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ABSTRACT 
In the present paper a novel approach based on the equivalent homogenised material concept and 
the Theory of Critical Distances is formulated to perform static assessment of plain/notched 
objects of polylactide (PLA) when this polymer is additively manufactured with different infill 
levels. The key idea is that the internal net structure resulting from the 3D-printing process can 
be modelled by keeping treating the material as linear-elastic, continuum, homogenous and 
isotropic, with the effect of the internal voids being taken into account in terms of change in 
mechanical/strength properties. This idea is initially used to assess the detrimental effect of the 
manufacturing voids on the static strength of the plain (i.e., un-notched) material. This is done by 
addressing this problem in a Kitagawa-Takahashi setting via the Theory of Critical Distances. 
Subsequently, this approach is extended to the static assessment of notched components of 3D-
printed PLA, i.e., it is used to take into account simultaneously the effect of both manufacturing 
voids and macroscopic geometrical features. The accuracy and reliability of this design 
methodology was checked against a large number of experimental data generated by testing, 
under axial loading, plain specimens as well as notched samples (including open notches) of PLA. 
These specimens were manufactured by making the infill level vary in the rage 10%-90%. This 
validation exercise allowed us to demonstrate that the proposed approach is highly accurate, 
returning estimates falling within an error interval of ±20%. This remarkable level of accuracy 
strongly supports the idea that static assessment of 3D-printed materials with complex 
geometries and manufactured with different infill levels can be performed by simply post-
processing conventional linear-elastic Finite Element (FE) solid models, i.e., without the need for 
modelling explicitly the detrimental effect of the manufacturing voids. 
 
Keywords: Polylactide (PLA), additive manufacturing, homogenised equivalent material, 
critical distance. 
 
Nomenclature 
a  crack-length (or semi-crack length) 
dV  effective size of the manufacturing voids 
rn  notch root radius 
t  thickness 
wg  gross width 
wn  net width 
E  Young’s modulus 
F  axial force 
L  Critical distance value calculated according to the TCD 
KIc  Plane strain fracture toughness 



Oxyz  System of coordinates 

Oθr  Polar coordinates 

εexp  experimental strain measured using the 50 mm gauge length extensometer 

σ0.2%   0.2% proof stress 

σeff  effective stress calculated according to the TCD 

σg  gross nominal stress 

σf  failure stress 

σfs  fictitious stress in the plain specimens, i.e.: ��� = � �� ∙ 	
�⁄  

σnet,f  nominal net failure stress  

σx, σy, τxy normal and shear stresses 

σUTS  ultimate tensile strength 

θp  manufacturing angle 
 
1. Introduction 
Additive manufacturing (AM) technologies will underpin a new industrial revolution by allowing 
intricate and complex objects to be manufactured from virtual models via constant deposition of 
material layers. Owing to its specific and unique features, AM is then expected to lead to novel 
design paradigms resulting in structural components not only showing superior in-service 
mechanical performance, but also fabricated by diminishing usage of materials and energy. In 
this context, AM could also give rise to different and quicker solutions to repair damaged 
components, to fabricate parts remotely, and to make on-demand bespoke objects. In this setting, 
examination of the state of the art shows that the technologies that are already available in the 
market allow polymers, metallic materials, concrete, and composite materials to be 3D-printed 
effectively and at a relatively low cost. 
In order to fully exploit the tremendous potential of AM, engineers must be able not only to model 
correctly the mechanical behaviour of additively manufactured (AM) structural components, but 
also to perform static assessment effectively. This explains the reason why in recent years a few 
investigations have been carried out to devise new design techniques specifically formulated to 
assess strength of 3D-printed components. 
Thanks to the systematic R&D work that has been done since the beginning of the 1980s, certainly, 
the AM technologies that have reached the highest level of maturity are those optimised to 3D-
print polymers, with acrylonitrile butadiene styrene (ABS) and polylactide (PLA) being the most 
commonly used materials. 
PLA is a biodegradable linear thermoplastic aliphatic polyester that is manufactured from 
renewable sources such as corn starch or sugarcane. Owing to its physical properties, PLA can be 
manufactured very effectively and at low cost by using commercial 3D-printers making use of the 
so-called Fused Deposition Modelling (FDM) technology. The FDM AM process employs a heated 
nozzle which melts filaments of PLA that are unwound from a coil. By depositing the material 
being extruded via the nozzle directly onto the build plate, a layer of material is manufactured, 
with the horizontal motion of the nozzle allowing the specific shape of the layer being fabricated 
to be obtained accurately. As the extruded filaments are being deposited, they cool down and 
harden so that they bind to each other as well to the previously manufactured layer of material. 
When a layer is finished, the build plate lowers so that the deposition of the subsequent layer can 
start. In order to reach a higher level of superficial finishing, before fabricating a layer, 3D-
printers manufacture the so-called “shell”, i.e., a perimetric wall that retains and delimit the 
material being deposited internally. The thickness of the shell is always recommended to be set 
equal to a multiple of the nozzle diameter, so that the formation of manufacturing defects is 
limited effectively. The presence of the shell also allows the density of the bulk material to be 
reduced, with this leading to objects that have a net-like internal structure. This is clearly an 



important feature, because changing the infill level allows the weight of 3D-printed objects as well 
as the usage of material to be reduced markedly. 
As far as AM PLA is concerned, examination of the state of the art demonstrates that, so far, the 
scientific community has focussed their attention on components 3D-printed by setting the infill 
level equal to 100%. Mechanical behaviour and static/fatigue strength of 100% infill AM PLA are 
influenced by different technological parameters that include [1-9]: layer thickness, nozzle size, 
manufacturing orientation, filling rate, feed rate, manufacturing rate, and filling temperature. In 
this context, it is interesting to observe that much experimental evidence suggests that, as long as 
objects are 3D-printed flat on the built plate, the effect of the raster orientation can be neglected 
with little loss of accuracy [6]. Further, the stress-strain behaviour of AM PLA is seen to be 
predominantly linear up to final breakage, with the level of ductility changing as the 
manufacturing direction changes [4, 6]. 
By making use of the equivalent homogenised material concept and the Theory of Critical 
Distances (TCD), the present paper aims to formulate and experimentally validate a novel 
approach suitable for performing static assessment of plain/notched components of AM PLA 
fabricated with infill levels lower than 100%. 
 
2. TCD and Kitagawa–Takahashi’s diagram under static loading 
The TCD is the name which has been given by David Taylor [10] to a group of theories that use a 
material length scale parameter to estimate strength of components containing not only cracks, 
but also short, sharp and blunt notches. One of the key features of the TCD is that static 
assessment is performed by directly post-processing the linear-elastic stress fields in the vicinity 
of the assumed crack initiation locations [11-14]. This aspect results in a great simplification of 
the stress analysis problem, since the TCD allows real components to be designed without carrying 
out complex and time-consuming non-linear analyses [10, 12, 14]. 
The TCD takes as a starting point the hypothesis that static strength in the presence of geometrical 

features of all kinds can be estimated accurately via an effective stress, σeff, that is representative 
of the entire linear-elastic stress field acting on the material in a specific finite size region [10]. In 
this setting, this process zone can be thought of as that portion of material controlling the overall 
static strength of the component being designed. The size of the process zone is seen to depend 
on material microstructural features, local micro-mechanical properties, and characteristics of 
the physical mechanisms leading to final breakage [15]. 
According to this theoretical framework, a cracked/notched brittle material (100% infill AM PLA 

included [6]) subjected to static loading is assumed to fail as soon as σeff becomes equal to the 
material ultimate tensile strength [10]. 
The TCD effective stress can be determined according to different strategies, with this being done 
by simply defining a convenient material length scale parameter and a suitable integration 
domain. 

Irrespective of the assumption being made to derive σeff, the TCD’s critical distance is determined 
according to the following well-known definition [10, 16]: 


 = �� � ���������
,                   (1) 

where KIc is the plane strain fracture toughness and σUTS is the ultimate tensile strength. Since 
length L depends on two material properties, it is in turn a material property which is different 
for different materials [10]. 

