.

Classification of Metabolic Expression Subtypes and

Their Overall Similarity

We next aimed to characterize metabolic heterogeneity within

cancer types based on the expression patterns of metabolic

pathway genes. For that purpose, we developed a computa-

tional method to classify tumor samples into ‘‘directional’’ meta-

bolic subtypes in two independent steps (Figure 2A). In the first

step, within each cancer type, we normalized gene expression

across samples by Z score to obtain a rank value for each

gene (�18,000 coding genes) within each sample. Then, given

the gene set of a specific metabolic pathway, we conducted

gene set enrichment analysis (GSEA) (Subramanian et al.,

2005) on the resulting rank values to classify tumors into three

subtypes: (1) ‘‘upregulated subtype’’ for the samples in which

metabolic pathway genes showed enrichment with high Z scores

(FDR < 0.25); (2) ‘‘downregulated subtype’’ for samples showing

the opposite pattern (FDR < 0.25); and (3) ‘‘neutral subtype’’ for

samples showing no significant enrichment pattern. Note that

the concept of ‘‘upregulated’’ or ‘‘downregulated’’ here is relative

to other tumors within the same cancer type, rather than relative

(B) Representative quantile-quantile (QQ) plots showing p values (log transformed) from themetabolite-gene Spearman correlation coefficients of pathway genes

compared to other genes. Sarcosine for amino acid metabolism; N-acetylmannosamine for carbohydrate metabolism; 5, 6-dihydrouracil for nucleotide meta-

bolism; nicotinamide adenine dinucleotide for vitamin & cofactor metabolism.

(C) Heatmap showing all metabolites whose intracellular concentrations significantly correlate with the expression levels of the corresponding pathway genes

(FDR < 0.15).

(D) The statistical significance of the numbers of metabolites correlated with the pathway gene expression based on the background distribution of random gene

sets. The red lines indicate the true numbers.
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to normal tissues. In the second step, we assessed whether the

metabolic genes overall showed differential expression patterns

(FDR < 0.05) among the tumor subtypes defined in the first step,

given thatmetabolic expression subtypeswere expected to cap-

ture the variation in metabolic pathway gene expression. Among

231 cases assessed (7 pathways 3 33 cancer types), 93.9% of

the cases (217) met that criterion and were kept for subsequent

analyses.

Using the method described above for each metabolic

pathway, we classified 9,125 samples into the three subtypes.

Figure 2B shows the relative proportions of those subtypes

across and within cancer types. Figure S1 shows metabolic

genes with the most consistent changes among the subtypes

across cancer types. Based on the subtype information, we

further examined the co-occurrence of expression subtypes of

different metabolic pathways and found that many subtype

combinations occurred at a much higher frequency than ex-

pected by chance (Figure 2C). For example, the most common

subtype combination was those with upregulated amino acid

metabolism, nucleotide metabolism, and TCA cycle. They

showed >10-fold more frequently than expected by chance (Fig-

ure 2D). We compared the similarity of different metabolic sub-

type classifications based on sample-level labels and found

that amino acid metabolism, TCA cycle, and nucleotide meta-

bolism formed one tight cluster, whereas integration of energy,

carbohydrate metabolism, lipid metabolism, and vitamin &

cofactor metabolism formed another distinct cluster (Figure 2E).

These results provide a global view of the similarity of different

metabolic pathways and may reflect crosstalk among them.

Metabolic Expression Subtypes Show Extensive

Clinically Relevant Patterns

To assess the clinical relevance of themetabolic expression sub-

types identified above, we next determined correlations with pa-

tient overall survival, since survival represents a key clinical index

of tumor aggressiveness. Figure 3A is a summary of 33 signifi-

cant survival associations for the metabolic subtypes in 27 can-

cer types that included sufficient sample size and follow-up time

(log-rank test, FDR < 0.2, 28 associations remained significant

after adjusting for tumor purity). Notably, upregulated subtypes

of carbohydrate, nucleotide, and vitamin & cofactor metabolism

were consistently associated with poor prognosis (Figure 3B),

compatible with the hypothesis that cancer cells have increased

demands for glucose uptake and nucleotide synthesis (Pavlova

and Thompson, 2016; Vander Heiden and DeBerardinis, 2017).

Unexpectedly, upregulated TCA cycle and lipid metabolic sub-

types were associated with better prognosis (Figure 3C). Amino

acidmetabolism and energy integration subtypes showedmixed

patterns. We obtained similar results using univariate Cox

regressionmodels (Figure S2). The consistent association of sur-

vival patterns with certain metabolic subtypes (e.g., carbohy-

drate metabolism) across cancer types suggests that metabolic

subtyping has potential prognostic value.

Among the cancer types surveyed, low-grade glioma (LGG)

exhibited the most extensive survival correlations (5 out of

the 7 metabolic pathways; Figure S3). For LGG, poor prognosis

was significantly associated with downregulated subtypes of

amino acid metabolism, energy integration, and TCA cycle but

with upregulated subtypes of carbohydrate and vitamin &

cofactor metabolism. LGGs have mutations of isocitrate dehy-

drogenase 1 (IDH1) in >70% of cases and mutations of IDH2 in

a minority of cases. IDH1 and IDH2 mutations are activating for

production of high levels of the oncometabolite 2-hydroxygluta-

rate (2HG) from alpha-ketoglutarate (Claus et al., 2015; Dang

et al., 2009;Ward et al., 2010). The extensive prognostic patterns

observed support the notion of glioma as a disease influenced by

metabolism.

