Journal of Automated Reasoning (2019) 63:597-623
https://doi.org/10.1007/5s10817-018-9482-4

@ CrossMark

Reinterpreting Dependency Schemes: Soundness Meets
Incompleteness in DQBF

Olaf Beyersdorff' - Joshua Blinkhorn'® - Leroy Chew’ - Renate Schmidt? -
Martin Suda3

Received: 24 November 2017 / Accepted: 15 September 2018 / Published online: 24 September 2018
© The Author(s) 2018

Abstract

Dependency quantified Boolean formulas (DQBF) and QBF dependency schemes have been
treated separately in the literature, even though both treatments extend QBF by replacing
the linear order of the quantifier prefix with a partial order. We propose to merge the two,
by reinterpreting a dependency scheme as a mapping from QBF into DQBF. Our approach
offers a fresh insight on the nature of soundness in proof systems for QBF with depen-
dency schemes, in which a natural property called ‘full exhibition’ is central. We apply our
approach to QBF proof systems from two distinct paradigms, termed ‘universal reduction’
and ‘universal expansion’. We show that full exhibition is sufficient (but not necessary) for
soundness in universal reduction systems for QBF with dependency schemes, whereas for
expansion systems the same property characterises soundness exactly. We prove our results
by investigating DQBF proof systems, and then employing our reinterpretation of depen-
dency schemes. Finally, we show that the reflexive resolution path dependency scheme is
fully exhibited, thereby proving a conjecture of Slivovsky.

Keywords Quantified Boolean formulas - DQBF - Dependency schemes

CR Subject Classification F.2.2 Nonnumerical algorithms and problems

1 Introduction

Research in automated reasoning has led to significant advances in the efficient solution
of computationally hard problems [41]. SAT is the canonical NP-complete decision prob-
lem [14], yet state-of-the-art solvers using conflict-driven clause learning (CDCL) [5,34]
routinely solve instances with millions of variables [41]. Any decision procedure implicitly
defines a proof system [15] for the input language, and proof-theoretic techniques can there-

B Joshua Blinkhorn
scjlb@leeds.ac.uk

School of Computing, University of Leeds, Leeds, UK
School of Computer Science, University of Manchester, Manchester, UK

Institute of Information Systems, Vienna University of Technology, Vienna, Austria

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-018-9482-4&domain=pdf
http://orcid.org/0000-0001-7452-6521

598 0. Beyersdorff et al.

fore be used to evaluate concrete implementations. CDCL, for example, is built on resolution,
a well-studied propositional proof system on which there is a significant volume of research.
This means that the trace of a CDCL solver on an unsatisfiable instance can be interpreted
as a resolution proof of unsatisfiability.

SAT implementations serve a host of applications in computer science [10], in which they
may be employed as NP oracles in decision procedures for even harder problems [28]. One
such problem is the decision problem for guantified Boolean formulas (QBF), the canoni-
cal PSPACE-complete language [38]. QBF extends propositional logic with existential and
universal quantification over Boolean variables. Problem instances are typically written in
prenex normal form, where variables are quantified in a linear order preceding the proposition.

Quantification presents a challenge for practitioners, as the quantifier prefix imposes
dependencies between oppositely-quantified variables; for example, the chosen value of an
existential x may depend upon that of every universal u that occurs earlier in the prefix. Put
another way, a model for a QBF (the analogue of a satisfying assignment for a propositional
formula) is a set of functions { f, } indexed over the existential variables, where fy assigns a
truth value to every set of truth values for the universals preceding x.

This restricts the allowable order of variable assignments during search, which negatively
impacts decision heuristics [26]. It is has been shown that many of these dependencies are
‘spurious’, in the sense that a model for the QBF exists in which the value of x does not change
with respect to u [31], i.e. the truth value for u is absent from the input to f. In such cases the
solver may assign variables more freely, improving the role of decision heuristics in search
[26]. This has given rise to ‘dependency-aware’ QBF solving [27] based on dependency
schemes [31], efficient algorithms that attempt to identify spurious dependencies.

There are a host of QBF proof systems in the literature [4,8,37,39], many of which have
associated implementations [23,27,39]. In this paper, we focus on the four QBF systems
depicted in Fig. 1 and investigate how the addition of a dependency scheme affects the
soundness of the system. On the expansion side, the fundamental calculus VExp+Res [23]
uses annotations to represent duplicate existential variables in the full expansion of a QBF (in
which all universal variables have been eliminated), and is otherwise identical to propositional
resolution. The stronger system IR-calc [7], inspired by resolution in first-order logic, uses
an additional instantiation rule to model ‘partial’ expansions. On the reduction side, the base
system Q-Res [24] employs resolution over existential variables in addition to a Y-reduction
rule that allows universal variables to be removed from clauses under certain conditions.
QU-Res [19] is a stronger calculus that extends Q-Res with resolution over universal pivots.
All four systems are sound and complete for the language of false QBFs (i.e., they are
refutational calculi).

Our work establishes a relationship between QBF dependency schemes and dependency
quantified Booelean formulas (DQBF) [21]. DQBF is a superset of QBF in which the linear
order of the prefix is supplanted by Henkin quantifiers [21]. This allows arbitrary variable
dependencies to be given explicitly using support sets, and results in a more expressive
language that is NEXP-complete [1]. Complexity has not deterred researchers, and there is
already a body of work on DQBF theory [13,42], solving [17,20], applications [1,12,20] and
associated proof systems [3,29].

1.1 Our Contributions

DQBF and QBF dependency schemes have largely been treated separately in the literature;
we contend that they are in fact very closely related. The key insight is that a dependency

@ Springer

Reinterpreting Dependency Schemes: Soundness Meets... 599

Expansion calculi Reduction
calculi -—-
A and B are
incomparable

A p-simulates and
is exponentially
separated from B

Fig.1 The simulation order of the four QBF proof systems considered in this paper

scheme, by identifying and removing spurious variable dependencies, is effectively replacing
the linear order of quantification with a partial order. A DQBF, which specifies the allowable
dependencies for variables with support sets, is capable of expressing such a partial order.
For that reason, we propose to redefine a dependency scheme as a mapping from QBF into
DQBF, in which the spurious dependencies identified by the scheme are left out of the support
sets of the image formula.

Adopting this DQBF-centric approach yields benefits that surpass mere notational conve-
nience. For example, a dependency scheme property known as full exhibition' [6,35] can be
defined succinctly as follows: D is fully exhibited if and only if it maps every true QBF to
a true DQBF. Second, new QBF calculi incorporating dependency schemes can be defined
(and existing ones redefined) simply as the fragment of a corresponding DQBF system oper-
ating on the image formulas of the scheme. That is, given a DQBF calculus DQBF-P, we can
define a class of QBF systems P(D) (parametrised by dependency scheme D) as follows:
for a fixed D, P(D) is the set of DQBF-P derivations from the image of D (a set of DQBFs).
This allows us to translate results on soundness—and even incompleteness—from DQBF-P
to P(D), where P is any of the systems in Fig. 1.

We summarise our results below. Part of this article is based on preliminary results reported
in the conference proceedings [6,9], which are here further elaborated and extended.

New Results for Reduction Systems We first generalise some existing results in the litera-
ture for DQBF-Q-Res and Q(D)-Res to the stronger systems DQBF-QU-Res and QU(D)-Res.
We first show that DQBF-QU-Res is sound; under our new interpretation this implies that
QU(D)-Res is sound if D is fully exhibited. We also modify the example formula from [3]
to show that DQBF-QU-Res is incomplete. Moreover, we use the modified formula to con-
struct a dependency scheme D that is not fully exhibited, but for which QU(D)-Res is sound,
thereby proving that full exhibition is not a necessary condition for soundness in the reduc-
tion systems parametrised by dependency scheme. Proceeding from the single example, we
show that incompleteness in DQBF-QU-Res is closely related to soundness in QU(D)-Res.
Formally, we prove that the false DQBFs that cannot be refuted in DQBF-QU-Res are pre-
cisely those formulas that are the image of a true QBF in some D for which QU(D)-Res is
sound.

I The concept originates from [35]; the term ‘full exhibition’ was coined in [6].

@ Springer

600 0. Beyersdorff et al.

New Sound and Complete Expansion Systems We lift the expansion-based QBF systems
VExp+Res and IR-calc to DQBF in the natural way, naming the new systems DQBF-VExp+Res
and DQBF-IR-calc. Utilising a known transformation to the EPR fragment of first-order logic,
we prove that both calculi are sound and complete for DQBF. We propose new expansion-
based QBF systems YExp(D)+Res and IR(D)-calc (parametrised by dependency scheme),
defined conveniently in terms of their DQBF counterparts. Thanks to the first-order trans-
lation exploited at the DQBF level, we prove that each system is sound if and only if D is
fully exhibited. We thereby provide a solid theoretical model for dependency schemes in
expansion-based solving.

Full Exhibition of D™ In the penultimate section of the paper, we show that the reflexive
resolution path dependency scheme D™ is fully exhibited, thus proving Slivovsky’s con-
jecture [35]. This is a welcome result for two reasons. Firstly, D™ is arguably the most
important scheme in the literature, being the strongest known D for which Q(D)-Res is
sound. Secondly, in tandem with our other results this implies that P(D™) is sound, where
P is any of the four systems in Fig. 1. In particular, this promotes the use of the scheme in
expansion-based solving, and therefore supports proposed future directions for QBF practice
[22].

1.2 Related Work

A host of dependency schemes have been proposed in the literature, including the standard
(D*9) [31] and reflexive resolution path (D) [37] dependency schemes. Early experiments
with the dependency-aware QCDCL solver DepQBF [27] demonstrated improved perfor-
mance on certain benchmark sets [26]. A solid theoretical model for dependency-aware
solving did not appear until later, in the shape of the calculus Q(D)-Res [37], the parame-
terisation of Q-Res by the dependency scheme D. Dependency-awareness has not yet been
implemented in expansion-based solvers, but it has been cited by the authors of RAReQS as
a direction for future development [22].

The proposal of Q(D)-Res raised some unexpected issues regarding soundness in
dependency-aware solving. Perhaps most surprisingly, the so-called ‘optimal’ dependency
scheme D! (conceived as the ideal scheme for QCDCL [26]) was shown to be unsuitable—
Q(DPY)-Res is not sound [37]. Thus, as the soundness of Q(D)-Res is not guaranteed, the
question arose of how to determine whether or not the calculus is sound for a given scheme
D. In the absence of general methods, complicated ad hoc proofs of soundness (such as that
for Q(D™)-Res [37]) have been published. A more elegant method was used by Slivovsky
[35] to show the soundness of Q(D*9)-Res, using full exhibition. The proof proceeds by
showing that (1) Q(D)-Res is sound if D is fully exhibited and (2) D* is fully exhibited.
Slivovsky conjectured that D™ is also fully exhibited [35], leaving the proof as an open
problem.

1.3 Organisation of the Paper

After providing the necessary background in Sect. 2, we introduce the DQBF redefinition of
dependency scheme in Sect. 3. Reduction and expansion systems are the focus of Sects. 4 and
5, respectively. In Sect. 6, we prove that D™ is fully exhibited. We offer some conclusions
and further discussion in Sect. 7.