By changing size and shape of the integration domain used to calculate σeff, the TCD can be 
formalised according to either the Point Method (PM), the Line Method (LM), or the Area 
Method, i.e. (see also Figs 1a to 1d) [10]: ���� = �� �� = 0, � =  �� - Point Method (Fig. 1b)              (2) 

���� = �� ! ���� = 0, ��� " #� - Line Method (Fig. 1c)              (3) 



���� = $� % ! ! ����, �� ∙ � ∙ #� ∙ #� "
&%"  - Area Method (Fig. 1d)             (4) 

It can be noticed here that there is also a three-dimensional formulation of the TCD, which is 
known as the Volume Method [10]. According to this formalisation of the critical distance concept, 

σeff is calculated by averaging the linear-elastic maximum principal stress over a hemisphere 
centred at the tip of the stress raiser being assessed and having radius equal to 1.54L [17]. 
It is important to point out here that the linear-elastic TCD as reviewed in the present section is 
seen to be successful in estimating the static strength of notched components made not only from 
brittle [10, 11], but also from ductile materials [10, 12-15]. This is a consequence of the fact that, 
by its nature, the TCD can directly accommodate any material non-linearities into a linear-elastic 
constitutive law, with this being done by simply changing the way the adopted reference strength 
is defined [10, 12, 14]. In particular, when the mechanical behaviour of the material under 
investigation is predominantly brittle, the TCD inherent material strength can be taken directly 

equal to σUTS – this is the case for 3D-printed PLA [6]. In contrast, when the mechanical behaviour 
of the material being assessed is characterised by a non-linear stress-strain response, the TCD 

inherent strength becomes larger than σUTS and it must be determined by running appropriate 
experiments [10]. 
Although Eqs (2) to (4) can be used to design components containing geometrical features of all 
kinds, they can be derived rigorously solely for the case of an infinite plate containing a through-
thickness central crack [18]. 
As far as cracked plates loaded in tension are concerned, another important aspect is that the TCD 
is capable of describing the transition from the short-crack to the long-crack regime [10, 19-21]. 
In particular, by using the classic analytical solution due to Westergaard [22] to describe the stress 
distribution in the vicinity of the crack tip, the PM and the LM can be expressed as followed, 
respectively [10]: 

�� = �'()*1 − - .
./0%

1�
 - Point Method               (5) 

�� = �'()2  ./  - Line Method                 (6) 

where σf is the nominal gross stress resulting in the breakage of the cracked plate and a is the 
semi-crack length. 
The normalised Kitagawa–Takahashi diagram reported in Fig. 1e confirms that Eqs (5) and (6) 
are capable of correctly describing the transition from the short- to the long-crack regime. In 
particular, this diagram makes it evident that the PM and the LM return the same results for the 
extreme cases given by the two straight asymptotic lines, i.e. for the un-cracked material case 

(σUTS) and the long-crack case – with the latter being modelled according to Linear Elastic 
Fracture Mechanics (LEFM). As far as the transition region between short- and long-cracks is 
concerned, a direct comparison amongst these two different formalisations of the TCD shows that 
the LM is slightly more conservative than the PM (see Fig. 1e). 
The theoretical framework summarised in the present section will be used in what follows to 
devise a novel methodology suitable for assessing static strength of plain and notched AM PLA 
fabricated by setting the infill level lower than 100%. 
 
3. Manufacturing of the specimens, testing procedures, and experimental results 
The specimens used in the present investigation were additively manufactured using 3D-printer 
Ultimaker 2 Extended+ together with 2.85mm diameter white filaments of New Verbatim PLA. 
The manufacturing parameter envelope being adopted was as follows: nozzle size equal to 0.4 

mm, nozzle temperature to 240°C, build-plate temperature to 60°C, printing speed to 30 mm/s, 
layer height to 0.1 mm, and shell thickness to 0.4 mm. 



The sketches reported in Fig. 2a show geometry and dimensions of the specimens that were tested 
under a displacement rate equal to 2mm/minute by using a Shimadzu universal axial machine. 
Local strains in the plain samples were gathered and measured via an extensometer having gauge 
length equal to 50 mm. Three samples were tested for any geometry/manufacturing configuration 
being investigated and all the tests were run up to complete breakage. 
The results from all the experimental trials that were run according to the protocols described in 
this section are summarised in Tabs 1 to 3, with the meaning of the used symbols being explained 
in the Nomenclature. 

As per Fig. 2a, we manufactured and tested notches with opening angle equal to 0° as well as to 

135°. Since in continuum, homogenous, and isotropic materials the opening angle affects the 
gradients of the local linear-elastic stress field distributions [23], this was done to check in a more 
effective and rigorous way the overall accuracy of the methodology being proposed. 
The specimens shown in Fig. 2a were all fabricated flat on the build-plate, with manufacturing 

angle θp being set equal to 0°, 30°, and 45°. As per Fig. 2b, angle θp was defined as the angle 
between printing direction yp and the longitudinal axis of the samples themselves. Since the 3D-

printer we used works by depositing the filaments always at ±45° to direction yp (see Fig. 2b), 

changing the value of angle θp allowed us to vary effectively the raster orientation with respect to 
the direction along which the axial loading was applied during testing. 
The un-notched specimens were manufactured by making the in-fill level vary in the range 10%-
90%. The notched samples instead were fabricated with fill density equal to 30%, 50%, and 70%. 
Fig. 3a shows some examples of the net-like internal structure that was obtained in the plain 
specimens for different values of the fill density. For an in-fill level equal to 70%, Fig. 3a also 
shows how the effective size, dV, of the manufacturing voids was defined, with dV being measured 
- both in the plain and in the notched specimens – by using an optical microscope. The average 
values for the size, dV, of the manufacturing voids are listed in Tabs 1 to 3. 
As to the specimens being manufactured by setting the in-fill density lower than 100%, it is 
important to point out that the thickness of both the shell and the internal walls forming the net-
like structure was equal to about 0.4 mm, i.e., approximately equal to the diameter of the nozzle. 
The matrix of failures reported in Fig. 3b shows three examples of the cracking behaviour that 
was observed in the tested specimens of AM PLA. Irrespective of overall macroscopic geometry, 

manufacturing angle θp, and in-fill level, initiation as well as initial propagation of cracks in the 
shells were seen to occur always on planes that were almost perpendicular to the direction of the 
applied tensile force. This initial phase resulting in embryonic cracks having length of the order 
of 0.4 mm led to a subsequent propagation process occurring along paths that followed the 
directions of the internal walls forming the net-like structure of the samples (Fig. 3b). The 
observed cracking behaviour indicates that cracks propagated as a result of two prevailing failure 
mechanisms, i.e., de-bonding between adjacent layers and rectilinear cracking of the filaments 
forming the internal walls. 
The graphs reported in Figs 4a and 5 show some examples of the force-displacement behaviour 
displayed by the plain and notched specimens being tested. In particular, the curves plotted in 
Figs 4a and 5 are those from the first test that was run for any geometry/manufacturing 
configuration being investigated. 
The charts of Fig. 4a suggest that the plain samples were characterised by a force-displacement 
response that was almost linear up to the maximum force recorded during testing. If attention is 
focused on the non-linear part of the total deformation, the force-displacement graphs reported 

in Fig. 4a show that those samples fabricated by setting angle θp equal to 0° displayed a large level 
of tensile ductility resulting in an almost horizontal plateau. In contrast, in the specimens 

manufactured by setting θp equal to 30° and 45°, breakage took place as soon as the applied force 
reached its maximum value. Another important aspect that must be pointed out here is that the 
specimens never necked before breakage took place, with this holding true independently of the 

value of angle θp. 



Turning to the force-displacement response displayed by the notched samples, the charts reported 
in Fig. 5 show that the curves being generated were all characterised by an initial branch that was 
predominantly linear, with this being followed by a branch that was markedly non-linear. To 
conclude, it can be noticed that, similar to what we observed in the plain specimens, the notched 
samples showing the largest degree of non-linearity were always those manufactured by setting 

angle θp equal to 0°. 
 
