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Summary

The transcriptional co-activator peroxisome proliferator-activated receptor-gamma co-activator-1

ͣ (PGC-1ͣ ) regulates metabolic genes in skeletal muscle, and contributes substantially to the

response of muscle to exercise. Muscle specific PGC-1ͣ transgenic expression and exercise both

increase the expression of thermogenic genes within white adipose. How the PGC-1ͣ mediated

response to exercise in muscle conveys signals to other tissues remains incompletely defined. We

employed a metabolic profiling approach to examine metabolites secreted from myocytes with

forced expression of PGC-1ͣ, and identified ͤ-aminoisobutyric acid (BAIBA) as a novel small

molecule myokine. BAIBA increases the expression of brown adipocyte-specific genes in white

adipose tissue and fatty acid ͤ-oxidation in hepatocytes both in vitro and in vivo through a PPARͣ

mediated mechanism, induces a brown adipose-like phenotype in human pluripotent stem cells,

and improves glucose homeostasis in mice. In humans, plasma BAIBA concentrations are

increased with exercise and inversely associated with metabolic risk factors. BAIBA may thus

contribute to exercise-induced protection from metabolic diseases.

Introduction

Exercise is an effective intervention for both the prevention and treatment of obesity and

type 2 diabetes (Knowler et al., 2002). Recent studies suggest that skeletal muscle integrates

many of the signals contributing to the salutary effects of exercise (Bassel-Duby and Olson,

2006). The transcriptional co-activator peroxisome proliferator-activated receptor-gamma

co-activator-1 ͣ  (PGC-1ͣ ) controls an extensive set of metabolic programs within skeletal

muscle and in part regulates the adaptive response of muscle to exercise (Handschin and

Spiegelman, 2006; Olesen et al., 2010). PGC-1ͣ regulates these metabolic programs by

binding to nuclear receptors and other transcription factors to form active transcriptional

complexes (Puigserver et al., 1999; Puigserver et al., 1998). Exercise enhances the

expression of PGC-1ͣ, which results in increased mitochondrial biogenesis and fatty acid ͤ-

oxidation, greater glucose transport, and an induction of muscular fiber type switching

towards a more oxidative phenotype (Lin et al., 2002b; Michael et al., 2001; Wu et al.,

1999).

Transgenic mice with muscle specific PGC-1ͣ expression show an enhanced ability to

perform endurance exercise and have an increased peak oxygen uptake (Calvo et al., 2008).

These transgenic mice also demonstrate increased expression of brown adipocyte-specific

genes within white adipose tissue (WAT) and an increased adipose respiratory phenotype

(Bostrom et al., 2012), suggesting that skeletal muscle signals to other tissues to alter their

function. In addition, exercise increases mitochondrial number and brown adipocyte-specific
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gene expression in white adipose depots and ameliorates glucose intolerance induced by a

high fat diet (Sutherland et al., 2009; Xu et al., 2011). Exercise also enhances the brown

proliferative adipocyte progenitor cell population and brown fat adipogenesis (Xu et al.,

2011). Cells expressing brown-adipocyte specific genes have been reported as interspersed

within the WAT of rodents and humans (so-called beige or brite cells(Ishibashi and Seale,

2010; Petrovic et al., 2010; Seale et al., 2008)) and demonstrate anti-diabetic and anti-

obesity effects in rodent models(Cousin et al., 1992; Kopecky et al., 1995; Lowell et al.,

1993; Melnyk et al., 1997; Oberkofler et al., 1997; Seale et al., 2007). Uncoupling protein-1

(UCP-1) and Cell death-inducing DFFA-like effector a (CIDEA) are among the brown

adipocyte-specific genes increased in expression in WAT by exercise and by muscle specific

PGC-1ͣ  expression (Cao et al., 2011). UCP-1 uncouples the mitochondrial electron

transport chain from ATP synthesis, an activity that is key to the thermogenic role of brown

adipose tissue (BAT) (Enerback et al., 1997). Likewise, CIDEA is a mitochondrial brown

adipocyte-specific gene with a role in the regulation of the thermogenic process.

Gene expression arrays and a bioinformatics approach recently highlighted irisin as a novel

secreted protein by which PGC-1ͣ dependent signals from muscle drive functional changes

in other tissues(Bostrom et al., 2012). There is strong motivation to investigate whether

additional mechanisms triggered by PGC-1ͣ expression in muscle might confer hormone-

like signals to modulate fat metabolism or contribute to the benefits of exercise, especially

with regard to small organic molecules. Here we applied a liquid chromatography-mass

spectrometry (LC-MS) metabolic profiling technique to identify small molecules secreted

from myocytes with forced expression of PGC-1ͣ. We then tested the effects of candidate

small molecules on WAT in vitro and in vivo, and examined metabolites in the context of

cardiometabolic risk factors and exercise in humans.

Results

ͤ-aminoisobutyric acid is regulated by PGC-1 ͣ and increases expression of brown
adipocyte-specific genes

Serum free media taken from muscle cells with forced expression of PGC1-ͣ increases

mRNA levels of several brown adipocyte-specific genes when transferred to primary

adipocytes(Bostrom et al., 2012). To identify candidate small molecules that might be

contributing to this phenomenon, we applied LCMS metabolic profiling to this media and

compared the findings to media from GFP expressing control cells. As expected, glucose

levels were significantly decreased in the supernatants of the PGC-1ͣ overexpressing cells

(−15.3% P = 0.025) (Michael et al., 2001). Four metabolites, ͤ-aminoisobutyric acid

(BAIBA), ͥ-aminobutyric acid (GABA), cytosine, and 2ᓉ-deoxycytidine were significantly

enriched in the media of the PGC-1ͣ overexpressing myocytes (BAIBA, 2.7-fold increase,

P = 0.01; GABA, 1.9-fold increase, P = 0.004; cytosine, 3.9-fold increase, P = 0.02; 2ᓉ-
deoxycytidine, 3.4-fold increase, P = 0.02) (Figure 1A).

We assessed the ability of these candidate molecules to increase the expression of brown

adipocyte-specific genes using the primary stromal vascular fraction isolated from

subcutaneous (inguinal) WAT of mice during 6 days of the differentiation process to mature

adipocytes. BAIBA treatment enhanced UCP-1 and CIDEA mRNA by 5.3-fold and 2.25-
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fold, respectively, as assessed by quantitative PCR (Figure 1B). GABA, cytosine and 2ᓉ-
deoxycytidine treatment did not induce concordant upregulation of brown adipocyte-specific

genes, so we focused subsequent analyses on BAIBA. BAIBA concentrations in the low

micromolar range significantly increased UCP-1 in the primary adipocytes in a dose-

dependent manner (Figure 1C). By contrast, BAIBA did not significantly alter the

expression of the canonical white adipocyte gene adiponectin (ADIPOQ), which is also

expressed to a similar extent in the brite cell population (Wu et al., 2012). To strengthen the

link between BAIBA secretion and PGC1-ͣ expression we analyzed the concentration of

BAIBA in the media of muscle cells in response to increased expression of PGC1-ͣ using

an adenoviral vector. Increased levels of PGC-1ͣ lead to an increase in the concentration of

BAIBA in the media (Figure S1).

