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An Improved Variable Kernel Width for Maximum

Correntropy Criterion Algorithm
Long Shi, Haiquan Zhao, Senior Member, IEEE, and Yuriy Zakharov, Senior Member, IEEE

Abstract—The maximum correntropy criterion (MCC) algo-
rithm has attracted much attention due to its capability of
combating impulsive noise. However, its performance depends
on choice of the kernel width, which is a hard issue. Several
variable kernel width schemes based on various error functions
have been proposed to address this problem. Nevertheless, these
methods may not provide an optimal kernel width because they
do not contain any knowledge of the background noise that
actually has influence on the optimization of the kernel width.
This paper proposes an improved variable kernel width MCC
algorithm, which is derived by minimizing the squared deviation
at each iteration. We also design a reset mechanism for the
proposed algorithm to improve its tracking capability when the
estimated vector encounters a sudden change. Simulations for
system identification and echo cancellation scenarios show that
the proposed scheme outperforms other variable kernel width
algorithms.

Index Terms—maximum correntropy criterion, variable kernel
width, squared deviation, reset mechanism.

I. INTRODUCTION

THE least mean square (LMS) algorithm is utilized in

many applications including system identification, acous-

tic echo cancellation, active noise control, channel equalization

and so on [1]–[5]. The LMS algorithm can exhibit desirable

performance in Gaussian noise since it is established on the

second-order moment of the error signal. However, in practice,

very often the impulsive noise is present [6]. In such scenarios,

the conventional LMS algorithm performs poorly in terms of

convergence and steady-state misalignment. To overcome this

problem, many methods that can combat impulsive noise have

been proposed, such as the sign algorithm [7], least mean p-

power algorithm [8], least mean M-estimate algorithm [9], and

their modifications [10]–[12].

With the development of information theoretic learning

(ITL) [13], the maximum correntropy criterion (MCC) has

recently been introduced in the adaptive filtering. The MCC

adaptive filters can effectively suppress impulsive noise using

more orders of the error signal [14], [15]. Unfortunately, the

performance of the MCC algorithm depends on the choice of

the kernel width, whereas in practice, it is difficult to select a

reliable kernel width to guarantee favorable performance. To

eliminate this shortcoming, the scheme using the convex com-

bination of MCC algorithms (CMCC) has been proposed [16],
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which exhibits faster convergence than the MCC algorithm.

However, the CMCC algorithm requires extra computations

due to updates in two filters.

Apart from the CMCC algorithm, various time-varying

kernel width (TKW) methods have been proposed [17]–[19].

The switch kernel width MCC (SMCC) algorithm is based on

adaptively choosing the maximum between an instantaneous

value constructed from the error signal and a predetermined

kernel width [17]. The adaptive kernel width MCC (AMCC)

is derived by dynamically calculating the sum of the squares

for the kernel width and instantaneous error [18]. The recently

proposed variable kernel width MCC (VKW-MCC) algorithm

[19] is obtained by maximizing an error nonlinearity function

described by the exponential expression. In the VKW-MCC

algorithm, the estimation window strategy is introduced to

attenuate the adverse impact of the impulsive interference-

corrupted error signal. The VKW-MCC algorithm performance

depends on the choice of the length of the estimation window.

Only when the length of the window is set to be large enough

can the VKW-MCC algorithm provide superior performance,

but it will lead to the increasing cost for storing past values

of the error signal. In addition, these TKW methods do

not contain any knowledge of the background noise that

actually has influence on the optimization of the kernel width.

Therefore, there is a room for improvement of TKW schemes.

In this paper, we put forward an improved variable kernel

width method for MCC (IVKW-MCC) algorithm to further im-

prove the performance. The squared kernel width is obtained

from minimizing the squared deviation at each iteration. To

implement the proposed IVKW-MCC algorithm, we employ

the moving average method to complete the update for the

squared kernel width. In addition, a reset mechanism for the

IVKW-MCC algorithm is designed to enhance its tracking

capability when a sudden change of the estimated vector

occurs. We also discuss the complexity of the IVKW-MCC

algorithm. In general, our main contributions are twofold: (1)

We derive a novel method for updating the kernel width; (2)

A reset mechanism is developed to strengthen the tracking

capability of the IVKW-MCC algorithm.