4. Mechanical behaviour in terms of equivalent homogenised material 
In a related research project [6], recently we tested a large number of plain and notched specimens 
fabricated by using the same parent material, the same 3D-printer, and the same manufacturing 
parameter envelope as the ones employed to fabricate the specimens considered in this article. 
The key difference between the previous and the present experimental campaign is that the results 
reported in Ref. [6] were all generated by testing samples 3D-printed by setting the fill density 
invariably equal to 100%. 
One of the most relevant findings from our previous investigation was that, for specimens 3D-
printed horizontally on the build-plate, the effect of the manufacturing direction could be 
disregarded, with this resulting just in a little loss of accuracy. In particular, all the experimental 
results used to determine the mechanical properties of the 100% in-fill AM PLA being tested were 
seen to fall within 2 standard deviations of the mean, with the obtained average values being as 

follows [6]: E=3479 MPa, σ0.2%=41.7 MPa, σUTS=42.9 MPa, and KIc=3.7 MPa·m1/2. 
As to the obtained value for KIc, it is important to recall here that the propagation of the cracks in 
the C(T) samples being tested was seen to be influenced by the orientation of the deposited 
filaments [6] - with this holding true even though all the fracture toughness values were within 

two standard deviations of the mean. In more detail, in the specimens manufactured by setting θp 
equal to 0° and 30°, the cracking behaviour was governed by mixed-mode fracture mechanisms. 

In contrast, in the samples with θp =45° the crack growth process was governed by a conventional 
pure Mode I propagation mechanism. Another important aspect is that KIc was determined 
without introducing any pre-cracks in the specimens. This was done so that the fracture toughness 
of the AM polymer being tested could be quantified by effectively taking into account the effect of 
the shell thickness as well [6]. 
As mentioned earlier, this paper summarises an attempt of devising an alternative TCD-based 
design methodology suitable for performing static assessment of AM PLA when this material is 
3D-printed by adopting a fill density lower than 100%. As it will be discussed below in detail, this 
novel formalisation of the TCD is based on the idea that mechanical behaviour and strength of 
PLA additively manufactured with in-fill levels lower that 100% can be modelled by simply using 
an equivalent material which is linear-elastic, continuum, homogeneous and isotropic. By bearing 
in mind this initial hypothesis, the force vs. displacement curves obtained from the plain 

specimens were then re-analysed in terms of fictitious stress, σfs, and experimental strain, εexp 

(i.e., the strain measured by using the 50 mm gauge length extensometer). In more detail, σfs was 
calculated by simply diving the force applied during testing, F, by the cross-sectional area 
determined by neglecting the presence of the manufacturing voids, i.e.: ��� = 34∙56,                  (7) 

where t is the thickness and wn the net width of the gauge length region. 

As an example, the σfs vs. εexp diagrams reported in Fig. 4b show the curves that were obtained by 
post-processing according to this simple procedure the force-displacement data displayed in Fig. 
4a. In agreement with what was observed in other related investigations (see, for instance, Refs 

[2, 4, 6] and the references reported therein), the σfs vs. εexp diagrams of Fig. 4a strongly support 
the idea that the stress vs. strain behaviour of the tested AM material could be treated as purely 
linear-elastic up to the maximum stress recorded during testing, with this assumption resulting 
just in a little loss of accuracy. As to the non-linear part of the total deformation instead, according 



to the charts of Fig. 4b, the specimens with θp equal to 0° were seen to be characterised by a large 

level of tensile ductility. In contrast, the samples manufactured by setting θp equal to 30° and 45° 
were seen to fail as soon as the applied fictitious stress reached its maximum value. 

Similar to what is seen in Fig. 4b, the σfs vs. εexp curves obtained from the experiments run by 
testing the plain specimens (Tab. 1) were all characterised by the same type of profile as the one 
which is usually displayed by conventional materials when the problem is addressed using 
standard engineering stresses and strains. Therefore, the results summarised in Tab. 1 were 

systematically re-analysed in terms of fictitious stress, σfs, and experimental strain, εexp, to 

determine the failure strength σf (i.e., the maximum value of the fictitious stress recorded during 

testing), the 0.2% fictitious proof stress, σ0.2%, and the fictitious elastic modulus, E. 
The results obtained by re-analysing the results listed in Tab. 1 according to this modus operandi 
are summarised in the charts of Figs 6a, 6b, and 6c. For the sake of completeness, in these 
diagrams we reported also the results that we obtained by testing 100% in-fill plain specimens 
[6]. As to the latter set of results, it is interesting to observe that in the absence of manufacturing 
voids the use of definition (7) returns nothing but the conventional engineering stress. 

As expected, the diagrams of Figs 6a to 6c confirm that σf, σ0.2%, and E decrease as the fill density 
decreases. Another important aspect is that, as per the 100% in-fill case, the values of the fictitious 

mechanical properties are seen not to be affected by manufacturing angle θp. 

By carefully observing the charts of Figs 6a, 6b, and 6c, it is possible to see that the values of σf, 

σ0.2%, and E drop quite markedly moving from the 100% down to the 90% in-fill case. This can be 
explained by considering the specific feature of the meso-structure of AM PLA. In particular, for 
the 100% in-fill case, the overall mechanical behaviour depends on three aspects, i.e.: (i) the 
mechanical properties of the deposition filaments, (ii) the forces bonding together the filaments 
belonging to the same layer and, finally, (iii) the forces bonding together adjacent layers. These 
three aspects result in the fact that in AM PLA manufactured by setting the fill density equal to 
100% the cracking behaviour is governed by three distinct mechanisms, i.e.: (i) rectilinear 
cracking of the filaments and de-bonding occurring (ii) between adjacent filaments as well as (iii) 
between adjacent layers [6]. In contrast, when the infill level is lower than 100%, the forces 
bonding together the filaments belonging to the same layer disappear, with this having a 
detrimental effect on the overall mechanical properties of AM PLA. This explains why the 
mechanical properties for the 90% in-fill case are markedly lower than the corresponding ones 
characterising the material manufactured by setting the fill density equal to 100%, with this 
holding true even if the manufacturing internal voids were very small in the 90% in-fill specimens. 
The considerations reported in the present section strongly support the idea that, independently 
of fill density, AM PLA can be modelled effectively by simply using an equivalent material that is 
continuum, homogenous and isotropic. This lays the foundations for the theoretical framework 
that will be discussed and validated in the next sections. 
 
5. Modelling plain static strength of AM PLA with different infill levels 

According to the diagram of Fig. 6a, as expected, the fictitious failure strength, σf, increases as the 
fill density increases. Therefore, the first step in the theoretical development of the novel approach 
being proposed in the present paper is devising a strategy suitable for estimating static strength 
of plain AM PLA as the size of the internal manufacturing voids varies. 
Consider the uniaxially loaded plain strip of AM PLA that is sketched in Fig. 7a. This strip is 
assumed to be 3D-printed by setting the fill density lower than 100%, with this resulting in an 
equivalent size of the internal voids equal to dV (Fig. 7a). This plain strip is hypothesised to be in 

the incipient failure condition so that the applied fictitious stress is equal to σf. 
Consider now an infinite plate (Fig. 7b) of a continuum, homogeneous, isotropic, linear-elastic 

material having σUTS and KIc equal to the corresponding values that can be determined 
experimentally by testing 100% in-fill specimens of the same AM material as the one the strip 



sketched in Fig. 7a is made of. The infinite plate of Fig. 7b is also supposed to contain a central 
through-thickness crack having semi-length equal to aeq. The length of the crack is set so that the 
plate of Fig. 7b fails when the applied gross remote stress becomes equal to the fictitious failure 

stress, σf, that would result in the breakage of the AM plain strip of Fig. 7a. Therefore, also the 
plate with a central through-thickness crack of Fig. 7b is assumed to be in the incipient failure 
condition. Another important aspect is that, since the specimen of Fig. 7b is schematised as an 
infinite plate containing a through-thickness central crack, the corresponding LEFM shape factor 
is invariably equal to unity, with this holding true independently of the crack’s semi-length, aeq. 
According to the hypotheses being formed, LEFM postulates that the cracked plate of Fig. 7b fails 
as soon as the resulting stress intensity factor becomes equal to the material fracture toughness. 
Accordingly, the failure condition for the homogenised equivalent cracked material can be 
expressed as follows: 789 = ��:; ∙ <�=,                 (8) 

where equality (8) is valid provided that the plate of Fig. 7b is weakened by a long-crack. If this is 
the case, then Eq. (8) can directly be used to estimate aeq, i.e.: 

<�= = �� >����? @�
                  (9) 

