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A new drift-kinetic theory of the ion response to magnetic islands in tokamak plasmas is presented.

Small islands are considered, with widths w much smaller than the plasma radius r, but comparable to the

trapped ion orbit width ρbi. An expansion in w=r reduces the system dimensions from five down to four. In

the absence of an electrostatic potential, the ions follow stream lines that map out a drift-island structure

that is identical to the magnetic island, but shifted by an amount ∼ few ρbi. The ion distribution function is

flattened across these drift islands, not the magnetic island. For small islands, w ∼ ρbi, the shifted drift

islands result in a pressure gradient being maintained across the magnetic island, explaining previous

simulation results [E. Poli et al., Phys. Rev. Lett. 88, 075001 (2002)]. To maintain quasineutrality an

electrostatic potential forms, which then supports a pressure gradient in the electrons also. This influence on

the electron physics is shown to stabilize small magnetic islands of width a few ion banana widths,

providing a new threshold mechanism for neoclassical tearing modes—a key result for the performance of

future tokamaks, including ITER.

DOI: 10.1103/PhysRevLett.121.175001

Magnetized plasmas are susceptible to tearing mode

instabilities. These are characterized by the evolution of

magnetic islands, which arise from a filamentation of the

component of current density along magnetic field lines.

The change in magnetic topology associated with these

islands has an impact on the confinement of the plasma by

the magnetic field. It is therefore important to determine the

conditions under which they grow to large amplitude. To

address this, it is necessary to understand how ions and

electrons respond to magnetic islands, what currents that

response creates, and whether those currents act to amplify

or heal the island.

In the simplest picture, particles free-stream along

magnetic field lines. As a result, their distribution functions

are constant on the perturbed magnetic flux surfaces of the

island. In the absence of heat and/or particle sources, this

results in a flattening of the distribution function across the

island O point. In this Letter, we show that the particle

drifts have a significant impact on this picture, especially

when the width of particle orbits associated with those

drifts are comparable to the island width. As a particular

example we focus on the tokamak, which provides a good

illustration of the effect because (a) it has E × B, grad-B,

and curvature drifts, and (b) the results have consequences

for an important tokamak instability called the neoclassical

tearing mode (NTM).

In tokamak plasmas, the current density filamentation

that drives NTMs is typically dominated by the bootstrap

current. In toroidal geometry, a fraction of particles are

trapped in the region of low magnetic field, executing

closed, banana-shaped orbits. With the presence of a

pressure gradient, the finite banana width of those trapped

particle orbits drives opposing flows in the ions and

electrons along magnetic field lines, in a similar mechanism

to that responsible for diamagnetic flows. This seeds the

aforementioned bootstrap current, that is carried by the

passing (i.e., non-trapped) particles [1]. With a magnetic

island present, the flattening of the pressure gradient creates

a hole in the bootstrap current, and (for typical tokamak

conditions) the resulting filamentation of current density

leads to an amplification of the magnetic island. This is the

neoclassical tearing mode instability [2–9]—a major con-

cern for ITER because, if not controlled, it causes signifi-

cant confinement degradation and can even terminate the

plasma discharge in a disruption.

Neoclassical theory is well-developed to describe the

physics of the trapped and passing particles when their

trapped banana orbit widths, ρbi and ρbe, are much smaller

than the length scales of the system. The theory therefore

provides a good description of the bootstrap current drive

when the islands are much wider than the ion banana width.

The NTM theory then predicts that all seed magnetic

islands, however small, will grow to large amplitude with
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a deleterious impact on confinement. However, experiments

indicate that the plasma heals sufficiently small magnetic

islands of half-width w ∼ few ρbi [10]. This is precisely the

regime where the conventional theory breaks down. Indeed,

Ref. [11] demonstrated with particle-in-cell simulations that

an ion density gradient is supported for islands in this

regime, and the bootstrap current perturbation is suppressed.

However, that work did not address the electron response.

We find this introduces new physics and thus, to develop a

quantitative understanding of the threshold phenomenon, it

is necessary to understand (i) how the ions respond to small

islands, (ii) the implications for the electron response via

quasineutrality, and (iii) the consequences for the NTM

drive. We address each of these in this Letter.

