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 
Abstract— Estimation of missing digital information is mostly 

addressed by one or two-dimensional signal processing methods; 
however, this problem can emerge in multi-dimensional data 
including 3D images. Examples of 3D images dealing with missing 
edge information are often found using dental micro-CT, where 
the natural contours of dental enamel and dentine are partially 
dissolved or lost by caries. In this paper, we present a novel 
sequential approach to estimate the missing surface of an object. 
First, an initial correct contour is determined interactively or 
automatically, for the starting slice. This contour information 
defines the local search area and provides the overall estimation 
pattern for the edge candidates in the next slice. The search for 
edge candidates in the next slice is performed in the perpendicular 
direction to the obtained initial edge in order to find and label the 
corrupted edge candidates. Subsequently, the location information 
of both initial and nominated edge candidates are transformed and 
segregated into two independent signals (X-coordinates and Y-
coordinates) and the problem is changed into error concealment. 
In the next step, the missing samples of these signals are estimated 
using a modified Tikhonov regularization model with two new 
terms. One term contributes in the denoising of the corrupted 
signal by defining an estimation model for a group of mildly 
destructed samples, and the other term contributes in the 
estimation of the missing samples with the highest similarity to the 
samples of the obtained signals from the previous slice. Finally, the 
reconstructed signals are transformed inversely to edge pixel 
representation. The estimated edges in each slice are considered as 
initial edge information for the next slice and this procedure is 
repeated slice by slice until the entire contour of the destructed 
surface is estimated. The visual results as well as quantitative 
results (using both contour-based and area-based metrics) for 
seven image datasets of tooth samples with considerable 
destruction of the dentin-enamel junction (DEJ) demonstrates that 
the proposed method can accurately interpolate the shape and the 
position of the missing surfaces in computed tomography images 
in both two and three dimensions (e.g. 14.87±3.87 ȝm of mean 
distance (MD) error for the proposed method versus 7.33±0.27 ȝm 
of MD error between human experts and 1.25±~0 % error rate 
(ER) of the proposed method versus 0.64±~0  % of ER between 
human experts (~1% difference)).  

Keywords: missing contour estimation, Tikhonov regularization, dental 
micro-CT, error concealment 

I. INTRODUCTION 
STIMATION and restoration of the contour and 
morphology of the lost structures in images of damaged 

and destroyed tissues are critical tasks in biomedical fields. 
Estimated structural information of the deteriorated tissue in its 
pre-damaged state can be employed for a variety of 
applications, such as automatic machine-based disease 

 
 

diagnosis and 3D tissue restoration [1, 2]. A recent emerging 
field in biomedical engineering is the application of 3D printing 
and computer-assisted design and manufacturing (CAD/CAM) 
technologies for reconstructing hard tissues, making scaffolds, 
organ 3D models and analogs from CAD data (Figure 1). 3D 
images from non-destructive imaging modules such as 
computed tomography (CT) and Magnetic Resonance Imaging 
(MRI) are the main sources of information for CAD/CAM 
based tissue engineering.  

Biological entities such as tooth, bone, vessels and skin 
usually have multilayer structures which are composed of 
several components with different biological, structural and 
functional specifications. Therefore, modeling, design and 
fabrication of tissue constructs, and restorations entail 
consideration of these layers and reconstruction of the 
interfaces between various tissue components. A common 
example of these cases is found using dental 3D images, where 
the interface between dental enamel and dentine is partially 
dissolved or lost by caries. Ideal restoration of the lost dental 
tissue requires the replacement of dentinal and enamel 
components using materials with matching mechanical and 
structural properties. Considering the large number of images 
in each CT/MRI database, the reconstruction of the destructed 
or damaged anatomical contours in stacks of CT/MRI images 
using accurate machine-based methods is a valuable objective 
for both clinical and engineering applications. In addition, since 
the performance of 3D segmentation methods generally relies 
on the existing information of the imaged object, many of the 
existing 3D image segmentation approaches (e.g. level-sets, 
freely deformable models, statistical shape models) are not 
applicable for image stacks with considerable absence of the 
surfaces and edges of the captured object.   

Various methods such as edge linking and binary image 
inpainting [3-9] have been used to address this problem in 2D 
space. However, these methods have not been able to provide 
satisfactory restoration results in all 2D cases and they have 
limited efficacy for 3D images. For example, morphological-
based edge linking methods distort the true edges and fail in 
estimating the contours with large gaps present [10, 11]. Non-
morphological-based edge linking methods, which depend on 
image intensity [12, 13], often fail in estimating the correct 
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Fig.1. a) 3D printed skull cap for the repair of cranial damage. b) A 
proximal surface dental cavity in need of a restoration. 
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contour of destructed objects that lack sufficient intensity 
information. On the other hand, non-morphological-based edge 
linking methods which are intensity independent, are inefficient 
in estimating curved contours as they usually create a straight 
line to connect the edges of the missing structure [14-19]. In the 
case of binary image inpainting methods, the main deficiency 
of these methods is their infirmity to restore binary images with 
one-pixel width (OPW). This infirmity traces back to the 
inherent need of PDE-based methods to boundary conditions, 
which are not satisfactorily provided by OPW objects. To 
overcome this problem, thin binary objects are thickened using 
morphological operators before interpolation, which leads to 
the distortion of the original shape of the object [3]. 

To the knowledge of the authors, few 3D image inpainting 
methods have been proposed for the estimation of the shape and 
contour of a missing surface in 3D images. A 3D inpainting 
method based on a new shape multiscale representation (MSR) 
was developed by Dong et al. [20] in order to estimate the 
boundary of the corrupted arteries and to quantify the degree of 
arteriosclerosis and vessel occlusion. The weakness of this 
method is the approximated reconstruction, instead of exact 
reconstruction, for the inverse transformation [21]. In another 
study, Schmieder [22] introduced a mean/Gaussian elastica 
model for estimation of the broken cell paths in 3D fluorescent 
microscopy images. Although the developed method has the 
ability to recover shapes across large in-paint domains, the 
proposed model is difficult to solve numerically and its 
equation evolves very slowly.  

In view of the increasing application of machine-based 
contour estimation methods for biomedical and engineering 
purposes and considering the limitations of the above-
mentioned solutions, we propose a sequential approach for the 
estimation and reconstruction of the pre-existing contour of a 
damaged or missing surface in 3D images. The novelty of the 
proposed work is that in this method the information from a 3D 
image is evolved into 1D signals, providing the opportunity to 
address a 3D image processing issue as a 1D signal processing 
problem. Subsequently, the application of an error concealment 
method [23] based on a modified Tikhonov regularization 
model (TRM) with two new regularization terms leads to an 
accurate and convenient estimation of the corrupted samples of 
the missing surface in 3D. In addition, since a consecutive 
approach is employed in this method, there is no need for 
simultaneous processing of all images of the dataset. Therefore, 
the computational cost and the required time for the 
implementation of the method are considerably lowered. 