The paper is organized as follows. In Section 2, we review

the MCC algorithm. In Section 3, the proposed IVKW-MCC

algorithm is derived. In Section 4, numerical simulations in

the impulsive noise environment are presented. In Section 5,

we draw our conclusions.
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II. REVIEW OF THE MCC ALGORITHM

We consider that the desired signal d(k) arises from the

linear model

d(k) = uT (k)wo + η(k), (1)

where u(k) = [u(k), u(k−1), ..., u(k−M +1)]T denotes the

input vector with symbol T being transpose, wo represents

the unknown system to be estimated, and η(k) stands for the

background noise with zero mean and variance σ2
η . The error

signal is given by

e(k) = d(k)− uT (k)w(k), (2)

where w(k) is an estimate of wo at iteration k.

The correntropy measures a local similarity of two random

variables, and can be expressed as [14]

Vlocal(X,Y ) = E[κ(X,Y )] =

∫

κ(x, y)dFx,y(X,Y ), (3)

where κ(x, y) denotes a shift-invariant Mercer Kernel, and

Fx,y(X,Y ) is the joint distribution function of (x, y). Among

various kernel functions, the Gaussian kernel attracts much

popularity [14], [16], [19]

κ(x, y) =
1√
2πσ

exp

(

− e2

2σ2

)

, (4)

where e = x − y, and σ > 0 is the kernel width. The MCC

algorithm is based on minimizing the cost function [15]

JMCC(w(k)) = E

[

exp

(

−e2(k)

2σ2

)]

. (5)

By virtue of the stochastic gradient method, the MCC

algorithm recursion is given by [14]:

w(k + 1) = w(k) + µ exp

(

−e2(k)

2σ2

)

e(k)u(k), (6)

where µ is a step size. The factor µ exp
(

− e2(k)
2σ2

)

can be

considered as an overall step size of the LMS algorithm. For

a fixed µ, a large (small) σ leads to a large (small) value for

the overall step size, which provides a fast (slow) convergence

rate along with a high (low) steady-state misalignment. This

implies that the performance of the MCC algorithm depends

on the choice of the kernel width.

III. PROPOSED IVKW-MCC ALGORITHM

A. Design of the Variable Kernel Width

We replace σ in (6) with a time-varying kernel width σ(k)

w(k + 1) = w(k) + µ exp

(

− e2(k)

2σ2(k)

)

e(k)u(k). (7)

Subtracting (7) from wo gives rise to

w̃(k + 1) = w̃(k)− µ exp

(

− e2(k)

2σ2(k)

)

e(k)u(k), (8)

where w̃(k) = wo −w(k) is the weight error vector.

From (8), we arrive at the recursive update of the squared

deviation

∥w̃(k + 1)∥2 = ∥w̃(k)∥2 − 2µ

{

ea(k)e(k) exp

(

− e2(k)

2σ2(k)

)}

+ µ2

{

∥u(k)∥2e2(k)
[

exp

(

− e2(k)

2σ2(k)

)]2
}

, ∥w̃(k)∥2 − f (σ(k)) ,
(9)

where ea(k) = w̃T (k)u(k) represents noise-free a priori error

signal, and f (σ(k)) is expressed as

f (σ(k)) = 2µ

{

ea(k)e(k) exp

(

− e2(k)

2σ2(k)

)}

− µ2

{

∥u(k)∥2e2(k)
[

exp

(

− e2(k)

2σ2(k)

)]2
}

.

(10)
Considering that e(k) = ea(k) + η(k), f (σ(k)) can be

further written as

f (σ(k)) = 2µ

{

[e2(k)− η
2(k)− ea(k)η(k)] exp

(

−
e2(k)

2σ2(k)

)}

− µ
2

{

∥u(k)∥2e2(k)

[

exp

(

−
e2(k)

2σ2(k)

)]2
}

.

