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Abstract. The production of n" mesons in coincidence with forward-going protons has been studied in
photon-induced reactions on ?C and on a liquid hydrogen (LHz) target for incoming photon energies of
1.3-2.6 GeV at the electron accelerator ELSA. The ' mesons have been identified via the n’ — 7%7%) — 6
decay registered with the CBELSA /TAPS detector system. Coincident protons have been identified in the
MiniTAPS BaF; array at polar angles of 2° < 6, < 11°. Under these kinematic constraints the " mesons
are produced with relatively low kinetic energy (~ 150 MeV) since the coincident protons take over most of
the momentum of the incident-photon beam. For the C-target this allows the determination of the real part
of the n’-carbon potential at low meson momenta by comparing with collision model calculations of the n’
kinetic energy distribution and excitation function. Fitting the latter data for ' mesons going backwards
in the center-of-mass system yields a potential depth of V.= —(44 4 16(stat)+15(syst)) MeV, consistent
with earlier determinations of the potential depth in inclusive measurements for average ' momenta of
~ 1.1 GeV/c. Within the experimental uncertainties, there is no indication of a momentum dependence
of the n’-carbon potential. The LH> data, taken as a reference to check the data analysis and the model
calculations, provide differential and integral cross sections in good agreement with previous results for 7’
photoproduction off the free proton.

PACS. 14.40.Be Light mesons — 21.65.Jk Mesons in nuclear matter — 25.20.Lj Photoproduction reactions

1 Introduction strong coupling regime [1,2,3,4]. These studies are moti-

vated by the possible existence of mesic states, i.e. meson-
The interaction of light pseudo-scalar mesons with nuclei ngcleus bound states. Th? ex1stence. of deeply-bound pio-
has extensively been studied experimentally as well as the- Dic states has been established experimentally [5,6,7,8]. In

oretically as a test of Quantum Chromodynamics in the these systems, one electron in an inner orbit is replaced by
a negatively-charged meson. These systems are bound by

Correspondence to: Mariana.Nanova@exp2.physik.uni- the attractive Coulomb interaction between a negatively-
giessen.de charged meson and the positively-charged nucleus. In case
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of the 77, the superposition with the strong interaction,
which is repulsive at low pion momenta, leads to a poten-
tial pocket near the nuclear surface and consequently to a
halo-like 7~ distribution [9]. In contrast, the nuclear inter-
action is attractive for K~ mesons. However, the strongly-
absorptive potential attenuates the atomic wave function
within the interior of the nucleus and expels it to the nu-
clear surface, again leading to halo-like meson-nucleus con-
figuration [10].

For neutral mesons only the strong interaction can be
an agent for the formation of meson-nucleus bound states.
The question is whether the nuclear meson-nucleus inter-
action is attractive and sufficiently strong and whether the
meson absorption in nuclei is sufficiently weak to allow for
the formation of relatively narrow states. Following [11],
the interaction of mesons with nuclei can be described by
a potential

U(r) = V(r) +iW(r), 1)

comprising a real part and an imaginary part, where r is
the distance of the meson to the centre of the nucleus. The
depth of the real part V (r) of the potential is a measure
of the attraction and the size of the imaginary part W (r)
describes the strength of meson absorption.

The 7’ - nucleon interaction is of scalar nature. A vec-
tor potential acts with a different sign for particles and
antiparticles and is thus not allowed for particles that are
their own antiparticles, like the 7’. For a scalar meson-
nucleus interaction, the depth of the real potential can
then be related to the modification Am of the meson mass
at normal nuclear matter density po according to [12]

.02.@ (2)

Vir)=A
(T) " Po

Here, p(r) is the nuclear density profile, py is the nuclear
saturation density and ¢ the velocity of light.

The imaginary part of the potential describes the me-
son absorption in the medium via inelastic channels and is
related to the in-medium width Iy of the meson at nuclear
saturation density by [11]

W(r) = —%Fo - p;;“). (3)

There are two conditions for the existence and experi-
mental observation of meson-nucleus bound states: (i) the
real part of the potential should be sufficiently deep, in
particular for very small meson momenta near the pro-
duction threshold; (ii) a small imaginary potential implies
a narrow width allowing for an easier separation of signal
and background and thus an easier identification of the
bound state. Furthermore, the width should be smaller
than the spacing of bound states to avoid overlapping lev-
els. The imaginary part of the potential should therefore
be small compared to the real potential, i.e. |W| < |V].