Exposure of human induced pluripotent stem cells to BAIBA during differentiation to
mature white adipocytes induces a brown adipocyte-like phenotype

Since BAIBA induced expression of brown adipocyte specific genes in primary adipocytes

differentiated from the stromal vascular fraction, we investigated whether BAIBA would

induce a browning response in human pluripotent stem cells during their differentiation to

mature white adipocytes (Figure S2). BJ fibroblasts reprogrammed with modified RNA (BJ

RiPS) human induced pluripotent stem cells (IPSCs) were differentiated into mesenchymal

progenitor cells as previously reported (Ahfeldt et al., 2012; Warren et al., 2010). Lentiviral

mediated expression of PPARG2 or both PPARG2 and CCAAT/enhancer-binding protein ͤ
(CEBPB) in these human pluripotent stem cell-derived mesenchymal progenitor cells was

used to program their differentiation into either white or brown mature adipocytes,

respectively (Enerback et al., 1997; Kajimura et al., 2009; Tontonoz et al., 1994; Wright et

al., 2000). Administration of BAIBA to IPSCs differentiated into mature white adipocytes

conferred a dose-dependent increase in the expression of brown-adipocyte specific genes,

including UCP-1, CIDEA, and PRDM16. Expression of ELOVL3, a critical enzyme for

lipid accumulation and metabolic activity in brown adipocytes, was also slightly increased

(Figure 2A). BAIBA did not significantly alter the expression of the canonical white

adipocyte gene adiponectin (ADIPOQ). (Figure S3A). The effect of BAIBA on the

expression of brown adipocyte-specific genes was reproduced in white adipocytes derived

from other human pluripotent cell lines (Figure S3B). By contrast, mesenchymal progenitor

cells differentiated into mature brown adipocytes in the presence of BAIBA did not exhibit

an increase in the classical browning response genes, suggesting BAIBA does not initiate

the thermogenic response in BAT in vitro (Figure S3C). One prior publication found that

BAIBA does not affect UCP-1 expression in intrascapular BAT in vivo (Begriche et al.,

2008), which might relate to known differences between the development of beige/brite cells

and activation of classical brown fat (Frontini and Cinti, 2010; Wu et al., 2012).

To establish whether the observed transcriptional changes conferred functional effects, we

assessed the uptake of [3H]-2-deoxy-D-glucose in the PPARG2-programmed cells. We

observed a striking increase in the basal and insulin-stimulated glucose uptake in the

presence of BAIBA (Figure 2B). Furthermore, the basal oxygen consumption rate (OCR)

was found to be higher in the programmed white adipocytes treated with BAIBA, as

assessed by an extracellular flux analyzer. Oligomycin was then used to inhibit the ATP
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synthase. The OCR of white adipocytes treated with BAIBA remained higher than the

untreated white adipocytes, consistent with increased uncoupling. The addition of the

electron transport chain decoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP)

allowed the measurement of the maximal respiratory capacity. Programmed white

adipocytes treated with BAIBA showed significantly higher respiratory capacity compared

to the untreated programmed white adipocytes (Figures 2C and 2D). In addition, brightfield

images and BODIPY fluorescent staining demonstrate PPARG2-programmed cells contain

the single large, well defined lipid droplet characteristic of mature white adipocytes; this

morphology was maintained when the cells were treated with BAIBA (Figure 2E).

Fluorescent immunostaining revealed a higher degree of UCP-1 staining in the PPARG2

programmed white adipocytes treated with BAIBA when compared to untreated cells.

Together, these data indicate that BAIBA activates a browning gene program and increases

the mitochondrial activity of human IPSCs differentiated into white adipocytes.

BAIBA induces increased expression of brown/beige adipocyte-specific genes in vivo

To examine whether BAIBA could dose-dependently induce the expression of brown

adipocyte-specific genes in WAT in vivo, mice were treated with 100 mg/kg/day or 170

mg/kg/day of BAIBA in drinking water for 14 days based on preliminary dose escalation

studies. BAIBA treatment led to a 2.7-fold (100 mg/kg/day) and 12.2-fold (170 mg/kg/day)

increased plasma concentration of the metabolite by 14 days (100 mg/kg/day BAIBA; 2 ±

0.03 μM, P = 0.009, 170 mg/kg/day BAIBA; 8.9 ± 0.5 μM, P < 0.0001) (Figure 3A).

Expression analysis of inguinal WAT using qPCR revealed significant increases in brown

adipocyte-specific genes UCP-1 (100 mg/kg/day BAIBA; 8.8-fold increase, P = 0.03,

170mg/kg/day BAIBA; 12.1-fold increase, P = 0.02) and CIDEA (100 mg/kg/day BAIBA;

3.4-fold increase, P = 0.03, 170mg/kg/day BAIBA; 5.24-fold increase, P = 0.005),

recapitulating the in vitro findings (Figure 3B). Expression of PGC-1ͣ and Cytochrome C

were also increased following BAIBA treatment (PGC-1ͣ, 100 mg/kg/day BAIBA; 1.3-fold

increase, P = 0.09, 170mg/kg/day BAIBA; 2.6-fold increase, P = 0.02; Cytochrome C, 100

mg/kg/day BAIBA; 1.64-fold increase, P = 0.03, 170mg/kg/day BAIBA; 5.8-fold increase, P

= 0.04).

BAIBA levels are increased in the plasma of muscle PGC-1 ͣ expressing and exercising
mice

Since BAIBA was elevated in the media of cultured myocytes by forced expression of

PGC-1ͣ , we tested whether plasma concentrations of this metabolite were increased in mice

with muscle-specific transgenic expression of PGC-1ͣ (MCK-PGC1ͣ ) and with chronic

exercise in wild-type animals. The MCK-PGC1ͣ transgenic mouse has 10-fold increased

expression of PGC-1ͣ in gastrocnemius (Lin et al., 2002b; Viscomi et al., 2011; Wu et al.,

2011). Plasma concentrations of BAIBA were significantly increased 11-fold to 6.5 ± 2.5

μM, P = 0.03 as a result of PGC-1ͣ muscle forced expression in vivo (Figure 3C). By

contrast, the absence of PGC-1ͣ decreases the plasma concentration of BAIBA as compared

to wild type controls (0.77-fold decrease, P = 0.046) (Figure 3D).

In exercise trained wild-type mice subjected to 3 weeks of free wheel running, UCP-1

expression in the subcutaneous inguinal white adipose tissue was significantly increased by
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25-fold compared to sedentary controls (Bostrom et al., 2012). LC-MS analysis of

metabolites extracted from the gastrocnemius and quadriceps of exercise trained mice

demonstrated a 5.2 ± 0.09-fold, P < 0.0001 and 2.2 ± 0.5-fold, P < 0.0001 increase in

BAIBA concentrations respectively. Analysis of plasma from the exercise trained mice

confirmed a highly significant increase in the plasma concentration of BAIBA (19%

increase to 2.6 ± 0.05 μM, P = 0.001) as compared to sedentary controls (Figure 3E).

BAIBA decreases weight gain and improves glucose tolerance in mice

Since browning of WAT improves glucose homeostasis and reduces weight gain (Bostrom

et al., 2012), we examined the functional effect of BAIBA on weight gain and glucose

tolerance in vivo. Six week old mice were either treated with BAIBA (100 mg/kg/day) or

remained untreated (control mice). Their weights were monitored weekly. Weight was

slightly decreased in the mice by the end of BAIBA treatment (ANOVA, P = 0.01) (Figure

4A). Analysis of body composition using MRI demonstrated BAIBA treatment significantly

decreased body fat in the mice (% body fat, control = 13.1 ± 1.25, BAIBA = 9 ± 0.92, P =

0.02) (Figure 4B). Consistent with the effects on thermogenic and ͤ-oxidation gene

expression and body weights, analysis with metabolic cages indicated that oxygen

consumption (VO2) and whole body energy expenditure were increased in the BAIBA

treated mice (VO2, Two-Way ANOVA, P ≤ 0.0001, energy expenditure, Two-Way

ANOVA, P ≤ 0.0001) (Figure 4C and 4D) without any significant difference in activity

(control = 8758 ± 417.5 beam breaks / day, BAIBA = 9504 ± 1043 beam breaks per day, P =

0.52) (Figure 4E) or food intake (control = 3.79 ± 0.4 g / day, BAIBA = 4.1 ± 0.2 g / day, P

= 0.5) (Figure 4F). The mice were also challenged with an intraperitoneal glucose tolerance

test (IPGTT) (Figure 4G). BAIBA was found to significantly improve the glucose tolerance

in the mice as determined by the area under the curve of the IPGTT (−15.9%, P ≤ 0.05)

(Figure 4H).