The next step in the reasoning is then assuming that there is a univocal link between the semi-
length of the crack in the plate of Fig. 7b and the size of the manufacturing voids in the plain strip 
of Fig. 7a. Correspondingly, it is possible to write: <�= = A�#B�,                 (10) 

where f(dV) is a transformation function turning the 3D-printed plain strip under investigation 
(Fig. 7a) into an equivalent continuum, homogeneous, isotropic, linear-elastic, cracked material 
(Fig. 7b). 
The fundamental idea behind this transformation process is that the equivalence between the two 
situations depicted in Fig. 7 is assured by imposing that both the AM strip and the cracked plate 

fail as soon as the applied stress becomes equal to σf. This idea works provided that: (i) for the 
AM strip the stress is defined according to Eq. (7) – i.e., by neglecting the presence of the net-like 
voids, and (ii) for the cracked plate the stress is calculated by referring to the gross area – i.e., by 
neglecting the presence of the crack. 
As mentioned earlier, Eq. (9) can be used to estimate aeq as long as the size of the AM voids being 
considered results, via function (10), in an equivalent homogenised material that is weakened by 
a long crack. However, since it is reasonable to believe that manufacturing voids behave more and 
more like short-cracks as the fill density approaches 100%, clearly Eq. (9) does not represent a 
solution of general validity. This intrinsic limitation of LEFM can be overcome by using the TCD. 
As reviewed in Section 2, one of the key features of the TCD is that this theory is capable of 
modelling the transition from the short- to the long-crack regime (see Fig. 1e). Further, for the 
case of an infinite plate containing a central through-thickness crack, the PM and LM allow the 
transition between these two regimes to be modelled directly via closed form equations – i.e., Eq. 
(5) and Eq. (6), respectively. Therefore, thanks to its unique features, the TCD is the best tool that 
should be used to model in a more general way the transformation process sketched in Fig. 7. 
Consider then the PM formalised to assess the case of a through-thickness crack in an infinite 
plate loaded in tension – see Eq. (5). If the generic semi-crack length is replaced with the 
equivalent semi-crack length, it is straightforward to solve Eq. (5) for aeq, obtaining: 

<�= = A�#B� =  ��?% CD�'()� − ���E + 2D��� − �'()� E� − ���D��� − �'()� EG          (11) 

In a similar way, by using the LM in the form of Eq. (6), the equivalent semi-crack length takes 
on the following value: 

<�= = A�#B� = 
 H>�����? @� − 1I               (12) 



As stated above, the constants that quantify the static strength of the equivalent homogenised 
cracked material used in the transformation process of Fig. 7 are assumed to be equal to the 
corresponding strength properties that are determined experimentally from 100% in-fill 

specimens made of the AM material under investigation. Therefore, σUTS and KIc associated with 
the 100% in-fill AM material being designed are to be used to estimate, as per definition (1), the 
critical distance value, L, that is needed to calculated aeq via Eqs (11) and (12). 
The last step in the reasoning is defining transformation function f(dV) so that it can be calibrated 
properly. Ideally, this process should be optimised so that the experimental effort being required 
to calibrate function f(dV) is minimised. To this end, the hypothesis can be formed that the link 
between aeq and dV is given by a simple linear relationship, i.e.: <�= = A�#B� = J4 ∙ #B                (13) 

where kt is a dimensionless transformation constant. The key advantage of using a simple linear 
function is that, for a given value of dV, constant kt in Eq. (13) can be determined either via Eq. 
(11) as: 

J4 = .KLMN =  �∙MN∙�?% CD�'()� − ���E + 2D��� − �'()� E� − ���D��� − �'()� EG          (14) 

or via Eq. (12) as: 

J4 = .KLMN =  MN H>�����? @� − 1I               (15) 

In Eqs (14) and (15) σUTS is the static strength of the AM material for a fill density equal to 100%, 

whereas σf is the fictitious failure stress experimentally determined for the size, dV, of the 
manufacturing voids used for calibration. 
As soon as transformation function f(dV) is calibrated, the PM and the LM can directly be used to 
estimate the failure strength of the AM PLA under investigation for any in-fill level. This can be 
done by simply rewriting Eqs (5) and (6) as follows: 

�� = �'()*1 − - .KL.KL/0%
1� = �'()*1 − H ��MN�

��MN�/0%
I� = �'()*1 − - OP∙MNOP∙MN/0%

1�
 - Point Method       (16) 

�� = �'()2  .KL/ = �'()2  ��MN�/ = �'()2  OP∙MN/  - Line Method          (17) 

In order to check the accuracy and reliability of the approach formulated in the present section, 
Eqs (16) and (17) were used to estimate the static strength of the plain specimens being tested (see 

Tab. 1). In more detail, initially, the material ultimate tensile strength (σUTS=42.9 MPa) and the 
fracture toughness (KIc=3.7 MPa·m1/2) experimentally determined [6] by testing specimens of AM 
PLA 3D-printed by setting the in-fill level equal to 100% were used together with Eq. (1) to 
determine critical distance L, obtaining L=2.4 mm. 
Subsequently, the results from the plain specimens of PLA additively manufactured with an in-
fill level equal to 80% (Tab. 1) were used to calibrate transformation function f(dV), Eq. (13). In 
particular, for any of the nine results obtained by setting the fill density equal to 80% and the 

manufacturing angle, θp, equal to 0º, 30º, and 45º, transformation constant kt was determined 
according to the PM via Eq. (14) as well as according to the LM via Eq. (15). The nine values for 
the transformation constant being determined were subsequently averaged, with this process 
resulting in a kt value equal to 35.5 for the PM and to 33.1 for the LM. 
The two Kitagawa–Takahashi diagrams of Fig. 8 summarise the overall accuracy that was 
obtained by employing Eqs (16) and (17) to estimate the static strength of the plain specimens of 
AM PLA being tested. 
These two charts make it evident that the use of the proposed approach results in a remarkable 
level of accuracy down to an in-fill level equal to 30%. In contrast, the estimates obtained for a fill 
density equal to 20% as well as to 10% clearly deviate from the predicted trend. This fact is not at 
all surprising since 3D-printed objects behave as lattice structures when the internal walls’ mesh 



becomes very course [24]. Accordingly, the use of the equivalent homogenised material concept 
to model mechanical behaviour and strength of objects 3D-printed with a very low fill density is 
no longer justified. This sets the lower limit for the usage of the proposed methodology in 
situations of practical interest. 
It is important point out here that the same transformation process as the one summarised in Fig. 
7 could have been formalised considering also other geometrical configurations for the equivalent 
homogenised cracked material (such as, for instance, a finite plate containing two lateral cracks). 
However, this modus operandi would increase the complexity of the solution unnecessarily, since 
the constitutive relationships being needed should be derived by incorporating into the 
transformation function also the shape factor. In contrast, using as reference configuration for 
the equivalent homogenised cracked material an infinite plate containing a central crack allows 
the problem to be formalised in a very simple and elegant way, with the shape factor being 
invariably equal to unity. 
To conclude, it is important to highlight that the high level of accuracy reached by applying the 
approach being formulated in the present section was obtained by using a simple linear 
transformation law, Eq. (13). However, it is clear that other types of functions can be used to 
express f(dV), with this allowing our theoretical framework to be extended to the static assessment 
of other type of net-like/honeycomb-like materials (i.e., not only 3D-printed materials). 
 
6. Assessing notch static strength of AM PLA with different infill levels 
Thanks to its specific features, AM allows objects having complex forms to easily be fabricated by 
reaching a very high level of accuracy in terms of both shape and dimensions. However, the fact 
that 3D-printed components can contain very complex geometrical features results in very 
complex localised stress concentration phenomena that reduce markedly the overall strength of 
the components themselves. Therefore, structural engineers need simple and reliable design rules 
so that static assessment of 3D-printed materials can be performed accurately. To this end, in this 
section the combined use of the TCD and the equivalent homogenised material concept is 
extended to the case of notched components made of AM PLA. 
Consider the uniaxially-loaded notched objected sketched in Fig. 9a. This component is assumed 
to be additively manufactured by setting the in-fill level lower than 100%, with this resulting in 
internal voids having average size equal to dV (Fig. 9a). 
To consistently apply the TCD to estimate static strength, the notched AM object of Fig. 9a is 
modelled as a body that (i) has the same shape and dimensions as the object being designed and 
(ii) is made of a linear-elastic material which is continuum, homogenous, and isotropic (Fig. 9b). 
Having formed these initial hypotheses, the PM, LM, and Area Method are then applied by 
assuming that the size of the process zone does not change as the size of the voids varies. 
Accordingly, it is proposed that the required critical distance, L, is estimated directly via Eq. (1), 

where the values for σUTS and KIc being used are those experimentally determined from specimens 
3D-printed by setting the in-fill level equal to 100% (Fig. 9b). In this setting, since, for a given AM 
material, length scale parameter L does not change, the detrimental effect of the manufacturing 
voids is proposed here to be taken into account by simply adjusting the material intrinsic static 
strength according either to Eq. (16) or to Eq. (17). 
As per this modus operandi, owing to the fact that the AM component being designed is assumed 
to be made of a continuum, homogenous, isotropic, linear-elastic material, the fictitious local 
stress fields (Fig. 9c) used to calculate the effective stress according to the TCD can then be 
determined directly either by solving conventional FE models or by using available analytical 
solutions. 