Genomic profiling studies, especially recent TCGA studies,

have characterized a number of tumor subtypes that capture

major patterns of within-disease heterogeneity. Those tumor

subtypes are informative about cancer pathophysiology and, in

some cases, for clinical decisionmaking.We therefore examined

the correlations between metabolic expression subtypes and

previously established molecular tumor subtypes and detected

many significant correlations (Figure S4). For example, in breast

invasive carcinoma (BRCA), we found that the vast majority of

cases in which nucleotide metabolism was downregulated

belonged to the luminal A (lumA) subtype (Sørlie et al., 2001);

in esophageal carcinoma (ESCA), cases with upregulated lipid

and vitamin & cofactor metabolismwere enriched in the chromo-

somal instability subtype (CIN) (Cancer Genome Atlas Research

Network, 2017); in glioblastoma multiforme (GBM), cases of

downregulated lipid metabolism were enriched in the IDHmut-

non-codel subtype (Eckel-Passow et al., 2015); in head-neck

squamous cell carcinoma (HNSC), cases with downregulated

carbohydrate metabolism were enriched in the HPV� subtype

(Figure 3C). These results highlight the clinical relevance of

metabolic expression subtypes presented here and provide an

informative metric for defining tumor heterogeneity.

Metabolic Expression Subtypes Are Associated with

Diverse Somatic Drivers but Convergent Pathway

Functional Effects

Metabolic reprogramming can be largely viewed as a conse-

quence of oncogenic driver events (DeBerardinis and Chandel,

2016). For example, mutated TP53 and MYC amplification

have been extensively linked to anabolic or catabolic activities,

including glycolysis and redox balance in cancer (Kruiswijk

et al., 2015; Stine et al., 2015). To identify somatic alterations

that potentially drive metabolic expression subtypes, we per-

formed a correlation analysis of metabolic expression subtypes

with mutation driver genes. For each cancer type, we identified

(C) Frequency distribution of a specific metabolic subtype combination. The red line is for the observed distribution; black lines are for the random expectation

assuming that each metabolic pathway is perturbed independently in a tumor sample.

(D) The top 10 most frequently observed metabolic subtype combinations. Red, upregulated subtype; gray, neutral subtype; and blue, downregulated subtype.

The right panel indicates the observed and expected frequencies of a specific subtype combination. Data are represented as mean ± SD. *p < 0.05, ***p < 0.001.

(E) Clustering pattern of the seven metabolic subtypes based on the similarity of subtype labels across 9,125 samples.

See also Table S1, Table S2, and Figure S1.
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significantly mutated genes (SMGs, identified byMutSigCV, with

amutation frequency >5%) (Lawrence et al., 2013) and assessed

whether their mutation status correlated with metabolic sub-

types. We found 31 associated SMGs (chi-square test, FDR <

0.05), and their associated patterns were quite diverse across

cancer types (Figure 4A). The SMGs identified recurrent across

multiple cancer types included TP53 (9 cancer types), PIK3CA

(4 cancer types), KRAS (3 cancer types), CDH1 (2 cancer types),

CTNNB1 (2 cancer types), EGFR (2 cancer types), HRAS (2 can-

cer types), IDH1 (2 cancer types), KEAP1 (2 cancer types), and

NFE2L2 (2 cancer types). Figure 4B shows the metabolic sub-

type correlations with mutated TP53 as an example. Similarly,

we examined the correlations of metabolic expression subtypes

with potential drivers of somatic copy number alteration (SCNA).

For each cancer type, we identified amplified oncogenes or

deleted tumor suppressors in SCNA peaks (identified by GI-

SITC2, FDR < 0.25) (Mermel et al., 2011) and assessed whether

their copy number status correlated with a metabolic subtype

(chi-square test, FDR < 0.05). We identified 35 such drivers.

Some of them showed correlations with multiple metabolic sub-

types in several cancer types, includingARID1A (8 cancer types),

MYC (7 cancer types), CDKN2A (6 cancer types), EGFR (5 can-

cer types), PARK2 (5 cancer types), RB1 (4 cancer types),

PTEN (4 cancer types), AKT1 (4 cancer types), BCL2L1 (4 cancer

types), and SOX2 (4 cancer types; Figure 4C). Figure 4D shows

the subtype correlations with amplified MYC as an example.

These analyses provide a broad view of potential somatic drivers

associated with metabolic reprogramming in human cancer.