The strength of the real and imaginary parts of the 7'-
nucleus potential has been determined by the CBELSA/
TAPS collaboration in a series of inclusive n’ photopro-
duction experiments at the electron accelerator ELSA [13,
14,15,16,17,18]. The depth of the real potential has been

extracted from measurements of the excitation function,
i.e. the cross section for 1’ production as a function of
the incident photon energy, and from measurements of
the momentum differential 1’ production cross section.
The potential parameters are deduced from a comparison
of measured with corresponding calculated cross sections,
obtained with collision model calculations [19] for differ-
ent potential depths. These model calculations describe
the production of mesons in proton-, photon- and pion-
induced reactions off nuclei, using the elementary produc-
tion cross sections as input. These investigations consider
direct and two-step production mechanisms and take the
internal nucleon momentum distributions - including high
momentum tails - into account. The off-shell propagation
of the produced mesons is approximated by assuming a
density-averaged modified in-medium meson mass. For av-
erage 7 momenta comparable to the ’ mass, the depth of
the real potential has been found to be Vo = V(p = pg) =

—(39 £ 7(stat)+15(syst)) MeV [14].
The imaginary potential has been extracted from mea-
surements of the transparency ratio, defined in [20,21] as
Ty = _OyAomX (4)

A OyN—-mX

It compares the production cross section per nucleon of
meson m off a nucleus with mass number A with the pro-
duction cross section on a free nucleon N. T4 quantifies
the loss of the meson flux in a nuclear target through in-
elastic reactions which are related to the imaginary part
of the meson in-medium self-energy or width. The imagi-
nary potential is deduced from a comparison of measured
with calculated transparency ratios obtained in transport-
[22,23] or collision-model calculations [19], assuming dif-
ferent in-medium width or absorption cross sections for
the meson. The imaginary part of the n’ - nucleus po-
tential has been found to be in the range of ~ -(7.5 -
12.5) MeV [13]. The transparency ratio has not only been
measured as a function of the nuclear mass number A
but also as a function of the ” momentum. Extrapolat-
ing to near threshold momenta, an imaginary potential of
Wo = W(p = po) = —(13 £ 3(stat)+3(syst)) MeV has
been deduced in [18]. The modulus of the imaginary po-
tential is thus about a factor 3 smaller than the modulus
of the real potential, indicating favourable conditions for
the observability of r’-nucleus bound states, provided this
ratio of imaginary to real potential persists also at low mo-
menta which are decisive for the possible formation of 7’ -
nucleus bound states. The real part of the ' -nucleus po-
tential has, however, not yet been determined for meson
momenta small compared to the meson mass, while the
imaginary part of the potential is known for small mo-
menta. The motivation for the present work is to provide
equivalent information on the real part of the 1’ - nucleus
potential at near-threshold momenta.

Low-momentum 7’ mesons are selected in the experi-
ment by requiring the participant proton to be emitted at
forward angles. The forward-going proton takes over most
of the momentum of the incoming photon beam; the 7’
meson then goes backward in the v-proton center-of-mass
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system but, boosted into the laboratory system, the 7’
meson moves slowly forward in the laboratory, providing
the possibility to study the 1’ meson-nucleus interaction at
very low momenta p,, compared to the 7' meson mass m,,:
(py < myy). The real part of the n’-nucleus potential is
then extracted by comparing the measured kinetic energy
distribution and excitation function for 7" mesons in co-
incidence with forward-going protons with corresponding
calculations within a collision model [24]. A corresponding
measurement on the w meson has been reported in [25].

It should be noted that for short-lived mesons like the
7’ meson, external meson beams cannot be produced and
experiments as described here are the only way to obtain
information on the meson-nucleus interaction. The nucleus
serves as a production target but is simultaneously used to
probe the meson-nucleus interaction. Hereby it is impor-
tant that the nucleus does not disintegrate in the meson
production process. This can be ensured by appropriate
experimental conditions and event selection criteria, as de-
scribed below.