As soon as the fictitious local stress fields are known, effective stress σeff can then be calculated by 
applying the TCD in the form of either the PM, Eq. (2), the LM, Eq. (3), or the Area Method, Eq. 
(4). Owing to the fact that the AM material being designed is assumed to be weakened by the 



presence of the manufacturing voids, the incipient failure condition can then be expressed as 
follows: ���� = ��                 (18) 

where the intrinsic static strength of the material within the process zone, σf, is directly estimated 
according either to Eq. (16) or to Eq. (17). In particular, as far as the PM is concerned, by 
combining Eq. (2) with Eq. (16), failure condition (18) can directly be re-written as (Fig. 9c): 

���� = �� �� = 0, � =  �� = �'()*1 − H ��MN�
��MN�/0%

I� = �'()*1 − - OP∙MNOP∙MN/0%
1�

         (19) 

In a similar way, combining Eq. (3) with Eq. (17) allows condition (18) to directly be expressed 
according to the LM as: 

���� = �� ! ���� = 0, ��� " #� = �'()2  ��MN�/ = �'()2  OP∙MN/           (20) 

The accuracy and reliability of the novel reformulation of the TCD being proposed in the present 
section was checked against the experimental results we generated by testing the notched 
specimens shown in Fig. 2a (see also Tabs 2 and 3). To this end, initially, the linear-elastic stress 
fields needed to calculate the TCD effective stress were determined by post-processing the results 
from simple linear-elastic bi-dimensional models solved using FE code ANSYS®. The notched 
specimens being tested were modelled using bi-dimensional element Plane183, with the mapped 
mesh in the vicinity of the notch tips being gradually refined until convergence occurred. It is 
worth pointing out here that, as per the hypotheses being discussed in the present section, these 
FE analyses were run by modelling the material as a continuum, homogenous, isotropic, linear-
elastic medium. This means that the relevant stress fields were determined without explicitly 
simulating the presence of the manufacturing voids. 
A critical distance value of 2.4 mm was calculated via definition (1) by using the relevant material 
properties we determined by testing specimens manufactured with a fill density of 100%, i.e. 

σUTS=42.9 MPa and KIc=3.7 MPa·m1/2 [6]. 
After estimating a value of 2.4 mm for critical distance L, the fictitious linear-elastic stress fields 
determined using FE code ANSYS® were post-processed to calculate, in the incipient failure 

condition, σeff according to the PM, Eq. (2), the LM, Eq. (3), and the Area Method, Eq. (4). The 
PM and the LM were then used in the form of Eq. (19) and Eq. (20), respectively, where, according 
to the charts of Fig. 8, transformation constant kt was taken equal to 35.5 for the PM and to 33.1 
for the LM. 

In order to apply the Area Method, the corresponding effective stress, σeff, was determined by 
post-processing the numerical linear-elastic stress fields according to Eq. (4). Failure condition 

(18) was then expressed by calculating intrinsic static strength σf according to the PM, Eq. (16), 
with transformation constant kt being taken equal to 35.5. 
The error charts reported in Fig. 10 summarise the overall accuracy that was obtained by applying 
the new formalisation of the PM, LM, and Area Method proposed in the present section. In these 
diagrams, the error was calculated as follows: Q��R� = �K??S�?�?  [%]               (21) 

where an error larger than zero means that the estimates were conservative, whereas an error 
lower than zero means that the predictions were non-conservative. 
As to the error charts of Fig. 10, it is important to point out that the experimental values being 
reported were calculated by averaging the three results from any geometry/manufacturing 
configuration being investigated (see also Tabs 2 and 3). 
The diagrams shown in Figs 10a, 10b, and 10c make it evident that the TCD applied along with 
the equivalent homogenised material concept was successful in estimating the static strength of 
the U-notched specimens additively manufactured by setting the in-fill level lower than zero (Tab. 
2). In particular, for this notch geometry, the systematic usage of the proposed design 



methodology was seen to result in estimates falling mainly within an error interval of ±20%, with 
the Area Method (Fig. 10c) returning the largest level of conservatism. 
As to the U-notched specimens being tested, it is important to highlight also that, according to the 
charts of Figs 6d, 6e, and 6f, their static strength was not at all affected by manufacturing angle 

θp. This explains why the predictions made by using the approach being proposed are seen to 
consistently fall within an error interval of ±20% (Figs 10a to 10c). In contrast, according to the 
charts of Fig. 6g, 6h, and 6i, the static strength of the specimens containing open notches was 

instead affected markedly by manufacturing angle θp (see also Tab. 3). In particular, the nominal 

net failure stress, σnet,f, determined by testing the specimens manufactured by setting θp=45° was 
seen to be 25%-50% higher than the corresponding static strength experimentally determined by 

testing the samples with θp equal to 0° and to 30° (see also the force-displacement curves for the 
open notches reported in Fig. 5). By carefully inspecting the broken samples, it was 
straightforward to see that this apparent increase in static strength was simply a consequence of 

the way the 3D-printer being used fabricated these specimens: for θp=45° the internal walls were 
manufactured very close to the notch tips, with this resulting, in the crack initiation regions, in 
shells having thickness approaching 0.8 mm (i.e., approximately twice as thick as the 

corresponding shells in the specimens manufactured with θp equal to 0° and to 30°). This explains 
the reason why, according to the error charts reported in Fig. 10d to 10f, the use of the novel TCD-

based approach being proposed returned very accurate predictions for open notches with θp equal 

to 0° and to 30°, with the estimates for the θp=45° cases being characterised by a certain level of 
conservatism. 
However, owing to the complex micro/meso-structure characterising 3D-printed PLA, certainly, 
the level of accuracy shown in Fig. 10 is satisfactory. In particular, it is satisfactory also because, 
as far as conventional engineering materials are concerned, it is not possible to distinguish 
between an error of ±20% and an error of 0% due to the well-known physiological problems that 
are associated with testing as well as with numerical analyses/post-processing [10]. 
It is important to highlight here that the validation exercise discussed in the present section could 
have been done also by following a different (and much more “gentile”) strategy. In particular, 
rather than estimating the intrinsic static strength via Eqs (16) and (17), the experimental values 

for σf we determined by testing the un-notched specimens (see Tab. 1 and Figs 6a to 6c) could 
have been used directly in Eq. (18). Although, clearly, this would have been a reasonable validation 
methodology, we decided to check the accuracy of the approach being proposed by considering a 
scenario that was more realistic, i.e., intrinsically more demanding and challenging. In particular, 
since in situations of practical interest structural engineers are expected to have limited access to 
experimental resources, they cannot always test a large number of plain specimens manufactured 
by making the in-fill level vary systematically as we did in the present investigation. This means 
that, for a given in-fill level, they must be able to assess notch static strength by also estimating 
the necessary intrinsic static strength. Having in mind this important aspect, we then decided to 

validate the proposed approach by estimating σf via Eqs (16) and (17), with this allowing us to 
express a much more severe verdict about the accuracy and reliability of our novel design 
methodology. 
To conclude, it can be observed that, in a way, the satisfactory degree of accuracy being obtained 
is not at all surprising, since the TCD was recently used successfully also to estimate the static 
strength of notched specimens made of polymeric cellular materials characterised by different 
levels of density [25, 26]. 
 
7. Conclusions 
The present investigation aims to formulate a novel approach based on the combined use the 
equivalent homogenised material concept and the TCD suitable for performing static assessment 
of plain/notched objects of PLA additively manufactured with different infill levels. 