To assess further the biological relevance ofmetabolic expres-

sion subtypes, we examined their associations with various

cellular pathways by GSEA based on mRNA expression (FDR <

0.01, Figure 4E). That analysis included six functional cancer hall-

marks (i.e., angiogenesis, apoptosis, DNA repair, epithelial–

mesenchymal transition [EMT], G2M checkpoint, and inflamma-

tory response) and also the mTORC1 signaling pathway, which

has been implicated in metabolic dysregulation and cancer

development (Hay, 2016) (STARMethods). Interestingly, despite

the diversity of cancer types surveyed, we found that pathway-

level functional effects associated with each kind of metabolic

subtype were largely consistent across cancer types. Among

the seven metabolic expression subtypes, amino acid meta-

bolism, nucleotide metabolism, and TCA cycle exhibited the

most similar profiles. Their upregulated subtypes were consis-

tently associated with increased DNA repair, decreased angio-

genesis, decreased EMT, and decreased inflammation (Fig-

ure 4E). Angiogenesis, EMT, and inflammation were positively

correlated with upregulated carbohydrate metabolism and inte-

gration of energy and, to a lesser degree, upregulated lipid meta-

bolism andmetabolism of vitamins & cofactors. G2M checkpoint

was consistently negatively correlated with the energy and lipid

metabolism subtypes. DNA repair was inversely correlated with

energy integration and lipid metabolism. Interestingly, mTORC1

signaling was generally increased for all of the metabolic sub-

types except energy integration, consistent with the central role

of mTORC1 signaling in regulating cancer metabolism. Overall,

these results suggest that metabolic activity is intrinsically

coupled with cancer hallmark pathways.

Highly Recurrent Master Regulators for Metabolic

Subtypes across Cancer Types

To elucidate how the metabolic expression subtypes are regu-

lated, we performed computational analyses to identify two types

of ‘‘master regulators’’: transcription factors (TFs) and miRNAs

(STAR Methods). For TFs (Figure 5A), we first inferred tumor-

context-specific gene regulatory networks based on the cancer-

type-specific expression data, using the algorithm for reconstruc-

tion of accurate cellular networks (ARACNe) (Lachmann et al.,

2016).We thenemployed themaster regulator inferencealgorithm

(MARINa) and the shadow analysis (Aytes et al., 2014; Lefebvre

et al., 2010) to infer the master TFs for each metabolic pathway

in each cancer type. The analysis revealed many highly recurrent

TFs for the same metabolic pathway across different cancer

types. Among different metabolic subtypes, amino acid meta-

bolism, nucleotide metabolism, and TCA cycle shared a large

number of master TFs across many cancer types (Figure 5B).

For miRNAs, we used two criteria to identify master regulators:

(1) the miRNA targets are significantly enriched in differentially

expressed genes between upregulated and downregulated sub-

types and (2) the miRNAs themselves show significant corre-

sponding changes between the two subtypes (STAR Methods).

We found that many miRNA master regulators recurred across

cancer types. miR-484, miR-107, miR-320a, and miR-429 ap-

peared to be the strongest regulators of themetabolism of amino

acids, nucleotides, carbohydrates, and vitamins & cofactors.

Interestingly, the latter three miRNAs have been reported to be

key regulators of cancer metabolism (Chan et al., 2015; Rottiers

and Näär, 2012) (Figure 5C). Further examination revealed that

SCNAs can modulate the expression of some regulators, such

as miR-320a in stomach adenocarcinoma (STAD) for nucleotide

metabolic expression subtypes (Figure 5D).

A Systematic View of Altered Metabolism in Cancer

Integrating insights from the above analyses, a systematic view

of heterogeneous metabolic activity in cancer has emerged

Figure 3. Associations of Metabolic Expression Subtypes with Patient Survival Times and Tumor Subtypes

(A) Clinical associations of metabolic expression subtypes with patient overall survival times. Color indicates the correlation direction; significant correlations

(log-rank test, FDR < 0.2) are boxed. Those cases without qualified subtype classifications are left in blank.

(B) Kaplan-Meier plots for carbohydrate metabolic expression subtypes associated with patient overall survival times in head and neck squamous cell carcinoma

(HNSC), low-grade glioma (LGG), lung adenocarcinoma (LUAD), and sarcoma (SARC).

(C) Kaplan-Meier plots for lipid metabolic expression subtypes associated with patient overall survival times in adrenocortical carcinoma (ACC), colon adeno-

carcinoma (COAD), kidney renal clear cell carcinoma (KIRC), and liver hepatocellular carcinoma (LIHC). Cancer type, metabolic expression subtype, and the p

value of log-rank test are shown at the top of each plot.

(D) Representative examples of associations between metabolic expression subtypes and established tumor subtypes. p values are based on chi-square test.

See also Figures S2–S4.
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(Figure 6A). Metabolic reprogramming may result from diverse

somatic driver alterations in different tumor contexts, but it ap-

pears to converge on common pathway-level functional effects

through modulation of highly recurrent master regulators across

cancer types, ultimately leading to consistent survival patterns.

According to this model, the master TFs identified here are key

nodes with the greatest influence on systems-level metabolic

activities. Therefore, those TFs may represent a class of thera-

peutic targets whose inhibition could potentially yield clinical

benefits.