PPARͣ mediates BAIBA-induced effects on adipose tissue in vitro and in vivo

We next examined how BAIBA may be driving the increase in thermogenic gene

expression. In a focused interrogation of potential downstream mediators, we observed that

BAIBA significantly increases the expression of PPARͣ in white adipocytes both in vitro

(2.4-fold increase, Figure 5A) and in the inguinal white fat depot in vivo (2.2-fold increase,

Figure 5B). PPARͣ is a key transcription factor known to stimulate the expression of

UCP-1(Bostrom et al., 2012; Komatsu et al., 2010). We were interested to find that the

selective PPARͣ antagonist GW6471 significantly abrogated the BAIBA-stimulated

increase in thermogenic gene expression in primary adipocytes (Figure 5C). The functional

interaction between the BAIBA and GW6471 treatments on thermogenic gene expression

was confirmed using two-way ANOVA (P < 0.005). To further define the contribution of

PPARͣ  to the browning response of primary white adipocytes in vitro, we isolated the

stromal vascular fraction from the subcutaneous WAT of PPARͣ null mice and

differentiated the cells into mature adipocytes in the presence or absence of BAIBA.

Analysis of the thermogenic gene expression in these cells using qPCR demonstrated a loss

of the BAIBA-induced browning effect in the setting of PPARͣ deficiency (Figure 5D),

consistent with the findings seen with the biochemical inhibitor.
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The role of PPARͣ in the BAIBA-induced increase in thermogenic gene expression in white

adipose tissue in vivo was also examined using PPARͣ null mice. PPARͣ  null mice were

treated with 100 mg/kg/day BAIBA in drinking water for 14 days. qPCR analysis of

subcutaneous (inguinal) WAT demonstrated that BAIBA failed to increase expression of

thermogenic genes, including UCP-1, CIDEA, PGC-1ͣ and Cytochrome C, in the PPARͣ
null mice (Figure 5E). Therefore, these results indicate that BAIBA increases expression of

the browning gene program through a specific PPARͣ-dependent mechanism.

BAIBA increases hepatic ͤ-oxidation through PPAR ͣ

BAIBA may also function to induce additional tissue-specific salutary effects. Exercise has

been shown to increase liver ͤ-oxidation (Aoi et al., 2011; Oh et al., 2006; Rabol et al.,

2011; Rector et al., 2011). Therefore we investigated whether BAIBA would directly induce

ͤ-oxidation gene expression in hepatocytes in vitro. Hepatocytes were incubated with 5μM

BAIBA for 6 days. As in vivo BAIBA significantly increased the expression of PPARͣ
(5.4-fold, P < 0.0001), carnitine palmitoyltransferase 1 (CPT1) (2.2-fold, P < 0.0001), the

very-long-chain acyl-CoA dehydrogenase (ACADvl) (1.3-fold, P = 0.03), the medium-chain

acyl-CoA dehydrogenase (ACADm) (1.2-fold, P = 0.005) and acyl-CoA oxidase 1

(ACOX1) (1.2-fold P = 0.004) (Figure 6A). The interaction between BAIBA and ͤ-

oxidation gene expression was also determined to be significant by two-way ANOVA (P <

0.0001).

As BAIBA increased the expression of ͤ-oxidation genes in vitro, we investigated whether

BAIBA would induce hepatic ͤ-oxidation gene expression in vivo. The expression of key

genes involved in fatty acid ͤ-oxidation was measured in the liver of mice treated with 100

mg/kg/day BAIBA for 14 days using qPCR. As in vitro, BAIBA significantly increased the

expression of PPARͣ (1.73-fold P = 0.03), CPT1 (2.5-fold P = 0.0005), ACADvl (1.3-fold

P = 0.04), ACADm (1.2-fold P < 0.05), and ACOX1 (1.4-fold, P = 0.03) (Figure 6B). The

functional interaction between BAIBA and ͤ-oxidation gene expression was confirmed

using two-way ANOVA (P < 0.0001).

To establish whether the observed transcriptional changes conferred functional effects we

measured the respiratory rate of hepatocytes treated with BAIBA for 6 days at a range of

concentrations. The addition of the electron transport chain uncoupler carbonyl cyanide-4-

(trifluoromethoxy)phenylhydrazone (FCCP) allowed the measurement of the maximal

respiratory capacity. BAIBA treatment significantly and dose dependently increased the

maximal oxygen consumption rate (OCR) of the hepatocytes (ANOVA, P = 0.03) (Figure

6C). Together these data demonstrate that BAIBA induces a transcriptional change in

hepatocytes leading to a more oxidative phenotype.

We then examined whether BAIBA is driving the increase in hepatic fatty acid ͤ-oxidation

through a conserved PPARͣ mechanism, as was observed with brown-adipocyte gene

expression in white adipocytes. We show that BAIBA significantly increases the expression

of PPARͣ  both in vitro and in vivo. PPARͣ  is known to regulate hepatic free fatty acid

transport, uptake, and catabolism via ͤ-oxidation (Berger and Moller, 2002; Brandt et al.,

1998; Gulick et al., 1994). The BAIBA-induced increase in expression of the fatty acid ͤ-

oxidation genes, CPT1, ACADvl, ACADm and ACOX1 was abolished by the selective
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PPARͣ  antagonist, GW6471 (Figure 6D). The functional interaction between the BAIBA

and GW6471 treatments on ͤ-oxidation gene expression was confirmed using two-way

ANOVA (P < 0.0001).

The role of PPARͣ in the BAIBA-induced increase in hepatic fatty acid ͤ-oxidation gene

expression in in vivo was also examined using PPARͣ null mice. PPARͣ  null mice were

treated with 100 mg/kg/day BAIBA in drinking water for 14 days. Expression analysis of

liver using qPCR demonstrated that BAIBA failed to increase expression of ͤ-oxidation

genes, including CPT1, ACADvl, ACADm and ACOX1, in the PPARͣ null mice (Figure

6E). Together, these results indicate that BAIBA increases hepatic fatty acid oxidation gene

expression through a PPARͣ dependent mechanism.

BAIBA plasma concentrations are inversely correlated with cardiometabolic risk factors in
humans and are increased during exercise training

We examined the association of plasma BAIBA levels with metabolic traits in a large

human cohort study. In 2067 random subjects enrolled in the longitudinal, community-based

Framingham Heart Study (FHS), BAIBA levels were inversely correlated with fasting

glucose (P = 0.0003), insulin (P < 0.0001), the Homeostatic Model Assessment-Insulin

Resistance (HOMA-IR) (P < 0.0001), triglycerides (P < 0.0001), and total cholesterol (P <

0.0001) in age and sex adjusted analyses. In addition, there was a trend towards an inverse

association with BMI (P = 0.08).

We also assessed BAIBA concentrations in humans before and after an exercise training

intervention. As part of the HERITAGE Family Study, sedentary subjects were recruited for

a 20 week program of supervised exercise training (Table 1). Metabolomic profiling was

performed on plasma from 80 subjects before and after the exercise training intervention.