The paper is structured as follows: The experimental
setup and the conditions of the experiment are described
in section 2. Details of the analysis are given in section 3.
Section 4 presents the experimental results and the com-
parison with the mentioned theoretical calculations. Con-
cluding remarks are given in section 5.

2 Experimental setup

The experiment was performed at the electron stretcher
accelerator ELSA in Bonn [26,27]. Photons were produced
by scattering electrons of 3.2 GeV off a 50-um-thick cop-
per radiator and impinged on a 5-mm-thick carbon target,
corresponding to 5.9% of a radiation length Xy. For the
photoproduction off the free proton a 500-pum-thick di-
amond radiator and a 5-cm-long LH, target were used.
The bremsstrahlung photons were tagged in the energy
range of 0.7-3.1 GeV by detecting the scattered electrons
in coincidence after deflection by a tagging magnet. De-
cay photons from 7’ mesons produced by the interaction
in the target were detected with the combined Crystal
Barrel (CB) (1320 CsI(T1) modules) [28] and MiniTAPS
calorimeters (216 BaFs modules) [29,30]. This detector
setup covered polar angles of 11°-156° and 1°-11°, respec-
tively, and the full azimuthal angular range, thereby cov-
ering 96% of the full solid angle. In the angular range
of 11°-28° the CB modules were read out by photomul-
tipliers, providing energy and time information while the
rest of the CB crystals were read out by photodiodes with
energy information only. Because of the high granular-
ity and the large solid-angle coverage the detector system
was ideally suited for the detection and reconstruction of
multi-photon events.

At polar angles of 1°-11°, protons were registered in
plastic scintillators in front of the MiniTAPS forward wall
and identified by time-of-flight measurements and their
energy depositions in the BaFs modules of MiniTAPS. In
the angular range of 11°-28° charged particles were reg-
istered in plastic scintillators in front of the CB modules

and for 23°-156° they were identified in a three-layer scin-
tillating fibre array [31]. The polar angular resolution for
proton detection is ¢ = 1° in MiniTAPS and ¢ = 6° in
11°-156°, given by the size of the Csl crystals.

The photon flux through the target was determined by
counting the photons reaching the Gamma Intensity Mon-
itor (GIM) [32] at the end of the setup in coincidence with
electrons registered in the tagging system. The total rates
in the tagging system were ~10 MHz for the C experiment
and ~17 MHz for the measurement with the free pro-
ton target. The polarization of the incident-photon beam
in the LHy experiment, obtained by using the diamond
crystal as a bremsstrahlung target, was not exploited in
the analysis of these data. During the carbon experiment
an aerogel-Cherenkov detector with a refractive index of
n=1.05 was used to veto electrons, positrons and charged
pions in the angular range covered by MiniTAPS. This
device was replaced for the LHy beamtime with a gas-
Cherenkov detector with a refractive index of n=1.00043
in order to veto electrons and positrons. The data were
collected during two data-taking periods of 525 h for the
carbon and 330 h for the LHy target.

The 7' mesons were identified via the ' — 7%7%) —
6+ decay chains, which have a total branching ratio of
8.5% [33]. In the carbon experiment, the first-level trigger
selected events with at least four hits in the combined elec-
tromagnetic calorimeters, requiring in addition that the
aerogel-Cherenkov detector had not fired (veto-condition);
in the LHy experiment, a less restrictive trigger was ap-
plied, requiring two or more hits in the calorimeters and
no hit in the gas-Cherenkov detector. The dead time intro-
duced by the Cherenkov detectors was about 10% for the
aerogel-Cherenkov detector and 4% for the gas-Cherenkov
detector. The photon flux has been corrected for the GIM
dead time which was about 13% in the carbon experiment
and 25% in the LH, experiment. A more detailed descrip-
tion of the detector setup and the running conditions can
be found in [25,32,34].

3 Data analysis

In the off-line analysis, events of interest were selected
and the background was suppressed by several kinemat-
ical cuts. Only events with incident photon energies in
the range of 1.3 - 2.6 GeV for the C target and 1.44 -
2.6 GeV for the LHs target were processed. Photons were
required to have energies larger than 25 MeV to suppress
cluster split-offs. Random coincidences between the tagger
and the detector modules in the first-level trigger were re-
moved by a cut in the corresponding time spectra around
the prompt peaks and by sideband subtraction.