Our starting point is the drift kinetic model to describe

the ion distribution function in a magnetized plasma, with

electrostatic potential Φ. Assuming that the effect of the

island on plasma parameters is localized to its vicinity, we

work in the island rest frame and seek a steady state

solution, neglecting any temporal fluctuation in fields (see

Ref. [12] for the impact of turbulence). While finite ion

Larmor radius effects could be included using a gyrokinetic

approach, they are not essential for the physics we describe

here. We therefore adopt the drift kinetic equation for the

ion distribution function fi, in the time-independent form

vk∇kfi þ vE · ∇fi þ vb · ∇fi

−
Ze

mi

�

vk∇kΦ

v
þ vb · ∇Φ

v

�

∂fi

∂v
¼ CiðfiÞ; ð1Þ

where v is the particle speed (k denoting a component

parallel to the magnetic field, B), ∇k ¼ b · ∇, b ¼ B=B,

and vE¼ðB×∇ΦÞ=B2. vb ¼ −vkb × ∇ðvk=ωciÞ is the com-

bination of grad-B and curvature drifts, ωci ¼ ZeB=mi,

and Ze and mi are the ion charge and mass, respectively.

On the right-hand side of Eq. (1) is the collision operator.

Spatial derivatives are taken at constant kinetic energy

E ¼ miv
2=2 and magnetic moment μ ¼ miv

2
⊥
=2, where

v2
⊥
¼ v2 − v2k. We define the pitch angle, λ ¼ μ=E, so that

vk ¼ σv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λB
p

with σ ¼ vk=jvkj ¼ �1.

Our radial coordinate is x ¼ ðψ − ψ sÞ=ψ s, where ψ is the

poloidal flux and ψ s labels the rational surface where

the safety factor, qðψ ¼ ψ sÞ ¼ m=n, with m and n being

the poloidal and toroidal mode numbers of the magnetic

island, respectively. Our other two spatial coordinates

are the straight field line poloidal angle θ measuring the

distance along an equilibrium magnetic field line, and

helical angle ξ labeling the field lines at the rational surface.

For a toroidally symmetric tokamak plasma, the canonical

angular momentum, pϕ ¼ðψ −ψ sÞ− Ivk=ωci, is conserved

during particle motion, where IðψÞ ¼ RBϕ withR the major

radius and Bϕ the toroidal component of the magnetic field.

Exploiting this variable is key to reducing the dimensionality

of the system.We solve Eq. (1) bywriting the ion distribution

thus: fi¼½1−ZeΦ=Tið0Þ�FMið0ÞþpϕF
0
Mið0Þþgi, where

(0) indicates the quantity evaluated at the rational

surface, the prime denotes a differential with respect to ψ ,

Ti is the ion temperature, andFMið0Þ¼ nið0Þ½πv2thið0Þ�−3=2 ×
exp½−v2=v2thið0Þ� is the Maxwellian. Here, vthi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTi=mi

p

is the ion thermal speed, ni is the ion density,

and kB is Boltzmann’s constant.

The magnetic field of a tokamak has a maximum, Bmax,

on the inboard side. If λ < λc ≡ B−1
max, the particles pass

around the full extent of the flux surface, most of them

deviating from it by a small amount ∼ϵρθi, where ρθi ¼
mivthi=ZeBθ is the poloidal ion Larmor radius, and ϵ ¼
r=R is the inverse aspect ratio. If λ > λc the particles are

trapped to the region of weaker magnetic field, bouncing

between the two points θb� along the field lines, where

λBðθ ¼ θb�Þ ¼ 1, and deviating from the flux surface by a

larger amount: the ion banana width, ρbi ∼ ϵ1=2ρθi. In a

tokamak, the system size is typically much greater than ρθi,

so we can introduce a small parameter, Δ ¼ ρθi=rs, where
rs is the minor radius of the rational surface where ψ ¼ ψ s.

We consider the ion response to small islands with a width

w ∼ ρbi, and seek an asymptotic series solution to Eq. (1) by

expanding in powers of Δ: gi ¼
P

kΔ
kg

ðkÞ
i .