@ Springer

Reinterpreting Dependency Schemes: Soundness Meets... 601

2 Preliminaries

Dependency Duantified Boolean Formulas A dependency quantified Boolean formula
(DQBF) is a formula over Boolean variables in which dependencies are given explicitly
in the quantifier prefix. We deal exclusively with prenex Skolem-form DQBFs of the form
d = Q- ¢, where:

— Q = Vuy - -VYuy3x1(S1) - - - Ix,(S,) is the quantifier prefix in which all variables of
¢ are quantified either existentially or universally, and each existential variable x; is
associated with a support set S; C {uy, ..., u,} of universal variables.

— ¢ is a conjunctive normal form (CNF) matrix consisting of a conjunction of clauses, each
of which is a disjunction of literals, and a literal is either a variable or its negation.

A quantified Boolean formula (QBF) is a DQBF in which the support sets are nested.? That
is, @ is a QBF if and only if §; € S; for each i, j € [n] with i < j. We write DQBF and
QBF to denote the set of all DQBFs and all QBFs respectively.

For a literal [, we write var(/) = z iff /| = —z or [= z. For a clause C, we write
vars(C) = {var(/) | [€ C}. For a DQBF @, vars(®) denotes the variables appearing in the
quantifier prefix. We also use C3 (respectively Cy) to denote the set of existential (respectively
universal) literals in C. The empty clause is denoted by _L.

An assignment to a set V C vars(®) is a function « : V — {0, 1} mapping variables to
truth values, conventionally represented as a set of literals in which the literal —v (respectively
v) represents the assignment v — 0 (respectively v +— 1) for any v € V. To simplify the
presentation, we treat assignments interchangeably as either functions or as sets of literals,
and remind the reader of the dual view wherever appropriate.

DQBF Models Given a DQBF @ = Vu; - - - VYu,,3x1(S1) - - - 3x,(S,) - ¢, a Skolem-function
model (or model for short) for @ is a set of functions F = {f1, ..., fu} satisfying the
following conditions:

(a) foreachi € [n], f; is a function whose domain is the set of total assignments to S;, that
maps each such assignment to a truth value.

(b) The propositional formula ¢’, obtained by substituting each existential variable x; with
(a propositional representation of) its Skolem function f;, is a tautology.

A DQBEF is true if and only if it has a model. The model F itself can be represented as a
function mapping total assignments to the universals {u1, ..., u;} (typically denoted &) to
total assignments to the existentials {xi, ..., x;,}, in which F(«) is the assignment mapping
each x; to f;(«;), where «; is the restriction of « to the support set S;. In this light, condition
(b) above can be restated as ‘for every total assignment to the universals « the matrix ¢ is
true under the joint assignment o U F («)’.

For some technical portions of the paper, we prefer an equivalent formulation of DQBF
semantics, based on an adaptation of QBF assignment trees [32]. The nesting of support
sets in a QBF prefix allows a model to be depicted naturally as a tree, with branching over
universal variables. A DQBF model F can also be depicted as a tree, in which branching on
all universals takes place consecutively from the root, as shown in Fig. 2. For each « in the
domain of F, the literals of the set « U F'(«) are written (in the order they appear in the prefix,
i.e., all universals first) on a unique path from the root of the tree to some leaf. As such, F
can be uniquely identified with a set of 2" paths, each of which is one of the sets « U F ().

2 It is more conventional to write a QBF with a linearly ordered prefix, but it is convenient in this work to
maintain the same notation for QBFs and DQBFs.

@ Springer

602 0. Beyersdorff et al.

N RN

[[] [“{3] [“f] [uls]
ﬁfll [111 (=] [111 [ﬁl]

FE B mE B

Fig.2 Anassignment tree 7 fora DQBF @ = VuVupVuz3xy (u1)3Ixy(uy, u3z) - ¢, whose matrix ¢ is satisfied
if and only if x; = u and xo = up @ u3. T represents a model for @, since it implicitly defines the unique
Skolem functions that satisfy the matrix

)
]
g
-
_J
)
]
8
=

An arbitrary assignment tree 7 for @ represents a model if and only if it implicitly defines
a set of Skolem functions. This proves to be a convenient interpretation specifically for the
detailed proofs in Sect. 6. We therefore postpone further details on assignment trees to that
section.

Proof Systems Resolution is a well-studied refutational proof system for propositional
CNF formulas with a single inference rule: the resolvent C1 U C, may be derived from
clauses C; U {x} and C> U {—x}, where variable x is called the pivor. Resolution is sound and
refutationally complete: that is, the empty clause L can be derived from a CNF if and only
if it is unsatisfiable. All the proof systems for DQBF (and QBF) considered in this paper are
refutational calculi (i.e., they prove falsity) based on resolution.

Q-resolution (Q-Res) [24] is the standard refutational calculus for prenex QBF. In addition
to resolution over existential pivots, the calculus has a universal reduction rule which allows
a clause C to be derived from C U {l}, provided var(/) is a universal variable absent from the
support set of each existential variable appearing in C. Tautologies are explicitly forbidden;
one may not derive a clause containing both z and —z. QU-Res [19] is the extension of Q-Res
that allows resolution over universal pivots. We omit their formal definitions, since (on the
set of QBFs) each coincides with the corresponding DQBF system, whose definition appears
in the main text.

For a DQBF resolution system P, a P-derivation of a clause C from a PCNF @ is a
sequence C1q, ..., Ci of clauses in which C = Cy, and each clause is either an axiom or is
derived from previous clauses in the sequence using an inference rule. A refutation of @ is
a derivation of the empty clause L from @.

A proof system P p-simulates a system Q (denoted Q <, P) if each Q-proof can be
transformed in polynomial time into a P-proof of the same formula [15]. The systems P and
Q are p-equivalent (denoted P =, Q) if Q <, Pand P <), Q.

3 A DQBF Interpretation of Dependency Schemes

In this section, we recall the traditional interpretation of dependency schemes, before pre-
senting our new interpretation based on DQBF.

@ Springer

Reinterpreting Dependency Schemes: Soundness Meets... 603

3.1 The Traditional Interpretation of Dependency Schemes

The traditional interpretation of dependency schemes originates from [30]. That model was
soon modified to work with binary relations [31], and was subsequently employed by a
number of authors, e.g. [6,26,36]. We give a high level description, for comparison with the
DQBF interpretation proposed in the next subsection.

For an arbitrary QBF @, the trivial dependency relation D™ (@) is the set of pairs (71, z2) €
vars(®) x vars(@®) for which (1) z; and z, are oppositely quantified, and (2) z; is quantified
before zo when the quantifier prefix is arranged in the natural linear order (cf. [31]). (Using
our DQBF notation, condition (2) means that z; is in the support set of z, if the latter is
existential, otherwise z is not in the support set of z1.) From there, a dependency scheme
D is a function that maps each QBF to a binary relation, and satisfies D(®) C D" (®) for
each QBF @.3 The binary relation identifies sets of pairs (z1, z2) for which z, is considered
dependent on z;. Accordingly, the existence of a pair (21, z2) € D(@) should be interpreted
as ‘zp depends on z1 in @ according to D’. Pairs not included in the binary relation represent
independencies; that is, a pair (z1,z2) € DW(P)\D(P) should be interpreted as ‘z; is
independent of z; in @ according to D’.

An important point for the present context is that we may restrict our attention to the
(in)dependence of existentials on universals. The dual notion of (in)dependence of universals
on existentials, which is equally important in practice, does not feature in theoretical models
of solving. This is a quite convenient state of affairs, afforded by the fact that theorists deal
with refutational calculi.

3.2 Redefining Dependency Schemes in Terms of DQBF

The principal idea is that the binary relation D(®) can be written as a DQBF quantifier
prefix. This proposal seems perfectly natural. In practice, the primary purpose for a depen-
dency scheme is to replace the linear order of a QBF prefix with a partial order that more
accurately reflects the dependency structure of the instance. Note that a DQBF prefix, in
general, represents a partial order. In other words, a dependency scheme can be viewed as a
transformation that maps a QBF to a suitable DQBF (with the same matrix), whose quanti-
fier prefix expresses dependencies according to the scheme. As we consider only existential
dependencies in our theoretical models, we can work exclusively with Skolem-form DQBFs.

Since dependency schemes are in the business of identifying non-trivial independencies,
we inevitably want to map QBFs to DQBFs in which the support sets are smaller (whereas
the variable sets and the matrix should not change). We define a strength relation to capture
this notion.

Definition 1 (strength) Let @ := Vuq - - - Vi, 3x1 (S1) - - - Ix,(Sy) - 0. ADQBF @' is stronger
than @ if and only if @' = Yuy - - - Vu,, 3x((S}) - - - Ix,(S;,) - ¢ and S! C §; for each i € [n].

A dependency scheme may now be naturally (and concisely) defined as a function mapping
QBFs to stronger DQBFs.

Definition 2 (dependency scheme) A dependency scheme is a function D : QBF — DQBF
that maps each QBF @ to a stronger DQBF D(®).

3 We note that the definition from [31] includes additional conditions, but we choose to omit them here, as
they do not feature in this work.

@ Springer

604 0. Beyersdorff et al.

The DQBEF interpretation also facilitates an illuminating definition of an important prop-
erty called full exhibition [6,35]. Full exhibition will feature prominently in this work, in
which we demonstrate the greater potential of the concept in connection with the soundness
of dependency systems.

According to previous work [6,35], a dependency scheme D is said to be fully exhibited if
and only if the following property holds for each true QBF @: there exists a particular model
for @ in which, for each existential x and universal u in vars(®), x does not depend on u
whenever x is independent of u# in @ according to D. This is precisely the same as saying
that the associated DQBF D(@) is true. Hence we considerably simplify the definition of the
concept.

Definition 3 (full exhibition) A dependency scheme D is fully exhibited if and only if it maps
each true QBF to a true DQBF.

Note that a false QBF is always mapped to a false DQBF by any dependency scheme, due to
the strength condition.

We conclude this section by showing that the pairwise comparison of schemes also fits
neatly into our reinterpretation. Schemes are compared by the notion of generality, whereby
one scheme is considered more general than another if it is capable of identifying more
non-trivial independencies.

Definition 4 (generality) Let D and D’ be dependency schemes. We say that D is at least as
general as D' if and only if D(®) is stronger than D’(®P) for each QBF &.

4 Variable Dependencies in Q-Res and QU-Res

4.1 DQBF Systems

Balabanov et al. [3] introduced the DQBF calculus DQBF-Q-Res as the natural generalisation
of the QBF system Q-Res. The salient feature of DQBF-Q-Res is that V-reduction of a universal
literal [from a clause C is allowed if and only if var(/) does not appear in the support set of
any existential variable appearing in C. (Note that Q-Res and DQBF-Q-Res are equivalent on
QBFs.)

The calculus is easily extended to include resolution over universal pivots. We call the
resulting system DQBF-QU-Res, as it is the natural generalisation of QU-Res to DQBF. The
formal description of both systems is given in Fig. 3. Balabanov et al. [3] went on to show
that DQBF-Q-Res is sound, yet incomplete, for DQBF. In this subsection, we show that both
results carry over to DQBF-QU-Res.