Following the 20 week exercise program, the average VO2 max of the subjects had

increased by more than 20%. The plasma BAIBA concentration increased by 17% (+/−5%

SEM, p = 0.03), a very consistent percentage increase compared with the murine exercise

data.

Integration of human genetic and transcriptional data highlights a role for PGC-1 ͣ in
BAIBA generation

The availability of BAIBA levels and genome-wide genotyping in 1000 FHS participants

allowed us to identify genes responsible for modulating metabolite levels in humans in an

unbiased manner. These analyses highlighted putative enzymes involved in BAIBA

generation (Figure 7A). AGXT2 encodes the enzyme alanine-glyoxylate aminotransferase 2,

which catalyses the transamination between BAIBA and pyruvate. Strong association was

noted (P = 1.38E-45) between the top SNP at the locus, rs37370, and BAIBA concentrations

in FHS. AGXT2 has previously been associated with the urine concentration of BAIBA in

humans (Suhre et al., 2011). Other significant associations involved ACADS (rs476676, P =

2.63E-05) and ACADSB (rs11248396, P = 0.0008), which encode enzymes catalyzing the

reaction forming methacryl-CoA from isobutryl-CoA upstream of BAIBA. The analyses

also highlighted HADHA (rs10165599, P = 0.0008), which encodes the enzyme

hydroxyacyl-CoA dehydrogenase responsible for the catalysis of the reaction forming ͤ-
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hydroxyisobutyryl-CoA from methacryl-CoA in the biogenesis of BAIBA. In addition to

variants in the biosynthetic pathway, SNPs were also identified in genes for two solute

carriers, SLC6A13 (rs2289957, P = 2.1E-10) and SLC6A6 (rs11128708, P = 3.17E-05),

which encode the GABA transporter GAT2 and the taurine transporter TauT, respectively,

which may also function as BAIBA transporters (Broer, 2008; Liu et al., 1999).

To then examine potential mechanisms by which PGC-1ͣ expression might increase levels

of BAIBA, we performed transcriptional analysis on PGC-1ͣ overexpressing myocytes.

There was striking overlap between BAIBA pathway participants highlighted by GWAS and

those increased by forced PGC-1ͣ expression. AGXT2 was found to be increased by

PGC-1ͣ  overexpression in myocytes (Fold Change = 1.4, P < 0.01), as was the expression

of ACADS (Fold Change = 2.0, P < 0.05) and HADHA (Fold Change = 2.9, P < 0.05). The

expression of the TauT transporter, SLC6A6 was also increased by PGC-1ͣ expression

(Fold Change = 2.5, P < 0.05).

In addition, forced PGC-1ͣ expression in muscle in turn increased expression of DLD,

HIBADH, HADH and HADH2, genes encoding the enzymes dihydrolipoamide

dehydrogense, 3-hydroxyisobutyrate dehydrogenase, L-3-hydroxyacyl-Coenzyme A

dehydrogenase and hydroxyacyl-Coenzyme A dehydrogenase, type II, respectively (DLD

Fold change 2.78, P < 0.05, HIBADH Fold change = 2.5, P < 0.05, HADH Fold Change =

2.5, P < 0.05, HADH2 Fold Change = 1.9, P < 0.05). These enzymes catalyze the formation

of isobutryl-CoA from valine as part of the branched-chain alpha-keto acid dehydrogenase

complex, and methylmalonate semialdehyde from ͤ-hydroxyisobutyric acid in the pathway

producing BAIBA. Thus, PGC-1ͣ increases the expression of genes encoding the metabolic

enzymes required for production and transport of BAIBA in myocytes, a number of which

are genetic determinants of BAIBA plasma concentrations in humans (Figure 7).

Discussion

Transgenic mice expressing PGC-1ͣ in their skeletal muscle display an improved capability

for exercise (Calvo et al., 2008). Muscle specific PGC-1ͣ expression in mice also increases

the expression of brown adipocyte-specific genes and changes the characteristics of WAT to

a more brown-like phenotype (Bostrom et al., 2012). These cells have been termed beige or

brite cells (Ishibashi and Seale, 2010; Petrovic et al., 2010). A similar effect has been

identified in the WAT of mice undergoing exercise programs (Bostrom et al., 2012;

Sutherland et al., 2009; Xu et al., 2011). The identification of the PGC-1ͣ dependent

polypeptide hormone irisin, which is secreted into circulation from muscle and triggers the

browning response of WAT, establishes one mechanism by which signals from muscle

during exercise can mediate energy metabolism in other tissues (Bostrom et al., 2012).

However, this recent discovery does not exclude a potential role for other mediators,

especially small molecules.

BAIBA was identified in a screen of small molecules generated by myocytes expressing

PGC-1ͣ  in vitro, and was subsequently found to be increased in the plasma of both

chronically exercised and muscle specific PGC-1ͣ transgenic mice. Intramuscular levels of

BAIBA were also strikingly increased by exercise, though elevations of BAIBA in other
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tissues is also possible. BAIBA increases the expression of brown adipocyte-specific genes

both in vitro and in vivo through a PPARͣ mediated mechanism. BAIBA also functions to

increase hepatic fatty acid ͤ-oxidation through PPARͣ. Treating mice with BAIBA

improves glucose tolerance. We were interested to find that BAIBA treatment during

differentiation of white adipocytes from BJ RiPS IPSCs also induces a brown adipocyte-like

phenotype with concordant functional effects on basal and insulin stimulated glucose uptake

and oxygen consumption. In humans, BAIBA plasma concentrations are increased by

regular exercise and are significantly inversely correlated with multiple cardiometabolic risk

factors. Finally, by integrating human genetic data and in vitro transcriptional findings we

highlight a cassette of BAIBA biosynthetic enzymes that are under PGC-1ͣ transcriptional

control in muscle. We note that while the browning effect appears to be operative in our

studies, our findings do not exclude the possibility that macroscopic brown adipose depots

in mice increase energy expenditure and contribute to the observed effects.

BAIBA is a non-protein ͤ-amino acid that can be generated by catabolism of the branched-

chain amino acid valine. Our expression studies would seem to highlight a role for PGC-1ͣ
expression in muscle with the production of BAIBA from valine. Fasting plasma

concentrations of valine are correlated with obesity and serum insulin (Felig et al., 1969;

Newgard et al., 2009), and we recently identified valine plasma concentration as a predictor

of future development of diabetes (Wang et al., 2011). Skeletal muscle is a major site of

branched-chain amino acid utilization and, during exercise, catabolism of the branched-

chain amino acids is elevated (Harper et al., 1984; Shimomura et al., 2006; Shimomura et

al., 2004). Furthermore, the expression of genes in the valine degradation pathway was

found to be increased in the skeletal muscle of physically active members of twin pairs

compared to their inactive co-twins (Leskinen et al., 2010). Our findings suggest a possible

connection between valine utilization in skeletal muscle during exercise and beneficial

effects on peripheral WAT.

Independently, BAIBA treatment has been found to reduce weight gain in partially leptin

deficient (ob/+) mice (Begriche et al., 2008). Glucose tolerance was improved in the ob/+

mice treated with BAIBA, consistent with the diminished weight gain. Prior work suggests

that BAIBA may enhance fatty acid oxidation and reduces de novo lipogenesis in the liver

(Begriche et al., 2008; Maisonneuve et al., 2004; Note et al., 2003). Interestingly, the effect

of BAIBA on hepatic lipid metabolism mirrors the action of exercise, which has also been

shown to increase liver fatty acid oxidation and decrease hepatic lipogenesis through

PPARͣ  (Aoi et al., 2011; Oh et al., 2006; Rabol et al., 2011; Rector et al., 2011). The

effects of BAIBA on browning of white adipose depots were not evaluated in any prior

studies. Our studies demonstrate the PPARͣ-dependent mechanism of BAIBA’ s salutary

effects on liver ͤ-oxidation, and extend the prior literature by identifying its link to PGC-1ͣ,

browning of WAT, and its relationship to chronic exercise. Future work may also uncover

beneficial effects of BAIBA on other tissues. Our work also highlights BAIBA as a potential

disease marker in human populations.