Ordering w=r, ZeΦ=Ti, and g
ð0Þ
i =FMið0Þ all like Δ, the

leading order contributions to Eq. (1) come from the free-

streaming along the magnetic field lines, as well as the

radial components of the grad-B and curvature drifts, which

combine to give

vk
B

I

R2q

∂g
ð0Þ
i

∂θ

�

�

�

�

pϕ;ξ;λ;v

¼ 0; ð2Þ

assuming that collisions are OðΔÞ smaller than this free-

streaming term. Integrating Eq. (2) shows that gi is

independent of θ at fixed pϕ, i.e., g
ð0Þ
i ðx; θ; ξ; λ; v; σÞ ¼

ḡ
ð0Þ
i ðpϕ; ξ; λ; v; σÞ. This reduces the dimension of the

problem, but the form of ḡ
ð0Þ
i is still to be determined.

At next order we derive an equation for g
ð1Þ
i in terms of

ḡ
ð0Þ
i , where the term in g

ð1Þ
i has the same form as that in

Eq. (2). This term is eliminated by taking the average over θ

at fixed pϕ, ξ, λ, and v, which is equivalent to averaging

over the particle orbits. For λ < λc, we can integrate over a

period in θ, imposing a periodic boundary condition to

eliminate the term in g
ð1Þ
i . In the trapped region (λ > λc), we

integrate between the bounce points θb� and sum over the

two streams, σ ¼ �1, which then annihilates the term in

g
ð1Þ
i due to continuity at each of the bounce points.

Considering a large aspect ratio circular cross section

tokamak, dropping terms of Oðϵ2Þ and smaller, and writing

the magnetic field perturbation B1 ¼∇× ðAkbÞ, with

RAk ¼ −w2q0=ð4qÞfðξÞ (q0 ¼ dq=dψ), we arrive at our

final equation for ḡ
ð0Þ
i :
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½p̂ϕΘðλc − λÞ þ ωD − ωE;ξ�
∂ḡ

ð0Þ
i

∂ξ

�

�

�

�

pϕ

−

�

ŵ2

4

dF

dξ
Θðλc − λÞ − ωE;x

�

∂ḡ
ð0Þ
i

∂p̂ϕ

�

�

�

�

ξ

¼ ϵ3=2Lq

q

�

ν�i
v̂k

Ciiðḡð0Þi Þ
νi

�

θ

; ð3Þ

where h…iθ denotes the orbit average described above, and
F ðξÞ ¼ cos ξ. We have defined dimensionless variables

p̂ϕ¼pϕ=ψ s, v̂jj¼vjj=vthi, ν�i¼νiRq=ðϵ3=2vthiÞ and ŵ¼w=ψ s,

together with the dimensionless drift frequencies

ωE;x ¼
1

2

�

ρ̂θi

v̂k

∂Φ̂

∂ξ

�

θ

; ωE;ξ ¼
1

2

�

ρ̂θi

v̂k

∂Φ̂

∂x

�

θ

;

ωD ¼ hρ̂θiv̂kiθ þ Lq

�

RB
∂

∂x

�

ρ̂θiv̂k
I

��

θ

: ð4Þ

Φ̂ ¼ LqðZe=TiÞΦ,L−1
q ¼ ð1=qÞdq=dx, ρ̂θi ¼ ρθi=ψ s andΘ

is the Heaviside function. Equation (3) is the solubility

condition for g
ð0Þ
i .

We solve Eq. (3) numerically for arbitrary values of ρ̂θi
and ŵ, employing the momentum-conserving model colli-

sion operator described in Ref. [13]. To determine the

electrostatic potential Φ̂ we impose the quasineutrality

condition, which requires a solution for the electron

response. Because the electron orbit width is a factor

ðme=miÞ1=2 smaller than that of the ions, we adopt the

small ρθe=w solution described in Ref. [5]. To ensure that

the collisions correctly account for momentum conserva-

tion, we use our numerical solutions for the ion flow in the

electron collision operator.