Inspection of the original proof of soundness for DQBF-Q-Res [3, Theorem 5] reveals that
the argument does not rely on the existential quantification of a pivot variable, and therefore
lifts to DQBF-QU-Res. Nonetheless, we provide a complete proof of the result, keeping the
present work self-contained. Moreover, our proof method (which differs from [3]) is better
suited to the context of this paper.

Theorem 1 The DQOBF calculus DQBF-QU-Res is sound.
Proof We show that there is no DQBF-QU-Res refutation of a true DQBF. Aiming for contra-

diction, let ® = Q - ¢ be a true DQBF and suppose that w = Cy, ..., Ci is a DQBF-QU-Res
refutation of @. Further, for each i € [k], let ¢; = {Cy, ..., C;i}.

@ Springer

Reinterpreting Dependency Schemes: Soundness Meets... 605

Axiom rule: axiom(¢)

Nl — (' is a non-tautological clause in ¢.

Reduction rule: red(C,1)
— literal [is universal.

¢ — var(l) ¢ S; holds for each

c\{i} existential variable x; in vars(C).

Resolution rule: res(Cy, Cs, 2)

— z€ (Cq and —z € Cs.

o Cy — the resolvent is non-tautological.
— In DQBF-Q-Res, variable z is existential.
(C1\{z} U (Ca{=2z}) — In DQBF-QU-Res, variable z is existential or
universal.

Fig. 3 The rules of the proof systems DQBF-Q-Res [3] and DQBF-QU-Res. The input DQBF is denoted
D :=Vuy - -YuyIx (Sy) -+ - Ix, (Sp) - ¢

Now, let F be any model for @. We prove by induction on i € [k] that F is a model for
Q - ¢;. Hence at step i = k, we deduce that @ = Q - ¢ is true, a clear contradiction since
¢k contains the empty clause Cy = L.

The base case i = 1 is established trivially, since C1 must be an axiom clause from ¢. For
the inductive step, let 1 < i < k, suppose that F is a model for Q - ¢;_1, and let @ be a total
assignment to the universal variables of @. The case where C; is an axiom is identical to the
base case, hence we assume that C; is derived either by resolution or by V-reduction. In either
case we show that o U F («) satisfies C;, and hence F is amodel for Q-¢;_1 U {C;} = Q- ¢;,
completing the inductive step.

(1) Suppose that C; was derived by resolution from clauses C, and Cp. Then, since C,, Cp €
¢i—1, ¢ U F(a) satisfies both clauses by the inductive hypothesis, and hence satisfies C;
by the logical correctness of propositional resolution.

(2) Suppose, on the other hand, that C; was derived by V-reduction from some clause C; U{l},
and assume w.L.o.g. that/ € «. Also, let @’ be the assignment that agrees with « on every
universal variable except var(l); that is, define o’ := (a U {—=I})\{l}. Since =/ € o/,
and o’ U F () satisfies C; U {I} by the inductive hypothesis, &’ U F(a’) satisfies C;.
By definition of V-reduction, var(!) = u is a universal variable satisfying u ¢ S for
each support set S of an existential in vars(C;). It follows that F(«) and F («’) agree on
all existential variables in C;. Also, & and &’ agree on all universal variables except u.
Noting that =/ ¢ C; (since C; U {l} is not a tautology), variable u does not appear in
C;, and it follows that « U F(«) and &’ U F (o) agree on vars(C;). Therefore a U F (a)
satisfies Cj.

[m}

We conclude this subsection by showing that DQBF-QU-Res is incomplete. Balabanov et
al. [3] gave the following false DQBF that cannot be refuted in DQBF-Q-Res.

Example 1 Let ¥ be the DQBF with prefix
Vu1Yuz3xy (uy)3xo (uz)

@ Springer

606 0. Beyersdorff et al.

and matrix consisting of the clauses

{x1, x2, u1}, {—x1, ~x2, u1},
{x1, x2, —~u1, ~usz}, {—x1, =x2, ~up, —usj,
{x1, =x2, —uy, uz}, {—=x1, x2, —uy, uz}.

In the following example, we modify the above formula ¥ by doubling universal variables, a
useful technique introduced by Balabanov et al. [4]. The modified formula ¥’ remains false,
while the addition of duplicate variables ensures that no resolution steps over universal pivots
are possible.

Example 2 Let ' be the DQBF with prefix
Vi V', Yua Vi 3xy (uy, u))3xa (uz, ub)

and matrix consisting of the clauses

{x1, x2, ur, u}}, {=x1, ~x2, up, Ui},
{x1, x2, —uy, '}, —up, —ub}, {=x1, —~x2, —uy, —uly, —~uz, —uh},
{x1, —x2, —uy, —ul, uz, uh}, {—ox1, x2, —uy, —ul, uz, uh}.

We first show that ¥ is false. Note that, due to the doubling of universal variables, any
model F’ for ¥’ gives rise to a model F for the original formula ¥, in which the duplicates
u'; and u/, are removed. (This is achieved by restricting the domain of F’ to those assignments
in which u; and u} are assigned similarly for i € {1, 2}, and then ignoring the assignments
to u’1 and u’z.) However, it was shown by Balabanov et al. [3] that no model for the original
formula exists.

Now we show that there is no DQBF-QU-Res refutation of @. In fact, no clauses whatsoever
can be derived from the matrix of ¥’. This is easy to verify as follows. Any resolution
step produces a tautological resolvent, which is explicitly forbidden. No V-reduction step is
possible, because every clause contains both existential variables x| and x», and the union of
support sets S; U S contains all the universal variables of @.

4.2 Systems for QBF with Dependency Schemes

A major benefit of the DQBF interpretation is that QBF calculi augmented with depen-
dency schemes can be defined as fragments of DQBF calculi. In this subsection, we expose
the connection between DQBF-QU-Res and the QBF calculus QU(D)-Res, the system that
supplements Q(D)-Res [37] with resolution over universal pivots. In addition to improved
understanding, the connection fosters further proofs of soundness that are almost immediate.

Recalling our discussion of the traditional interpretation of dependency schemes in
Sect. 3.1, we make the following observation: for a QBF @, the allowable inferences in
Q(D)-Res (as originally presented by Slivovsky and Szeider [37]) are exactly those infer-
ences allowable in a DQBF-Q-Res derivation from the DQBF D(®). This continues to hold
in the presence of universal resolution.

Following this observation, it is indeed possible to formulate the definition of QU(D)-Res
neatly in terms of DQBF-QU-Res, since the former is essentially the restriction of the latter
to the image of D. To do this, we first define a general notion of projection that captures the
condition by which a QBF proof system is a fragment of a DQBF system.

Definition 5 (projection) Let D be a dependency scheme and let Q be a DQBF calculus. The
projection P of Q according to D is the QBF calculus whose derivations from @ are exactly
the Q-derivations from D(®), for each QBF &.

@ Springer

Reinterpreting Dependency Schemes: Soundness Meets... 607

Definition 6 For each dependency scheme D, the QBF calculus QU(D)-Res is the projection
of DQBF-QU-Res according to D.

The idea of defining QBF systems parametrised by dependency scheme as projections of
DQBF systems is entirely consistent with existing literature, i.e. with the existing definition
of Q(D)-Res.

Proposition 1 Q(D)-Res is the projection of DQBF-Q-Res according to D, for each depen-
dency scheme D.

Proof Let D be a dependency scheme. To verify the observation, we show that the three rules
of inference in Q(D)-Res (as presented in [35]) are exactly equivalent to the three rules of
DQBF-Q-Res when the input formula is a QBF @ := Vuy - - Vu,,3x1(S1) - - - Ix, (Sy) - ¢.
By T(®) C {(u;, xj) : u; € S;} we denote the traditional interpretation of the dependency
scheme D on @ (as in Subsect. 3.1), and observe that (u;, x;) € 7(P) & u; € Sj., where
S} is the support set for x; in D(QP).

The ‘input clause’ and ‘resolution’ rules of Q(D)-Res are exactly identical to the axiom
and resolution rules in DQBF-Q-Res. The ‘V(D)-reduction’ rule allows a clause C\{/} to be
inferred from C provided that var(/) is universal and (var(/), x;) ¢ 7 (&) for each existential
x;j € vars(C). Since (var(l), x;) ¢ T(®) & var(l) ¢ S}, exactly the same inferences can be
made by the reduction rule in DQBF-Q-Res. O

The notion of projection, in combination with Theorem 1, fosters a straightforward proof of
the following soundness theorem, which extends the analogous result for Q(D)-Res [35].

Theorem 2 The QBF calculus QU(D)-Res is sound if D is fully exhibited.

Proof Let D be fully exhibited and let @ be a true QBF. Since D(@) is true (by definition of
full exhibition), there is no DQBF-QU-Res refutation of D(®), by Theorem 1. As QU(D)-Res
is the projection of DQBF-QU-Res according to D, there is no Q(D)-Res refutation of @, so
QU(D)-Res is sound.]

Note that QU(D)-Res is complete regardless of the choice of D, since it trivially p-simulates
the complete system QU-Res.

Whereas full exhibition is sufficient for soundness in QU(D)-Res, it is not necessary; that
is, full exhibition does not characterise soundness there. Considering Example 2, it is possible
for a scheme D to map a true QBF to a false DQBF that cannot be refuted in DQBF-QU-Res.
In such a situation, D is not fully exhibited, but QU(D)-Res remains sound, precisely because
the DQBF-QU-Res fragment to which it corresponds is incomplete.

Proposition 2 There exists a dependency scheme D that is not fully exhibited for which
QU(D)-Res is sound.

Proof Let¥’ = Q- be the DQBF from Example 2, and recall that the existential variables
of ¥/ are x| and x, with corresponding support sets S| = {u1, u}} and 8} = {u2, u}}.

Now, let ¥ := Yu V', YurYuy3x1 (S1)3x2(S52) - ¥ be the formula with support sets Sy :=
Sy := {uy, u}, us, uy}. Observe that ¥ is a QBF and that ¥’ is stronger than ¥. Moreover,
¥ is a true QBF: For an assignment to the universal variables including ;1 = 1 and up = 0,
putting x; = x; satisfies all the clauses in . In all other cases, putting x; 7# x; satisfies all
clauses.

Now, we construct a dependency scheme D as follows. Let D(¥) = ¥/, andlet D(P) = &
for every other QBF @ # W. Note that D is not fully exhibited, since it maps the true QBF

@ Springer

608 0. Beyersdorff et al.

¥ to the false DQBF ¥’. Also note that QU(D)-Res and QU-Res are identical on all QBFs
other than ¥.

We observe that QU(D)-Res cannot refute ¥, as there is no DQBF-QU-Res refutation of
¥’ (Example 2). Nor can QU(D)-Res refute any other true QBF, by the soundness of QU-Res.
Therefore QU(D)-Res is sound. O

The relationship between soundness and incompleteness, exploited in the preceding proof,
allows us to equate two open problems. That is, if one determines the set of dependency
schemes for which QU(D)-Res is sound, then one determines the set of false DQBFs that
DQBF-QU-Res cannot refute. A characterisation of soundness in QU(D)-Res, therefore, also
characterises incompleteness in DQBF-QU-Res, and vice versa. We formalise that notion
exactly with the following theorem.