The accuracy and reliability of the new approach being devised was checked against numerous 
experimental results generated by testing specimens of AM PLA containing different geometrical 
features (open notches included) and fabricated by changing not only the fill density, but also the 

manufacturing angle, θp. 
According to the experimental results being generated and the validation exercise being 
performed, the key conclusions can be summarised as follows: 

• independently of manufacturing angle θp and in-fill level, the mechanical behaviour of AM 
PLA can be model as linear-elastic up to final breakage, with this resulting just in a little 
loss of accuracy; 

• the cracking behaviour of plain and notched objects of AM PLA is governed by the 
orientation of the internal walls; 

• the static strength of plain and notched objects of AM PLA decreases as the size of the 
manufacturing voids increases; 

• the TCD applied along with the equivalent homogenised material concept is seen to be 
successful in modelling the static strength of plain AM PLA as the size of the internal 
manufacturing voids increases; 

• the TCD applied along with the equivalent homogenised material concept is seen to be 
successful in estimating notch static strength as the size of the internal manufacturing 
voids varies, with its use returning predictions that fall mainly within an error interval of 
±20%; 

• in terms of static assessment, the key advantage of the proposed approach is that the 
necessary stress fields can be determined from conventional FE models done by assuming 
that the material being designed is continuum, homogeneous, isotropic, and linear-elastic; 

• the use of the equivalent homogenised material concept to model mechanical behaviour 
and strength of objects 3D-printed with a very low fill density is no longer justified when 
the internal walls’ mesh becomes very course (i.e., when the objects under consideration 
behave like lattice structures); 

• more works needs to be done in this area to extend the use of our theoretical framework 
to the static assessment of other type of net-like/honeycomb-like materials (i.e., not only 
3D-printed materials). 
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Tables 

Table 1 (continued on the next two pages). Summary of the experimental results generated by 
testing the un-notched specimens. 

Code 
θP In-fill wn t An Ff E σ0.2% σf dV 

[°] [%] [mm] [mm] [mm2] [N] [MPa] [MPa] [MPa] [mm] 