The suggested method may find various applications in 

biomedical and engineering fields. However, as a practical 
example, we have applied our method to seven image datasets 
of tooth samples with considerable destruction of the dentin-
enamel junction (DEJ) interface. In this case, the goal was to 
estimate and reconstruct the destructed contour of the 
interfacial surface between dentin and enamel (D1 and D2 in 
Figure 2). 

Details of the data preparation step, including the specimen 
collection, image acquisition and denoising of micro-CT 
images, are provided in Section II . The proposed contour 
estimation method is explained in Section III . Experimental 
results from applying the proposed method to dental micro-CT 
image datasets are presented in Section IV. Finally, a discussion 
along with a conclusion and direction of further work are 
presented in Section V.  

II. DATA PREPARATION 

Extracted human teeth with significant destruction of enamel 
and dentin were collected from the Oral Surgery Department at 
Sydney Dental Hospital, University of Sydney, according to 
protocols approved by Sydney Local Health District Ethics 
Review Committee, Protocol No X12-0065 & 
HREC/12/RPAH/106.  

Imaging was performed using a high-resolution micro-CT 
system (Skyscan, Aartselaar, Belgium) with continuous mode 
exposures at 0.5 s intervals, a binning value of 2, an accelerating 
voltage of 60kV and a current of 120 ȝA. Resultant 
reconstructed images had an isotropic pixel resolution of 8.9 ȝm 
and a dynamic range of 16 bits with an image matrix of 
2000×2000 pixels. The denoising of the images was performed 
using the total variation method [24, 25]. Figure 2 shows the 
original noisy as well as the result of the denoising process on 
a nominated dental micro-CT image.  

III.   METHOD 

The proposed estimation method is conceptually based on a 
1D signal processing technique called error concealment [26] 
in which the missing samples of a signal are retrieved from 
available uncorrupted samples in order to minimize the 
deterioration of the signal.  

Figures 3.a and 3.b depict a corrupted signal and the 
corresponding restored signal after error concealment. By 
considering this corrupted signal as a corrupted OPW binary 
image, it would be possible to restore the corrupted region of 
this OPW binary image in the same way that a corrupted signal 
is restored. Therefore, by transforming the binary image of the 
dentin-enamel junction (DEJ) interface into 1D signals, which 
represent X- and Y- coordinates of the location of the pixels, 
we can solve the problem of restoring the corrupted interface as 
a 1D signal processing problem.  

Since X- and Y- coordinates of the location of the pixels are 
independent of each other, we can segregate X- and Y- 
coordinates of each pixel into two separate signals. If we 
indicate the X- and Y- coordinates of edge pixels by ሺ࢞࢏ǡ  , ሻ࢏࢟
where ૚ ൑ ࢏ ൑  is the number of edge pixels, the ࢔ and , ࢔
transformed 1D signals, ࢞࡯ǣ  ሼ૚ǡ ǥ ǡ ሽ࢔ ՜ Գ and ࢟࡯ǣ  ሼ૚ǡ ǥ ǡ ሽ࢔ ՜ Գ,  
are defined as ࢞࢏࡯ ൌ ࢟࢏࡯ and ࢏࢞  ൌ   .respectively ࢏࢟ 

 As an example, we consider the transformation of the white 
boundary (that surrounds the central black pixel in Figure 4.a) 

  
a b 

Fig. 2. Horizontal microCT slice of a tooth sample with DEJ and external 
surface destruction.  a) Noisy image, b) Denoised image by total 
variation.  
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into two 1D signals, where ࢞࡯ (Figure 4.b) is decomposed as ሼ૚ǡ ૛ǡ ૜ǡ ૝ǡ ૞ǡ ૟ǡ ૠǡ ૡሽ ՜ ሼ૚ǡ ૚ǡ ૚ǡ ૛ǡ ૜ǡ ૜ǡ ૜ǡ ૛ሽ 
and ࢟࡯ (Figure 4.c) as  
                       ሼ૚ǡ ૛ǡ ૜ǡ ૝ǡ ૞ǡ ૟ǡ ૠǡ ૡሽ ՜ ሼ૚ǡ ૛ǡ ૜ǡ ૜ǡ ૜ǡ ૛ǡ ૚ǡ ૚ሽ 

Figure 5.a shows the initial edge information of the sound 
DEJ and Figures 5.b and 5.c depict the resultant ࢞࡯ and ࢟࡯ 
signals respectively.  

After transforming the OPW object into two 1D signals, the 
next step is the retrieval of the corrupted samples of the signals, 
which correspond to the corrupted part of the OPW binary 
object, using error concealment techniques.  

As shown in Figure 5.a, the contour of the sound DEJ has a 
smooth and gradual curve. Therefore, the resultant transformed 
1D signals of the sound DEJ (Figures 5.b and 5.c) and the final 
estimated signals of the destructed DEJ should possess a 
gradual contour with a smooth function as well. Considering 
these features of the original and corrupted signals, we employ 
the TRM as the error concealment technique [27].  

TRM solves the problem of estimating signal ࢋ  by 
minimizing the following objective function  ࢔࢏࢓ ԡࢉ െ ԡ૛૛ࢋ ൅  (1)                                                ࢋԡ૛૛ࢋᇱᇱࡰԡࣅ

where ࢉ is the observed signal, ࣅ is the regularization parameter 
and ࡰᇱᇱ is the second-difference matrix [27].  If  the original 
TRM is applied to the transformed signals of an image slice, the 
values of the missing samples will be estimated only by 
employing the information of non-corrupted samples of the 
same slice and without incorporating the information from the 
adjacent slices. This will result in non-cohesive and 
disharmonious reconstruction of the 3D contour. This limitation 
of the original TRM for the estimation of the corrupted DEJ 
contour will be discussed in more detail in Section V. To 
overcome this problem, we add two new terms to Eq. (1), to 
incorporate the information of the signals from the previous 

slice in our estimation. The details of these added terms are 
provided in subsection III .C of the proposed method. After 
retrieving the missing samples of both ࢞࡯ and ࢟࡯ signals, the 
values of the signals are inversely transformed to pixel 
presentation to be placed in the image plane. An overview of 
the block diagram of the proposed method is shown in Figure 
6. The block diagram is composed of four main subsections. 
Each subsection will be described individually in the following 
paragraphs:  

A. Initializing the edge information 

First, the required variables are initialized whereby ݎ௜௡ǣ ௘௫ǣݎ  ݏݑ݅݀ܽݎ ݄ܿݎܽ݁ݏ ݈ܽݎ݁ݐ݊݅ ൌ ݊  ݏݑ݅݀ܽݎ ݄ܿݎܽ݁ݏ ݈ܽ݊ݎ݁ݐݔ݁ ௗܶ௘௡௧Ǥ ݁݃݀݁ ݈ܽ݅ݐ݅݊݅ ݂݋ ݄ݐ݈݃݊݁ ׷ ௘ܶ௡௔௠Ǥ ݊݅ݐ݊݁݀ ݀݊ݑ݋ݏ ݂݋ ݕݐ݅ݏ݊݁ݐ݊݅ ݉ݑ݉݅݊݅݉  ׷ ௚ܶ௥௔ௗǤ ݈݁݉ܽ݊݁ ݀݊ݑ݋ݏ ݂݋ ݕݐ݅ݏ݊݁ݐ݊݅ ݉ݑ݉݅݊݅݉  ׷  ݁ݑ݈ܽݒ ݐ݊݁݅݀ܽݎ݃ ݉ݑ݉݅݊݅݉ 

Second, the correct location of the DEJ in the starting slice is 
extracted from a single 2D image with a non-corrupted DEJ 
contour or is determined by the user in one of the slices with 
destructed DEJ. This information will be utilized to determine 
the initial local search area for finding the position of the edge 
candidates in the next slices (Figure 7), and also will provide a 
general pattern for estimating the missing samples in the 
resultant 1D signals of the destructed DEJ.  