To test that hypothesis, we focused on carbohydrate meta-

bolism, since its upregulated subtypes showed the most consis-

tently poor prognostic patterns across cancer types (Figures 3A

and 3B). To be an ideal target, a master TF should bemore highly

expressed in the subtype with worse prognosis so that inhibition

and subsequent downregulation of the target could confer

enhancedsurvival. Among the8cancer typeswhoseupregulated

carbohydrate subtypes had significantly worse survival rates,

fourmaster TFs,SNAI1,RUNX1,RUNX2, and FOSL1, were iden-

tified in at least three cancer types (Figure 6B).Wechose twoTFs,

SNAI1 and RUNX1, to perform experimental perturbation. Fig-

ures 6Cand6Dshowhigher expression levels of those twogenes

in the upregulated subtypes in lung adenocarcinoma (LUAD) and

sarcoma (SARC), respectively. Using shRNAs,we knockeddown

the expression ofSNAI1 in a lung cancer cell line, NCIH1975, and

RUNX1 in a sarcoma cell line, U2OS (Figure S5, Table S3). We

then measured the relative abundance of intracellular glucose

(amodel carbohydrate) using high-resolutionmass spectrometry

at time points of 0 h, 6 h, and 24 h. The concentrations of intracel-

lular glucose were significantly decreased in the knockdown cell

lines (Figure 6 E and F, paired t test, p < 0.05), suggesting that

SNAI1 and RUNX1 indeed positively modulate carbohydrate

metabolism. Further studies with more robust controls will be

required to validate the proposed effects in terms of whether

the knockdown affects glucose transporter expression and

whether the knockdown has predicted effects on carbohydrate

metabolic gene expression.

Metabolic Expression Subtypes Are Informative About

Drug Sensitivity

To explore further the potential clinical utility of carbohydrate

metabolic expression subtypes, we used expression and drug

sensitivity data from Cancer Cell Line Encyclopedia (CCLE) (Bar-

retina et al., 2012; Iorio et al., 2016). We focused on 181 lung

cancer cell lines because of the sufficient sample size for sub-

type classification. Using the same bioinformatic methods as

describedabove,weclassified34, 33, and114cell linesasdown-

regulated, upregulated, and neutral subtypes, respectively. We

next compared themolecular characteristics associatedwith up-

regulated subtypes of patient samples and cell lines. EGFR—the

most important therapeutic target in lung cancer—was identified

as a SCNA driver associated with carbohydrate metabolic

expression subtypes of patient samples. It showed significantly

higher copy-number and mRNA expression levels in the upregu-

lated carbohydrate subtype than in the downregulated subtype

(Figure S6A). Concordantly, the carbohydrate expression sub-

types of lung cancer cell lines adhered to that pattern (Fig-

ure S6B). Furthermore, the cell lines in the upregulated subtype

had higher proliferation rates than those from the downregulated

subtype (Figure S6C), consistent with the observation that LUAD

patients in the upregulated carbohydrate metabolic subtype

exhibited worse prognosis (Figure 3B) (Haverty et al., 2016).

These results independently validate the patterns observed in

TCGA patient samples, suggesting that the analyses are robust.

Given the three carbohydrate expression subtypes of lung

cancer cell lines, we found that 12 drugs showed significantly

different sensitivities (Figure 7A, FDR < 0.05). Among those

drugs, docetaxel is a chemotherapy drug currently used for pa-

tients with lung cancer. Cell lines in the carbohydrate-upregu-

lated subtype were more sensitive to docetaxel than cell lines

in other subtypes (Figure 7B). To test further the effect of carbo-

hydrate metabolism on drug sensitivity, we assessed the sensi-

tivity of lung cancer cell line NCIH1975 (classified as upregulated

subtype) to knockdown of SNAI1, since that perturbation has

been found to modulate carbohydrate metabolism negatively.

Indeed, compared with the negative control (scrambled shRNA),

the SNAI1-KD cell line was more resistant to docetaxel, and

that pattern was consistently observed at both 16 hr and 24 hr

after treatment (Figures 7C and 7D). The results suggest that

LUAD patients with high carbohydrate metabolic activities may

be more likely to benefit from docetaxel treatment.

DISCUSSION

Metabolic reprogramming is considered one of the hallmarks

of cancer (Hanahan and Weinberg, 2011; Ward and Thompson,

Figure 4. Somatic Drivers and Biological Pathways Associated with Metabolic Expression Subtypes

(A) Somatic mutation drivers associated with metabolic expression subtypes. For each cancer type, the mutational status of significantly mutated genes

(identified by MutSigCV, with a mutation frequency > 5%) were assessed based on chi-square test. Colors in each circle indicate the correlations with different

kinds of metabolic expression subtypes.

(B) Correlations of metabolic expression subtypes with TP53mutation status. The inner band indicates the mutation status of TP53 (dark red, mutated; light red,

wide-type); external bands indicate the subtype information of a specific metabolic pathway (red, upregulated; gray, neutral; and blue, downregulated).

(C) Somatic copy number alteration drivers associated with metabolic expression subtypes. For each cancer type, the copy number status of known oncogenes

or tumor suppressors residing in a significant amplification for deletion peak (identified by GISTIC2) were assessed based on chi-square test.

(D) Correlations of metabolic expression subtypes with MYC amplification status. The inner band indicates the amplification status ofMYC (dark red, high-level

amplification; light red, low-level amplification); external bands indicate the subtype information of a specific metabolic pathway (red, upregulated; gray, neutral;

and blue, downregulated). In (A) and (C), only associations with FDR < 0.05 are shown; color indicates the specific associated metabolic pathway.