Theorem 3 Let I be the set of false DQBFs that have no DQBF-QU-Res refutation, and let S
be the set of dependency schemes D for which QU(D)-Res is sound. Then I is the set of false
DQBFs that are the image of a true QBF under some D € S.

Proof If @ is true and QU(D)-Res is sound, then D(®) has no DQBF-QU-Res refutation (by
definition of projection). Hence we only need show that each DQBF in [is the image of a
true QBF under some dependency scheme in S.

Let @ = Vuy---Vu,x1(S1) - - 3Ix,(S,) - ¢ be a DQBF in the set I, and consider the
QBF @' =Vuy ---VYu,3x((S)) - - - 3x,(S)) - ¢ in which S| = {uy, ..., u,} foreachi € [n].
Note that @ is stronger than @’.

We first show that @’ is a true QBF. Aiming for contradiction, suppose that @’ is false.
Then there exists a QU-Res refutation 77 of @', by completeness of that calculus. In 7, no
universal is V-reduced from a clause containing an existential variable (as the support sets
Slf are maximal), and so 7 is also a legal DQBF-QU-Res refutation of @. However, no such
refutation exists, by definition of /.

It remains to construct a dependency scheme D, for which QU(D)-Res is sound, satisfying
D(®’) = &. That is achieved simply by putting D(¥) = ¥ for all other QBFs ¥ # &'. O

Given the tight connection to DQBF incompleteness, the characterisation of soundness in
QU(D)-Res remains an interesting open problem. However, with Proposition 3 we argue that
schemes that are not fully exhibited are largely unimportant from a proof complexity point
of view. The use of a sound scheme that is not fully exhibited can always be p-simulated by
the use of a fully exhibited one.*

Proposition 3 Let D be a dependency scheme for which QU(D)-Res is sound. There exists a
fully exhibited dependency scheme D', with D at least as general as D', for which QU(D)-Res
=, QU(D’)-Res.

Proof We let D’ be the dependency scheme defined as follows:

D(®) if @ is false,

D(®) = e
(e if @ is true.

It is clear that D is at least as general as D’. D’ is the identity transformation on true QBFs,
and is therefore trivially fully exhibited. Since D and D’ agree on all false QBFs, every
QU(D)-Res refutation is a QU(D’)-Res refutation, and vice versa. Hence QU(D)-Res and
QU(D’)-Res are p-equivalent. O

4 Note that the fully exhibited scheme is not necessary polynomial-time computable.

@ Springer

Reinterpreting Dependency Schemes: Soundness Meets... 609

5 Dependencies in Expansion-Based Calculi

In this section, we apply our DQBF interpretation of dependency schemes to expansion-based
proof systems. In Sect. 5.1, we lift the existing QBF calculi VExp+Res and IR-calc to DQBF.
Exploiting a natural translation to the EPR fragment of first-order logic, we prove that the
resulting systems DQBF-VExp+Res and DQBF-IR-calc remain sound and complete. Further,
in Sect. 5.2 we introduce VExp(D)+Res and IR(D)-calc, the corresponding QBF systems
parametrised by dependency scheme, and prove that full exhibition provides a complete
characterisation for soundness in both systems.

5.1 Two Sound and Complete Systems for DQBF

Let us first explain the concept of expansion with a simple example. Consider the DQBF
YuVvax (u)dy () - ¢ (u, v, x, y),
and note that it is semantically equivalent to the DQBF
voax03x' 03y) - ¢(0, v, %, y) Ap(1 v, x",)

in which we have ‘expanded’ the variable u. Since x depends on u, we introduce two distinct
variables x° and x! in the expanded formula, one for each possible assignment to «, and give
to each the support set of x with u removed (in this case yielding the empty support set). In
contrast, the variable y does not include « in its support set, and therefore remains unchanged.
A subsequent expansion of the remaining universal v yields the fully existentially quantified
formula

3x%3x'3y03y " 60,0, 2%, Y A 90, 1,20, y) A B (1,0, ", Y A o1, 1,x", ¥

that is also semantically equivalent to the original DQBF.

It is convenient to annotate duplicate variables with the reason for their creation. For
example, we will use x ™ instead of x° (where —u corresponds to the assignment u > 0),
and likewise x* instead of x!. Since expansion duplicates each dependent existential, the
complete expansion of an arbitrary DQBF introduces 2!5! copies of the variable with support
set S, each of which is annotated with a complete assignment to S.

Description of the Systems Our base expansion calculus DQBF-VExp+Res works simply
by applying propositional resolution to clauses in the complete expansion of a DQBF &.
Accordingly, one may take any clause from the matrix and do the following: select a total
assignment to universal variables that falsifies all the universal literals in the clause, and
remove all universal literals while annotating the remaining existentials with the assignment.
The resulting clause appears in the complete expansion of @, and may therefore be introduced
as an axiom in a DQBF-VExp+Res derivation from @. The rules of DQBF-VExp+Res are given
formally in Fig. 4.

Our second calculus DQBF-IR-calc is a more sophisticated system that works with anno-
tations representing partial assignments. In addition to resolution, the system is equipped
with an instantiation rule with which partial annotations are ‘grown’ over the course of the
derivation. For that reason, the instantiation rule uses a binary operator o that dictates how
annotations are combined, defined as follows: for any two partial assignments 7 and o to a

@ Springer

610 0. Beyersdorff et al.

Axiom rule: axiom(¢)

— (' is a clause in the matrix ¢.
- — 7 is a total assignment to the universal variables
{a™(@) | a € C5} that falsifies every universal literal in C.
— 7(a) :=={l € 7 | var(l) € S;}, where var(a) = z;.

Resolution rule: res(Cy,Ca,z7)

Cq Co
(C1UC2)\{z",—z"}

— 27 € C1 and —27 € Cs.

Fig.4 The rules of DQBF-VExp+Res, where @ = Vuy - - - Vi, 3x1(S1) - - - 3x,, (Sp) - ¢ is the input DQBF

set of universal variables, T oo := tU{l € o | =l ¢ t}. The rules of DQBF-IR-calc are given
in Fig. 5.

Since annotations are written as superscripts, we choose to write partial assignments not as
sets, but as literal strings, e.g. u1—u3—ugu7. We explain the DQBF-IR-calc rules and illustrate
them with the DQBF ¥ from Example 1.

Axiom clauses are introduced into the proof, or downloaded, by selecting a clause C from
the matrix and applying the download assignment to the existential literals. By design, the
download assignment 7 for C is the smallest partial assignment that falsifies every universal
literal in C; thatis, T = {—[| Il € Cy}. When applying the download assignment, existentials
are annotated only with universals in their support set. For example, downloading the the
clauses {x1, x2, u1} and {x1, =x2, —u1, us} gives rise to axioms {x, !, x>} and {x{", —x,"?}.

Instantiation allows partial assignments to be combined during the course of the proof. A
single partial assignment t is applied to all the literals in the clause. As in the axiom rule, any
universal variable absent from the support set is omitted from the annotation. For example,
instantiating our axiom clause {x, ™', x2} with T = ujus, we derive {x;™', x3?}. Note that u

Axiom rule: axiom(¢)

— C is a clause in the matrix ¢.
— 7 is a partial assignment to the universal variables
{a™(® | a € C5} that falsifies every universal literal in C.

— 7(a) :={l € 7 | var(l) € S;}, where var(a) = ;.

Instantiation rule: inst(C,)

C — 7 is a partial assignment to universal variables.
{a7°7(@) | a7 € C} — 7(a) :={l € 7 | var(l) € S;}, where var(a) = z;.

Resolution rule: res(Cy,Ca,27)

C1 Ca
(Cri\{=z"H U (C2\{-z"})

— 7 € C1 and 27 € Cs.

Fig.5 The rules of DQBF-IR-calc, where @ = Vuy - - - Vi, x1(S1) - - - I, (Sp) - @ is the input DQBF

@ Springer

Reinterpreting Dependency Schemes: Soundness Meets... 611

does not appear in the annotation to literal x,, since u is not in the support set of variable x.
Also note that literal u; does not appear in the annotation to x, which is already annotated
with the negated literal —u before the instantiation takes place (see the earlier definition of
the o operator).

Resolution in IR-calc is identical to propositional resolution. We emphasise that annotations
are labelling distinct variables, so that a resolution step is valid only if the annotations of the
pivot literals match exactly.

A complete IR-calc refutation of ¥ is shown in Fig. 6. We emphasise that the annotation
to variable x never features a universal variable not in the support set of x. Hence, whenever
xT is written, it is considered implicit that each variable in 7 is in the support set of x.

Translation to First-Order Logic Before analysing DQBF-IR-calc further we present the
translation of DQBF into EPR. EPR stands for Effectively Propositional Logic, also referred
to as the Bernays—Schonfinkel fragment of first-order logic [25], characterised as the clausal
language allowing only constants as function symbols (i.e. function symbols of arity larger
than zero are not allowed).

We use an adaptation of the translation described for QBF [33], which becomes straight-
forward in the light of the DQBF semantics based on Skolem functions. The key observation
is that for the intended two-valued Boolean domain the Skolem functions can in first-order
logic be represented by predicates.

To translate a DQBF @ := Q-¢ with Q := Vuy - - - Vu, Ix1(S1) - - - 3x,(Sy), we introduce
on the first-order side (1) a predicate symbol p of arity one and two constant symbols O and 1
to describe the Boolean domain, (2) for every existential variable x; we introduce a predicate
symbol x; of arity |S;|, and (3) for every universal variable « a first-order variable u.

Now we can define a translation mapping ¢o. It translates each occurrence of an existential
variable x; with support set S; = {u,(1), ..., Upr)} (for some injection p : [k] — [m]) to
the atom ro (x) := x(up(1), ..., Upk)) (here p represents an arbitrary but fixed order on the
dependencies which dictates their placement as arguments) and each occurrence of a universal
variable u; to the atom 79 (u;) := p(u;). The mapping is then homomorphically extended
to formulas: 19 (—=¢) := —to (@), to(d1 V ¢2) = tg(d1) V to(¢), and to(p1 A ¢2) =
to(¢1) A to(¢z). This means a CNF matrix ¢ is mapped to a corresponding first-order
CNF 1g(¢). As customary, the first-order variables of tg(¢) are assumed to be implicitly
universally quantified at the top level.

Lemma1 ([33]) A DOBF Q - ¢ is true if and only if the first-order formula to(¢) A p(1) A
—p(0) is satisfiable.

Proof When the DQBF Vuq - - - Vi, 3x1(S1) - - - Ix,(S,) - ¢ is true, this is witnessed by the
existence of Skolem functions F = {f; | i € [n]}. Onthe other hand, if g (¢) A p(1) A—p(0)
is satisfiable then we can, by Herbrand’s theorem, assume it has a Herbrand model H over
the base {0, 1}. We can naturally translate between one and the other by setting f;(v) =
1iffx;(v) € H forevery i € [n] and v € {0, 1}!5/|, The lemma then follows by structural
induction over ¢.]