P0_10_1 0 10 14.99 4.07 61.01 505 634 7.8 8.3 

10.7 P0_10_2 0 10 15.03 4.05 60.87 531 660 8.2 8.7 

P0_10_3 0 10 15.05 4.05 60.95 529 692 8.2 8.7 

P0_20_1 0 20 14.98 4.00 59.92 561 725 8.6 9.4 

4.98 P0_20_2 0 20 14.92 3.95 58.93 538 709 8.4 9.1 

P0_20_3 0 20 14.96 3.98 59.54 537 706 8.4 9.0 

P0_30_1 0 30 14.94 4.07 60.81 599 743 8.7 9.9 

1.36 P0_30_2 0 30 14.92 4.02 59.98 641 774 9.3 10.7 

P0_30_3 0 30 14.99 4.02 60.26 638 773 9.4 10.6 

P0_40_1 0 40 15.02 4.00 60.08 721 867 10.2 12.0 

0.88 P0_40_2 0 40 15.00 4.08 61.20 723 857 9.7 11.8 

P0_40_3 0 40 14.97 4.05 60.63 726 884 10.9 12.0 

P0_50_1 0 50 14.95 4.06 60.70 829 984 11.9 13.7 

0.62 P0_50_2 0 50 15.00 4.04 60.60 842 965 12.2 13.9 

P0_50_3 0 50 15.03 4.07 61.17 816 950 11.0 13.3 

P0_60_1 0 60 15.10 4.05 61.16 971 1126 13.3 15.9 

0.45 P0_60_2 0 60 15.03 4.03 60.57 1004 1182 14.1 16.6 

P0_60_3 0 60 15.03 3.98 59.82 1001 1181 14.5 16.7 

P0_70_1 0 70 15.04 4.01 60.31 1182 1401 16.8 19.6 

0.33 P0_70_2 0 70 15.02 4.04 60.68 1237 1466 18.0 20.4 

P0_70_3 0 70 15.03 4.04 60.72 1186 1428 16.8 19.5 

P0_80_1 0 80 15.12 4.03 60.93 1356 1671 20.4 22.3 

0.24 P0_80_2 0 80 15.09 4.05 61.11 1401 1720 20.7 22.9 

P0_80_3 0 80 15.05 4.07 61.25 1372 1689 19.9 22.4 

P0_90_1 0 90 15.08 4.02 60.62 1577 2092 23.6 26.0 

0.14 P0_90_2 0 90 15.12 4.09 61.84 1618 2122 23.7 26.2 

P0_90_3 0 90 15.07 4.09 61.64 1551 1992 22.7 25.2 

P30_10_1 30 10 15.10 4.01 60.55 527 750 8.5 8.7 

10.72 P30_10_2 30 10 15.09 4.05 61.11 538 739 8.5 8.8 

P30_10_3 30 10 15.11 4.04 61.04 531 798 8.5 8.7 

P30_20_1 30 20 15.05 4.00 60.20 473 707 7.6 7.9 

5.06 P30_20_2 30 20 15.09 4.03 60.81 480 722 7.8 7.9 

P30_20_3 30 20 15.10 4.01 60.55 480 722 7.8 7.9 

P30_30_1 30 30 15.08 4.06 61.22 599 766 9.1 9.8 

1.39 P30_30_2 30 30 15.02 4.01 60.23 596 761 9.2 9.9 

P30_30_3 30 30 15.03 4.03 60.57 591 905 9.3 9.8 



P30_40_1 30 40 15.03 4.04 60.72 614 739 9.5 10.1 

0.96 P30_40_2 30 40 15.01 4.06 60.94 613 706 9.3 10.1 

P30_40_3 30 40 15.00 4.04 60.60 618 764 9.6 10.2 

P30_50_1 30 50 15.10 3.99 60.25 860 1150 13.6 14.3 

0.66 P30_50_2 30 50 15.08 3.97 59.87 839 1135 13.3 14.0 

P30_50_3 30 50 15.04 3.95 59.41 810 1109 13.2 13.6 

P30_60_1 30 60 15.04 4.02 60.46 980 1338 15.6 16.2 

0.41 P30_60_2 30 60 15.05 4.01 60.35 964 1325 15.2 16.0 

P30_60_3 30 60 15.00 4.00 60.00 927 1304 14.9 15.5 

P30_70_1 30 70 15.01 4.03 60.49 1122 1599 17.8 18.5 

0.29 P30_70_2 30 70 15.05 4.03 60.65 1113 1561 17.6 18.4 

P30_70_3 30 70 15.04 4.01 60.31 1116 1531 17.7 18.5 

P30_80_1 30 80 14.98 4.04 60.52 1132 1626 18.3 18.7 

0.25 P30_80_2 30 80 15.03 4.04 60.72 1190 1949 19.2 19.6 

P30_80_3 30 80 14.96 4.03 60.29 1186 1739 19.2 19.7 

P30_90_1 30 90 15.09 4.04 60.96 1438 2164 22.8 23.6 

0.11 P30_90_2 30 90 15.00 4.02 60.30 1422 2201 22.9 23.6 

P30_90_3 30 90 14.99 4.02 60.26 1384 2142 22.5 23.0 

P45_10_1 45 10 15.09 4.04 60.96 552 756 8.7 9.1 

10.65 P45_10_2 45 10 15.01 4.05 60.79 462 659 7.3 7.6 

P45_10_3 45 10 14.95 4.05 60.55 492 693 8.0 8.1 

P45_20_1 45 20 15.06 4.09 61.60 661 935 10.7 10.7 

5.12 P45_20_2 45 20 14.93 4.14 61.81 548 896 8.5 8.9 

P45_20_3 45 20 14.93 4.16 62.11 551 837 8.7 8.9 

P45_30_1 45 30 14.97 4.07 60.93 674 1011 10.9 11.1 

1.37 P45_30_2 45 30 14.94 4.16 62.15 661 989 10.4 10.6 

P45_30_3 45 30 14.90 4.02 59.90 640 989 10.5 10.7 

P45_40_1 45 40 15.02 4.04 60.68 773 1130 12.7 12.7 

0.93 P45_40_2 45 40 15.03 4.01 60.27 747 1146 12.3 12.4 

P45_40_3 45 40 14.90 4.07 60.64 730 1085 11.9 12.0 

P45_50_1 45 50 14.98 4.07 60.97 892 1323 14.6 14.6 

0.65 P45_50_2 45 50 14.98 4.01 60.07 856 1319 14.2 14.3 

P45_50_3 45 50 15.00 4.00 60.00 807 1264 13.4 13.4 

P45_60_1 45 60 14.98 4.06 60.82 1008 1519 16.5 16.6 

0.43 P45_60_2 45 60 14.96 4.07 60.89 960 1448 15.7 15.8 

P45_60_3 45 60 14.94 4.04 60.36 916 1383 15.1 15.2 

P45_70_1 45 70 14.89 4.07 60.60 1160 1713 19.0 19.1 

0.31 P45_70_2 45 70 14.99 4.12 61.76 1098 1643 17.6 17.8 

P45_70_3 45 70 14.93 4.04 60.32 1055 1682 - 17.5 

P45_80_1 45 80 14.97 4.08 61.08 1269 1954 20.6 20.8 

0.22 P45_80_2 45 80 15.00 4.04 60.60 1243 1925 20.4 20.5 

P45_80_3 45 80 14.99 4.01 60.11 1228 1920 20.2 20.3 



P45_90_1 45 90 14.99 4.03 60.41 1437 2224 23.5 23.8 

0.13 P45_90_2 45 90 14.96 4.08 61.04 1369 2162 22.3 22.4 

P45_90_3 45 90 15.01 4.07 61.09 1356 2132 - 22.2 

 
 
Table 2 (Continued on the next two pages). Summary of the experimental results generated by 

testing U-notched specimens. 
 

Code 
θP In-fill rn wn wg t Ff dV 

[°] [%] [mm] [mm] [mm] [mm] [N] [mm] 

S0_30_1 0 30 0.50 15.23 24.94 4.14 730 

1.42 S0_30_2 0 30 0.51 15.29 24.79 4.11 533 

S0_30_3 0 30 0.49 15.28 24.78 4.09 566 

S0_50_1 0 50 0.51 15.28 24.78 4.09 790 

0.69 S0_50_2 0 50 0.51 15.27 24.81 4.09 793 

S0_50_3 0 50 0.48 15.28 24.81 4.15 879 

S0_70_1 0 70 0.53 15.31 24.78 4.16 1221 

0.33 S0_70_2 0 70 0.51 15.28 24.76 4.10 1023 

S0_70_3 0 70 0.50 15.32 24.82 4.11 1046 

I0_30_1 0 30 1.01 15.31 24.73 4.03 504 

1.45 I0_30_2 0 30 1.03 15.31 24.72 4.04 545 

I0_30_3 0 30 0.99 15.19 24.86 4.04 714 

I0_50_1 0 50 1.00 15.19 24.77 4.06 817 

0.66 I0_50_2 0 50 1.02 15.16 24.71 4.06 841 

I0_50_3 0 50 1.00 15.21 24.75 4.05 884 

I0_70_1 0 70 1.01 15.27 24.81 4.08 1047 

0.35 I0_70_2 0 70 1.04 15.14 24.75 4.08 930 

I0_70_3 0 70 1.00 15.08 24.75 4.04 1151 

B0_30_1 0 30 3.07 15.16 24.82 4.10 723 

1.35 B0_30_2 0 30 3.06 15.26 24.88 4.10 718 

B0_30_3 0 30 3.04 15.29 24.82 4.12 599 

B0_50_1 0 50 3.04 15.19 24.86 4.15 893 

0.67 B0_50_2 0 50 3.06 15.29 24.97 4.12 871 

B0_50_3 0 50 3.06 15.19 24.88 4.10 957 

B0_70_1 0 70 3.05 15.17 24.94 4.12 1222 

0.33 B0_70_2 0 70 3.06 15.20 24.94 4.12 1055 

B0_70_3 0 70 3.08 15.14 24.82 4.07 1195 

S30_30_1 30 30 0.50 15.34 24.83 4.12 578 

1.23 S30_30_2 30 30 0.53 15.31 24.80 4.09 490 

S30_30_3 30 30 0.51 15.34 24.77 4.04 470 

S30_50_1 30 50 0.51 15.32 24.86 4.15 810 
0.68 

S30_50_2 30 50 0.53 15.29 24.79 4.08 700 



S30_50_3 30 50 0.50 15.37 24.77 4.11 659 

S30_70_1 30 70 0.53 15.37 24.85 4.01 895 

0.43 S30_70_2 30 70 0.51 15.31 24.83 4.04 728 

S30_70_3 30 70 0.51 15.32 24.78 4.07 640 

I30_30_1 30 30 1.01 15.16 24.72 4.03 503 

1.44 I30_30_2 30 30 1.03 15.17 24.74 4.04 539 

I30_30_3 30 30 1.03 15.19 24.67 4.03 510 

I30_50_1 30 50 1.04 15.19 24.76 4.06 741 

0.70 I30_50_2 30 50 1.02 15.14 24.72 4.02 707 

I30_50_3 30 50 1.01 15.24 24.76 4.04 768 

I30_70_1 30 70 1.02 15.11 24.72 4.00 739 

0.39 I30_70_2 30 70 1.03 15.19 24.77 4.04 718 

I30_70_3 30 70 1.05 15.14 24.71 4.00 715 

B30_30_1 30 30 3.06 15.27 24.86 4.03 617 

1.43 B30_30_2 30 30 3.06 15.19 24.88 4.09 635 

B30_30_3 30 30 3.07 15.20 24.85 4.06 608 

B30_50_1 30 50 3.07 15.25 24.82 4.05 797 

0.72 B30_50_2 30 50 3.07 15.07 24.86 4.08 767 

B30_50_3 30 50 3.08 15.19 24.83 4.11 766 

B30_70_1 30 70 3.12 15.22 24.84 4.09 858 

0.44 B30_70_2 30 70 3.07 15.13 24.82 4.04 868 

B30_70_3 30 70 3.09 15.16 24.98 4.06 848 

S45_30_1 45 30 0.50 15.37 24.81 4.01 450 

1.19 S45_30_2 45 30 0.55 15.29 24.75 3.99 443 

S45_30_3 45 30 0.51 15.45 24.85 4.06 597 

S45_50_1 45 50 0.52 15.43 24.95 4.05 822 

0.56 S45_50_2 45 50 0.56 15.34 24.75 4.08 629 

S45_50_3 45 50 0.54 15.32 24.82 4.02 604 

S45_70_1 45 70 0.54 15.40 24.85 4.03 909 

0.36 S45_70_2 45 70 0.55 15.29 24.75 4.00 841 

S45_70_3 45 70 0.51 15.46 24.88 4.14 1070 

I45_30_1 45 30 1.04 15.25 24.74 4.01 536 

1.42 I45_30_2 45 30 1.06 15.22 24.66 3.96 502 

I45_30_3 45 30 1.06 15.30 24.66 3.94 435 

I45_50_1 45 50 1.03 15.11 24.67 3.97 623 

0.69 I45_50_2 45 50 1.04 15.19 24.64 4.04 706 

I45_50_3 45 50 1.04 15.19 24.76 4.00 839 

I45_70_1 45 70 1.05 15.11 24.75 4.01 949 

0.38 I45_70_2 45 70 1.06 15.14 24.66 3.96 964 

I45_70_3 45 70 1.06 15.17 24.69 4.03 843 

B45_30_1 45 30 3.09 15.17 24.80 4.00 612 
1.46 

B45_30_2 45 30 3.08 15.12 24.89 4.03 596 



B45_30_3 45 30 3.25 15.26 25.05 4.02 592 

B45_50_1 45 50 3.06 15.14 24.89 4.04 854 

0.69 B45_50_2 45 50 3.08 15.17 24.87 4.06 836 

B45_50_3 45 50 3.09 15.19 24.87 4.07 794 

B45_70_1 45 70 3.08 15.17 24.82 4.08 998 

0.38 B45_70_2 45 70 3.08 15.16 25.02 4.08 1058 

B45_70_3 45 70 3.06 15.09 24.88 4.08 977 

 
 

Table 3 (Continued on the next two pages). Summary of the experimental results generated by 
testing specimens containing open notches. 