B. Forming the corrupted signals 

In this step, the positions of possible edge candidates in the 
next slice are determined by searching within the initial edge 
area, which was obtained from the previous slice (Figure 7). 
The position of these edge candidates forms the corrupted 
signals of the current slice as explained earlier.  

Before further explaining this approach, we should clarify 
that the subscript ࢑ indicates the number of slice and the 
superscript indicates the position of an array within a vector or 
a matrix.  In addition, we define ࡵ as a function that returns the 
gray value for each pixel position. Also, we define the discrete 
differential operator as ࢐ࢊࢊ ࢌ  ൌ ሺ࢐ࢌ ൅ ૚ሻ െ  .ሺ࢐ሻࢌ

Let the corresponding location of the pixels of the 
perpendicular line to the ith pixel of the initial edge of the k-1th 
slice, i.e. ൫࢞࢑ି૚࢏ ǡ ࢟࢑ି૚࢏ ൯, is represented by ୄࡼǡ࢏࢑ǡ࢐ ൌ  ൛൫࢞࢑࢐ ǡ ࢟࢑࢐ ൯ Ǣ ࢐ ׊ א ሾ૚ǡ ࢞ࢋ࢘ ൅  ሿ  ൟ. ሺ૛ሻ࢔࢏࢘

 
a 

  

b c 
Fig. 5. a) Initial edge information b) X axis coordinate (ܥ௫) c) Y axis coordinate 
 .(௬ܥ)

  
b a 

Fig. 3. a) Corrupted signal, b) Retrieved signal after error concealment [26]. 
 

 
a 

  
c b 

Fig. 4 Location information of the edge (white boundary that surrounds the 
central black pixel) is represented as two 1D signals.  a) edge pixels, b) ࢞࡯,   c) ࢟࡯ 
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First, for the ith pixel of the initial edge in the kth slice, ୄࡼ ǡ࢏࢑ǡ࢐
 is 

extracted. Second, as the regions around the destructed DEJ 
have significant mineral density loss, the intensity of these 
regions in both enamel and dentin areas are less than their sound 
counterparts. Accordingly, if the average intensities of the 
related pixels in the external and internal parts of ୄࡼǡ࢏࢑ǡ࢐  are less 
than ࢓ࢇ࢔ࢋࢀǤ and ࢚࢔ࢋࢊࢀǤ respectively, i.e. ෍ ൫࢞࢑࢐ࡵ ǡ ࢟࢑࢐ ൯࢘࢐࢞ࢋୀ૚ ࢞ࢋ࢘ ൑ ǤǤൗ࢓ࢇ࢔ࢋࢀ  ሺ૜ሻ 
and ෍ ൫࢞࢑࢐ࡵ ǡ ࢟࢑࢐ ൯࢘࢞ࢋା࢘࢐࢔࢏ୀ૚ା࢘࢞ࢋ ࢔࢏࢘ ൑ Ǥൗ࢚࢔ࢋࢊࢀ  ሺ૝ሻ 
then ୄࡼǡ࢏࢑ǡ࢐

 is considered to be located in the destructed region and 
therefore the value of the related corrupted samples in both ࢏࢑࢞࡯  and ࢏࢑࢟࡯  will be assigned ࢛, as an unknown value (extracted 

pixels of ୄࡼ ǡ࢑૚૞૙ǡ࢐ in Figure 7, right bottom corner). Otherwise, the 
location of the most dominant gradient in the perpendicular 
line, i.e. כ࢐ ൌ  ࢔࢏࢓ࢍ࢘ࢇ

࢐ࢊࢊ ǡ࢐࢏ǡ࢑ୄࡼሺࡵ ሻ  ሺ૞ሻ 
in which ࢐ࢊࢊ ൫࢞࢑࢐ࡵ ǡ ࢟࢑࢐ ൯ȁ࢐ୀכ࢐ ൑  Ǥ ሺ૟ሻࢊࢇ࢘ࢍࢀ
will be allocated to the value of the samples in ࢏࢑࢞࡯  and ࢏࢑࢟࡯  

(extracted pixels of ୄࡼ ǡ࢑૚ǡ࢐
, shown in the left side of Figure 7). In 

the rare case of low intensity variation, where the intensity 
gradient across the perpendicular line does not reveal any sharp 
edges which satisfy Eq. (6) the values of the related samples are 
considered as ࢛ too (extracted pixels of ୄࡼ ǡ࢑૞૙ǡ࢐ in Figure 7, right 
top corner).  

The explained procedure is repeated for all pixels of the 
initial edge to form ࢑࢟࡯ and ࢑࢞࡯. The following algorithm shows 
the procedure of forming the corrupted signals. 

 

Algorithm for forming the corrupted signals 
1: For ݅ ൌ  ͳ ׷  ݊ 

2:    Extract (ܲୄǡ௞௜ǡ௝ ) on ൫ݔ௞ିଵ௜ ǡ ௞ିଵ௜ݕ ൯ 

3:     If ቀσ ௞௝ ݔ൫ܫ ǡ ௞௝ ݕ ൯௥೐ೣ௝ୀଵ ௘௫ൗݎ ൑ ܶ݁ ݊ܽ݉Ǥቁܽ݊݀ ቀσ ௞௝ ݔ൫ܫ ǡ ௞௝ ݕ ൯௥೐ೣା௥೔೙௝ୀଵା௥೐ೣ ௜௡ൗݎ ൑ ௗܶ௘௡௧Ǥቁ  

௬௞௜ܥ             :4 ൌ  ݑ

௫௞௜ܥ             :5 ൌ  ݑ

6:       Else if ݆כ ൌ  ݊݅݉݃ݎܽ
ௗௗ௝ ܲୄ ǡ௞௜ǡ௝  Ǣ  ௗௗ௝ ௞௝ݔ൫ܫ ǡ כ௞௝൯ȁ௝ୀ௝ݕ ൑ ௚ܶ௥௔ௗǤ  

௬௞௜ܥ              :7 ൌ ௞௝ ݕ  

௫௞௜ܥ              :8 ൌ ௞௝ ݔ  

9:        Else      
௬௞௜ܥ            :10 ൌ  ݑ

௫௞௜ܥ            :11 ൌ  ݑ

12:      End 

13:  End 

Figures 8.a and 8.b show the corrupted signals, ࢞࡯ and ࢟࡯, 

associated with Figure 2.b. Missing samples corresponding to 
the destructed DEJ regions (D1 and D2 in Figure 2) are also 
observable in Figure 8. 

