
This is a repository copy of Modelling and mapping regional-scale patterns of fishing 
impact and fish stocks to support coral-reef management in Micronesia.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/138259/

Version: Accepted Version

Article:

Harborne, AR, Green, AL, Peterson, NA et al. (13 more authors) (2018) Modelling and 
mapping regional-scale patterns of fishing impact and fish stocks to support coral-reef 
management in Micronesia. Diversity and Distributions, 24 (12). pp. 1729-1743. ISSN 
1366-9516 

https://doi.org/10.1111/ddi.12814

© 2018 John Wiley & Sons Ltd. This is the peer reviewed version of the following article: 
Harborne, AR, Green, AL, Peterson, NA et al. (13 more authors) (2018) Modelling and 
mapping regional-scale patterns of fishing impact and fish stocks to support coral-reef 
management in Micronesia. Diversity and Distributions, which has been published in final 
form at https://doi.org/10.1111/ddi.12814. This article may be used for non-commercial 
purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived 
Versions.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Modelling and mapping regional-scale patterns of fishing impact and fish stocks to 

support coral-reef management in Micronesia 

 

Alastair R. Harborne1,2*, Alison L. Green3, Nate A. Peterson3, Maria Beger4,5, Yimnang 

Golbuu6, Peter Houk7, Mark D. Spalding8, Brett M. Taylor9, Elizabeth Terk10, Eric A. Treml11, 

Steven Victor12, Laurent Vigliola13, Ivor D. Williams14, Nicholas H. Wolff2,15, Philine zu 

Ermgassen16,17, and Peter J. Mumby2 

 
1 Department of Biological Sciences, Florida International University, 3000 NE 151st Street, 

North Miami, FL 33181, USA 
2 Marine Spatial Ecology Lab and Australian Research Council Centre of Excellence for Coral 

Reef Studies, School of Biological Sciences, Goddard Building, The University of Queensland, 

Brisbane, QLD 4072, Australia 
3 Pacific Division, The Nature Conservancy, 48 Montague Road, South Brisbane, QLD 4101, 

Australia 
4 Australian Research Council Centre of Excellence for Environmental Decisions, School of 

Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia 
5 School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK 
6 Palau International Coral Reef Center, Koror, Palau 
7 University of Guam Marine Laboratory, UOG Station, Mangilao, Guam 
8 Global Ocean Team, The Nature Conservancy, Department of Physical, Earth and 

Environmental Sciences, University of Siena, Pian dei Mantellini, 44, 53100 Siena, Italy 
9 Joint Institute for Marine and Atmospheric Research, University of Hawaii, 1845 Wasp 

Boulevard, Building 176, Honolulu, HI 96818, USA 
10 The Nature Conservancy, Pohnpei Field Office, P.O. Box 216, Kolonia, Pohnpei 96941, 

Federated States of Micronesia 
11 School of Life and Environmental Sciences, Deakin University, Victoria 3216 Australia 
12 The Nature Conservancy, Palau Field Office, P.O. Box 1738, Koror, 96940, Palau 
13 Institut de Recherche pour le Développement, UR227 CoRéUs, Laboratoire Excellence 

LABEX corail, Nouméa, New Caledonia 
14 Ecosystem Science Division, Pacific Islands Fisheries Science Center, National 

Oceanographic and Atmospheric Administration, Honolulu, Hawaii, USA 
15 Office of the Chief Scientist, The Nature Conservancy, 14 Maine Street, Brunswick, ME 

04011, USA 



16 Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK 
17 School of GeoSciences, Grant Institute, The Kings Buildings, James Hutton Road, 

Edinburgh, EH9 3FE, UK 

 

Correspondence: Alastair R. Harborne, Department of Biological Sciences, Florida 

International University, MSB 352, 3000 NE 151st Street, North Miami, FL 33181, USA. E-

mail: aharborn@fiu.edu 

 

ACKNOWLEDGEMENTS 

 

We thank S. Andréfouët, M. Gouezo, T. Leberer, S. Lindfield, and H. Possingham for input, 

and from numerous individuals who assisted data collection. This work was supported by 

grants from the Lyda Hill Foundation and Carnival Foundation to TNC’s Mapping Ocean 

Wealth project. This is contribution #XX of the Center for Coastal Oceans Research in the 

Institute for Water and Environment at Florida International University. 

 

BIOSKETCH 

 

Alastair R. Harborne is an Assistant Professor at Florida International University, and runs the 

Tropical Fish Ecology Lab (http://tropicalfishecologylab.com). His research focuses on the 

effects of environmental change, such as the loss of structural complexity, on reef fishes in the 

Caribbean and Indo-Pacific. He is particularly interested in predator-prey interactions, and how 

alterations to trophic relationships because of environmental change affect coral-reef food-web 

models. 