It is notable that several enzymes of the valine degradation pathway and thus BAIBA

biosynthetic pathway are shared with that of ͤ-oxidation of fatty acids (ACADSB, ACADS,

ACADM, HADHA, and HADH), a number of which we found to be transcriptionally
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controlled by PGC-1ͣ in myocytes. It would seem evolutionarily advantageous to integrate

the production of a metabolite myokine signal with the fatty acid oxidation pathway, the

primary source of energy for muscle during endurance exercise. The HADH knockout

mouse is cold intolerant and exhibits impaired adaptive thermogenesis with a decreased fat

tolerance at 4 °C (Schulz et al., 2011). Similarly, the ACADS knockout mouse also shows

cold intolerance and defects in thermogenesis (Guerra et al., 1998). Although the disruption

to ͤ -oxidation in both the ACADS and HADH knockout mice is likely to contribute to

impaired thermogenesis, a perturbation in BAIBA production may also play a role in this

process.

While we demonstrate that BAIBA increases expression of PPARͣ, and that BAIBA-

induced browning of WAT requires this nuclear receptor, as yet the direct mechanism of

action upstream of PPARͣ is unknown. PPARͣ null mice remain resistant to cold, can

activate cold-induced thermogenesis and express equivalent levels of UCP-1 in intrascapular

brown adipose tissue compared to wild-type controls (Kersten et al., 1999). Moreover, as

PPARͣ  null mice do not have reduced UCP1 expression in white adipose tissue compared

to controls following cold exposure (Xue et al., 2005), absence of PPARͣ does not blunt the

general browning effect. Therefore, our results indicate that BAIBA increases browning

gene expression through a specific PPARͣ-dependent mechanism. BAIBA may function to

activate a cell surface receptor since structurally similar metabolites, including butyrate and

isobutyrate, activate short chain carboxylic acid receptors in white adipocytes (Brown et al.,

2003). Ascertaining the cell signaling pathways by which BAIBA leads to increased PPARͣ
expression will be a focus of future studies.

In summary, we identify BAIBA as a novel small molecule myokine representing the first in

its class of non-adrenergic activators of the thermogenic program in WAT (Whittle and

Vidal-Puig, 2012). The identification of BAIBA as a PGC-1ͣ mediated and exercise

triggered signal has significant implications not only for our understanding of exercise and

its protective role against the development of metabolic diseases, but also for potential

therapeutics for type 2 diabetes and the metabolic syndrome.

Experimental Procedures

Myocyte culture

Primary satellite cells (myoblasts) were isolated as previously described.(Bostrom et al.,

2012; Megeney et al., 1996). Briefly, myoblasts were cultured in F-10 medium

supplemented with 20% FBS and basic FGF. For differentiation into myotubes, cells were

changed to DMEM supplemented with 5% horse serum. At day 2 of differentiation,

myocytes were transduced with an adenovirus expressing either PGC-1ͣ or GFP as

previously described (St-Pierre et al., 2003). At 24 hr post transduction cells were washed

with PBS and freestyle media (GIBCO/Invitrogen, Grand Island, NY). Freestyle media was

added to GFP and PGC-1ͣ expressing myocytes, and cells were incubated for 24 hours.

Media was collected and cleared with centrifugation (1000g, 4 °C for 5 min × 3). The

supernatant was then snap frozen in aliquots.
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Culture and differentiation of the mouse primary adipocytes isolated from inguinal white
adipose stromal vascular fraction

Primary white adipose stromal vascular cells were fractionated as previously described

(Soukas et al., 2001). Stromal vascular cells were then cultured and induced to differentiate

into adipocytes also according to published methods (Bostrom et al., 2012; Seale et al.,

2011). Stromal vascular cells were cultured in DMEM/F12 containing 10% FBS. Adipocyte

differentiation was induced in preadipocytes cultured by treating confluent cells for 48 hrs in

medium containing 10% FBS, isobutylmethylxanthine 0.5 mM, indomethacin 125 nM,

dexamethasone 1 μM, insulin 850 nM, T3 1 nM, and rosiglitazone 1 μM (Cayman

Chemical). 2 days after the induction of differentiation, media was removed and replaced

with maintenance media containing 10% FBS, insulin 850 nM, T3 1 nM, and rosiglitazone 1

μM. During the 6 days, cells were cultured with either saline (control), GABA 3 μM,

cytosine 1 μM, 2ᓉ-deoxycytidine 15 μM and BAIBA 0.3, 1, 3 and 5 μM. All chemicals for

cell culture were obtained from Sigma-Aldrich unless noted.

Maintenance of pluripotent cells, generation of mesenchymal progenitor cells and
adipocyte differentiation

Human induced pluripotent stem cells were maintained and differentiated into mature brown

and white adipocytes as previously described(Ahfeldt et al., 2012; Schinzel et al., 2011).

Briefly, human induced pluripotent stem cells were cultured feeder free on Geltrex

(Invitrogen) in the chemically defined medium mTESR1 (Stem Cell Technologies). Human

induced pluripotent stem cells were disaggregated with dispase into small clumps containing

5-10 cells and transferred to low-adhesion plastic 6-well plates (Costar Ultra Low

Attachment; Corning Life Sciences) in growth medium containing DMEM, 15% FBS, and

1% Glutamax. After 7 days in suspension culture, embryoid bodies were collected and re-

plated on gelatin-coated 6-well plates in medium containing DMEM, 10% FBS, and 1%

Glutamax. After cells reached confluency (approximately 5 days), they were trypsinized

(0.25% trypsin) and re-plated on cell culture dishes containing mesenchymal progenitor cell

growth medium containing DMEM, 15% FBS, 1% Glutamax, and bFGF 2.5 ng/ml

(Aldevron). Cells were passaged with a 1:3 split ratio and differentiated after at least 3

passages and prior to passage 10. Adipogenic differentiation was carried out for 21 days

using an adipogenic differentiation medium containing DMEM, 7.5% knockout serum

replacement (KOSR; Invitrogen), 7.5% human plasmanate, 0.5% nonessential amino acids,

1% penicillin/streptomycin, dexamethasone 0.1 μM, insulin 10 μg/ml, and rosiglitazone 0.5

μM. Differentiation was carried out either in the absence of BAIBA, in the case of controls,

and with two concentrations of BAIBA at 1 μM or 10 μM in the differentiation media.

Adipogenic differentiation medium was supplemented for 16 days with doxycyline 700

ng/ml, and afterwards cells were maintained in culture in the absence of doxycycline until

day 21.

Production of lentivirus and transduction

Lentivirus production and transduction of the cells was performed as previously described

(Ahfeldt et al., 2012). A third-generation, Tat-free packaging system (Tiscornia et al., 2006)

was used to produce recombinant lentivirus. The vectors— either Lenti-rtTA plasmid
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(Stadtfeld et al., 2008) or Lenti-PPARG2 plasmid— together with the two packaging

plasmids— pMDL, pREV— and the plasmid coding for VSV-G envelope were transfected

into HEK 293T cells using calcium chlorate as previously described (al Yacoub et al., 2007).

Cells were transduced with lentiviral supernatant 24 hr after passaging at about 40%

confluency.