 
Fig. 7. Schematic of the sequential approach for searching the edge candidates in the current slice (k) by utilization of the determined edge information from the previous 
slice (k-1).  

 

 
Fig. 6. Block diagram of the proposed algorithm for estimation of a 
missing surface in 3D. 
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C. Retrieving the corrupted signals 

Before formulation of the modified TRM, we introduce some 
notations. Let ࢉ be the corrupted signal of length ࡷ ,ࡺ determines non-corrupted samples of ࢉ, where ࡷ ൏  ࡿ and ࡺ
indicates the sampling matrix of size ࡷ ൈ  For instance, if the .ࡺ
first, second, fifth and sixth samples of a 7-point signal ࢉ are 
known, i.e. ࢉሺ૙ሻ, ࢉሺ૚ሻ, ࢉሺ૝ሻ and ࢉሺ૞ሻ, then ࡿ is given by: 

ࡿ ൌ ൦૚ ૙ ૙ ૙ ૙ ૙ ૙૙ ૚ ૙ ૙ ૙ ૙ ૙૙ ૙ ૙ ૙ ૚ ૙ ૙૙ ૙ ૙ ૙ ૙ ૚ ૙൪ ሺૠሻ 
The matrix ࡿ is the identity matrix with rows removed, 
corresponding to the missing samples. ࢉࡿ removes three 
corrupted samples from the signal ࢉǡ 

ࢉࡿ ൌ ൦૚ ૙ ૙ ૙ ૙ ૙ ૙૙ ૚ ૙ ૙ ૙ ૙ ૙૙ ૙ ૙ ૙ ૚ ૙ ૙૙ ૙ ૙ ૙ ૙ ૚ ૙൪
ێێۏ
ێێێ
ۑۑےሺ૟ሻࢉሺ૞ሻࢉሺ૝ሻࢉሺ૜ሻࢉሺ૛ሻࢉሺ૚ሻࢉሺ૙ሻࢉۍێ

ۑۑۑ
ېۑ ൌ ൦ࢉሺ૙ሻࢉሺ૚ሻࢉሺ૝ሻࢉሺ૞ሻ൪ ሺૡሻ 

We define ࢙ࡿ, as the similarity matrix, which consists of the 
rows of an identity matrix corresponding to the missing 
samples. Additionally, for each group of missing samples with 
a minimum number of ࢇࡺ ,  ࢍࡺ adjacent samples are also 
selected. For instance, for a group of two missing samples (ࢍࡺ ൌ૛) in the corrupted signal of ࢉ, if one adjacent sample is selected 
ࢇࡺ) ൌ ૚), ࢙ࡿ would be 

࢙ࡿ ൌ ێێێۏ
૙ۍ ૚ ૙૙ ૙ ૚૙ ૙ ૙ ૙ ૙ ૙૙ ૙ ૙૚ ૙ ૙ ૙૙૙૙ ૙ ૙ ૙ ૚ ૙ ૙૙ ૙ ૙ ૙ ૙ ૙ ૚ۑۑۑے

ې
 ሺૢሻ 

in which the second, third and fifth rows extract corrupted 
samples of signal ࢉ , i.e. ࢉሺ૛ሻ, ࢉሺ૜ሻ and ࢉሺ૟ሻ. Since ࢉሺ૛ሻ and ࢉሺ૜ሻ  
form a group of two successive missing samples (ࢍࡺሻ, therefore 
the first and fourth rows of Eq. (9) extract ࢉሺ૚ሻ and ࢉሺ૝ሻ as 
adjacent samples (ࢇࡺ),  as follows: 

ࢉ࢙ࡿ ൌ ێێێۏ
૙ۍ ૚ ૙૙ ૙ ૚૙ ૙ ૙ ૙ ૙ ૙૙ ૙ ૙૚ ૙ ૙ ૙૙૙૙ ૙ ૙ ૙ ૚ ૙ ૙૙ ૙ ૙ ૙ ૙ ૙ ૚ۑۑۑے

ې
ێێۏ
ێێێ
ۑۑےሺ૟ሻࢉሺ૞ሻࢉሺ૝ሻࢉሺ૜ሻࢉሺ૛ሻࢉሺ૚ሻࢉሺ૙ሻࢉۍێ

ۑۑۑ
ېۑ ൌ ێێۏ

ۑۑےሺ૟ሻࢉሺ૝ሻࢉሺ૜ሻࢉሺ૛ሻࢉሺ૚ሻࢉۍێ
 ሺ૚૙ሻ ېۑ

Also ࡰᇱ and ࡰᇱᇱ are defined as the first-difference and second-
difference matrices respectively as follows: ࡰᇱ ൌ ቎૚ െ૚ ૙૙ ૚ െ૚ ڮ ૙ڭ ڰ ૙ڭ ڮ ૚ െ૚቏ ሺ૚૚ሻ 

ᇱᇱࡰ ൌ ێێێۏ
૚ۍ െ૛ ૚ ૙ ૙૙ ૚ െ૛ ૚ ૙૙ ૙  ૚ െ૛ ૚ ڮ ૙ڭ ڰ ૙ڭ ڮ ૚ െ૛ ૚ۑۑۑے

ې
 ሺ૚૛ሻ 

The formula of the modified TRM is developed by modifying 
the fidelity term of the objective function, ԡࢉ െ  ԡ૛૛, and addingࢋ
two extra terms, called similarity terms, to the original formula 
as follows: ࢔࢏࢓  ԡࡿࢻሺࢉ െ ሻԡ૛૛ࢋ ൅ ԡࡰࢼᇱᇱࢋԡ૛૛ ൅ ԡ࢙ࡿࢽሺࢋ െ ሻԡ૛૛ࢠ ൅ ԡࡰ࢙ࡿࣀᇱሺࢋ െ  ሺ૚૜ሻ                                                                                                                          ࢋሻԡ૛૛ࢠ
where ࢋ ,ࢉ and ࢠ are the corrupted, estimated and previous slice 
signals respectively, and ࢽ ,ࢼ ,ࢻ and ࣀ are diagonal matrices of 
coefficients that determine the effect of each term of Eq. (13) 
on the final result.  

The first term of the objective function in Eq. (13) i.e. ԡࡿሺࢉ െ  ሻԡ૛૛, preserves the values of the known samples of theࢋ
corrupted signal, which are selected by the sampler matrix ࡿ, 
for inclusion in the final resultant signals. 