1 
 

Modelling and mapping regional-scale patterns of fishing impact and fish stocks to support 

coral-reef management in Micronesia 

 

Running title: Mapping Micronesian fishing and fishes 

 

  



2 
 

ABSTRACT 

 

Aim: Use a fishery-independent metric to model and map regional-scale fishing impact, and 

demonstrate how this metric assists with modelling current and potential fish biomass to support coral-

reef management. We also examine the relative importance of anthropogenic and natural factors on 

fishes at biogeographical scales. 

 

Location: Reefs of five jurisdictions in Micronesia. 

 

Methods: A subset of 1127 fish surveys (470 sites) was used to calculate site-specific mean parrotfish 

lengths (a proxy for cumulative fishing impact), which were modelled against 20 biophysical and 

anthropogenic variables. The resulting model was extrapolated to each 1 ha reef cell in the region to 

generate a fishing impact map. The remaining data (657 sites) were then used to model fish biomass 

using 15 response variables, including fishing impact. This model was used to map estimated current 

regional fish standing stocks and, by setting fishing impact to 0, potential standing stocks. 

 

Results: Human population pressure and distance to port were key anthropogenic variables predicting 

fishing impact. Total fish biomass was negatively correlated with fishing, but the influence of natural 

gradients of primary productivity, sea surface temperature, habitat quality, and larval supply were 

regionally more important. 

 

Main conclusions: Mean parrotfish length appears to be a useful fishery-independent metric for 

modelling Pacific fishing impact, but considering environmental covariates is critical. Explicitly 

modelling fishing impact has multiple benefits, including generation of the first large-scale map of 

tropical fishing impacts that can inform conservation planning. Using fishing impact data to map 

current and potential fish stocks provides further benefits, including highlighting the relative 

importance of fishing on fish biomass and identifying key biophysical variables that cause maximum 

potential biomass to vary significantly across the region. Regional-scale maps of fishing, fish standing 

stocks, and the potential benefits of protection are likely to lead to improved conservation outcomes 

during reserve network planning. 

 

Keywords 

 

Biophysical gradients, Boosted regression trees, Coral reef fishes, Fish standing stocks, Fishing 

impact, Marine reserves, Marine spatial planning, Micronesia  
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1 INTRODUCTION 

 

The myriad anthropogenic stressors that affect the world’s oceans have led to immense efforts to 

conserve the ecosystem services they provide (Mora et al., 2006; Halpern et al., 2008). Fisheries are 

often a key target of these management initiatives, particularly in the tropics and subtropics where 

coral reefs provide food, livelihoods, and incomes for millions of people (Sadovy, 2005). Typically, 

efforts to sustainably manage reef fishes strive for networks of no-take marine reserves that have a 

variety of benefits, including rebuilding populations and exporting individuals to fished areas (Graham 

et al., 2011). Designing these networks effectively often requires matching multiple biological and 

social criteria (Sala et al., 2002; Fernandes et al., 2005), and there are sophisticated computational 

tools to assist spatial planning (Ball, Possingham, & Watts, 2009; Krueck et al., 2017). However, these 

design tools rely on the availability of spatially comprehensive, good-quality data, and a lack of data 

layers often limits the planning process (Pittman, & Brown, 2011). This scarcity of comprehensive 

data is particularly problematic for regional-scale initiatives that have been established in areas such 

as the Caribbean (Knowles et al., 2015), Micronesia (Houk et al., 2015), and Coral Triangle (White et 

al., 2014).  

 

The increasing availability of extensive online data offers a potential solution for at least some of the 

data requirements for marine spatial planning (Pittman, & Brown, 2011; Sbrocco, & Barber, 2013). 

Furthermore, these data can be used as key explanatory variables to derive other useful variables. For 

example, combining multiple biophysical and socioeconomic drivers has facilitated modelling 

variables including fish biomass and richness (Mellin, Bradshaw, Meekan, & Caley, 2010; 

McClanahan, Maina, Graham, & Jones, 2016), climate-change impacts (Wolff et al., 2015), and 

ecosystem services (Hutchison, Manica, Swetnam, Balmford, & Spalding, 2014; Spalding et al., 2017). 

These derived data layers, particularly fish biomass, can have considerable value for configuring 

potential regional-scale marine reserve networks (McClanahan et al., 2016). However, maps of fish 

biomass at a scale and resolution appropriate for regional or national spatial planning remain scarce, 

and even when available the underlying models may be limited by the difficulties of obtaining data for 

many key covariates (McClanahan et al., 2016). 