Events with one and only one charged hit and exactly
6 photons with an energy sum larger than 600 MeV were
selected. The one charged hit had to be in MiniTAPS.
Since the detector system covered almost the full solid
angle, this condition suppressed all events more violent
than quasi-free n’ production processes which are char-
acterised by a higher multiplicity of hits in the detector.
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Fig. 1. 7°7% invariant mass distribution in coincidence with a proton registered in MiniTAPS for the LHz (left) and carbon
(right) targets.The fitted mass peak positions are consistent with the n” mass quoted by the particle data group [33]. The relative
mass resolutions are 1.0% and 1.2 % for the LHy and carbon target, respectively.
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Fig. 2. Time-of-flight of charged particles relative to photons versus energy deposited in the MiniTAPS BaF; detectors: (left)
GEANT3 simulation for protons from the yC' — pn’X reaction; data from the LHs (center) and carbon experiment (right),
requesting the coincident 1’ meson to go backward in the center-of-mass system. The two dimensional cut for identifying protons

is indicated.

Because of the proton detected in MiniTAPS, the residual
nucleus most likely was ''B. Following a very simplified
argument, it should be noted that in the initial stage of
the reaction both, the 1’ meson and the proton are still
in the C-nucleus; thus the ' mesons is subject to the n’
- C potential. Since for the chosen kinematics, the proton
is almost twice as fast as the ' meson (see Fig. 2 (right)
and Fig. 5 (left)) the proton leaves the nucleus before the
1’ meson, so that then the n’ meson probes the n’ - B
potential. Consequently, the measurement is sensitive to
a mixture of both potentials. Because of the weak nuclear
mass dependence of the potential parameters observed in

[12,13,14] it is assumed in the data analysis - see below -
that within the experimental errors there is no difference
between the n’-B and 7’-C potential.

The 6 photons were combined in two photon pairs
with invariant masses in the range 110 MeV/ A< Myy <
160 MeV/c? (corresponding to a +30 cut around mg o)
and one pair with invariant mass in the range
500 MeV/c? < m.. < 600 MeV/c? (roughly correspond-
ing to a £20 cut around m,,). The best photon combi-
nation was selected based on a y? minimization. To sup-
press the background from 1 — 37° decays and direct
379 production, events with 3 + pairs, each one with an
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Fig. 3. Acceptance and reconstruction efficiency of 1’ - proton coincidences for photoproduction off the free proton target (left)
and the carbon target (right) in the incident photon energy range of 1.44 - 2.6 GeV (LHz) and 1.3 - 2.6 GeV (C), respectively.

The 7' mesons are registered in the n’ — =°

7%n — 67 decay channel and protons are identified by time-of-flight and the

energy deposited in the MiniTAPS BaF2 detectors (see Fig. 2). The acceptance and reconstruction efficiency is shown for all n’
momenta although only those for slow 1’ mesons with p,, < m,, are effectively used.

invariant mass within the limits for the pion mass (m.0)
given above, were removed from the data set. The result-
ing 7979 invariant mass spectra obtained for both targets
are shown in Fig. 1.

In the data analysis, protons were requested in the an-
gular range of 2° — 11° covered by MiniTAPS where pro-
tons can be identified by requiring a signal in a plastic de-
tector in front of a MiniTAPS-BaF5 module as well as by
time-of-flight and an energy deposition in this BaF4 mod-
ule consistent with the simulated detector response. Fig. 2
shows the deposited energy versus the time-of-flight of
charged hits in coincidence with 7°7%7 events with an in-
variant mass of 930-990 MeV for both targets, correspond-
ing to a +30 cut around the " mass. The proton iden-
tification cut was based on GEANT3 simulations shown
in Fig. 2 (left). Protons were fully stopped in the BaF,
modules up to a kinetic energy of about 400 MeV. For
higher kinetic energies only a fraction of the energy was
deposited decreasing with energy according to the Bethe-
Bloch formula down to the energy deposition of ~ 180
MeV for minimum-ionizing particles. Furthermore, choos-
ing protons in the angular range of 2° — 11° guaranteed
coincident low-momentum 7" mesons with p,r < myy.