The second term ԡࡰࢼᇱᇱࢋԡ૛૛ has two roles, namely denoising 
and estimating the corrupted signal simultaneously. Regarding 
its denoising role, since the directions of the perpendicular lines 
to a pixel in the digital image plane are limited to 4 directions 
i.e. ע૚૜૞, ע૝૞ , ૢע૙ and ע૚ૡ૙, the values of some samples in the 
corrupted ࢑࢞࡯  and ࢑࢟࡯  signals represent incorrect edge locations 
and therefore cause the distortion of the signal (Figures 9.a and 
b). In order to remove this distortion, ԡࡰࢼᇱᇱࢋԡ૛૛ is applied to 
denoise the corrupted signals, ࢑࢞࡯  and ࢑࢟࡯ , shown in Figure 10. 
Regarding the estimating role of ԡࡰࢼᇱᇱࢋԡ૛૛, it enforces the 
estimated samples to approximately follow the curve shape and 
smooth trend of the known samples of the existing signal. Since 
the level of required smoothing is different for known and 
missing samples, the values of the coefficient matrix of ࢼ are 
defined in a way that the value of the coefficients of ࢍࡺ group 
of missing samples is different from that of known samples of ࢑࢞࡯  and ࢑࢟࡯  signals. For example, ࢼ for ࢉ in Eq. (8), will be as 
follows, where ࢉሺ૛ሻ and ࢉሺ૜ሻ form a group of two successive 
missing samples: 

ێێۏ
ێێێ
࢈ۍ ૙ ૙૙ ࢈ ૙૙ ૙ ࢇ ૙ ૙ ૙ ૙૙ ૙ ૙ ૙૙ ૙ ૙ ૙૙ ૙ ૙૙ ૙ ૙૙૙ ૙૙ ૙૙

ࢇ ૙ ૙ ૙૙ ࢈ ૙ ૙૙૙ ૙૙ ࢈ ૙૙ ۑۑے࢈
ۑۑۑ
ې
 ሺ૚૝ሻ 

The third term of the objective function i.e. ԡ࢙ࡿࢽሺࢋ െ  ሻԡ૛૛ࢠ
contributes, alongside ԡࡰࢼᇱᇱࢋԡ૛૛ , in denoising of the corrupted 
signal by defining an estimation model for a group of mildly 
destructed samples. Due to the wide range of intensity loss, 
from none to total loss in DEJ, some mildly destructed DEJ 
candidates having a mineral density close to the sound DEJ but 
not belonging to the true location of DEJ, are also identified 
inadvertently as sound samples of ࢑࢞࡯  and ࢑࢟࡯signals. The 
sample values obtained from these marginal regions (red 
dashed circle in Figure 2.b), can impose severe distortion within 
the ࢑࢞࡯  and ࢑࢟࡯ signals. To prevent this issue, we modify the 
value of these marginal samples based on the corresponding 
samples of the initial signal from the previous slice by adding ԡ࢙ࡿࢽሺࢋ െ ࢋሺ࢙ࡿlocalizes the effect of ԡ ࢽ .ሻԡ૛૛ to the objective functionࢠ െ ࢑࢞࡯ marginal samples of ࢇࡺ ሻԡ૛૛ toࢠ  and ࢑࢟࡯ signals. For 
instance, ࢽ for ࢉ࢙ࡿ in Eq. (10) will be as follows, where ࢉሺ૛ሻ and ࢉሺ૜ሻ form a group of two successive missing samples and ࢉሺ૚ሻ 
and ࢉሺ૝ሻ are adjacent samples: 

ێێێۏ
ࢊۍ ૙ ૙૙ ૙ ૙૙ ૙ ૙ ૙૙૙ ૙૙૙૙૙ ૙૙ ૙૙ ૙ࢊ ૙૙ۑۑۑے

ې
 ሺ૚૞ሻ 

  
a b 

Fig. 8. The resultant signals from the edge candidate searching process. a) X 
axis coordinate (࢞࡯ ), b) Y axis coordinate (࢟࡯ ). 
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The fourth term, ฮࡰ࢙ࡿࣀˆሺࢋ െ  ԡ૛૛ , in the estimation of the missing samples with theࢋᇱᇱࡰࢼሻฮ૛૛ contributes, alongside ԡࢠ
highest similarity to the samples of the obtained signals from 
the DEJ of the previous slice. ࣀ localizes the effect of ԡࡰ࢙ࡿᇱሺࢋ െ  ሻԡ૛૛ to the group of missing samples with a minimumࢠ
of ࢍࡺ sa�pl�s. For example, ࣀ for ࢉ࢙ࡿ in Eq.(10) will be as 
follows: 

ێێۏ
૙ۍێ ૙ ૙૙ ࢌ ૙૙ ૙ ࢌ ૙૙૙ ૙૙૙૙૙ ૙૙ ૙૙ ૙૙ ૙૙ۑۑے

 ሺ૚૟ሻ ېۑ
therefore, by solving Eq. (13), we achieve the result ࢋ ൌ ൫ࡿࢻࢀࢻࢀࡿ ൅ ࢙ࡿࢽࢀࢽࢀ࢙ࡿ ൅ ᇱࡰ࢙ࡿࣀࢀࣀࢀ࢙ࡿࢀᇱࡰ ൅ ᇱᇱ൯ି૚ൈࡰࢼࢀࢼࢀᇱᇱࡰ ൫ࢉࡿࢻࢀࢻࢀࡿ ൅ ൫࢙ࡿࢽࢀࢽࢀ࢙ࡿ ൅  ൯ࢠᇱ൯ࡰ࢙ࡿࣀࢀࣀࢀ࢙ࡿࢀᇱࡰ

ሺ૚ૠሻ 
Figure 11 shows the results of estimating the missing samples 
of the presented signals in Figure 8.  

D. Removing the self-crossing loop 

In some cases, the located edge candidates may form a self-
crossing loop on the restored contour. Figures 12 and 13.a 
illustrate the formation of a self-crossing loop during the search 
process. Self-crossing loops do not form very commonly, but 
they can disturb the entire tracking procedure when they occur. 
Several approaches [28-31] have addressed this problem. To 
resolve the likely self-crossing loop problem, we choose the 
proposed method by Nakhmani [31] as it has straightforward 
implementation and low running time. Figure 13 shows the 
result of Nakhmani’s method for self-crossing loop removal.  

After retrieving the corrupted signals and removing possible 
self-crossing, paired coordinates composed of the matched 
samples of the two estimated signals ሺ࢏࢑࢞࡯ ǡ ࢏࢑࢟࡯ ሻ are used to locate 
the position of the destructed DEJ in the image plane. As 
illustrated in the main block diagram in Figure 6, the procedures 
of Section III .A to III .D, continue slice by slice until all the 
images of the stack are processed.  

IV.  EXPERIMENTAL RESULT 

For the visual and quantitative evaluation of the proposed 
method, we set the coefficients of Eq. (17) in a way that ࢍࡺ and ࢇࡺ in ࢙ࡿ , include 20 samples each. Moreover, for all samples of 
each corrupted signal, the diagonal values for ࢻ and ࢼ matrices 
are set to one except for a group of 20 missing samples (ࢍࡺ) for 
which the diagonal arrays are 0.9. The values of the coefficient 
matrix of ࢽ for a group of 20 missing samples (ࢍࡺ) are assigned 
as zero and for a group of 20 adjacent samples (ࢇࡺ) as three. 
The values of ࣀ for a group of 20 missing samples (ࢍࡺ) are 
assigned as 0.6 and for a group of 20 adjacent samples (ࢇࡺ) as 
zero. 

  
a b 

Fig. 9. 100 known samples for a corrupted signal a) X axis coordinate (ܥ௫), b) Y 
axis coordinate (ܥ௬). 
 

  
a b 

Fig. 10. Denoising result for 100 known samples of a corrupted signal a) X axis 
coordinate (ܥ௫), b) Y axis coordinate (ܥ௬). 
 

  
a b 

Fig. 11. Results of estimating the missing samples a) X axis coordinate (ܥ௫) b) Y 
axis coordinate (ܥ௬). 