(E) Correlations of metabolic expression subtypes with six cancer hallmarks and mTOR signaling pathway based on GSEA (the related gene sets are based on

MSigDB). Those cases without qualified subtype classifications are left in blank, and significant enrichments (FDR < 0.01) are colored in red or blue. For the

analysis, differentially expressed genes were identified between the upregulated and downregulated subtypes. Red indicates the enrichment of a hallmark gene

set in genes highly expressed in the upregulated metabolic expression subtype; blue indicates the opposite pattern.
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2012). Because metabolism is so complex, there is a need

for systematic characterization. Several previous studies have

demonstrated considerable heterogeneity in the expression of

genes involved in various metabolic functional pathways (Gaude

and Frezza, 2016; Haider et al., 2016; Hu et al., 2013; Nilsson

et al., 2014; Reznik and Sander, 2015). Based on a breast cancer

patient cohort with parallel metabolite and transcriptomic

profiling data (Terunuma et al., 2014), we demonstrated that

the expression patterns of metabolic pathways indeed reflect

metabolic activities. Metabolite profiling has recently become

an informative approach to elucidate tumor heterogeneity

(Hakimi et al., 2016). Similar analyses should extend to more

patient cohorts to further validate our findings when such data

are available.

The expression patterns analyzed in previous studies ranged

from global to discrete (i.e., affecting particular metabolic path-

ways). Here, we have focused on effective stratification of can-

cers based on the expression heterogeneity of metabolic genes

within cancer types. One central aim is to define meaningful

metabolic expression subtypes. Our computational method,

which combines GSEA and self-contained gene set analysis,

has two advantages: (1) it allows consistent classification of tu-

mor subtypes, facilitating comparison and contrast across a

broad range of cancer types and (2) it classifies tumor samples

according to ‘‘functional state’’ of a specific metabolic process

(upregulated, neutral, or downregulated), facilitating interpreta-

tion of downstream analyses. Through that systematic classifi-

cation, we found that metabolic expression subtypes frequently

correlate with each other. In particular, metabolic perturbations

of amino acids, nucleotides, and TCA cycle are strongly coupled,

as demonstrated by high correlations of their subtype assign-

ment, similar pathway-level associations, and shared master

regulators. That global perspective has not been presented

previously. Another feature of the present study is that, by

integrating TCGA multidimensional molecular data on the

same sample cohorts, we have identified potential drivers and

master regulators associated with the metabolic derangements

observed in our global analysis. While the driver roles of some

alterations identified in affecting metabolism such as TP53

mutation andMYC amplification have been documented, further

efforts will be required to validate the causal relationships of

others.

The metabolic expression subtypes defined here have poten-

tial clinical implications. First, we demonstrate the extensive cor-

relations of metabolic expression subtypes with prognosis

across cancer types, suggesting that the subtypes reflect essen-

tial aspects of tumor development. Notably, different metabolic

expression subtypes showed distinct patterns. The upregulated

subtypes of carbohydrates, nucleotides, and vitamins & cofac-

tors were associated with worse prognosis, whereas lipid meta-

bolism showed the opposite association. Regardless of underly-

ing reasons, that observation suggests a more complex

relationship betweenmetabolic reprogramming and cell prolifer-

ation than usually assumed. Second, using CCLE data, we

demonstrate that the metabolic subtypes correlate with sensi-

tivity to drugs used in the clinic, highlighting the possibility that

metabolic status will sometimes be important to consider in se-

lection of a treatment regime. Overall, the results here support

the potential utility of metabolic expression subtypes as prog-

nostic and predictive markers.

Since metabolic reprogramming is an essential aspect of

tumorigenesis and cancer cell proliferation, inhibition of meta-

bolic functions may inhibit tumor progression. Current strate-

gies for considering the effect of metabolism on therapy focus

on functionally important metabolic isoenzymes that show

cancer-specific somatic or expression changes. There have

been a number of studies along those lines (Vander Heiden

and DeBerardinis, 2017), but targeting of metabolic genes for

therapy has had only very limited success (Vander Heiden

and DeBerardinis, 2017). Our systems-biological analysis sug-

gests a generic therapeutic strategy. For upregulated meta-

bolic subtypes that are consistently associated with worse

patient prognosis, tumors may be vulnerable to a therapy, or

component of combination therapy, that targets their master

regulatory factors. Inhibiting responsible master regulators

has the potential to convert the upregulated subtype to

the downregulated subtype, thereby conferring a survival

benefit. Our functional validation results provide preliminary

but exciting evidence supporting that hypothesis, and further

studies will be required.
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Figure 5. Master Regulators Associated with Metabolic Expression Subtypes

(A) Overview of computational algorithms used to identify master transcription factors.

(B) Network view of ‘‘master’’ transcription factors associated with metabolic expression subtype. The line thickness indicates the number of cancer types where

the connection was identified. Only the connections identified inR3 cancer types are shown.

(C) Network view of ‘‘master’’ miRNA regulators.

(D) MiRNA hsa-miR-320a identified as a master regulator for expression subtypes of the nucleotide metabolism pathway in stomach adenocarcinoma (STAD).

SCNAs of hsa-miR-320a lead to a lower expression in the samples of downregulated subtype. Its target genes are significantly enriched in genes highly

expressed in the downregulated subtype. The middle line in the box is the median, and the bottom and top of the box are the first and third quartiles, and the

whiskers extend to 1.53 interquartile range of the lower quartile and the upper quartile, respectively.
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Figure 6. Effects of Master Regulators on Carbohydrate Metabolism

(A) Systematic view of metabolic reprogramming across cancer types.

(B) The network shows that master TFs for carbohydrate metabolism identified in R3 cancer types whose upregulated subtypes showed significant worse

prognosis, and these master regulators haveR150 target genes and higher expression levels in the upregulated subtypes.