Glucose uptake assay

Adipocytes were serum-starved in 2% BSA DMEM overnight. Cells were then incubated in

KRH buffer (NaCl 121 mM, KCl 4.9 mM, MgSO4 1.2 mM, CaCl2 0.33 mM, HEPES 12

mM, pH7.4) for 4 hrs at 37 oC, followed by washing three times in KRH buffer. Glucose

uptake was measured by incubating cells with 2-deoxy-D-[3H] glucose 0.5μCi/ml (Perkin-

Elmer) for 5 min at 37 °C. After cold PBS washing three times, cells were lysed with 1%

Triton X-100 solution and subjected to scintillation counting. Non-specific uptake was

measured in the presence of cytochalasin B 10 μM and subtracted from total uptake.

Measurement of cellular OCR

Cells were plated in gelatin-coated XF24-well cell culture microplates (Seahorse

Bioscience) and differentiated into adipocytes. Cells were incubated in pre-warmed

unbuffered DMEM medium (DMEM containing GlutaMax 2 mM, sodium pyruvate 1 mM,

NaCl 1.85 g/L, and glucose 25 mM) for 1h. The oxygen consumption was measured by the

XF24 Extracellular Flux Analyzer (Seahorse Biosciences). Mitochondrial function was

profiled by injecting, oligomycin 2 μM, CCCP 0.5 μM (carbonyl cyanide

trifluoromethoxyphenylhydrazone), and antimycin A 5 μM in succession. OCR was

determined by plotting the oxygen tension of the medium in the chamber as a function of

time (pMoles/min).

Hepatocyte culture

H4IIE hepatocytes (ATCC) were seeded at 200,000 cells per well in a 24 well collagen I

coated plate. The cells were incubated in MEM media (ATCC supplemented with 10% FBS

(Sigma) and Penicillin/Streptomycin) with 5 μM BAIBA (n = 6), 1 μM GW6471 PPARͣ
antagonist (n = 6), and 1 μM GW6471 and 5 μM BAIBA (n = 6) for 6 days.

Hepatocyte respirometry

H4IIE hepatocytes were grown for 6 days in Oxoplates (PreSens) with MEM + 10% FBS

media (Sigma Aldrich). Cells were plated at 40,000 cells per well and BAIBA or BAIBA

and 1 μM GW6471 PPARͣ antagonist were added on the same day. The OxoPlate OP96F

(PreSens, Regens- burg, Germany) contains oxygen-sensitive particles PSLi-Pt-1 (Opto-

Sense, Worth, Germany), which consist of small polystyrene particles. Sulforhodamin is

covalently attached to these particles as reference dye, and a platinum porphin is

incorporated as indicator dye. The sensor has a thickness of about 10 μm and is fixed at the

bottom of each well of a 96-flat bottom-well plate (Greiner, Frickenhausen, Germany).

Basal serum-free MEM media (100 μl) containing BAIBA in a range of concentrations (0-10

μM) (n = 6 per dose) and BAIBA in the presence of 1 μM GW6471 PPARͣ antagonist (n =

6 per dose) was added into the wells of an OxoPlate. The media was exchanged every two
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days with the addition of fresh compounds. After 6 days each well was then overlaid with

250 μl of mineral oil after the addition of 5 μM of final concentration of Carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone (FCCP). Wells containing oxygen-free water (cal 0) and

air-saturated water (cal 100) served as standards. Oxygen-free water was prepared by

dissolving 1 g of sodium sulfite in 100 mL of water. Water is oxygen free after

approximately 1 min. Air-saturated water was prepared by shaking 100 mL of water

vigorously for 2 min. The oxygen concentration in each well was measured right after

mineral oil addition, 15 min and 30 min after mineral oil addition. Fluorescence of each well

was measured in dual kinetic mode (Multiskan Ascent CF, Thermo Lab- systems, Vantaa,

Finland). Filter pair 1 (544/650 nm) detects fluorescence of the indicator dye. The second

filter pair (544/590 nm) measures fluorescence of the reference dye. Oxygen tension was

calculated according to the Stern-Volmer equation and transformed into nmol of oxygen .

The difference between baseline, 15 min and 30 min oxygen tension was used to calculate

the oxygen consumption per min per well.

Animal experimentation

Muscle specific PGC-1ͣ transgenic mice were generated and maintained as previously

described (Bostrom et al., 2012; Lin et al., 2002a). For the exercise experiments, 12-week-

old B6 mice were used (Jackson Laboratory, Bar Harbor, ME). Endurance exercise was

carried out using free wheel running for 3 weeks (n = 6) (Rasbach et al., 2010). Controls

were age matched sedentary littermates (n = 6). For the short term BAIBA treatment cohort,

6 week old C57BL6/J mice (Jackson Laboratory, Bar Harbor, ME) were weight-matched

and assigned to groups for treatment. Mice were treated with either 100 mg/kg/day or 170

mg/kg/day BAIBA in their drinking water for 2 weeks and fed a standard chow diet ad

libitum (Prolab RMH 3000-5P75, Labdiet, Brentwood, MO). 129S4/SvJae-Pparatm1Gonz/J

mice (Jackson Laboratory, Bar Harbor, ME) were weight-matched and assigned to groups

for treatment. Mice were treated with 100 mg/kg/day BAIBA in their drinking water for 2

weeks and fed a standard chow diet ad libitum. For the long term BAIBA treatment cohort,

6 week old C57BL6/J mice (Jackson Laboratory, Bar Harbor, ME) were weight-matched

and assigned to groups for treatment (n=11 per group). Mice were treated with 100

mg/kg/day BAIBA in their drinking water for 14 weeks and fed a high fat diet ad libitum

(60% Fat, DIO-VHFD Research Diets Inc. New Brunswick, NJ).

Study mice were fasted, sacked and plasma was collected via left ventricular puncture at

completion of the study (Week 16). Inguinal WAT and liver was rapidly dissected, snap

frozen in liquid nitrogen and stored at snap frozen in liquid nitrogen and stored at80 °C until

mRNA extraction. All mice were housed in a controlled temperature, lighting and humidity

environment.

Indirect calorimetry

All experiments were performed with 6-week old mice treated with either BAIBA (100

mg/kg/day) or water for 14 weeks (n=8 mice per group). A PhenoMaster system (TSE

Systems, Calo-(D)/Feed/BWXZ, 16 mice) was used to monitor oxygen consumption, carbon

dioxide production, food intake, daily body mass, and locomotory activity. The

PhenoMaster system was calibrated before each experiment. Animals were subjected to a 7-
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day acclimation period in a training cage without monitoring to habituate to the environment

of the metabolic cages. Animals were maintained in normal cedar bedding at 22°C

throughout the monitoring period. Twice hourly measurements for each animal were

obtained for oxygen and carbon dioxide with ad libitum access to food and water (or water

plus BAIBA) on a controlled 12-hour light/dark cycle. Cages contained one mass sensor to

monitor food intake and a second sensor attached to a glass housing to measure body mass.

Oxygen consumption is expressed normalized to body mass.

Intraperitoneal glucose tolerance test

Mice were fasted for 6 hours with free access to water prior to baseline glucose

measurements (n=11 mice per group). Administration of glucose (Sigma, St. Louis, MO)

was performed by intraperitoneal injection (glucose 1.5mg /gram of body weight; glucose

solution 150mg/ml). Blood was obtained from the tail vein immediately prior to glucose

injection and then at 30, 60 and 120 minutes post injection. Glucose levels were measured

using a Bayer Contour Glucose Meter (Bayer Healthcare, Mishawaka, IL).