 

 

 

 
a  b 

 

 

 
c  d 

 

 

 
e  f 

Fig. 12. Formation of a small self-crossing loop during the search process.  
 

 

 

 
a  b 

Fig. 13. a) Self-crossing loop b) Removing the self-crossing loop after the 
application of Nakhmani’s method. 
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a b 
Fig. 14. 3D visualization of the final results of the estimation of missing surfaces in a nominated dataset.  a) A known values of DEJ interface (green color).  
b) Estimated values of DEJ interface (red color).   
 
 

 
a b c d e f 

 
g h i j k l 

Fig. 15. Selected horizontal slices of the final results of the estimation process corresponding to the depicted volume in Figure 12, showing the accurate estimation 
of the destructed DEJ contour and precise tracking of the DEJ interface in sound areas. 
 
 

   
Sample 2 Sample 3 Sample 4 

   
Sample 5 Sample 6 Sample 7 

Fig. 16. Selected horizontal slices of the final results of the estimation process from six image datasets, showing the accurate estimation of the destructed 
DEJ contour and precise tracking of the DEJ interface in sound areas. 
 
 
Table I. Overall comparative results of the quantitative evaluation of the contour-based (MD, HD, RDE) and area-based metrics (OR, UR, ER) for 
seven image datasets. T1 and T2 indicate the standard results manually traced by two experts and T1T2 indicates the average of  T1 and T2. 

 MD (µm) HD (µm) RDE (µm) OR (%) UR (%) ER (%) 
T1 vs. T2 7.3389±0.2714 43.8787±55.7415 10.8250±0.9576 0. 29±~0 0. 35±~0 0. 64±~0 

Proposed method vs. T1 14.450±2.1849 98.5025±195.8329 23.1622±14.0646 0. 55±~0 0. 76±~0 1.22±~0 

Proposed method vs. T2 14.490±2.2962 99.7698±196.5565 23.2850±5.0970 0. 52±~0 0. 79±~0 1.22±~0 

Proposed method vs. 
T1T2 

14.879±3.8732 98.7455±193.6435 23.5930±6.7773 0. 51±~0 0. 84±~0 1.25±~0 
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A. Visual results 

Figure 14 shows the 3D visualization result of the application 
of the proposed method on a stack of 250 images from a 
nominated image dataset, where green color indicates sound 
DEJ interface and the red indicates reconstructed DEJ. The 
results of the reconstruction process in several horizontal slices 
from the same dataset are also shown in Figure 15 to provide a 
better verification of the retrieval performance of the method. 
Figure 16 shows selected horizontal slices of the estimation 
results from six more image datasets.  

B. Quantitative evaluation 

The quantitative evaluation of the performance of the 
proposed method was implemented using several contour and 
area-based metrics. To calculate these metrics, 10 slices were 
chosen randomly from each of the seven image datasets and the 
overall result was calculated by averaging the obtained 
parameter values for all datasets.  

Contour-based evaluation metrics, which included Mean 
Distance (MD), Hausdorff Distance (HD) [32] and Relative 
Distance Error (RDE) [33], were calculated by comparing the 
estimated contour by the algorithm with the standard results 
manually traced by two experts (T1 and T2) and the resultant 
average of T1 and T2 (T1T2). The MD and HD describe the 
average and maximum point-to-point Euclidian distance 
between estimated and manual contours respectively. ࡭ ൌ൛ࢇ૚ǡ ǥ ǡ ࡹ ൟ and࢖ࢇ ൌ ൛࢓૚ǡ ǥ ǡ  ൟ represent the resultant contour ofࢗ࢓
the proposed method and manual tracing respectively. The 
distance between the point ࢏ࢇ א  is defined ࡹ and the contour ࡭
as  ࡰሺ࢏ࢇǡ ሻࡹ ൌ ࢐࢓ฮ࢔࢏࢓ െ ࢐    ฮ࢏ࢇ  ሺ૚ૡሻ 

Mean Distance (MD) and Hausdorff Distance (HD) are defined 
as  ࡰࡹሺ࡭ǡ ሻࡹ ൌ ࢔ࢇࢋ࢓ ൬࢔ࢇࢋ࢓  ൫ࡰሺ࢏ࢇǡ ሻ൯ǡࡹ ࢐ǡ࢓൫ࡰቀ  ࢔ࢇࢋ࢓ ࢐                                      ࢏              ൯ቁ൰࡭  

 

ሺ૚ૢሻ 

ǡ࡭ሺࡰࡴ ሻࡹ ൌ ǡ࢏ࢇሺࡰ൫  ࢞ࢇ࢓൬  ࢞ࢇ࢓ ሻ൯ǡࡹ ࢐ǡ࢓൫ࡰቀ ࢞ࢇ࢓ ࢐                                    ࢏              ൯ቁ൰࡭  ሺ૛૙ሻ 

RDE represents the difference of contours between the 
extracted boundary and the manual tracing: 

ࡱࡰࡾ ൌ ૚૛ ࢖ඩ૚ۇۉ ෍ ࢖૛࢏ࢇࢊ
ୀ૚࢏ ൅ ඩ૚ࢗ ෍ ࢗ࢐૛࢓ࢊ

࢐ୀ૚  ሺ૛૚ሻ ۊی

where ࢐ࢇࢊ૛ ൌ ǡ࢏ࢇሺࢋࢉ࢔ࢇ࢚࢙࢏ࢊ൛࢔࢏࢓ ࢐ሻห࢐࢓ ൌ ૚ǡ ǥ ǡ ૛࢏࢓ࢊ ൟࢗ ൌ ࢐ǡ࢓ሺࢋࢉ࢔ࢇ࢚࢙࢏ࢊ൛࢔࢏࢓ ࢏ሻห࢏ࢇ ൌ ૚ǡ ǥ ǡ  ൟ࢖
 The overall results of the contour based evaluation metrics for 
all image datasets (Table I) indicate that regarding MD, the 
average of distance error between the estimated contour by the 
proposed method and the results from manual tracing (T1T2) 
(14.87 µm equivalent to ~2 pixels) are close to the value of the 
error between the two human experts, i.e. T1 and T2 (7.33 µm). 
The overall results of HD metric show that the average of 
maximum distance error between the proposed method and 
T1T2 is close to the value of the error between T1 and T2. 
Moreover, RDE, which calculates the standard deviation of 
distance error, had a low average value of 23.5930 µm (less than 

three pixels).  
     Area-based evaluation metrics included three common error 
measures namely, Over-segmentation Rate (OR), Under-
segmentation Rate (UR) and overall Error Rate (ER).  ࡾࡻ ൌ ࢖ࢁȀሺ࢖ࡽ ൅ ࡾࢁ ሻ ሺ૛૛ሻ࢖ࡰ ൌ ࢖ࢁȀሺ࢖ࢁ ൅ ࡾࡱ ሻ ሺ૛૜ሻ࢖ࡰ ൌ ሺ࢖ࡽ ൅  ሺ૛૝ሻ ࢖ࡰሻȀ࢖ࢁ

Here, ࢖ࡽ indicates the number of pixels that should be included 
in the segmentation results but are not included, ࢖ࢁ is the 
number of pixels that should not be included in the 
segmentation results but are included, and ࢖ࡰ is the number of 
pixels which are included in the segmentation results correctly 
[33]. The results of the area based metrics evaluation (Table I) 
indicated that there is about 1% difference in the OR, UR and 
ER values of the proposed method with the corresponding 
values from T1, T2 and T1T2. This level of difference between 
the machine-based method and manual methods was 
comparable to the difference between two experts (T1 and T2).  