Figure 1 shows a color contour plot of the passing ion

distribution function for ŵ ¼ ρ̂θi ¼ 0.02, Lq=rs ¼ 1.0,

λ=λc ¼ 0.1, v̂ ¼ 1.0, ν�i ¼ 0.01, and ϵ ¼ 0.1 (likewise

for subsequent figures, unless otherwise stated). The island

structure is clear in the color contours, but comparison with

the magnetic island flux contours shows a shift in the

contours of constant distribution function compared to the

magnetic island. To understand this, consider the collision-

less limit of Eq. (3) which, to leading order in Δ, can be

reduced to the following form:

½p̂ϕΘðλc − λÞ þ ωD − ωE;ξ�
∂ḡ

ð0Þ
i

∂ξ

�

�

�

�

S

¼ 0; ð5Þ

S ¼ 2

�

ðp̂ϕ þ ωDÞ2 −
ŵ2

4
cos ξ

	

Θðλc − λÞ

þ ωDp̂ϕΘðλ − λcÞ −
1

2

�

ρ̂θi

v̂k
Φ̂

�

θ

: ð6Þ

This function S defines the stream lines for the ions.

When the effect ofΦ is ignored (which represents the effect

of the E ×B drift), one can show that the contours of

constant S are identical to the magnetic island flux surfaces,

but shifted by a few ρ̂θi. The result of Eq. (5) is that the ion

distribution function now only depends on three variables

in the low collision frequency limit: g
ð0Þ
i ðx; θ; ξ; λ; v; σÞ ¼

ḡ
ð0Þ
i ðS; λ; v; σÞ. This is the toroidal generalization of the

result from slab geometry [i.e., Eq. (8) of Ref. [14]]. The

dependence on S, λ, and v can be derived by introducing

collisions at next order to provide another constraint

equation [15]. The contours of constant S are shown as

the full curves in Fig 1, confirming that they coincide with

the color contours of the distribution function. We refer to

the constant S island structures as “drift islands.”

The shift of the drift island for σ ¼ þ1 is equal and

opposite to that for σ ¼ −1. In constructing the density, one

sums over σ before integrating the distribution function

over λ and v. Because the regions where the distribution

function is flattened shift in opposite directions for σ ¼ �1,

the distribution summed over σ supports substantial gra-

dient inside the magnetic island when ŵ ∼ ρ̂θi. This is a

finite orbit width effect—not the well-known transport

effect [4,16–18]. For large ŵ ≫ ρ̂θi, the shift in each

direction is relatively small, and then the density is

approximately flattened across the magnetic island, as

expected (see Fig. 2). That finite orbit width effects support

a pressure gradient in the ions is not new, and was also

found numerically in Ref. [11]. Here we have shown that it

is a consequence of the drift islands of passing particles

(which will be captured in their numerical simulations also)

and not, as suggested in Ref. [11], a result of trapped ions

averaging over inside and outside the magnetic island as

they intersect its separatrix. New physics also arises from

the electron response, which was not retained in Ref. [11].

The strong parallel flows of the electrons tend to flatten

their density across the magnetic island even for the small

island width case. However, the electrostatic potential

adjusts to ensure that the adiabatic part of the electron

FIG. 1. Color contour plot of the ion distribution function in the

x − ξ plane obtained from Eq. (3), with the magnetic island

separatrix flux surface (dashed) and contours of constant stream

function, S (full).
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response provides the same gradients in the electron density

as we see here for the ion density. This has profound

consequences for NTM stability as we discuss shortly.

Let us first consider the ion flows. For them, the parallel

streaming and E ×B flows are expected to compete

(e.g., see Refs. [5,13]), so it is particularly important that

the electrostatic potential is derived consistently with the

quasineutrality condition. From Fig. 3, it is clear for the

small ρ̂θi=ŵ case that the pattern of the flow around

the island follows the perturbed magnetic island geom-

etry. On the other hand, the case for ρ̂θi ¼ ŵ is more

complicated—there is a notable variation in the flow within

a flux surface, with a broader peak in the profile a few island

widths beyond the separatrix. This may provide an exper-

imental test.

To calculate the impact on the NTM drive, we require the

current perturbation. Combining our numerically derived

ion flows with the analytic theory for the electron neo-

classical flows [5], we calculate the current averaged over

the magnetic island flux surfaces. The contribution to the

island evolution is characterized by Δ
0
bs, given by [5]

ψ s

Z

∞

−∞

dx

I

Jbs cos ξdξ ¼
c

32

rs

Lq

Δ
0
bs

w2B

Rq
; ð7Þ

where Jbs¼
P

j¼i;eZjenjvthjhukjiΩ and h� � �iΩ ¼
H

� � �
½Ωþ cosξ�−1=2dξ=

H

½Ωþ cosξ�−1=2dξ, with Ω ¼ 2x2=ŵ2
−

cos ξ the perturbed flux function describing the island

geometry. The flux surface integrals are taken at con-

stant Ω.