(11)

To minimize the squared deviation at iteration k, we need to

maximize f (σ(k)). Taking the derivative of (11) with respect

to σ(k), we arrive at

∂f(σ(k))

∂σ(k)
=2µ exp

(

− e2(k)

2σ2(k)

)

e2(k)

σ3(k)
{

[e2(k)− η2(k)− ea(k)η(k)]

− µ∥u(k)∥2e2(k) exp
(

− e2(k)

2σ2(k)

)

}

.

(12)

Setting (12) to zero gives rise to

e2(k)− η2(k)− ea(k)η(k)

µ∥u(k)∥2e2(k) = exp

(

− e2(k)

2σ2(k)

)

. (13)

The squared kernel width σ2(k) is obtained by taking the

logarithm of both sides of (13)

σ2(k) =
−e2(k)

2 ln
[

e2(k)−η2(k)−ea(k)η(k)
µ∥u(k)∥2e2(k)

] . (14)

We cannot use (14) directly since the noise realization

η(k) is unavailable. To resolve this problem, we replace

η2(k) with the noise variance σ2
η . We also set the product

ea(k)η(k) to zero. The later step is based on a widely used

assumption, that is, the noise-free a priori error signal ea(k) is

independent of the background noise η(k) [20]. Therefore, we

have E{ea(k)η(k)} = 0, and introducing the approximation

ea(k)η(k) ≈ 0 is reasonable because on average it is zero. As

a result, we arrive at

σ2(k) =
−e2(k)

2 ln
[

e2(k)−σ2
η

µ∥u(k)∥2e2(k)

] . (15)
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To smoothly update the squared kernel width, motivated by

the moving average method [21], we employ an alternative

manner as follows

σ2(k) =














ασ2(k − 1)+

(1− α)min
(

−e2(k)
2 ln[χ(k)] , σ

2(k − 1)
)

, if 0 < χ(k) < 1

σ2(k − 1), otherwise,
(16)

where α is the smoothing factor that is close to one, and

χ(k) =
e2(k)− σ2

η

µ∥u(k)∥2e2(k) . (17)

Remark 1. As observed in (16), to ensure a positive squared

kernel width σ2(k), the proposed kernel width is updated when

0 < χ(k) < 1. Moreover, with (16), we not only guarantee

the decrease of σ2(k), but also prevent large fluctuations of

σ2(k), e.g., due to the impulsive noise. If the variance σ2
η of the

background noise is not known in advance, it can be estimated

using an online learning method. For example, in [22], based

on establishing the relationship between the error power and

the output-noise power, the variance of the background noise

is estimated by employing the moving average strategy.

Remark 2. From (16), the update of the squared kernel

width σ2(k) mainly relies on χ(k). As noted in (17), χ(k)
depends on the instantaneous quantities e2(k), ∥u(k)∥2, and

the statistical value σ2
η . In the case of noise with time-varying

characteristics, the learning strategy in [22] can also be used

to estimate the time-varying noise variance. Therefore, our

algorithm is also applicable in the case of the non-stationary

background noise.

B. Practical Considerations

Since the sequence {σ2(k)} is monotonically decreasing,

when the estimated vector changes suddenly, the IVKW-MCC

algorithm loses its tracking capability. To address this problem,

a reset mechanism designed for σ2(k) is put forward by

learning from [23]. In [23], the reset mechanism is provided

for the step size, while in our algorithm, it is made for

the kernel width. Fortunately, both of them have the same

monotonicity, and therefore it is feasible to replace the step

size with the kernel width in the original reset method in [23].

The summary of the proposed reset mechanism is presented

in Table I.

In Table I, mod(·) denotes the remainder operator, VT and

VD are positive integers (VT > VD), sort(·) represents the

ascending order operator, Q = diag(1, · · · , 1, 0, · · · , 0) is a

diagonal matrix with its first VT − VD elements being one,

and ξ stands for a threshold value. As pointed in [23], typical

values for VT , VD and ξ are VT = τM with τ ranging in [1,

3], VD = 0.75VT and ξ = 1.