 

While maps of fish biomass are uncommon within marine spatial planning exercises, high-resolution 

maps of fishing derived from biological or social data are even rarer (e.g. generic distance-to-shore 

decay functions are used in the few cases where fishing is incorporated, Magris, Treml, Pressey, & 

Weeks, 2016). The scarcity of these maps is surprising given that reserves are often explicitly designed 

to manage fisheries. For example, a map of fishing has value for displaying national or regional 
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patterns and “scorecard” assessments of fishery status to a range of stakeholders, facilitating 

quantitative comparisons within or between countries, providing some information on fishing-derived 

employment, food security or economic importance, and for monitoring change. Furthermore, a fishing 

map could be included in spatial planning algorithms to achieve goals such as siting marine reserves 

in areas with low fishing to minimise conflicts with fishers (Sala et al., 2002). Finally, fishing can be 

included in a model of fish biomass as a single explicit variable, rather than by using multiple proxies 

such as human population density and distance to market (e.g. Cinner et al., 2016; McClanahan et al., 

2016). Using a single variable of fishing in biomass models, and thus obtaining a single partial 

dependency plot, facilitates easier visualisation and quantification of important biogeographic 

questions such as its relative importance in determining fish biomass compared to biophysical 

gradients. Finally, a single functional relationship between fishing and fish biomass is useful when 

investigating the impacts of management scenarios, such as reducing fishing to predict the benefits of 

reserves. 

 

Despite the potential benefits, quantifying coral-reef fishing is challenging because the fisheries are 

typically characterised by many boats that exploit multiple species using a variety of gear types across 

large, remote areas (Dunn et al., 2010). Furthermore, many tropical countries have limited resources 

to monitor fisheries, and there are concerns about some fisheries-dependent data (Pauly, & Zeller, 

2014). A few comprehensive fisheries-dependent data sets are available to map reef fishing effort 

directly, but they are typically at relatively small spatial scales (Chollett, Canty, Box, & Mumby, 2014; 

Hamilton et al., 2016; Thiault, Collin, Chlous, Gelcich, & Claudet, 2017). Consequently, most large-

scale investigations of reef fisheries have used fishery-independent data, particularly examining how 

human population density correlates with fish biomass recorded in underwater censuses (Williams et 

al., 2015b; Cinner et al., 2016; McClanahan et al., 2016). These studies have clearly demonstrated the 

effects of fishing on fish assemblages, but using total biomass has limits such as mixing fished and 

non-fished species, combining size and abundance metrics that may respond differently to exploitation, 

and a need for surveys of all non-cryptic species. 

 

Some of the problems associated with using total fish biomass may be addressed by considering 

individual functional groups or species (e.g. Williams et al., 2015b). However, there is a growing 

recognition of the value of other indicators of fishing, such as length-based metrics, size-spectra, and 

mean trophic level (reviewed by Nash, & Graham, 2016). Among these metrics, the derivation of 

fishing from the sizes of herbivorous species, especially parrotfishes, seems particularly promising. 

Although parrotfishes are typically secondary targets compared to more valuable species such as 

grouper (Mumby et al., 2012), large-bodied parrotfishes are often rare on heavily fished reefs, with 
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assemblages shifting towards smaller-bodied species (Clua, & Legendre, 2008; Taylor, Houk, Russ, 

& Choat, 2014). Consequently, mean parrotfish size, but not density or total biomass, appears to be a 

better metric of Caribbean fishing than the biomass of some more commercially important species 

(Vallès, & Oxenford, 2014; Vallès, Gill, & Oxenford, 2015). In addition, parrotfishes are rarely absent 

even under very high fishing pressure, allowing mean size to be calculated at all sites. Parrotfish data 

are also routinely recorded during fish surveys because of their functional importance in controlling 

macroalgal abundance and as bioeroders (e.g. Bellwood, Hughes, Folke, & Nyström, 2004). 