V. DISCUSSION  

     In this paper, we proposed a novel sequential approach for 
estimating the contour of a missing surface using modified 
TRM. First, the initial edge information is determined 
automatically or manually, for the starting slice. The extracted 
information from this contour defines the local search area and 
provides the overall estimation pattern for the edge candidates 
in the next slice. The search for edge candidates in the following 
slice is performed in the perpendicular direction to the obtained 
initial edge in order to find and label the corrupted edge 
candidates. Subsequently, the location information of both the 
initial and the nominated edge candidates is transformed into 
two independent signals (X-coordinates and Y-coordinates) and 
the problem is changed to error concealment. In the next step, 
the missing samples of these signals, corresponding to the 
labeled edge candidates, are estimated using the proposed 
modified TRM model and finally, the reconstructed signals are 
transformed inversely to edge pixel representation. The 
estimated edges in each slice are considered as initial edge 
information for the next slice and this procedure is repeated 
slice by slice until the entire contour of the destructed surface is 
estimated.  

The performance and accuracy of the proposed method in 
comparison to the manual results by two human experts, 
evaluated by contour-based and area-based metrics, proved to 
be satisfactory for the assessed cases. For example, the average 
of distance error between the estimated contour by the proposed 
method and the contour from manual tracing (14.87 µm) is 
comparable to that between the two human experts (7.33 µm). 
Although the numerical value of the error is nearly twice the 
error by the human experts, however, considering the thickness 
of the specimen (in the case of dental enamel having an average 
thickness of 1500 µm), the amount of the error lays within the 
acceptable range. 

The distribution of six quantitative metrics including contour-
based (MD, HD, RDE) and area-based (OR, UR, ER) metrics 
for 70 nominated image slices from seven specimens are shown 
in Figures 17.a and 17.b. In these two charts, every 10 
successive samples belong to one specimen and the slices were 
selected from the beginning, center and the end of each 
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destructed surface. As shown in Figure 17, the error value 
depends on the amount of surface destruction and the level of 
corresponding signal corruption. Accordingly, the error values 
are highest for the slices from highly destructed regions, 
especially for the slices selected from the middle of the 
destructed area.  

An important aspect of the proposed mathematical model was 
the addition of two similarity terms to the original 
regularization model. Here we discuss the addition of these 
terms by evaluating the effect of each added term on the 
retrieved signal and the resultant reconstructed DEJ contour.  

First, we consider Eq. (13), without the addition of the 
similarity terms. Figures 18.a to 18.c show the result of the 
application of the original TRM on the destructed image before 
adding the two similarity terms. In each row of Figure 18 and 
later in Figure 19, the columns on the left, center and right side 
illustrate ࢟࡯ ,࢞࡯ and corresponding pixel representation of ࢞࡯ and ࢟࡯ on the image, respectively. As mentioned in Section III.C, 
because of the gradual loss of intensity in the marginal regions 
around the lesion (red circles in Figure 2.b), some mildly 
corrupted edge candidates are also detected inadvertently as 
sound DEJ (red circles in Figure 18.a right). Although with the 
denoising effect of ԡࡰࢼᇱᇱࢋԡ૛૛ (for normal value of ࢼ), small 
distortions are removed, but for this group of marginal samples, 
the distortion is not eliminated satisfactorily and the samples 
are not properly smoothed. Figure 18.b shows the pure 
smoothing function of  ԡࡰࢼᇱᇱࢋԡ૛૛ (apart from its estimation 
function) in which the estimated samples from the 
reconstructed ࢞࡯ and ࢟࡯ signals have been eliminated and only 
the existing samples smoothed by ԡࡰࢼᇱᇱࢋԡ૛૛ are left. The 
improper smoothing of the samples shown in Figure 18.b has 
led to severe distortion of marginal samples and incorrect 
estimation of the missing samples and the resultant edge points 
(Figure 18.c).  

A potential way for decreasing the distortion of marginal 
samples is by increasing the effect of ԡࡰࢼᇱᇱࢋԡ૛૛ . However, this 
increase will change the curved shape of the signals to a straight 
line in the marginal region. Therefore, to overcome the problem 
of distortion in the marginal samples, we added ԡ࢙ࡿࢽሺࢋ െ  ሻԡ૛૛ toࢠ
the regular TRM.  The effect of adding ԡ࢙ࡿࢽሺࢋ െ  ሻԡ૛૛ to theࢠ
original TRM can be observed by comparing the corrupted 
signal in Figure 18.d with Figure 18.a. The function of ԡ࢙ࡿࢽሺࢋ െ  ሻԡ૛૛ , which is localized to the marginal samples, is toࢠ
decrease the distortion by forcing the marginal samples to 
follow the trend of the corresponding samples of the signals 
from the previous slice. It must be noted that ԡ࢙ࡿࢽሺࢋ െ ࢋሺࡿࢻሻԡ૛૛ and ԡࢠ െ  ሻԡ૛૛ have similar functions but opposite objectives. Theࢉ
goal of ԡࡿࢻሺࢋ െ  ሻԡ૛૛  is to preserve the existing value of theࢉ
known samples (which include undesirable mildly corrupted 
marginal samples) in the final resultant signal. On the other 
hand, the goal of ԡ࢙ࡿࢽሺࢋ െ  ሻԡ૛૛ is to modify the value of marginalࢠ
samples by incorporating the value of the corresponding 
samples from the previous slice. Accordingly, to increase the 
effect of ԡ࢙ࡿࢽሺࢋ െ ࢋሺࡿࢻሻԡ૛૛ more than ԡࢠ െ  ሻԡ૛૛ , the coefficientsࢉ
of ԡ࢙ࡿࢽሺࢋ െ  ሻԡ૛૛ must be tuned in a way that for the marginalࢠ
samples ࢽ ൐ ࢋሺ࢙ࡿࢽIn fact, ԡ .ࢻ െ  ሻԡ૛૛ applies an extra denoisingࢠ
model alongside the denoising role of ԡࡰࢼᇱᇱࢋԡ૛૛, on the marginal 
samples. The result of denoising and estimation after adding ԡ࢙ࡿࢽሺࢋ െ  ሻԡ૛૛ to the original TRM are shown in Figures 18.e andࢠ
18.f respectively.  