(C and D) Master regulator expression level in three carbohydrate metabolic expression subtypes: SNAI1 in lung adenocarcinoma (LUAD) (C) and RUNX1

in sarcoma (SARC) (D). The middle line in the box is the median, and the bottom and top of the box are the first and third quartiles, and the whiskers extend to

1.53 interquartile range of the lower quartile and the upper quartile, respectively.

(E and F) Relative abundance of intracellular glucose in the NCIH1975 cell line (control) and the cell line with shRNA-mediated SNAI1 knockdown (E) and in the

U2OS cell line (control) and the cell line with shRNA-mediated RUNX1 knockdown (F) at three time points (0 hr, 6 hr, and 24 hr). p value was based on paired t test.

See also Figure S5 and Table S3.
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Figure 7. Carbohydrate Expression Subtypes Are Informative about Drug Sensitivity

(A) Heatmap showing drug sensitivity variation across lung cancer cell lines. Those lung cancer cell lines were classified into downregulated, neutral, and

upregulated carbohydrate metabolic subtypes using the same method as for TCGA patient samples. All the drugs with a significant difference of IC50 (log-

transformed) among the three subtypes (FDR < 0.05) are shown.

(B) The distributions showing the log-transformed IC50 values of docetaxel in the carbohydrate metabolic expression subtypes.

(C and D) The effect of SNAI1 knockdown in NCIH1975 cells on drug response of docetaxel at 16 hr (C) and 24 hr (D). Data are represented as mean ± SE.

Compared to negative control (scrambled shRNA), *p < 0.05.

See also Figure S6.
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N/A

Human: U2OS cells MD Anderson Characterized Cell Line

Core Facility, TX, USA

N/A

Human: HEK293LTX MD Anderson Characterized Cell Line

Core Facility, TX, USA

N/A

Oligonucleotides

shRNA targeting RUNX1 and SNAI1 Table S3, this paper N/A

Primers for quantitative PCR Table S4, this paper N/A

Recombinant DNA

MISSION� TRC2 pLKO.5-puro Non-Mammalian

shRNA Control Plasmid DNA

Sigma-Aldrich, MO, USA Cat#SHC202

pLKO-puro shRNA constructs Sigma-Aldrich, MO, USA Refer to Table S3

Lentiviral Packaging Mix psPAX2 and pMD2.G Addgene, MA, USA Plasmid# 12260 and 12259

Software and Algorithms

Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003; Subramanian

et al., 2005)

http://software.broadinstitute.org/

gsea/index.jsp

ARACNe (Lachmann et al., 2016) https://sourceforge.net/projects/

aracne-ap/

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Han Liang

(hliang1@mdanderson.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The NCIH1975 cell line was a generous gift from Dr. Zahid H. Siddik’s laboratory at MD Anderson Cancer Center. HEK293LTX and

U2OS cell lines were obtained fromMD Anderson Characterized Cell Line Core Facility. All cell lines were confirmed by short tandem

repeat (STR) analysis and were negative for mycoplasma contamination prior to use. NCIH1975 cells were cultured in RPMI 1640

medium supplemented with 10% fetal bovine serum. U2OS cells were maintained in DMEM with L-glutamine, 4.5 g/L glucose,

sodium pyruvate and 10% fetal bovine serum.

METHOD DETAILS

Analysis of metabolic pathway genes and metabolite profiling data in breast cancer samples

We obtained metabolite profiling data and mRNA expression data on 60 breast cancer patients (Terunuma et al., 2014). We focused

the 296 metabolites that had been annotated to the 6 metabolic super pathways including 88 in amino acid, 38 in carbohydrate,

9 in integration of energy, 116 in lipid metabolism, 26 in nucleotide, and 19 in vitamin & cofactor metabolism. For each metabolite,

we calculated the Spearman rank correlations between its abundance and the expression levels of the genes in the corresponding

pathway. Then we compared the empirical cumulative distributions of p values from pathway genes versus other genes using

Kolmogorov-Smirnov test. One-tailed test was used to test whether the p values of the pathway gene set were more significant

than those of other genes at FDR < 0.15. To evaluate whether pathway genes are more informative about metabolic activities

than other gene sets, we performed a simulation analysis. We randomly selected a gene set with the same size of a metabolic

pathway and identified the number of metabolites significantly correlated with the expression of the gene set in the same way as

the metabolic pathway genes. We repeated this analysis for 1,000 times to generate the background distribution of significant

hits from which we assessed the observed numbers were statistically higher than random expectation.

Metabolic expression subtype classification

Considering the heterogeneity of the metabolic pathway dysregulation in tumors, we developed an algorithm to classify individual

tumors given the gene set of each metabolic pathway. For a specific patient, the classification was based on the deviation extent

of the expression level of genes in a metabolic functional pathway from the average values of the cohort relative to other genes.