Note that when the impulsive noise occurs with high prob-

ability, VT −VD should be increased to exclude noise samples

of high magnitude. The condition ∆k > ξ implies that a

significant change in the estimated system is detected, and thus

requiring to initialize the kernel width σ(k) and the weight

vector w(k). If the change is minor, the execution statement

TABLE I
THE RESET MECHANISM

if mod(k, VT ) = 0

C = sort

(

|e(k)|

∥u(k)∥2+ϵ
, ...,

|e(k−VT +1)|
∥u(k−VT +1)∥2+ϵ

)T

ctrlnew = CT QC

VT −VD
end

∆k = (ctrlnew − ctrlold)/
√

σ2(k − 1)
if ∆k > ξ

σ2(k) = σ2(0)
w(k) = 0

elseif ctrlnew > ctrlold
σ2(k) = σ2(k − 1) + (ctrlnew − ctrlold)

else

invoke proposed scheme to update

end

ctrlold = ctrlnew

corresponding to the “elseif” can address the tracking issue

without performing the initialization. If no change occurs, the

kernel width will be updated by (16) and (17).

C. Complexity

In Table II, we discuss the complexity of some existing

algorithms and proposed IVKW-MCC algorithm. Specifically,

the number of multiplications, additions, and exponents per

iteration are shown. For the proposed IVKW-MCC, we omit

the computational cost of the reset mechanism because it is

performed only every VT iteration and therefore, for large VT ,

it is small compared to other computations.

TABLE II
COMPLEXITY OF ALGORITHMS PER ITERATION

Algorithms Multiplications Additions Exponents

MCC 2M + 6 2M 1
CMCC 8M + 37 7M + 8 6
SMCC 2M + 8 2M 1
AMCC 2M + 6 2M + 1 1
VKW-MCC 2M + 9 2M + 2 1
IVKW-MCC 3M + 11 3M + 1 1

As can be seen, the MCC algorithm consumes the least

computational cost, only requiring 2M + 6 multiplications,

2M additions and 1 exponent, whereas the CMCC algorithm

is the most complicated owing to the updates for two adaptive

filters. As compared with the MCC algorithm, both the SMCC

algorithm and the AMCC algorithm have a slight increase

of multiplications and additions. The VKW-MCC algorithm

requires 2M + 9 multiplications, 2M + 2 additions and 1 ex-

ponent. Finally, the proposed IVKW-MCC algorithm requires

M + 5 more multiplications, M + 1 more additions than the

MCC algorithm, which can be viewed as a moderate increase.

IV. NUMERICAL SIMULATIONS

The proposed IVKW-MCC is measured by simulations for

system identification and echo cancellation scenarios. The

unknown system and adaptive filters have the same number of

taps. The background noise η(k) and the impulsive noise v(k)
that are independent of each other are added to the signal of

interest wT
o u(k). The background noise is a zero-mean white

Gaussian noise sequence. The impulsive noise is modeled as

a Bernoulli-Gaussian process, i.e. v(k) = q(k)h(k), where
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q(k) is a zero-mean white Gaussian process with variance

σ2
q = 1000E[(wT

o u(k))
2], and h(k) stands for a Bernoulli

process with the probability mass function P (h(k) = 1) = Pr

and P (h(k) = 0) = 1 − Pr [19]. In the simulation, we

set α = 0.99 obtained by training for the proposed IVKW-

MCC algorithm, VT = 3M , VD = 0.75VT , and ξ = 1.

The normalized mean-square deviation (NMSD) defined as

10 log10[∥wo −w(k)(k)∥2/|wo∥2], is used as a measure of

the algorithm performance. The NMSD curves are obtained

by averaging over 100 simulation trials.

A. System Identification

For all system identification experiments, the unknown

vector wo is randomly generated with M = 128 and its taps

obey the zero-mean normal distribution. A zero-mean white

Gaussian sequence with unit variance is utilized as the input

signal.
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σ=1

σ=20

σ=3
σ=5 proposed IVKW−MCC

Fig. 1. NMSD curves of the MCC algorithm with different fixed kernel
widths and the proposed IVKW-MCC algorithm. The unknown vector wo

changes to −wo at iteration 2×104, and Pr = 0.5. For the MCC algorithm:
µ = 0.01. For the IVKW-MCC algorithm: µ = 0.01, α = 0.99, σ(0) = 20.
(a) σ2

η
= 10−3. (b) σ2

η
= 10−2.