For the purpose of analysing DQBF-IR-calc, the mapping ¢ is further extended to annotated
literals: rg(x") = tg(x)t for an existential variable x. Here we slightly abuse notation
and treat T, an annotation in the propositional context, as a first-order substitution over the
corresponding translated variables in the first-order context (recall point (3) above). For
example if S; = {uy, uz, u3} then 1o(x™""?) = x1(u, uz, uz){uy — 0,ur > 1} =
x100, 1, u3).

@ Springer

612 0. Beyersdorff et al.

U2 uQ U U2

|aclf1 \Y ﬁz;wl [m;ul \Y x;w] [ﬁm;ul Y ﬁm;”] |x11“ \Y x§2| [1: RV m2 ﬁxl =l ﬁx;w]

N / \/

Y m;ul] |ﬁm¥1 \Y ﬁxgg

(e

|ﬁ:r:1f1 Vg o |[ﬁx;‘1 \Y ﬁm;uz]

Fig.6 A DQBF-IR-calc refutation of the DQBF @ from Example 1

Soundness and Completeness We aim to show soundness and completeness of
DQBF-IR-calc by relating it via the above translation to a first-order resolution calculus FO-
Res. This calculus consists of (1) an instantiation rule: given a clause C and a substitution o
derive the instance Co, and (2) the resolution rule: given two clauses C U {/} and D U {—l[},
where [is a first-order literal, derive C U D. Note that similarly to propositional clauses, we
understand first-order clauses as sets of literals. Thus we do not need any explicit factoring
rule. Also note that we require the resolved pivots of the two premises of the resolution rule
to be equal (up to the polarity). Standard first-order resolution, which involves unification
of the resolved literals, can be simulated in FO-Res by combining the instantiation and the
resolution rule.

It is well known that FO-Res is sound and complete for first-order logic. For the proof of
Theorem 5 below, we will work with a more specific calculus known as ordered resolution
[2]. Ordered resolution FO-Res™ is parametrised by an ordering < on symbols, which is
extended to literals in a natural way and only maximal literals in each clause are eligible as
pivots. Also ordered resolution is complete [2].

Theorem 4 DQBF-IR-calc is sound.

Proof Givenrw = Cy, ..., C,, a DQBF-IR-calc derivation of the empty clause C,, = L from
the DQBF Q - ¢, we show by induction that 1 (C;) is derivable from @ = tg(¢) A p(1) A
—p(0) by FO-Res forevery i < n.Because rg(L) = _L is unsatisfiable, so must be @, by the
soundness of FO-Res, and therefore Q - ¢ is false by Lemma 1. We consider the three cases
by which a clause C;, i < n, can be derived by DQBF-IR-calc.

@ Springer

Reinterpreting Dependency Schemes: Soundness Meets... 613

First, let us assume that C; follows by instantiation, i.e., C; = inst(C;, 7) for some j < i
and an annotation 7. By the inductive hypothesis, we know that 1 (C}) is derivable from @
by FO-Res. The case follows by observing that tg (inst(C;, 7)) = to(C;)t and thus 1o (C;)
can be derived from 7o (C;) by first-order instantiation with T understood as a substitution.

Second, it is easy to see that if C; follows from C; and Cy by the DQBF-IR-calc resolution
rule, tg(C;) can be derived from 1o (C;) and to (C) by FO-Res.

Third, let us assume that C; is derived using the Axiom rule of DQBF-IR-calc. This means
that

Ci=1{a"? |aeCs),

where C € ¢ and t(a) = {—/ | I € Cy, var(l) € S;} for var(a) = x;. To derive 1o (C;) from
@ by FO-Res, we first instantiate 1o (C) by T = {—[| [€ Cy} obtaining D = to(C)t. Next
we observe that for any a € C3 we have tg(a)t = tg (a®™@) and for any [€ Cy we have
to()t € {p(0), —=p(1)} by the definition of . Thus 1o (C;) € D C to(C;)U{p(0), =p(1)}.
We derive 1o (C;) from D in FO-Res by resolving D with the available units p(1) and —p(0)
if needed.]

Example 3 To demonstrate the third case of the above proof, let us take a DQBF with a
prefix Q@ = VYuVuvVwIx(u, v)Ay(v, w). Below, the Axiom rule is applied to a clause C =
{x,y, —u, v} on the left and a corresponding first-order step to its translation 7o (C) on the
right.

{x,y, —u, v} {x(u, v), y(v, w), ~pu), p(v)}
DQBF-IR-calc) ———— -
(DQ calc) {(x"7v, 7y (FO-Res) {x(1,0), y(0, w)}

Theorem 5 DQBF-IR-calc is complete.

Proof Let Q- ¢ be a false DQBF and let us consider G (1o (¢)), the set of all ground instances
of clauses in 79 (¢). Here, by a ground instance of a clause C we mean the clause Ct for
some substitution 7 : var(C) — {0, 1}. By the combination of Lemma 1 and Herbrand’s
theorem, G(tg(¢)) A p(1) A —p(0) is unsatisfiable and thus it has a FO-Res= refutation
for any eligible symbol ordering <. We can chose the ordering such that literals containing
predicate p become maximal in their respective clauses. This choice then has the following
consequences for the refutation: (1) the refutation does not contain clauses subsumed by p(1)
or = p(0), and (2) any clause containing the predicate p is resolved on a literal containing
p. From this it is easy to see that any leaf in the refutation gives rise (in zero, one or two
resolution steps with p(1) or —=p(0)) to a clause D = tg(C) where C can be obtained
by DQBF-IR-calc axiom from a C’ € ¢, possibly followed by instantiation. The rest of the
refutation consists of FO-Res™ resolution steps which can be simulated by DQBF-IR-calc in a
one-to-one fashion (unlike FO-Res=, DQBF-IR-calc does not have any ordering restrictions).

O

Although one can lift the above argument with ordered resolution to show that the set
{to(C) | C can be derived by axiom(¢)}

is unsatisfiable for any false DQBF QO - ¢, we have only shown how to simulate ground
FO-Res= steps by DQBF-IR-calc. That is because a lifted FO-Res= derivation may contain
instantiation steps which rename variables apart for which a subsequent resolvent cannot be
represented in DQBF-IR-calc. An example is the resolvent { y (v), z(v")} of clauses {x (), y(v)}

@ Springer

614 0. Beyersdorff et al.

and {—x(u), z(v")} which is obviously stronger than the clause {y(v), z(v)}. However, only
the latter has a counterpart in DQBF-IR-calc.

We also remark that in a similar way we can also lift to DQBF the QBF calculus VExp+Res
from [23]. It is easily verified that the simulation of VExp+Res by IR-calc shown in [7]
directly transfers from QBF to DQBF. Hence Theorem 5 immediately implies the soundness
of VExp+Res lifted to DQBF. Moreover, because all ground instances are also available in
VExp+Res lifted to DQBEF, this system is also complete as can be shown by repeating the
argument of Theorem 5.

Corollary 1 DQBF-VExp+Res is sound and complete.

5.2 Dependency Schemes in Expansion-Based QBF Systems

As we noted in Sect. 4.2, our DQBF interpretation allows a QBF calculus, when augmented
with a dependency scheme, to be equated with a fragment of a suitable DQBF system using
the notion of projection (Definition 5). This idea remains appropriate in the current context,
in which we propose IR(D)-calc, the natural parameterisation of IR-calc by a dependency
scheme, whereupon Theorem 4 has direct consequences for soundness. As it turns out, in con-
trast to QU(D)-Res, full exhibition characterises precisely the schemes for which IR(D)-calc
is sound.

Similarly as for QU-Res, the natural generalisation of IR-calc by dependency scheme has
exactly the same logical rules as the (hypothetical) system in which one first maps the instance
to its image under D, and then uses the rules of DQBF-IR-calc. For that reason, the IR(D)-calc
derivations from @ are exactly the DQBF-IR-calc derivations from D(®). Thus, we define
IR(D)-calc as the appropriate projection of DQBF-IR-calc.

Definition 7 For each dependency scheme D, the QBF calculus IR(D)-calc is the projection
of DQBF-IR-calc according to D.

Our DQBF interpretation now becomes rather fruitful, interfacing directly with the connec-
tions to first-order logic exploited in the previous subsection. The following characterisation
of soundness in IR(D)-calc is almost immediate from the soundness and incompleteness of
DQBF-IR-calc.

Theorem 6 IR(D)-calc is sound if and only if D is fully exhibited.

Proof 1f D is fully exhibited, it maps every true QBF @ to a true DQBF D(®). By Theorem 4,
DQBF-IR-calc is sound, and cannot refute D(®). Hence IR(D)-calc cannot refute @.

On the other hand, if D is not fully exhibited, it maps some true QBF @’ to a false DQBF
D(®’). By Theorem 5, DQBF-IR-calc is complete, and can therefore refute D(@"). It follows
that IR(D)-calc, which can refute the true QBF @', is not sound. O

Naturally, the situation for the base expansion system VExp+Res is very similar to IR-calc.
Repeating our method, VExp(D)+Res can be defined as a projection of DQBF-VExp+Res,
and the characterisation of soundness in terms of full exhibition can be proved similarly to
Theorem 6.

Definition 8 For each dependency scheme D, the QBF calculus VExp(D)+Res is the projec-
tion of DQBF-IR-calc according to D.

Theorem 7 VExp(D)+Res is sound if and only if D is fully exhibited.

@ Springer

Reinterpreting Dependency Schemes: Soundness Meets... 615

6 Demonstrating Full Exhibition

In this section, we demonstrate that the reflexive resolution path dependency scheme D™
[37] is fully exhibited, thereby proving the conjecture of Slivovsky [35, p. 37]. We begin by
recalling D™ in Sect. 6.1, and proceed to prove the result in Sect. 6.2.

6.1 Definition of the Dependency Scheme D"

The reflexive resolution path dependency scheme D™ is arguably the most important in
the literature, being the most general scheme D for which it is known that Q(D)-Res is
sound. Given that we consider only the (in)dependence of existentials on universals (see the
discussion in Sect. 3.1), we obtain a presentation of D™ that is significantly simpler than the
original definition in [37].

The scheme works by appeal to the syntactic form of an instance, and identifies dependent
variables by means of connections via matrix clauses. These connections, known as resolution
paths [40], associate pairs of clauses in which some connecting existential variable appears
in opposite polarities. For our purposes in the present work, we capture a refined notion of
resolution path with the binary relation C.

Definition 9 (Adapted from [40]) Let @ = Vuq - - - Vi, Ax1 (S1) - - - I, (S,,) - ¢ be a QBF, let
i € [m]and j € [i], and let/ and [’ be literals with var(/) = u; and var(!") = x;. A sequence
of clauses Cy,...,Cp € ¢ withl € Cy and ' € C, is a resolution path in @ from [to I
iff (a) u; € §;, and (b) there is a sequence of existential literals /1, ..., [, for which the
following three conditions hold:

(1) u; is in the support set of var(/y), for each k € [p — 1],
(i) lx € Cr and =l € Cyyq, foreachk € [p — 1],
(iii) var(lx) # var(lg4+) foreachk € [p — 2].