For each of the 33 cancer types, Z-normalization was performed per gene across samples. Then, the genes were ranked by Z scores

per sample. GSEA pre-ranked analysis was used to determine whether the genes from ametabolic pathway were enriched at the top

or bottom of the pre-ranked gene list for each sample. For a specific pathway, a tumor sample was classified into one of three distinct

groups at FDR < 0.25: ‘‘upregulated,’’ ‘‘downregulated,’’ or ‘‘neutral.’’ Then we performed self-contained gene analysis to confirm

each subtype classification. Given themetabolic expression subtypes, we first evaluated expression differentiation of protein-coding

genes using ANOVA and then used the Kolmogorov-Smirnov test to determine whether the p values of the pathway genes were

lower than those from other genes (FDR < 0.05). Through this systematic analysis, each tumor sample was labeled with seven kinds

of metabolic expression subtypes. To determine the mutual dependence among those seven classifications, mutual information was

calculated using the R package ‘‘entropy.’’ After normalizing the mutual information by dividing the maximum value for each row, the

mutual information distance was calculated as 1- mutual information.

Clinical relevance analysis of metabolic expression subtypes

We evaluated the correlations of metabolic expression subtypes with two clinical features respectively: the patients’ overall survival

time and established molecular subtype. The R package ‘‘survival’’ was used to perform the overall survival analysis and produce

Kaplan-Meier survival plots. A log-rank test was used to assess the significance (FDR < 0.2). For significant survival associations,

we further assessed whether the subtypes correlated with tumor purity using ANOVA or whether the survival correlations remained

significant after including tumor purity as covariate in Coxmodel. As formolecular subtype analysis, chi-square test was performed to

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ssmarina (Aytes et al., 2014; Lefebvre et al., 2010) https://figshare.com/articles/

ssmarina_R_system_package/785718

Thermo TraceFinder ThermoFisher Scientific https://www.thermofisher.com/

order/catalog/product/OPTON-30491
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access the correlation between tumor subtypes and metabolic expression subtypes (assigned to one of three values, �1, 0, or 1,

FDR < 0.05).

Somatic driver association analysis

To identify oncogenic events that potentially drive metabolic reprogramming, we analyzed the associations of mutation drivers and

SCNA drivers with metabolic expression subtypes in each cancer type. For the mutation analysis, we first excluded 314 hypermu-

tated samples, and only focused on the significantly mutated genes (identified by MutSigCV 1.4, FDR < 0.25) (Lawrence et al., 2013)

with a mutation frequency > 5% for each cancer type. We performed chi-square test to determine the association between the

metabolic expression subtypes and a specific mutated gene status, and reported the significance at FDR < 0.05. For the SCNA anal-

ysis, we assessed the copy number status of known oncogenes or tumor suppressors (Zack et al., 2013) residing in a significant

amplification or deletion peak identified by GISTIC2 (Mermel et al., 2011) in each cancer type by chi-square test (FDR < 0.05).

Biological pathway association analysis

To explore the biological processes responsible for the metabolic reprogramming, we analyzed the correlations between metabolic

expression subtypes with cancer hallmark pathways in each cancer type. The log2 transformed RNA-seq data were used. The seven

selected cancer hallmark pathways were angiogenesis, apoptosis, DNA repair, EMT, G2M checkpoint, inflammatory response and

mTORC1 signaling, and the related gene sets were obtained from MSigDB (http://software.broadinstitute.org/gsea/msigdb). We

used Student’s t tests between upregulated and downregulated subtypes to generate ranked gene lists for each cancer type.

Then, pre-ranked GSEA analysis were used to determine the pathway enrichment or depletion (FDR < 0.01).

Master regulator analysis

To identify TF master regulators, we first inferred the tumor-context-specific GRNs with the expression data (Z score transformed)

from all tumor samples using ARACNe-AP, which is a new Java implementation of the ARACNe (Lachmann et al., 2016). Our analysis

used the list of transcription factors as previously described (Vaquerizas et al., 2009). Then, given the inferred networks, we used the

MARINa (R package ssmarina) to infer master regulators based on the comparison of expression between upregulated and down-

regulated samples for each metabolic expression subtype in each cancer type and performed the shadow analysis to all master reg-

ulators identified with p < 0.05 (Aytes et al., 2014; Lefebvre et al., 2010). We identified master TFs as those passing the shadow anal-

ysis (FDR < 0.1) and havingR 150 target genes. To identify miRNAmaster regulators, we used two criteria: (1) the expression level of

themicroRNA itself showed a significant difference between the two groups (fold-change > 1.2 and p value < 0.01); and (2) themiRNA

target genes that showed differential expression between upregulation and downregulation subtypes were prone to being commonly

regulated by a specific microRNA (FDR < 0.1). GSEA (including annotated miRNA target gene sets) was employed for this analysis

(Subramanian et al., 2005); and the differential direction of the microRNA should be opposite to the expression of the corresponding

target gene set. The network of master regulators andmetabolic subtypes were analyzed by Cytoscape (Shannon et al., 2003). In the

TF networks, each link represented a specific TF identified in at least 3 cancer types. As for miRNA, a link represented a specific

microRNA identified in at least one cancer type.

Analysis of CCLE data

We downloaded RNaseq-based expression data and gene-level copy number from Cancer Cell Line Encyclopedia (CCLE; https://

portals.broadinstitute.org/ccle) and focused on 181 lung cancer cell lines with gene expression data. Using the same classification

pipeline, we classified them into downregulated, neutral, and upregulated subtypes based on the expression levels from the

carbohydrate pathway. We obtained the drug screening data from Iorio et al. (2016). We performed ANNOVA analysis to determine

whether (log-transformed) IC50 values showed significant difference among the three carbohydrate expression subtypes of cell lines

(FDR < 0.05). We obtained the doubling time data of cancer cell lines from Haverty et al. (2016). We used Wilcoxon rank sum test to

assess whether the doubling time showed a significant difference between carbohydrate downregulated and upregulated subtypes.