Until now, the proposed objective function has evolved to ԡࡿࢻሺࢋ െ ሻԡ૛૛ࢉ ൅ ԡࡰࢼᇱᇱࢋԡ૛૛ ൅ ԡ࢙ࡿࢽሺࢋ െ  ԡ૛૛ࢋᇱᇱࡰࢼሻԡ૛૛ in which, only ԡࢠ
contributes to the estimation of missing samples located at the 
central region of the corrupted signal (a group of ࢍࡺ samples). 
As mentioned earlier, ԡࡰࢼᇱᇱࢋԡ૛૛ contributes in the estimation 
process by enforcing the missing samples to follow the trend 
and the curve shape of the known samples of the signal. 
Accordingly, based on the direction of the existing samples 
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b 

Fig. 17. Error distribution charts for the contour-based (MD, HD, RDE) and area-based (OR, UR, ER) metrics for 70 nominated image slices from seven 
specimens. Every 10 successive samples in the charts belong to one specimen. 
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located at two sides of the corrupted region (samples 73 and 205 
in Figure 19.b center), 2nd-order curves are estimated without 
any control (Figure 19.c center) which adversely affect the 
estimation results (Figure 19.c right). By adding ԡࡰ࢙ࡿࣀᇱሺࢋ െ  ሻԡ૛૛ࢠ
alongside ԡࡰࢼᇱᇱࢋԡ૛૛, we enforced the estimation of the missing 
samples located at the center of the corrupted signal, to achieve 

the highest similarity to the shape of the corresponding samples 
from the DEJ of the previous slice. Figures 19.d, 19.e and 19.f 
show the corrupted signal, smoothing result and retrieving 
result for the missing samples alongside the related images after 
the addition of  ԡࡰ࢙ࡿࣀᇱሺࢋ െ ࢋሺࡿࢻሻԡ૛૛ to ԡࢠ െ ሻԡ૛૛ࢉ ൅ ԡࡰࢼᇱᇱࢋԡ૛૛ ൅ԡ࢙ࡿࢽሺࢋ െ  .ሻԡ૛૛ࢠ
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Fig. 18. Effect of adding ԡ࢙ࡿࢽሺࢋ െ  .and right column shows embedded results on the image ࢟࡯ middle column shows ,࢞࡯ ሻԡ૛૛ to regular TRM.  Left column showsࢠ
a) Corrupted signals of edge candidates before adding ԡ࢙ࡿࢽሺࢋ െ ࢋሺ࢙ࡿࢽሻԡ૛૛ , b) Smoothing results for edge candidates before adding ԡࢠ െ  (ሻԡ૛૛ to the original TRM, cࢠ
Retrieval results for edge candidates before adding ԡ࢙ࡿࢽሺࢋ െ ࢋሺ࢙ࡿࢽሻԡ૛૛ , d) Corrupted signals for edge candidates after adding ԡࢠ െ  ሻԡ૛૛ , e) Smoothing results forࢠ
edge candidates after adding ԡ࢙ࡿࢽሺࢋ െ ࢋሺ࢙ࡿࢽሻԡ૛૛ , f) Retrieval results for edge candidates before adding ԡࢠ െ  ሻԡ૛૛. In figures a, b, d and e the estimated samples fromࢠ
the reconstructed ࢞࡯ and ࢟࡯ signals have been eliminated and only the existing samples smoothed by ԡࡰࢼǡǡࢋԡ૛૛ are left. 
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Regarding the application of the developed method, it is 
worth mentioning that the two main parts of the proposed 
method (segregation and transformation of the location 
information of edge pixels into two 1D corrupted signals and 
estimation of the missing samples of the corrupted signals and 
corresponding destructed surface) are independent of the type 
of the image and the application. Accordingly, this method may 
find application for reconstructing the destructed contour of 

biological tissues, valuable historical and rare objects, or any 
3D structure with reasonable level of complexity and damage. 
The proposed method was also tested on three other different 
datasets including a destructed human skull, damaged 
mandibular and zygomatic bones, and a vein with missing 
media adventitia boundary [34]. The estimation results for these 
datasets, showed the satisfactory performance of the method for 
non-dental datasets (Figure 20).    
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f 
Fig. 19.  Effect of adding ԡࡰ࢙ࡿࣀᇱሺࢋ െ ࢋᇱሺࡰ࢙ࡿࣀሻԡ૛૛ to regular TRM after the addition of ԡࢠ െ  and the right column ࢟࡯ central column shows , ,࢞࡯ ሻԡ૛૛.  Left column showsࢠ
shows the embedded results on the image. a) Corrupted signals of edge candidates before adding ԡࡰ࢙ࡿࣀᇱሺࢋ െ  ሻԡ૛૛ , b) Smoothing results for edge candidates beforeࢠ
adding ԡࡰ࢙ࡿࣀᇱሺࢋ െ ࢋᇱሺࡰ࢙ࡿࣀሻԡ૛૛ , c) Retrieval results for edge candidates before adding ԡࢠ െ ࢋᇱሺࡰ࢙ࡿࣀሻԡ૛૛ , d) Corrupted signals for edge candidates after adding ԡࢠ െ  ሻԡ૛૛ࢠ
, e) Smoothing results for edge candidates after adding ԡࡰ࢙ࡿࣀᇱሺࢋ െ ࢋᇱሺࡰ࢙ࡿࣀሻԡ૛૛ , f) Retrieval results for edge candidates after adding ԡࢠ െ  .ሻԡ૛૛ࢠ
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It should be noted that the proposed method has limitations 
in estimating the contour of structures with very complex and 
highly variable patterns in which the changes in the contour 
between consecutive slices, takes place rapidly and not in a 
gradual manner.  

Finally, it is worth mentioning that besides the capabilities of 
the proposed method for accurate estimation of the shape and 
position of a destructed surface in three dimensions, it has the 
advantage of simultaneous estimation of multiple destructed 
contours with different orders. This capability can be observed 
in Figure 15, where the estimated contour of the lower lesion 
(corresponding to the region D2 in Figure 2.b) changes from 
2nd- to 3rd-order gradually while the upper lesion (corresponding 
to the region D1 in Figure 2.b) is estimated by a 2nd-order 
contour at the same time. 

VI.  CONCLUSION 

This study proposed a sequential method for the estimation 
and reconstruction of the pre-existing contour of a damaged 3D 

surface. The method was motivated by a one-dimensional 
signal processing technique called error concealment in which 
the missing samples of a signal are retrieved based on the 
information from the existing sound samples. A major 
advantage of the proposed method is the convenient yet 
accurate retrieval of the missing data through the 
transformation of the 3D problem into a 1D problem, and by 
proposing a simple convex model. The visual results (Figures 
14, 15, 16 and 20) as well as contour-based and area-based 
quantitative evaluation (Table I), showed that the utilized TRM-
based error concealment method can accurately interpolate the 
shape and the position of the destructed contour in both two and 
three dimensions.  
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Fig. 20. Visualization of the destructed surface and final results of estimation in three datasets.  a,b) Skull  c,d) zygomatic and mandibular bones.  e,f) 
media adventitia boundary. 
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