The acceptance and reconstruction efficiency for »’
mesons in coincidence with protons in the polar angle
range of 2° — 11° was determined by Monte Carlo sim-
ulations. In the event generator, the measured angular
differential cross sections for 7' mesons produced off the
free proton [35] and off the proton or neutron bound in
the deuteron [36] were used as input, respectively. For the
analysis of the carbon data the Fermi motion of nucle-
ons in the target nucleus was taken into account by the
parametrization proposed in [37]. Photons from 7’ decays
and the recoil proton emerging from the centre of the tar-
get were tracked with the GEANT3 package [38] based
on a full implementation of the detector system, including

the response of BaFy detectors to protons. The combined
effect of acceptance and reconstruction efficiency was de-
termined as a function of the 17’ momentum and angle in
the laboratory frame by taking the ratio of the number of
reconstructed to the number of generated meson - proton
coincidence events for each ” momentum and angular bin,
including all selection cuts mentioned above. The result-
ing two-dimensional acceptance and reconstruction effi-
ciency distributions for 7’ - proton coincidences are shown
in Fig. 3 for both targets and the full meson-momentum
ranges. The distributions vary smoothly as a function of
the n’ laboratory angle and momentum. For the analysis
of the C-data the 2-dimensional reconstruction efficiency
determination has the advantage that distortions of the
meson angle and momentum due to final state interactions
in the nucleus are directly taken into account by using the
reconstruction efficiency for the observed final state meson
momentum and angle. In the Monte Carlo simulations the
same trigger conditions as in the experiment were applied,
requiring > 4 hits in the whole detector system for the C
beamtime and > 2 hits for the LHy experiment.

For both targets the same analysis procedure was ap-
plied. The 7’ kinetic energy distribution and the excitation
function were derived by fitting the 7’ yields in 797%) mass
spectra generated for 9 (7) kinetic energy bins and 7 (18)
bins in the incident photon energy for the C (LHs3) anal-
yses. The bin sizes were chosen according to the available
statistics. When incrementing the 7%7%) invariant mass
histograms, each event was weighted with the inverse pho-
ton flux at the given incident photon energy and the accep-
tance and reconstruction efficiency for an 7’-proton coinci-
dence at the observed meson momentum and angle in the
laboratory frame (see Fig. 3). The n’ yields were extracted
by fitting the invariant mass spectra with a Gaussian line
shape function together with a polynomial to describe the
background distribution. The statistical errors, including
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the error of the random timing background subtraction,
were obtained with standard techniques of error propaga-
tion in weighted histograms.

The different sources of systematic errors for the cross
section determination are summarised in Table 1. The sys-
tematic errors in the fit procedure were estimated to be of
the order of 10% by applying different background func-
tions and fit intervals. The systematic errors of the the
acceptance and reconstruction efficiency were determined
to be less than 10% by varying the start distributions in
the simulation between isotropic and forward peaking 7’
angular distributions, as observed experimentally with in-
creasing incident beam energy. Systematic errors associ-
ated with the photon flux determination using the GIM
were estimated to be about 5-10%. The systematic er-
rors introduced by uncertainties in the absorption of in-
cident photons in the C-target (photon shadowing) [39,
40,41] (see below) were ~ 5%. Adding the systematic er-
rors quadratically, the total systematic error of the cross
section determinations was ~ 17%.

Table 1. Sources of systematic errors for cross section deter-
mination.

fits ~ 10%
reconstruction efficiency  <10%
photon flux 5-10%
photon shadowing ~ 5%
total ~ 1%

4 Experimental results

Figure 4 presents the energy differential cross section inte-
grated over the photon energy range of 1.45-2.6 GeV (left)
and the cross section as a function of the incident photon
energy (right) for ' photoproduction off the free proton
in coincidence with protons in the polar angle range of
2° — 11°. In addition it is required that the r’ mesons go
backwards in the center-of-mass system.