Generation of stable cell lines

Lentiviruses were produced by co-transfection HEK293LTX cells with the MISSION� TRC2 pLKO.5-puro Non-Mammalian shRNA

Control Plasmid DNA orwith the pLKO-puro shRNA constructs (Sigma, shRNA sequences are available in Table S3) and the Lentiviral

Packaging Mix (psPAX2 and pMD2.G). U2OS and NCIH1975 cells were transduced by the lentivirus, and cells with stable knock-

downs were selected using puromycin (2 mg/ml for U2OS and 1 mg/ml for NCIH1975). The knockdown of RUNX1 and SNAI1 in stable

cell lines was confirmed by quantitative real-time PCR.

RNA isolation and quantitative real-time PCR

To examine the effect of the knockdown on potential target genes, total RNA was isolated using the RNeasy Plus Mini Kit (QIAGEN,

Hilden, Germany) and transcribed into cDNA using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, CA,

USA). Reactionswere performed in triplicates using the SYBR�SelectMasterMix (Applied Biosystems) and specific primers (Sigma,
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sequences are available in Table S3). RT-qPCR was performed on an Applied Biosystems 7900HT Fast Real-Time PCR

system (Applied Biosystems). The gene expression levels were normalized to b-actin, and relative expression was calculated by

the 2(–DDCt) method.

Glucose measurement by IC-HRMS

We measured the intracellular abundance of glucose in cell samples using high-resolution mass spectrometry (HRMS) as follows.

Cells were seeded in 10 cm dishes and incubated in fresh medium (DMEM or RPMI-1640 containing 10% or 5% FBS, respectively)

for 0 hr, 6 hr, and 24 hr. Before conducting cell extraction, media samples were collected, flash frozen using liquid nitrogen, and trans-

ferred to�80�C freezer until analysis. Cells were then quickly washed with ice-cold PBS flowed byMilli-Q water to remove extra salt/

medium components. Metabolites were then extracted by adding 500 mL 1% formic acid in 90/10 (v/v) acetonitrile/water. Cell and

medium extracts were then centrifuged at 17,000 g for 5min at 4�C, and supernatants were transferred to clean tubes. Samples were

evaporated to dryness using a SpeedVac. Samples were reconstituted in deionized water, then 10 mL was injected into a Thermo

Scientific Dionex ICS-5000+ capillary ion chromatography (IC) system containing a Thermo IonPac AS11 2503 2 mmwith 4 mmpar-

ticle size. IC flow rate was 300 ml/min (at 30�C) and the gradient conditions were as follows: initial 1 mM KOH, increased to 35 mM

at 25 min, then to 99 mM at 39 min, held 99 mM for 10 min. The total run time was 50 min. Methanol containing 2 mM acetic acid

was delivered by an external pump and mixed with the eluent. Data were acquired using a Thermo Orbitrap Fusion Tribrid Mass

Spectrometer under ESI negative mode. Thermo Trace Finder software was used for metabolite identification and area integration.

The abundance of glucose was normalized by dividing the area of each metabolite by the total signal (summed areas of all

metabolites) for each sample.

Drug sensitivity assays

To assess changes in drug sensitivity following SNAI1 knockdown, stable cells (1,500 per well) were seeded in 96-well plates in the

complete medium a day before treatment. A 2 mM stock solution of docetaxel (ENZO, New York, USA) was prepared in DMSO and

was further diluted in complete medium to obtain eight serial dilutions such that the final treatment concentrations ranged from

0–2 mM. SNAIL-KD cells and the negative control (scrambled shRNA) cells were treated with DMSO or the various docetaxel dilutions

and cell viability was determined using live imaging (Incucyte Zoom, Essen Biosciences). Phase contrast images (4x objective) were

recorded at 0 hr, 16 hr and 24 hr after treatment initiation and the percentage confluence (a measure of cell viability) was assessed

using the associated software as per manufacturer’s instructions. Relative viability was normalized to the confluence value treated

with DSMO. Docetaxel treatment was repeated independently to ensure reproducibility of the results. The Student’s t test was used

to analyze differences, and p < 0.05 was considered statistically significant.

QUANTIFICATION AND STATISTICAL ANALYSIS

All the analyses were based on 9,125 tumor samples except for miRNA (7,939) due to limited data availability. Definition of signifi-

cance of various statistical tests were described and referenced in their respective Method Details sections.

DATA AND SOFTWARE AVAILABILITY

The raw data, processed data and clinical data can be found at the legacy archive of the GDC (https://portal.gdc.cancer.gov/

legacy-archive/search/f) and the PancanAtlas publication page (https://gdc.cancer.gov/about-data/publications/pancanatlas).

The mutation data can be found here (https://gdc.cancer.gov/about-data/publications/mc3-2017). TCGA data can also be explored

through the Broad Institute FireBrowse portal (http://gdac.broadinstitute.org) and the Memorial Sloan Kettering Cancer Center

cBioPortal (http://www.cbioportal.org). Details for software availability are in the Key Resource Tables.
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