We say that (I, ") € Cg if and only if there exists a resolution path in @ from/ to ['.

We emphasise that, in a resolution path from a (universal) literal / to an (existential) literal
[’ (with var(l) in the support set of var(/’)), var(l) should appear in the support set of each
‘connecting’ existential variable var(y), ..., var(/,_1). Now, given an existential x and a
universal u in the support set of x, D™ determines that x depends on u by finding a suitable
pair of resolution paths; namely, one resolution path from a literal in « to a literal in x, and
a second path between the complementary literals.

Definition 10 (D" [37]) Let ® = Vu; - - - Vi, 3x 1 (S1) - - - 3x,(S,) - ¢ be a QBF. The reflexive
resolution path dependency scheme D™ is defined by

D™(P) = Vuy -+ Yy Ix1(S)) - I, (S),) -

in whichu; € S} if and only if (a) u; € S}, and (b) there exist literals / and / "with var(l) = u;
and var(!") = x; for which (/,1") € Co and (—l, =I) € Cop.

6.2 Proof of the Full Exhibition of D™*
In order to prove that D™ is fully exhibited, we must show that the image under D™ of

an arbitrary true QBF @ is a true DQBF D™ (®). Our method involves taking an arbitrary
model for @ and transforming it, step by step, into a model for D™ (®).

@ Springer

616 0. Beyersdorff et al.

To do so, we need a framework and notation for manipulating DQBF models. We choose
to work with assignment trees [32]. An assignment tree can be naturally interpreted as a set
of paths (not to be confused with resolution paths), where each path from the root of the
tree to a leaf spells out a total assignment to the variables of the formula. In this context,
a path for a DQBF @ is a set containing exactly one literal for each variable in @ (and
nothing more). We will be frequently inspecting the literals appearing in paths, so we adopt
the following notation: For a variable z and path P, we write P[z] for the unique literal / in
P with var(/) = z; thatis, if =z € P, then P[z] = —z, otherwise P[z] = z.

In order for a set of paths to properly represent an assignment tree for a DQBF, it must
contain exactly one path for each total assignment to the universal variables, and must also
respect the variable dependencies given by the prefix support sets. Additionally, for an assign-
ment tree to represent a model, every path must satisfy every clause of the matrix. We give
a formal definition below.

Definition 11 (Assignment tree) Let @ = Vuy - - - Vi, Ix1(S1) - - - Ix,(S,) - ¢ be a DQBE. A
set T of paths for @ is an assignment tree for @ if and only if the following two conditions
hold:

(a) For each total assignment U to {uy, ..., u,}, there is a unique path in 7 that contains U.
(b) For eachi € [m], for each j € [n] with u; ¢ §;, and for each path P € T, P[x;] =
comp(P, T, u;)[x;],

where the path complementary to P in 7" with respect to u;, written comp(P, T, u;), is the
unique path in 7 that agrees with P on all universal variables except u;. Additionally, T
represents a model for @ if and only if every path in T satisfies every clause in ¢.

The second item in the above definition is of particular prominence in the following proofs.
Therefore, for the sake of readability, if condition (b) holds for an assignment tree 7', we say
that ‘T exhibits the independence of x; on u;’. We will often write ‘T models @’ rather than
‘T represents a model for @°.

‘We may now reformulate DQBF semantics in terms of assignment trees. Where an assign-
ment tree represents a model we will prefer to use the symbol M as opposed to 7.

Proposition 4 A DOBF @ is true if and only if there is an assignment tree M that models ®.

Our proof method may be described as follows. We take an arbitrary model M for @. Given
that D™ () is stronger than @, there are extra independencies that need to be exhibited if M
is to be transformed into a model for D™ (®). We achieve this by working independently with
each universal variable in turn. That is, we first transform M into a model M, that exhibits
all the required existential independencies on u1, then into a model M5 that exhibits all those
on u», and so on through to the final universal u,,, whereupon M,, models D™ (®).

We transform models by working with the individual paths, for which we introduce the
following notion of reformed path. A path P is reformed with respect to universal variable
u by copying particular existential assignments from its corresponding complementary path.
Specifically, for any existential x whose support set contains variable u, a path P € M takes
the x-literal from the complementary path comp(P, M, u) if and only if there is no resolution
path from the literal — P[u] to the negation of that x-literal. Reforming a path does not affect
the universal literals.

Definition 12 (Reformed path) Let M be a model for a DQBF @, let P be a path in M, let u
be a universal variable in @ and put [= P[u]. The reformed path ref(P, M, u) of P in M

@ Springer

Reinterpreting Dependency Schemes: Soundness Meets... 617

with respect to u is given by

comp(P, M,u)[z] if zis existential and (=I, —I') ¢ Co ,

ref(P, M, u)[z] = .
P[z] otherwise ,

where z is an arbitrary variable appearing in @ and I’ = comp(P, M, u)[z].

In what follows, it is crucial that reforming any path in a model for a DQBF does not cause
that path to falsify any clauses in the matrix. That is the subject of the following lemma.

Lemma 2 Let M be a model for a DOBF @, let P be a path in M and let u be a universal
variable appearing in @. Then ref(P, M, u) satisfies every clause in the matrix of .

Proof Let @ = Q- ¢. Aiming for contradiction, we suppose that ref(P, M, u) falsifies some
clause C € ¢. We show that comp(P, M, u) falsifies C, contradicting the fact that M is a
model.

Noting that P and ref(P, M, u) agree on universal variables, we assume w.l.o.g. that
Plu] = ref(P, M, u)[u] = —u and comp(P, M, u)[u] = u. Also, since P satisfies C, there
exists an existential variable x appearing in C on which P and ref(P, M, u) disagree. Hence,
assuming w.l.o.g. that x appears positively in C, we have P[x] = x and ref(P, M, u)[x] =
—x. It follows then, from the definition of reformed path, that comp(P, M, u)[x] = —x and
that

(u,x) ¢ Co. ey

Now we show that comp(P, M, u) falsifies C, or, equivalently, that the intersection
comp(P, M, u) N C is empty.

We first show that comp(P, M, u) contains none of the universal literals in C. Note that,
since x € C, we cannot have u € C, for that would imply (u, x) € Ce by definition of D™,
contradicting statement (1). Also, ref(P, M, u) does not contain any of the universal literals
in C, and comp(P, M, u) agrees with ref(P, M, u) on all universal variables other than u.
Hence comp(P, M, u) N Cy = {.

Finally, we show that comp(P, M, u) contains none of the existential literals in C. Let /
be any existential literal in C with var(/) # x.If (u, —I) € Ce, then there exists a sequence of

clauses Cq, ..., Cx € ¢ and a sequence of existential literals /1, . .., [y satisfying the four
conditions of Definition 9. Then, it is readily verifiable that the sequences C1, ..., Cy, C € ¢
and /1, ..., lx—1, 1 also satisfy Definition 9, showing that (#, x) € C¢ and contradicting

statement (1). It follows that (u#, —I) ¢ Ce, and that
comp(P, M, u)[var(l)] =1 implies ref(P, M, u)[var(l)] =1, 2)

by the definition of reformed path. However, ref(P, M, u)[var(/)] = —I, since the reformed
path falsifies C by supposition, and hence comp(P, M, u)[var(/)] = —I, by the contrapositive
of (2). Since we noted earlier that comp(P, M, u)[x] = —x, it follows that comp(P, M, u) N
C3 =40. O

The main idea behind the model transformation is that every path P € M will be reformed
with respect to u, essentially by comparison with its complementary path comp(P, M, u),
and that the result will exhibit the necessary existential independencies on u. It is quite natural
to perform this procedure in two stages. First, all paths containing literal —u are reformed,
and we call the result the left reform® of M with respect u. We then reform the remaining

SN egative universal literals appear in the left-hand nodes in the conventional depiction of an assignment tree.

@ Springer

618 0. Beyersdorff et al.

paths, i.e. we take the right reform of the resulting model. The two-stage process reflects the
way that D™ works with polarity, and requires the existence of a pair of resolution paths to
determine the dependency relation.

Definition 13 (Reformed model) Let M be a model for a DQBF @, let u be a universal
variable in @, andlet L = {P € M | P[u] = —u} (respectively R = {P € M | P[u] = u}).
The left-reform (respectively right-reform) of M with respect to u is given by the set of paths
(M\L) U {ref(P,M,u) | P € L} (respectively (M\R) U {ref(P, M,u) | P € R}). The
reformed model ref(M , u) of M with respect to u is the right reform of M’ with respect to u,
where M’ is the left reform of M with respect to u.

From the definition of a reformed model, it follows that left-reform of a model with respect
to u preserves all paths that contain the positive literal u; similarly, right-reform preserves
all paths containing the negative literal —u. We use this property fairly frequently in the
forthcoming proofs of lemmas 4 and 5.

In order to prove our main result, we need to prove three properties of the reformed model.
First, it is of course necessary that the reformed model is indeed a model, as stated in the
following lemma.

Lemma3 Let @ be a OBE and let u be a universal variable appearing in ®@. If M models
@D, then ref(M, u) also models ®.

Proof Let @ = Yuy - --Yu,, Ax1(Sy) - - - Ax,,(S,) - ¢, and let M’ be the left-reform of M with
respect to . We show that M’ is an assignment tree for @. It is clear that M’ is a set of paths
for @, so we verify that M’ satisfies conditions (a) and (b) of Definition 11.

Since M is an assignment tree for @, for each total assignment U to the universal variables
{ur, ..., un}, there is a unique path in M that contains U, by condition (a). By definition,
reforming a path does not affect the universal literals, so M’ also satisfies condition (a).

To see that M’ satisfies condition (b), let i € [m] and j € [n] such that u; ¢ S ;. Further,
let P’ and Q' be paths in M’ such that Q' = comp(P’, M’, u;), and assume w.l.o.g. that
P'[u;] = —u; and Q'[u;] = u;. We only need to show that P'[x;] = Q’[x;]. To that
end, let P and Q be the unique paths in M that agree with P’ and Q' respectively on all
universal variables. We observe that Q = comp(P, M, u;), and since M models @ we have
P[x;] = Qlx;]. We consider two cases.

(1) Suppose thatu = u;. Then P’ = ref(P, M, u;) (since P[u;] = —u;)and Q' = Q (since
Olu;] = u;). By definition of reformed path, P’[x;] is equal to either P[x;] or Q[x;],
and in either case P'[x;] = Q'[x/].

(2) Suppose instead that u # u;. We consider two subcases.

(a) Suppose that Plu] = Q[u] = —u. By definition of left reform, we must
have P’ = ref(P,M,u) and Q' = ref(Q, M, u), so it suffices to show that
ref(P, M, u)[x;] = ref(Q, M, u)[x;]. Note that the paths comp(P, M, u) and
comp(Q, M, u) are complementary in M with respect to u;, and since M models @
and u; ¢ S; we have comp(P, M, u)[x;] = comp(Q, M, u)[x;]. Now, if (u, x;) ¢
Co, then we have ref(P, M, u)[x;] = comp(P, M, u)[x;] and ref(Q, M, u)[x;] =
comp(Q, M, u)[x;]. Otherwise, if (u, x;) € Cg, then ref(P, M, u)[x;] = P[x;]
and ref(Q, M, u)[x;] = Ql[x;]. In either case, we have ref(P, M,u)[x;] =
ref(Q, M, u)[x;].