We firstly implement the comparison between the IVKW-

MCC algorithm and the MCC algorithm using different fixed

kernel widths σ, as shown in Fig. 1. As can be seen, with the

increase of the kernel width σ, the MCC algorithm achieves

faster convergence, but it also shows a higher steady-state mis-

alignment, which implies that the MCC algorithm encounters

the conflicting requirement between fast convergence rate and

low steady-state misalignment. In comparison, the proposed

IVKW-MCC algorithm improves both the convergence rate

and steady-state misalignment. Moreover, the reset mechanism

retains a desirable tracking capability for the IVKW-MCC

algorithm.

We then examine the performance of some known MCC-

type algorithms and proposed IVKW-MCC algorithm under

different probabilities Pr and different variances σ2
η , depicted

in Fig. 2. For the CMCC algorithm, we set σ = 5, µa =
4.5, β = 0.8 [16], for the SMCC and AMCC algorithms, we

select σ = 2 [17], [18], and for the VKW-MCC algorithm,

we choose σ0 = kσ = 20, α = 0.98, Nw = 26 [19]. The
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Fig. 2. NMSD curves of some known algorithms and proposed IVKW-MCC
algorithm. The unknown vector wo changes to −wo at iteration 2 × 104.
(a) Pr = 0.1, σ2

η
= 10−3. (b) Pr = 0.5, σ2

η
= 10−3. (c) Pr = 0.5,

σ2
η
= 10−2

remaining parameters are set as: µ = 0.01 for the MCC,

µ1 = 0.01, µ2 = 0.003 for the CMCC, µ = 0.05 for the SM-

CC and AMCC algorithms, µ = 0.01 for the VKW-MCC, and

µ = 0.01, α = 0.99, σ(0) = 20 for the proposed IVKW-MCC

algorithm. As can be observed, among the known algorithms,

it is quite clear that the CMCC and VKW-MCC algorithms

outperform the MCC, SMCC and AMCC algorithms, while the

SMCC and AMCC algorithms perform better than the MCC

algorithm with σ = 3. Importantly, the proposed IVKW-MCC

algorithm is superior to other algorithms in the convergence

rate and steady-state misalignment, which is more obvious

when the impulsive noise occurs with a higher probability such

as Pr = 0.5.

B. Echo Cancellation

We here test the performance of various algorithms in an

echo cancellation application. The impulse response of the

sparse echo channel with M = 128 is depicted in Fig. 3(a),

and the speech input sampled at 8kHz is illustrated in Fig.

3(b). The step size of µ = 0.01 is set for the MCC algorithm,

µ1 = 0.05, µ2 = 0.01 for the CMCC, and µ = 0.05 for other

algorithms including the proposed algorithm. The remaining

parameters for all algorithms are consistent with that in the

system identification except σ = 2 is set for the CMCC

and σ(0) = 5 is chosen for the IVKW-MCC algorithm. The

probability of the impulsive noise is Pr = 0.1, and the signal-

to-noise (SNR) of the background noise η(k) is 30dB. The

learning curves regarding these algorithms are presented in

Fig. 4. As can be seen, the proposed IVKW-MCC algorithm

provides better performance as compared to other algorithms.
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Fig. 3. Impulse response of the sparse echo channel (top) and speech signal
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Fig. 4. NMSD curves of some known algorithms and proposed IVKW-MCC
algorithm in the acoustic echo cancellation scenario, where the unknown
vector wo changes to −wo at the middle of iterations.

V. CONCLUSION

This paper proposes a novel variable kernel width method to

overcome the shortcoming on how to choose a reliable kernel

width in the MCC algorithm. The squared kernel width is

obtained by minimizing the squared deviation using the s-

tochastic gradient method. To implement the proposed scheme,

the moving average strategy is utilized to update the squared

kernel width. In addition, we design a reset mechanism to

improve the tracking capability when the estimated system

encounters a sudden change. Simulations conducted in the

system identification and echo cancellation have demonstrated

that the proposed IVKW-MCC algorithm exhibits robustness

against impulsive noise and is superior to other established

TKW schemes.
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