The results for Δ0
bs normalized to βθ as a function of ŵ

are shown for a range of ρ̂θi in Fig. 4 (βθ ¼ 2μ0p
2=B2

θ,

where p is the plasma pressure). For large ŵ ≫ ρ̂θi the

result asymptotes to the value expected from previous

analytic theories [2,3,5], represented by the dashed line.

However, for small island widths we see that the impact of

the shift of the drift islands is to reduce the bootstrap drive.

The negative value of Δ
0
bs at the smallest island widths

indicates that the effect of the current perturbation is to heal

the island—a remarkable and unexpected result (not seen in

the simulation results of Ref. [11], for example). For larger

ρ̂θi, the peak value in Δ
0
bs decreases substantially, sup-

pressing the bootstrap drive for the island growth. The

critical island width, wc, where Δ
0
bs passes through zero,

increases linearly with ρθi: it can be fitted by wc ≃ 2.7ρθi.

To understand the stabilization of small islands, we plot

in Fig. 5 the individual ion and electron current density

contributions to Δ
0
bs. Plotting ρθiΔ

0
bs=βθ vs w=ρθi, we find

that all five ρθi=r cases condense onto a universal set of

curves for the ion and electron contributions. This is a

consequence of the parallel flows being proportional to

ρθi;e, as predicted by analytic neoclassical theory. Notice

that, as w→ 0, the ion contribution to Δ
0
bs tends to zero,

consistent with the bootstrap current being unperturbed in

this limit (as found in Ref. [11]). The electron contribution

to Δ0
bs, on the other hand, is strongly negative at small w, so

it is those that are responsible for healing small islands. As

FIG. 2. Radial ion density profile for ρ̂θi=ŵ ¼ 0.1 and ρ̂θi=ŵ ¼
1.0 across the island O point. Even for small ρ̂θi there is a partial

restoration of the flattened density gradient, and the flattening is

almost entirely gone for ρ̂θi ∼ ŵ.

FIG. 3. Contour plots of ion parallel flow, uki, on the x − ξ half-

plane. The flow profile is approximately symmetric about the

island center (x ¼ 0). For small ρ̂θi=ŵ ¼ 0.1 (left), the flow is

largely a flux surface quantity, but for large ρ̂θi=ŵ ¼ 1 (right), it is

entirely different. The white contour shows the position of the

magnetic island separatrix.

FIG. 4. The bootstrap current contribution to the island evo-

lution, Δ0
bs, normalized to βθ, as a function of ŵ, for different

values of ρθi. The black dotted line is the analytic result of

Ref. [5], for which Δ
0
bs ∝ 1=w.
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the ion bootstrap current perturbation tends to zero with w,
it is natural to assume the electron part will also, and so we

postulate that the healing of the islands is a consequence of

the electron response to the potential that is required to

maintain quasineutrality.

In conclusion, we have presented a new drift kinetic

theory for the response of ions to small magnetic islands in

tokamak plasmas, and deduced some of the implications for

the neoclassical tearing mode threshold physics. Neglecting

cross field transport, we find that a consequence of the

drifts is that the ion distribution function is not flattened

across the magnetic island, but rather across a drift island

that is shifted radially compared to the magnetic island.

This shift is important for small islands comparable to the

trapped ion banana width, in which case a pressure gradient

is maintained inside the island, explaining previous sim-

ulation results [11]. This suppresses the bootstrap current

drive for the NTM and the flows are then dominated by the

electron physics, tending to heal a sufficiently small seed

island. This new physics is important for a complete theory

of the neoclassical tearing mode threshold and, in particu-

lar, for designing the NTM control system for ITER.

Understanding the full implications of our theory for

quantifying the NTM threshold will be the subject of

future work, including an assessment of the accuracy of our

analytic theory for the electron response employed here, the

impact of finite ion Larmor radius, and the impact of finite

island propagation frequency, including the ion polariza-

tion current physics.
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