Gene expression analysis

Total RNA from human cell lines, mouse inguinal WAT stromal vascular fraction derived

primary adipocytes, hepatocytes, and mouse WAT and liver was extracted with Trizol

(Invitrogen) and purified via the RNeasy mini kit (Qiagen) according to the manufacturer’ s

instructions. The RNA yield was determined using the NanoDrop ND-1000

spectrophotometer (NanoDrop Technologies). RNA was normalized and converted to cDNA

using the Superscript First-Strand Kit (Invitrogen). Quantitative RT-PCR was performed

using a Realplex Mastercycler (Eppendorf) with the Quantifast-SYBR Green PCR mix

(Qiagen). All data were normalized to 18SrRNA or HPRT and quantitative measures

obtained using the Δ-Δ-CT method.

Framingham Heart Study

The Framingham Offspring Study was initiated in 1971, when 5,124 individuals enrolled

into a longitudinal cohort study to examine risk factors for cardiovascular disease (Wang et

al., 2011). We studied individuals attending a routine examination of this cohort that took

place between 1991 and 1995. Of 3,799 attendees to the examination, 2,067 were eligible

for the present investigation because they were free of diabetes and cardiovascular disease,

and had measurement of BAIBA concentrations in fasting plasma samples. Fasting insulin

and glucose were also measured as previously described (Wang et al., 2011).

Genotyping was performed on the Affymetrix GeneChip Human Mapping 500K Array SetR

and 50K Human Gene Focused PanelR. After filtering out 15586 SNPs with Hardy-

Weinberg p<1e-6, 64511 SNPs with missing rate >3%, 45361 SNPs with mishap test p<1e-9

(mishap test in PLINK, http://pngu.mgh.harvard.edu/purcell/plink/), 4857 SNPs with >100

Mendel errors, 67269 SNPs with minor allele frequency < 0.01, 2 SNPs due to strandedness

issues upon merging data with HapMap, and a further 13394 SNPs not present on HapMap,

a total of 378,163 SNPs were used in the imputation for 2,543,887 autosomal SNPs. MACH

software (http://www.sph.umich.edu/csg/abecasis/MACH) version 1.0.15 with HapMap

release 22, build 26, as a reference panel was used.
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Imputation on X chromosome: After filtering out 159 SNPs with Hardy-Weinberg p<1e-6,

450 SNPs with missing rate > 3%, 1,851 SNPs with minor allele frequency < 0.01, 12 SNPs

with a male heterozygote count > 45, and 619 SNPs not included in the HapMap legend

files, 7,795 SNPs were used in the imputation for 62,876 X chromosome SNPs. We used

IMPUTE software (https://mathgen.stats.ox.ac.uk/impute/impute.html) version 0.5.0 with

Hapmap Build 35 release 21 as a reference panel.

The human study protocols were approved by the Institutional Review Boards of Boston

University Medical Center and Massachusetts General Hospital, and all participants

provided written informed consent.

HERITAGE clinical exercise study

The HERITAGE Family Study is a clinical trial that enrolled 557 individuals of various ages

(16–65 y) to determine the effects of 20-weeks of highly-controlled endurance training on

physiologic measures and risk factors for cardiometabolic disease. Only individuals who

were previously sedentary, free of pre-existing disease, and not taking any medications that

would affect any of the outcome variables were allowed to enter the study. Details of the

aims, experimental design, and measurement protocols of the HERITAGE Family Study

were presented in detail in a previous publication (Bouchard et al., 1995). Endurance

training was conducted (3 d/wk for a total of 60 exercise sessions) on cycle ergometers that

were computer controlled to maintain the participants’  heart rates at fixed percentages of

their aerobic capacity (VO2max). The training program started at 55% of VO2max for 30

min/session and gradually increased to 75% of VO2max for 50 min/session, where it was

maintained during the last 6 wk of training. Peripheral plasma samples collected from 80

HERITAGE participants before and after the 20-week endurance training program were

subjected to metabolomic profiling.

Metabolic profiling

Metabolic profiling of amino acids, biogenic amines and other polar plasma metabolites

were analyzed by LC-MS as previously described (Roberts et al., 2012; Wang et al., 2011).

In brief, formic acid, ammonium acetate, LC-MS–grade solvents and valine-d8 were

purchased from Sigma-Aldrich. Phenylalanine-d8 was purchased from Cambridge Isotope

Laboratories. Plasma and media samples were prepared for LC-MS analyses via protein

precipitation with the addition of nine volumes of 74.9:24.9:0.2 vol/vol/vol acetonitrile/

methanol/formic acid containing two additional stable isotope-labeled internal standards for

valine-d8 and phenylalanine-d8. The samples were centrifuged (10 min, 15,000g, 4 °C), and

the supernatants were injected directly. Metabolite concentrations were determined using the

standard addition method.

Statistical analyses

For metabolite analyses in FHS, log transformation of BAIBA concentrations was applied to

approximate a normal distribution. Partial correlation coefficients were estimated between

BAIBA and the following metabolic variables, after adjustment for age and sex: body mass

index (BMI), fasting glucose, fasting insulin, total cholesterol, triglycerides, homeostasis
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model assessment of insulin resistance (HOMA-IR) and the homeostasis model assessment

of ͤ-cell function (HOMA-B), calculated as previously described (Wang et al., 2011).

For FHS GWAS analyses a linear mixed effects model that accounts for familial relatedness

with an additive genetic model with one degree of freedom was used (Chen and Yang,

2010).

For animal studies, all results, unless otherwise stated, are expressed as means, and error

bars depict SEMs. A two tailed Student’ s t test or ANOVA was used to determine P values.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• ͤ-Aminoisobutyric acid (BAIBA) is secreted from PGC-1ͣ expressing

myocytes.

• BAIBA activates the thermogenic program in white adipocytes via PPARͣ.

• Circulating BAIBA levels in mice and humans are increased with exercise.

• BAIBA is inversely correlated with cardiometabolic risk factors in humans.
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Figure 1. Metabolites accumulate in the media of myocytes as a result of forced PGC-1ͣ
expression and stimulate expression of brown adipocyte-specific genes in adipocytes
A) Myocytes were transduced with an adenoviral vector expressing either PGC-1ͣ (n=6) or

GFP (n=6). After 24 hours of exposure to these cells, media was analyzed using an LC-MS

based metabolite profiling method measuring 100 small molecules (see Methods). B)
BAIBA (5 μM) induces expression of brown adipocyte-specific genes in primary adipocytes

differentiated from the stromal vascular fraction isolated from inguinal WAT over 6 days.

Additional metabolites tested at physiologically relevant doses included GABA (3 μM),

cytosine (1 μM), and 2-deoxycytidine (15 μM). While BAIBA significantly increased the

expression of the brown adipocyte-specific genes UCP-1 and CIDEA, it did not alter the

expression of the white adipocyte gene adiponectin (ADIPOQ). Cumulative data from a total

of 5 independent observations are shown. C) BAIBA concentrations in the low micromolar

range significantly and dose-dependently increased the expression of the brown adipocyte-
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specific gene UCP-1. *, P ≤ 0.05, **, P ≤ 0.01, ***, P ≤ 0.001. Data are represented as Mean

± SEM.
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Figure 2. BAIBA treatment of BJ RiPS human iPSCs induces brown adipocyte-specific gene
expression and function
A) BAIBA significantly and dose dependently increased the expression of brown-adipocyte

specific genes in human induced pluripotent stem cell (IPSC) derived mature adipocytes. B)

Glucose uptake in human IPSC derived adipocytes was assessed by the transport of [3H]-2-

deoxy-D-glucose at basal level and during insulin stimulation (10 nM and 100 nM). BAIBA

increased both basal and insulin stimulated glucose uptake (data from 3 independent

observations are shown). C) Comparison of the oxygen consumption rate (OCR) of human