 

Code 
θP In-fill rn wn wg t Ff dV 

[°] [%] [mm] [mm] [mm] [mm] [N] [mm] 

OS0_30_1 0 30 0.55 15.20 24.73 3.96 381 

1.54 OS0_30_2 0 30 0.56 15.14 24.73 3.95 419 

OS0_30_3 0 30 0.55 15.20 24.65 3.98 396 

OS0_50_1 0 50 0.53 15.09 24.61 4.02 706 

0.66 OS0_50_2 0 50 0.53 15.15 24.64 4.06 664 

OS0_50_3 0 50 0.54 15.09 24.69 4.04 631 

OS0_70_1 0 70 0.49 15.16 24.67 4.00 909 

0.33 OS0_70_2 0 70 0.54 15.17 24.66 3.99 860 

OS0_70_3 0 70 0.61 15.18 24.68 4.02 860 

OI0_30_1 0 30 1.04 15.12 24.82 4.02 522 

1.45 OI0_30_2 0 30 1.07 15.20 24.69 3.98 518 

OI0_30_3 0 30 1.14 15.19 24.74 3.94 509 

OI0_50_1 0 50 1.06 15.19 24.92 4.04 712 

0.65 OI0_50_2 0 50 0.97 15.21 24.91 4.05 730 

OI0_50_3 0 50 1.07 15.23 24.77 4.03 706 

OI0_70_1 0 70 1.05 15.16 24.73 4.06 977 

0.35 OI0_70_2 0 70 1.05 15.17 24.78 4.04 999 

OI0_70_3 0 70 0.99 15.13 24.76 4.00 1044 

OB0_30_1 0 30 2.89 15.22 25.08 3.95 499 

1.44 OB0_30_2 0 30 2.80 15.06 24.87 3.97 493 

OB0_30_3 0 30 3.03 14.98 24.76 4.01 508 

OB0_50_1 0 50 3.01 15.00 24.87 3.93 672 

0.67 OB0_50_2 0 50 2.99 14.99 24.82 3.93 657 

OB0_50_3 0 50 3.05 14.98 24.80 4.00 658 

OB0_70_1 0 70 2.94 15.14 24.87 4.00 921 

0.37 OB0_70_2 0 70 3.08 15.03 24.76 4.04 919 

OB0_70_3 0 70 3.04 15.05 24.80 4.07 929 

OS30_30_1 30 30 0.55 15.29 24.65 4.02 420 1.56 



OS30_30_2 30 30 0.62 15.25 24.63 4.03 412 

OS30_30_3 30 30 0.59 15.26 24.61 4.01 461 

OS30_50_1 30 50 0.50 15.33 24.89 4.07 1056 

0.65 OS30_50_2 30 50 0.50 15.27 24.85 4.08 944 

OS30_50_3 30 50 0.49 15.30 24.81 4.11 1065 

OS30_70_1 30 70 0.54 15.03 24.63 4.01 861 

0.40 OS30_70_2 30 70 0.53 15.12 24.80 3.99 807 

OS30_70_3 30 70 0.55 15.24 24.77 4.00 790 

OI30_30_1 30 30 1.02 15.25 24.85 4.04 554 

1.56 OI30_30_2 30 30 0.95 15.22 24.87 3.97 588 

OI30_30_3 30 30 0.99 15.41 24.81 4.02 557 

OI30_50_1 30 50 1.03 15.38 24.84 4.11 1100 

0.65 OI30_50_2 30 50 0.97 15.33 24.79 4.09 1055 

OI30_50_3 30 50 1.04 15.29 24.87 4.08 1088 

OI30_70_1 30 70 1.02 15.22 24.83 4.02 961 

0.38 OI30_70_2 30 70 1.02 15.05 24.75 4.05 923 

OI30_70_3 30 70 1.07 15.32 24.75 4.01 997 

OB30_30_1 30 30 2.97 15.05 24.67 4.03 458 

1.50 OB30_30_2 30 30 2.98 15.00 24.82 4.00 452 

OB30_30_3 30 30 3.06 15.03 24.89 4.06 510 

OB30_50_1 30 50 2.96 15.02 24.72 4.06 1005 

0.68 OB30_50_2 30 50 3.02 15.05 24.63 4.05 1009 

OB30_50_3 30 50 2.96 15.07 24.75 4.09 1075 

OB30_70_1 30 70 3.04 15.10 24.88 4.09 858 

0.36 OB30_70_2 30 70 2.98 14.93 24.70 4.03 783 

OB30_70_3 30 70 3.06 15.07 24.68 4.00 779 

OS45_30_1 45 30 0.42 15.40 24.74 4.05 724 

1.52 OS45_30_2 45 30 0.52 15.53 24.75 4.05 795 

OS45_30_3 45 30 0.47 15.65 24.73 4.08 726 

OS45_50_1 45 50 0.51 15.50 24.74 4.01 1013 

0.7 OS45_50_2 45 50 0.52 15.27 24.76 4.01 1064 

OS45_50_3 45 50 0.50 15.60 24.78 4.05 1065 

OS45_70_1 45 70 0.49 15.42 24.74 4.08 1333 

0.32 OS45_70_2 45 70 0.49 15.56 25.22 4.02 1283 

OS45_70_3 45 70 0.52 15.34 24.76 4.03 1235 

OI45_30_1 45 30 1.04 15.45 24.80 4.04 815 

1.45 OI45_30_2 45 30 1.12 15.52 24.79 4.09 815 

OI45_30_3 45 30 1.01 15.59 24.85 4.05 780 

OI45_50_1 45 50 1.07 15.52 24.86 4.04 1086 

0.69 OI45_50_2 45 50 0.99 15.31 24.90 4.06 537 

OI45_50_3 45 50 1.03 15.37 24.82 4.06 1038 

OI45_70_1 45 70 1.07 15.37 24.84 4.07 1353 0.31 



OI45_70_2 45 70 1.10 15.18 24.88 4.08 1323 

OI45_70_3 45 70 1.03 15.13 24.94 4.11 1295 

OB45_30_1 45 30 3.03 15.06 24.84 4.06 732 

1.49 OB45_30_2 45 30 3.01 15.00 24.84 4.05 789 

OB45_30_3 45 30 3.02 15.19 24.98 4.08 801 

OB45_50_1 45 50 2.94 15.06 24.85 4.01 1026 

0.70 OB45_50_2 45 50 2.87 15.05 24.81 4.03 1024 

OB45_50_3 45 50 2.89 15.10 24.90 4.05 1094 

OB45_70_1 45 70 3.07 15.07 24.80 4.04 1256 

0.32 OB45_70_2 45 70 3.00 15.05 24.80 4.06 1215 

OB45_70_3 45 70 2.89 15.02 24.77 4.02 1220 
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Figure 1. Notch/crack loaded in tension (a); the TCD formalised according to the PM (b), the 
LM (c) and the AM (d); modelling the transition from the short- to the long-crack 

regime according to the TCD (e). 
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Figure 2. Technical drawings showing the geometries of the AM specimens being 

tested (a) – dimensions in millimetres; manufacturing angle θp and orientation of 
the deposition filaments (b). 
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Figure 3. Examples of: (a) honeycomb-like structure obtained by setting the fill density equal 
to 30%, 50%, and 70%; (b) cracking behaviour observed for different values of manufacturing 

angle θp and different in-fill levels (the specimens’ longitudinal axis is vertical). 
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Figure 4. Examples of force vs. displacement behaviour displayed by the plain specimens (a) 

and corresponding fictitious stress, σfs, vs. experimental strain, εexp, diagrams (b). 
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Figure 5. Examples of force vs. displacement behaviour displayed by the notched specimens 
being tested.
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Figure 6. Mechanical properties (a to c) and notch strength (d to i) of the AM PLA being tested for different in-fill levels – the results 
for a fill density equal to 100% are taken from Ref. [6].  



 
 

 

 
Figure 7. Transformation process to estimate static strength of plain PLA additively 

manufactured with different in-fill levels. 
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Figure 8. Accuracy of the proposed methodology in modelling plain static strength of PLA 
additively manufactured with different in-fill levels. 
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Figure 9. Process zone and fictitious linear-elastic local stress fields to perform static 
assessment of notched objects of AM PLA. 
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Figure 10. Accuracy of the TCD applied along with the equivalent homogenised material 
concept in estimating the static strength of the notched specimens of AM PLA being tested. 
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