The data are compared to collision model calculations
under the same kinematic conditions as in the experiment.
These calculations are based on measured angular differ-
ential cross sections for 7' mesons produced off the free
proton [35]. In addition, the data are compared to recent
high statistics inclusive data for near threshold photopro-
duction of 7’ mesons [42] which have been converted into
cross sections in the laboratory system for the given kine-
matics. Our data are in good agreement with the calcu-
lations and the recent experimental results demonstrating
the reliability of the analysis procedure and model calcu-
lations.

Figure 5 presents the corresponding results for the car-
bon target obtained under the same kinematic conditions.
The 71’ kinetic energy distribution exhibits a broad max-
imum at 50-200 MeV and the excitation function shows
a maximum around 1.7 GeV incident photon energy. The
average 1’ momentum is 600 MeV/c, i.e. about a factor

2 smaller than the average n’ momentum in the inclusive
experiments [13,14]. For the carbon target the lowest data
point in the kinetic energy distribution corresponds to an
7’ momentum of 220 MeV /¢, comparable to the Fermi mo-
mentum of nucleons in carbon. The excitation function for
1’ -proton coincidences, i.e. the differential cross section
as a function of the incident photon energy, is shown in
Figure 5 (right). The cross sections include a 15% correc-
tion for absorption of the incoming photon beam (photon
shadowing) for carbon [39,40,41].

The measured cross sections are compared in Fig. 5
to calculations within the collision model [24]. Using the
measured differential cross sections for ' production off
the proton and neutron bound in the deuteron [36] as
input, the cross section for 1’ photoproduction off C is
calculated in an eikonal approximation, taking the effect
of the nuclear 7' mean-field potential into account. The
off-shell differential cross section for the production of 7’
mesons with reduced (or increased) in-medium mass off
intranuclear protons in the elementary reactions vp — 1'p
is assumed to be given by the measured on-shell cross
section, using the modified in-medium 7’ mass. The 7’
final-state absorption is taken into account by using a
momentum independent, inelastic in-medium 7' N cross
section of o,,ny=13 mb, consistent with the recent result
of transparency ratio measurements [18]. The contribu-
tion of 1’ production from two-nucleon short-range cor-
relations is implemented by using the total nucleon spec-
tral function in the parametrisation by [43]. As in [13,14],
the momentum-dependent potential from [44], seen by the
protons emerging from the nucleus in coincidence with the
1’ mesons, is accounted for. The model calculation also
considers coincident 1’ - proton production in a two-step
process: the n meson is produced off a first nucleon which
then scatters off another nucleon of the carbon nucleus,
kicking the final state proton into the MiniTAPS accep-
tance. It is found [24] that such a secondary process is
suppressed relative to primary n’-proton events by more
than an order of magnitude. A process involving a primary
1’ production off a proton with subsequent scattering of
this proton off another target proton into MiniTAPS is
suppressed also experimentally by the event selection, re-
quiring one and only one charged hit in the whole detector
system. The overall systematic uncertainties of the calcu-
lations are mainly given by the experimental input and
the fits to the measured cross sections and are estimated
to be of the order of 10-15%.

These calculations are conceptually identical to the
ones used for extracting the real part of the n’-C poten-
tial in the inclusive reaction [13,19]. Here, however, the
coincidence requirement of protons going into the polar
range of 2° — 11° with a minimum kinetic energy of 50
MeV is implemented, corresponding to the proton detec-
tion threshold in MiniTAPS. Details of these calculations
are described in [24]. Furthermore it is required - as in the
data analysis - that the ' mesons go backwards in the
center-of-mass system of the incident photon beam and
a target nucleon at rest. The calculations have been per-
formed for nine different scenarios assuming an 71’ real po-
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curves represent collision model calculations, using as input measured differential cross sections for " photoproduction off the
free proton [35]; stars correspond to recent inclusive data for ' photoproduction off the free proton [42] converted into the
laboratory system under the given kinematic constraints.
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Fig. 6. Depth of the real part of the n’-nucleus potential (left), determined for low 1" momenta in this work (open black circle
labelled p-n’ coinc.), in comparison to previous determinations in inclusive experiments on carbon (full black circles) [13] and
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statistical error. The hatched lines mark the range of systematic uncertainties. The real and imaginary part of the n’-nucleus
potential (right), determined for low 7" momenta (this work and from [18]). Thick (thin) error bars correspond to statistical

(systematic) errors, slightly shifted for better visibility.