(b) Suppose on the other hand that P[u] = Q[u] = u. Then P’ = P and Q' = Q by
definition of left reform, and it follows immediately that P’[x il= O'[x il

@ Springer

Reinterpreting Dependency Schemes: Soundness Meets... 619

By Lemma 2, every path in M’ satisfies every clause in ¢, therefore M’ models &@. A similar
argument shows that the reformed model of M with respect to u, which is the right-reform
of M’ with respect to u, also models @. O

Secondly, we need to prove that the reformed model (with respect to «) does in fact exhibit the
existential independencies on u identified by D™. That is, we must show that the reformed
model does indeed exhibit the independence of x on u whenever u is absent from the support
set of x in the DQBF D™ (®). We state this formally in the following lemma. The fact that
this lemma holds is exactly the motivation behind the construction of the reformed path.

Lemma4 Let M be a model for a QBF @ = Vup---Vu,3x1(S1)---3x,(Sy) - ¢, let
D™(P) = VYuy---YupyIx((S)) -3, (S;,) - ¢, and let i € [m). For each j € [n] with
u; ¢ S}, ref(M, u;) exhibits the independence of x j on u;.

Proof Let M’ be the left reform of M with respect to u;, and let M” = ref(M, u;) be the
right reform of M’ with respect to u;. Further, let U be an arbitrary (total) assignment to the
universals {ui, ..., u,}, and denote by P, P’ and P” the unique paths in M, M" and M”
(respectively) that contain U. Also, let O, Q' and Q” be the paths complementary to P, P’
and P” in M, M’ and M" (respectively) with respect to u;.

Nowlet j € [n] suchthatu; ¢ S}. Since U is an arbitrary total assignment to the universals
that defines a unique path in a model for @, showing thatref(M, u;) exhibits the independence
of x; on u; is equivalent to showing P”[x;] = Q”[x;]. Hence we may assume w.l.o.g. that
—u; € U,s0 Plu;] = P'[u;] = P"[u;] = —u; and Q[u;] = Q'[u;] = Q"[u;] = u;. We
consider two cases.

(1) Suppose that P[x;] = Q[x;]. Since M’ is the left reform of M with respect to u;, and
left reform with respect to u; preserves any path containing u;, we have Q' = Q. Since
P and Q agree on x;, the reformed path ref(P, M, u;) must also agree with both P
and Q on x;, by definition of reformed path. Hence P’[x;] = Q’[x;], which implies
P"[x;]1 = Q"[x;] unconditionally (i.e., it does not rely on P[x;] = Q[x;]). To see this,
note that Q” = ref(Q’, M’, u;), and hence Q”[x;] = P’[x;] by definition of reformed
path. Moreover, P” = P’ because P’[u;] = —u;, and right reform with respect to u;
preserves any path containing —u;.

(2) On the other hand, suppose that P[x;] # Q[x;]. Further, assume w.L.o.g. that P[x;] =
xjand Q[x;] = —x;. Now, since u; ¢ S;.,we have either (u;, x;) ¢ Cp or (—u;, —x;) ¢
Co, by definition of D™, so we consider two sub-cases.

(a) Suppose that (u;,x;) ¢ Ce. Since M’ is the left reform of M with respect to
u;, we have P’ = ref(P, M, u;) (because Plu;] = —u;) and Q' = Q (because
Q[u;] = u;). Therefore P'[x;] = Q[x;] = Q'[x;] by definition of reformed path.
The fact that P”[x;] = Q”[x;] may then be deduced exactly as in case (1) above.

(b) Suppose on the other hand that (u#;, x;) € Ce. Then P'[x i1 = P[x;] by definition
of reformed path. Since M” is the right reform of M’ with respect to u;, we have
P"” = P’ (because P'[u;] = —u;)and Q" = ref(Q’, M’, u;) (because Q'[u;] = u;).
Moreover, we must have (—u;, —x;) ¢ Co, for otherwise u; € S} by definition of
D™, Since P'[x;] = x;, we have Q”[x;] = P’[x;] by definition of reformed path.
Therefore P"[x;]1 = P'[x;1= Q"[x;]. O

Now, we intend to successively reform the model M to exhibit independences on the universal
variables, one by one. It is therefore crucial that future reforms do not undo the work of previ-
ous ones; that is, reforming a model must preserve the existing exhibition of independencies.
This is indeed the case, as stated in our third and final lemma.

@ Springer

620 0. Beyersdorff et al.

Lemma5 Let M be a model for a QBF ®. Further, let u and v be universal variables and
let x be an existential variable, all of which appear in ®. If M exhibits the independence of
X on v, then so does ref(M, u).

Proof Let M’ be the left reform of M with respect to u, and let M” = ref(M, u) be the right
reform of M’ with respect to u. Let U be an arbitrary (total) assignment to the universal
variables of @, and assume w.l.0.g. that {—u, —v} C U.

We define twelve paths that we work with in this proof. Let P—,, P/ and P be the
unique paths in M, M’ and M” (respectively) that contain U, and let Q—,, Q" and Q" be
paths complementary to P—,, P’ and P” in M, M" and M" (respectively) with respect to
u. Further, let P, and Q, be the paths complementary to P—, and Q—, (respectively) in M
with respect to v, and note that P, and Q, are paths complementary in M with respect to
u. We define P), O/, P, and Q/, similarly, and note that they are also paths complementary
with respect to # in M’ and M"”. We emphasise that all ‘P’ paths contain literal —u, whereas
all *Q’ paths contain literal u.

In order to show that ref(M, u) exhibits the independence of x on v, we need to prove
that P” [x] = P;/[x]and Q” [x] = Q}[x]. (In contrast to the proof of Lemma 4, we cannot
say that —u € P is without loss of generality here. This is because we need to show that the
reformed model exhibits the independence of x on v, not on the ‘reform variable’ u. Since
the right reform M” depends upon the state of the left reform M’, the outcome for a pair
of paths complementary with respect to v may in principle depend upon their polarity at u.
Hence, we must show explicitly that the exhibited independence of x on v is preserved for
paths containing —u and for those containing u.) Observe that O, and Q' are identical
paths by definition of left reform since u € Q, and that P” and P/ are identical paths by
definition of right reform since —u € P’; hence Q [x] = Q-,[x]and P’ [x] = P/ [x].
Further, assume w.l.o.g. that P—,[x] = x. We consider four cases.

(1) Suppose that P—,[x] = Q-,[x]. Observe that this implies PLU [x] = P-y[x] by def-
inition of left reform and reformed path (independently of Cg), and hence P’ Jxl =
O’ [x]. A symmetrical argument then shows that P” [x] = P/ [x] and Q" [x] =
Q’ [x]. It follows that P” [x] = P—,[x] and Q” [x] = Q—y[x].

(2) Suppose that P—,[x] # Q-y[x] and (u, x) ¢ Cg. Observe that PLU[x] = Q-plx]
by definition of left reform and reformed path, since P-,[u] = —u, Q—[x] = —x,
and (u,x) ¢ Ce. Hence, P/ [x] = Q. [x], and we deduce that P” [x] = P! [x]
and Q” [x] = QF [x], using the same argument as for case (1). We conclude that
P/ [x] = Q7 [x] = O—lx].

(3) Suppose that P—,[x] # Q—y[x], (4, x) € Cp and (—u, —x) ¢ Cg. First, observe that
P’ ,[x] = P-y[x] by definition of left reform and reformed path, since P-,[u] = —u,
Q—y[x] = —x, and (1, x) € Cg. Second, observe that Q” [x] = P/ [x] by definition
of right reform and reformed path, since Q” [u] = u, P’ [x] = x,and (—u, —~x) ¢ Co.
We conclude that P/ [x] = Q” [x] = P-y[x].

(4) Suppose that P—,[x] # Q—ylx], (u, x) € Cp and (—u, —x) € Cep. Similarly as for case
(3), observe that P [x] = P-,[x]. This implies that P’ [x] # Q’ [x]. From here,
a symmetrical argument (utilising the assumption (u, x) € Ce) shows that Q” Jx] =
Q' [x]. We conclude that P, [x] = P—,[x] and Q7 [x] = Q-[x].

In all four cases, the argument is completely symmetrical with respect to the polarity of v;

that is, the argument goes through if each —v subscript is replaced by v. In combination

with the two facts P_,[x] = P,[x] and Q—,[x] = Qy[x], which follow from the lemma

statement (M exhibits the indepedence of x on v), we hence deduce that P’ [x] = P./[x]

and Q” WXl = Q/[x]1in all four cases. The four cases are clearly exhaustive. O

@ Springer

Reinterpreting Dependency Schemes: Soundness Meets... 621

With these latter three lemmata, we may now give a short inductive proof of full exhibition.
Theorem 8 D™ is fully exhibited.

Proof Let @ = Vuy ---Viuy3x1(S1) - - 33, (Sy) - ¢ be a true QBF, and let
DS(D) = Vuy - ..VumH)C](S;) s Elxn(Sr/z) .

Further, let M be a model for & and, for each i € [m], let M; = ref(M;_1, u;).

By induction on i € [m], we prove that M; is a model for @ that, for each 1 < k < i and
for each j € [n] for which uy ¢ S;., exhibits the independence of x; on uy. Hence at step
i = m we prove that M,, is a model for D™ (®). It follows that D™ () is a true DQBF, and
that D™ is fully exhibited.

For the base case i = 1, observe that M| = ref(M, u1) is model for @ by Lemma 3, and
that M; exhibits the independence of u on x; for each j € [n] with u; ¢ S}, by Lemma 4.
For the inductive step, let i € [m] and, suppose that M;_; is a model for @ that, for each
1 <k <i—1andforeach j € [n] for which u; ¢ S, exhibits the independence of x; on
ur. Then M; = ref(M;_1, u;) is a model for @ that exhibits the independence of u; on x s
for each j € [n] with u; ¢ S}, by Lemmas 3 and 4. Also, by Lemma 5, the independences
exhibited by M;_1 are also exhibited by M;. It follows that M; is a model for @ that, for each
1 <k < i and for each j € [n] for which uy ¢ S}, exhibits the independence of x; on u.
This completes the inductive step, and the proof. O

We conclude this section by stating the following corollary. It is the immediate consequence of
the fact that full exhibition is sufficient for soundness in all four dependency scheme systems
(Theorems 2 and 7), combined with the full exhibition of D™ (Theorem 8). Note that the
soundness results carry over to the weaker scheme D%, since P(D™) always simulates
P(D™).

Corollary 2 Both P(D™) and P(D%Y) are sound, where P is any of the calculi VExp+Res,
IR-calc, Q-Res and QU-Res.