IPSC-derived white adipocytes with and without BAIBA treatment; Untransduced cells

differentiated with adipogenic media (green line), PPARG2 programmed cells (blue line),

and PPARG2 programmed cells treated with BAIBA (black line). The OCR was measured

over time with the addition of oligomycin (ͣ), an ATPase inhibitor, carbonyl cyanide m-

chlorophenyl hydrazone (CCCP), a proton gradient uncoupler (ͤ) allowing determination of

the maximum OCR, and antimycin (ͥ). D) BAIBA significantly increased the maximal

OCR of PPARG2 transduced adipocytes. (Data from n = 10 independent observations are

shown). E) Images of untransduced cells, PPARG2 programmed white adipocytes, PPARG2

programmed white adipocytes treated with BAIBA, and PPARG2-CEBPB programmed

brown adipocytes. Shown from left to right: brightfield images illustrating the morphology

of the cells; 4ᓉ,6-diamidino-2-phenylindole (DAPI) fluorescent nuclear staining (blue);

fluorescent staining with the neutral lipid dye BODIPY (green); fluorescent images of

immunostaining with antibodies against the marker protein UCP-1 (red) (100×

Roberts et al. Page 25

Cell Metab. Author manuscript; available in PMC 2014 May 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



magnification). *, P ≤ 0.05, **, P ≤ 0.01, ***, P ≤ 0.001,****, P < 0.0001. Data are

represented as Mean ± SEM.
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Figure 3. BAIBA induces expression of brown adipocyte-specific genes in WAT in vivo and
muscle specific PGC-1ͣ  expression and exercise significantly increase plasma BAIBA levels
A) The plasma concentration of BAIBA in mice given 100 mg/kg/day (n = 5) or 170

mg/kg/day (n = 5) of the metabolite in their drinking water significantly increased over 14

days as compared to age matched control mice (n = 5). B) Expression of brown adipocyte-

specific genes in inguinal WAT from control mice (-) (n = 5), mice treated with 100

mg/kg/day BAIBA for 14 days (+) (n = 5), or mice treated with 170 mg/kg/day BAIBA for

14 days (++) (n=5). C) Plasma from muscle specific PGC-1ͣ transgenic mice (n = 5) was

analyzed using an LC-MS metabolite profiling platform and compared to plasma from age

matched control mice (n = 5). D) Plasma from PGC-1ͣ knockout mice (n = 9) was analyzed

using LC-MS and compared to plasma from age matched control mice (n = 8) E) Mice were

subjected to a 3 week free wheel running exercise regimen (n = 6) or housed as sedentary

controls (n=6), and plasma BAIBA levels were assessed by LC-MS. *, P ≤ 0.05, **, P ≤

0.01, ***, P ≤ 0.001, ****, P < 0.0001. Data are represented as Mean ± SEM.
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Figure 4. BAIBA decreases weight gain and improves glucose tolerance in mice
A) The weights of mice given 100 mg/kg/day BAIBA (n = 8) in their drinking water

compared to untreated controls (n = 8). B) The percentage body fat of 100 mg/kg/day

BAIBA treated mice (n = 8) compared to untreated controls (n = 8). C) Diurnal oxygen

consumption of control mice (n = 8) and BAIBA (100 mg/kg/day) treated mice (n = 8). D).

Diurnal energy expenditure of control mice (n = 8) and BAIBA (100 mg/kg/day) treated

mice (n = 8). E) Activity of control mice (n = 8) and mice treated with 100 mg/kg/day

BAIBA .F) Food consumption of control mice and mice treated with 100 mg/kg/day

BAIBA. G) Mice treated with 100 mg/kg/day BAIBA for 14 weeks showed significantly

improved glucose tolerance as determined by an IPGTT. H) The area under the curve of an

IPGTT comparing BAIBA treated mice to untreated controls (Control, n = 8, BAIBA n = 8).

*, P < 0.05. Data are represented as Mean ± SEM.
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Figure 5. PPARͣ  functions downstream of BAIBA
A) BAIBA (5 μM) induces expression of PPARͣ in primary adipocytes differentiated from

the stromal vascular fraction isolated from inguinal WAT over 6 days. Cumulative data from

a total of 6 independent observations are shown. B) Expression of PPARͣ in inguinal WAT

from control mice (n = 5) and mice treated with 100 mg/kg/day BAIBA for 14 days (n = 5).

C) Primary adipocytes differentiated from the stromal vascular fraction treated with BAIBA

(5 μM) and/or GW6471 for 6 days. The graph shows qPCR of indicated genes. † < 0.05,† †  <

P0.01 compared to BAIBA treatment. D) BAIBA (5 μM) failed to induce expression of

brown adipocyte-specific genes in primary adipocytes differentiated from the stromal

vascular fraction isolated from inguinal WAT of PPARͣ null mice. Cumulative data from a

total of 6 independent observations are shown. E) Expression of brown adipocyte-specific

genes in inguinal WAT from wild type (WT) control mice (n = 5), WT mice treated with

100 mg/kg/day BAIBA for 14 days (n = 5), PPARͣ null control mice (n=5) and PPARͣ

null mice treated with 100 mg/kg/day BAIBA for 14 days (n=5). *, P < 0.05, **, P ≤ 0.01

compared to control. Data are represented as Mean ± SEM.
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Figure 6. BAIBA increases hepatic ͤ-oxidation through PPARͣ
A) BAIBA (5 μM) induces expression of fatty acid ͤ-oxidation genes in hepatocytes treated

for 6 days (Control = 6, BAIBA 5 μM = 6). B) BAIBA dose-dependently induces expression

of hepatic fatty acid ͤ-oxidation genes in vivo. Expression of fatty acid ͤ-oxidation genes in

the liver of control mice (n = 5) and mice treated with 100 mg/kg/day BAIBA for 14 days (n

= 5). C) BAIBA dose dependently increases the respiration rate of hepatocytes. Hepatocytes

were treated with a range of BAIBA concentrations (0, 0.1, 0.3, 1, 3, 10 μM) for 6 days.

Maximal oxygen consumption rate (OCR) was induced using FCCP. D) qPCR of key ͤ-

oxidation genes in hepatocytes treated with BAIBA and/or PPARͣ antagonist GW6471 for

6 days. Cumulative data from a total of 5 independent observations are shown. † † † , P ≤

0.001, † † † † , P < 0.0001 compared to BAIBA treatment. E) Expression of ͤ-oxidation genes

in liver from PPARͣ  null control mice (n = 5) and PPARͣ null mice treated with 100

mg/kg/day BAIBA for 14 days (n = 5). *, P < 0.05, **, P ≤ 0.01, ***, P ≤ 0.001, ****, P <

0.0001 compared to control. All data are represented as Mean ± SEM.
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Figure 7. Integration of human genetic and transcriptional data highlights a role for PGC-1ͣ in
BAIBA generation
A) A table of the transcriptional changes in genes associated with the BAIBA biosynthesis

pathway in primary myocytes expressing PGC-1ͣ as assessed by expression arrays (left

panel). Right panel includes genes in the BAIBA biosynthesis pathway and the significance

of their relationship to BAIBA plasma concentrations in the Framingham Heart Study

(FHS). B) The BAIBA biosynthesis pathway annotated with the genes increased by forced

PGC-1ͣ  expression in primary myocytes or identified by the GWAS study.
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Table 1

Heritage exercise study demographics

SEX
(% Male)

AGE
(years) BMI

Baseline
VO2 MAX

Post
Exercise

VO2 MAX
∆ VO2 MAX

50 34.1 ± 14 26 ± 5.4 2577.3 ±
717.2

3007.4 ±
849.6 430 ± 390.3

BMI, body mass index. Data presented as mean ± SD. V02 max is reported in mL 02/min.
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