tential at normal nuclear matter density of V= +50, +25,
0, —25, =50, =75, —100, —125 and —150 MeV, respec-
tively. The cross section curves calculated for the different
scenarios are more clearly separated in case of the excita-
tion functions which are thus more sensitive for the deter-
mination of the 1’ - nucleus potential. The calculations do
not extend beyond E, = 2.4 GeV since the elementary 7’
photoproduction cross sections off the free proton as well
as off the proton and neutron bound in deuterium [35,36]
are only known up to this energy. The data and calcula-
tions are compared on an absolute scale, i.e., there is no
rescaling of the calculations to the data.

Because of the limited statistics a simultaneous y2-fit
of the calculated cross section curves to the energy differ-
ential cross section (Fig. 5 (left)) and excitation function
data (Fig. 5 (right)) has been performed, yielding a depth
of the real part of the 7’ - carbon potential of —(44 £ 16)
MeV. By scaling the calculations up and down by 10%,
reflecting the systematic uncertainties of the calculations,
we obtain a systematic error of + 15 MeV. This value of
the potential depth obtained for average i’ momenta of
~ 600 MeV/c is consistent with earlier determinations of
the real part of the n’-nucleus potential in inclusive mea-
surements [13,14] as shown in Fig. 6. Thus, within the
statistical and systematic uncertainties of this experiment
there is no indication for a momentum dependence of the
1’ - nucleus potential.

shown in Fig. 6(right). This confirms that the ' meson is
a suitable candidate for the observation of mesic states.
Although the imaginary part of the potential appears to
be quite small, allowing for the observation of relatively
narrow states, it should be noted that the depth of the
real potential is found to be much smaller than initially
predicted theoretically [4] which may considerably reduce
the strength of these states.

A recent search for n’®@!*C bound states has not re-
vealed any narrow mesic states, but the upper limit of
about —100 MeV for the depth of the 1’ nucleus potential
deduced from that experiment [45] is consistent with the
value reported in this work. For a potential depth of ~ —40
MeV more sensitive measurements are required, e.g. by
suppressing the background from multi-pion events by
searching not only for the formation but in addition also
for the characteristic decay of n’- nucleus bound states.

5 Conclusions

The kinetic energy distribution and the excitation func-
tion for 7’ photoproduction off carbon and the free pro-
ton have been measured in coincidence with forward-going
protons (2° < ¢, < 11°). The data taken on the LH, tar-
get are in good agreement with model calculations and
recent experimental results demonstrating the reliability
of the analysis procedure and the calculations. A com-

Comparing the real potential of —(44416(stat)+15(syst))parison of the carbon data with collision model calcula-

MeV determined in this work to the imaginary potential
of —(13+3(stat)£3(syst)) MeV [18], obtained by extrapo-
lating the weak energy dependence of the imaginary part
to the production threshold, we find that the modulus of
the imaginary part - taking the experimental errors into
account - is about a factor 2-4 smaller than the modulus
of the real part also at relatively small ” momenta, as

tions, performed under the experimental conditions, yields
a real potential of —(44+16(stat)+15(syst)) MeV for the
1’ - carbon interaction for 77’ mesons with an average mo-
mentum of 600 MeV /c. This result is consistent with ear-
lier determinations of the 1’ - nucleus potential [13,14]
in inclusive experiments for average ' momenta of 1.1
GeV/c. Within the experimental uncertainties there is no
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indication for a momentum dependence of the 1’ nucleus
interaction. Since the modulus of the imaginary poten-
tial near threshold is about a factor of 2-4 smaller than
the modulus of the real part of the potential, the 7’ me-
son remains a good candidate for the search for meson-
nucleus bound states although a first missing mass spec-
troscopy experiment [45] has not identified narrow bound
states. The potential depth of about —40 MeV, deduced
in our photoproduction experiments, requires more sensi-
tive measurements. A promising approach is to combine
the missing mass spectrometry with detecting the decay of
the " mesic states in a semi-exclusive experiment. Promis-
ing decay channels appear to be two nucleon absorption
or "N — nN. Corresponding plans are pursued at the
FRSQGSI/FAIR [46] and by using photonuclear reactions
[47,48].
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