7 Conclusions and Open Problems

We proposed an approach which strengthens the relationship between DQBF and QBF
dependency schemes, furnishing fruitful connections between the two fields. By placing
full exhibition at the centre of investigation, we have developed a method that gives rise
to soundness results across calculi, a significant improvement over some existing ad hoc
(and complex) proofs of soundness in the literature (cf. [37]). Theorems 4 and 5 highlight
the importance of expansion-based proof systems for DQBF. Theorem 7 demonstrates that
fully exhibited dependency schemes can be incorporated into expansion-based solving, as
suggested in [22]. Theorem 8 proves Slivovsky’s conjecture that D™ is fully exhibited [35];
therefore either of D™ and D% may be implemented in expansion solving (Corollary 2).

The relative proof complexities of Q-Res and Q(D)-Res were recently investigated, show-
ing an exponential separation when D is D™ [11]. The proof complexities of expansion-based
systems parametrised by dependency schemes remains open, but we conjecture the same
exponential separation between IR-calc and IR(D™)-calc. We showed that the extent of
incompleteness in QU-Res can be rephrased in terms of the non-fully-exhibited schemes
D for which Q(D)-Res is sound. The exact extent remains open; that is, it is an open problem
to characterise exactly the false DQBFs for which there is no DQBF-Q-Res refutation.

@ Springer

622 0. Beyersdorff et al.

Acknowledgements This research was supported by Grant No. 60842 from the John Templeton Foundation,
EPSRC grant EP/L.024233/1, and a Doctoral Prize Fellowship from the EPSRC (Leroy Chew). Martin Suda
was supported by the Austrian Science Fund (FWF) project S11409-N23 and the ERC Starting Grant 2014
SYMCAR 639270.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

References

1. Arzhar, S., Peterson, G., Reif, J.: Lower bounds for multiplayer non-cooperative games of incomplete
information. J. Comput. Math. Appl. 41, 957-992 (2001)

2. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Hand-
book of Automated Reasoning, 2 volumes, pp. 19-99. Elsevier and MIT Press (2001)

3. Balabanov, V., Chiang, H.K., Jiang, J.R.: Henkin quantifiers and Boolean formulae: a certification per-
spective of DQBF. Theor. Comput. Sci. 523, 86-100 (2014)

4. Balabanov, V., Widl, M., Jiang, J.R.: QBF resolution systems and their proof complexities. In: Sinz,
C., Egly, U. (eds.) International Conference on Theory and Applications of Satisfiability Testing (SAT).
Lecture Notes in Computer Science, vol. 8561, pp. 154-169. Springer (2014)

5. Bayardo Jr.,, RJ., Schrag, R.: Using CSP look-back techniques to solve real-world SAT instances. In:
Kuipers, B., Webber, B.L. (eds.) National Conference on Artificial Intelligence (AAAI), pp. 203-208.
AAAI Press / The MIT Press (1997)

6. Beyersdorff, O., Blinkhorn, J.: Dependency schemes in QBF calculi: semantics and soundness. In: Rueher,
M. (ed.) Principles and Practice of Constraint Programming (CP). Lecture Notes in Computer Science,
vol. 9892, pp. 96-112. Springer (2016)

7. Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based calculi. In: Csuhaj-Varju,
E., Dietzfelbinger, M., Esik, Z. (eds.) International Symposium on Mathematical Foundations of Computer
Science (MFCS). Lecture Notes in Computer Science, vol. 8635, pp. 81-93. Springer (2014)

8. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Mayr, E.-W.,
Ollinger, N. (eds.) International Symposium on Theoretical Aspects of Computer Science (STACS).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 30, pp. 76—89. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2015)

9. Beyersdorff, O., Chew, L., Schmidt, R.A., Suda, M.: Lifting QBF resolution calculi to DQBF. In: Creignou
and Berre [16], pp. 490499

10. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial
Intelligence and Applications, vol. 185. IOS Press (2009)

11. Blinkhorn, J., Beyersdorff, O.: Shortening QBF proofs with dependency schemes. In: Gaspers and Walsh
[18], pp. 263-280

12. Bloem, R., Konighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs. In: McMillan, K.L.,
Rival, X. (eds.) International Conference on Verification, Model Checking, and Abstract Interpretation
(VMCALI). Lecture Notes in Computer Science, vol. 8318, pp. 1-20. Springer (2014)

13. Bubeck, U, Kleine Biining, H.: Dependency quantified horn formulas: models and complexity. In: Biere,
A., Gomes, C.P. (eds.) International Conference on Theory and Practice of Satisfiability Testing (SAT).
Lecture Notes in Computer Science, vol. 4121, pp. 198-211. Springer (2006)

14. Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A., Banerji, R.B., Ullman,
J.D. (eds.) ACM Symposium on Theory of Computing (STOC), pp. 151-158. ACM (1971)

15. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1),
36-50 (1979)

16. Creignou, N., Berre, D.L. (eds.): International Conference on Theory and Practice of Satisfiability Testing
(SAT). Lecture Notes in Computer Science, vol. 9710. Springer (2016)

17. Frohlich, A., Kovésznai, G., Biere, A., Veith, H.: iDQ: instantiation-based DQBF solving. In: Berre, D.L.
(ed.) Workshop on Pragmatics of SAT (POS), EPiC Series in Computing, vol. 27, pp. 103—116. EasyChair,
(2014)

18. Gaspers, S., Walsh, T. (eds.): International Conference on Theory and Practice of Satisfiability Testing
(SAT). Lecture Notes in Computer Science, vol. 10491. Springer (2017)

@ Springer

http://creativecommons.org/licenses/by/4.0/

Reinterpreting Dependency Schemes: Soundness Meets... 623

19.

20.

21.
22.
23.
24.
25.
26.
27.

28.

29.

31.

32.

33.

34.

35.

37.

38.

39.

40.

41.
. Wimmer, R., Scholl, C., Wimmer, K., Becker, B.: Dependency schemes for DQBF. In: Creignou and

Gelder, A.V.: Contributions to the theory of practical quantified Boolean formula solving. In: Milano,
M. (ed.) International Conference on Principles and Practice of Constraint Programming (CP). Lecture
Notes in Computer Science, vol. 7514, pp. 647-663. Springer (2012)

Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving DQBF through quantifier
elimination. In: Nebel, W., Atienza, D. (eds.) Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1617-1622. ACM (2015)

Henkin, L.: Some remarks on infinitely long formulas. In Infinistic Methods, pp 167-183. Pergamon
Press, Oxford (1961)

Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided
refinement. Artif. Intell. 234, 1-25 (2016)

Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci.
577, 2542 (2015)

Kleine Biining, H., Karpinski, M., Flogel, A.: Resolution for quantified Boolean formulas. Inf. Comput.
117(1), 12-18 (1995)

Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21(3),
317-353 (1980). https://doi.org/10.1016/0022-0000(80)90027-6

Lonsing, F.: Dependency schemes and search-based gbf solving: Theory and practice. Ph.D. thesis,
Johannes Kepler University (2012)

Lonsing, F., Biere, A.: DepQBF: a dependency-aware QBF solver. J. Satisf. Boolean Model. Comput.
7(2-3), 71-76 (2010)

Meel, K.S., Vardi, M.Y., Chakraborty, S., Fremont, D.J., Seshia, S.A., Fried, D., Ivrii, A., Malik, S.:
Constrained sampling and counting: Universal hashing meets SAT solving. In: Darwiche, A. (ed.) Beyond
NP, AAAI Workshops, vol. WS-16-05. AAAI Press (2016)

Rabe, M.N.: A resolution-style proof system for DQBF. In: Gaspers and Walsh [18], pp. 314-325
Samer, M.: Variable dependencies of quantified CSPs. In: Cervesato, 1., Veith, H., Voronkov, A. (eds.)
International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR). Lec-
ture Notes in Computer Science, vol. 5330, pp. 512-527. Springer (2008)

Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom. Reason. 42(1), 77-97
(2009)

Samulowitz, H., Bacchus, F.: Using SAT in QBE. In: van Beek, P. (ed.) International Conference on
Principles and Practice of Constraint Programming (CP). Lecture Notes in Computer Science, vol. 3709,
pp. 578-592. Springer (2005)

Seidl, M., Lonsing, F., Biere, A.: qbf2epr: A tool for generating EPR formulas from QBF. In: Fontaine, P.,
Schmidt, R.A., Schulz, S. (eds.) Workshop on Practical Aspects of Automated Reasoning PAAR, EPiC
Series in Computing, vol. 21, pp. 139-148. EasyChair (2012)

Silva, J.P.M., Sakallah, K.A.: GRASP-a new search algorithm for satisfiability. In: Rutenbar, R.A., Otten,
R.H.J.M. (eds.) International Conference on Computer-Aided Design (ICCAD), pp. 220-227. IEEE Com-
puter Society/ACM (1996)

Slivovsky, F.: Structure in #SAT and QBF. Ph.D. thesis, Vienna University of Technology (2015)
Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time. In: Cimatti, A., Sebas-
tiani, R. (eds.) International Conference on Theory and Applications of Satisfiability Testing (SAT).
Lecture Notes in Computer Science, vol. 7317, pp. 58-71. Springer (2012)

Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes. Theor. Comput. Sci. 612,
83-101 (2016)

Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: preliminary report. In: Aho,
A.V., Borodin, A., Constable, R.L., Floyd, R.W., Harrison, M.A., Karp, R.M., Strong, H.R. (eds.) ACM
Symposium on Theory of Computing (STOC), pp. 1-9. ACM (1973)

Tentrup, L.: On expansion and resolution in CEGAR based QBF solving. In: Majumdar, R., Kuncak,
V. (eds.) International Conference on Computer Aided Verification (CAV). Lecture Notes in Computer
Science, vol. 10427, pp. 475-494. Springer (2017)

Van Gelder, A.: Variable independence and resolution paths for quantified Boolean formulas. In: Lee,
J.H. (ed.) International Conference on Principles and Practice of Constraint Programming (CP). Lecture
Notes in Computer Science, vol. 6876, pp. 789-803. Springer (2011)

Vardi, M.Y.: Boolean satisfiability: theory and engineering. ACM 57(3), 5 (2014)

Berre [16], pp. 473-489

@ Springer

https://doi.org/10.1016/0022-0000(80)90027-6

	Reinterpreting Dependency Schemes: Soundness Meets Incompleteness in DQBF
	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Organisation of the Paper

	2 Preliminaries
	3 A DQBF Interpretation of Dependency Schemes
	3.1 The Traditional Interpretation of Dependency Schemes
	3.2 Redefining Dependency Schemes in Terms of DQBF

	4 Variable Dependencies in Q-Res and QU-Res
	4.1 DQBF Systems
	4.2 Systems for QBF with Dependency Schemes

	5 Dependencies in Expansion-Based Calculi
	5.1 Two Sound and Complete Systems for DQBF
	5.2 Dependency Schemes in Expansion-Based QBF Systems

	6 Demonstrating Full Exhibition
	6.1 Definition of the Dependency Scheme mathcalDrrs
	6.2 Proof of the Full Exhibition of mathcalDrrs

	7 Conclusions and Open Problems
	Acknowledgements
	References