 

This study utilises mean parrotfish size to model the drivers and patterns of fishing impact across 

Micronesia, and uses the model to generate the first large-scale fishing map and support marine spatial 

planning in the region. We then show how a map of fishing impact can be used to help map fish 

biomass across the region to further assist resource management, and provide a single functional 

relationship between fishing and fish standing stocks. Within the models for both fishing and fish 

biomass we include an extensive range of biophysical and social covariates that may affect parrotfish 

size and fish biomass. Approximately 50% of studies considering indicators of fishing have not 

adequately accounted for these potentially confounding covariates, limiting a full assessment of their 

use (Nash, & Graham, 2016). Furthermore, this comprehensive investigation of the relative importance 

of the anthropogenic and biophysical drivers of fish biomass provides new insights into the 

biogeography of Micronesian fish assemblages. Finally, we utilise the relationship between fishing 

impact and fish biomass to demonstrate how it can be used to estimate the maximum biomass of fishes 

on reefs in the absence of fishing, and map the potential benefits of marine reserves that can help 

identify priority areas for protection. 

 

2 METHODS 

 

2.1 Study area 

 

The study encompassed the spatial extent of the Micronesia Challenge, which aims to conserve >30% 

of the marine resources by 2020 (Houk et al., 2015). The area consists of five jurisdictions: the 

Republic of Palau, the Federated States of Micronesia, the Territory of Guam, the Commonwealth of 

the Northern Marianas, and the Republic of the Marshall Islands (subsequently Palau, FSM, Guam, 

CNMI, and RMI respectively) (Figure 1). Micronesian reefs are typically found around either atolls or 

high (volcanic origin) islands with or without extensive lagoons (Dalzell, Adams, & Polunin, 1996; 

Taylor, Lindfield, & Choat, 2015). Reefs are threatened by overexploitation through subsistence and 
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commercial fisheries, although the status of fisheries varies significantly from populous to uninhabited 

islands and atolls (Williams et al., 2015b). Throughout the Pacific, surgeonfishes, parrotfishes, 

groupers, and snappers are the primary fishery targets (Rhodes, & Tupper, 2007; Houk et al., 2012; 

Bejarano, Golbuu, Sapolu, & Mumby, 2013). To increase the sustainability of these fisheries, some 

marine protected areas and no-take reserves have been established (Mumby et al., 2013), and are 

complemented in some locations by seasonal closures of spawning aggregations (Rhodes, & Tupper, 

2007) and bans on catching vulnerable species such as the bumphead parrotfish (Bolbometopon 

muricatum) (Houk et al., 2012). 

 

This study focused on fringing, barrier, and atoll reef slopes, which typically support the highest 

biomass of fishes, are heavily targeted by fishers, and are more commonly surveyed by researchers. 

These habitats were delineated using the level 4 marine classes of the Millennium Coral Reef Mapping 

Project that mapped reefs worldwide using Landsat 7 ETM+ satellite images (MCRMP, Andréfouët et 

al., 2006). Level 4 of the classification scheme includes 39 habitat classes, of which 13 were used for 

this study (see Appendix S1). Reef slope polygons were rasterised into 320,715 1 ha cells in ArcGIS 

for association with predictor variables. 

 

2.2 Fish survey data 

 

Reef fish data were derived from 1127 survey sites throughout the region, including each jurisdiction 

and state within the FSM (see Appendix S1 in Supporting Information). The data were collected for 

different projects and purposes, and therefore did not utilise a standard methodology (see Appendix 

S1 for details of data sets). Briefly, all surveys were quantitative counts within defined areas (depths 

of 1-23 m), facilitating the calculation of fish abundance per unit area, but included visual surveys 

along belt transects (30 – 50 m in length), visual surveys using stationary point counts (10-15 m in 

diameter), and video surveys (5 m wide x 3 min long). Although results are typically comparable 

between belt transects and stationary point counts (Samoilys, & Carlos, 2000), survey method was 

included in subsequent models to account for any systematic biases. In all surveys, fishes were counted 

and sized, facilitating calculation of biomass using allometric relationships (Froese, & Pauly, 2010). 

Coral cover at each site was quantified using photo-quadrats, in situ visual assessment of quadrats, 

video transects, or in situ visual estimates. Visual estimates of benthic cover have been demonstrated 

to be similar to quadrats and transects (Wilson, Graham, & Polunin, 2007). 

 

Surveys were haphazardly separated into two groups for use in the fishing and fish biomass models, 

ensuring broad geographical coverage throughout the region for each model (470 and 657 sites in the 
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fishing and biomass models respectively). For fishing impact, mean parrotfish length (independent of 

species identity) was calculated for each site. Family-level mean parrotfish length was calculated from 

fishes larger than 15 cm to make the analyses robust to recruitment variability. Furthermore, records 

of Bolbometopon muricatum were excluded because they are absent from the Marshall Islands (Froese, 

& Pauly, 2010) and may skew values elsewhere because of their large size and shoaling behaviour. 

For the biomass data set, we first identified 19 species that occur throughout the region (Froese, & 

Pauly, 2010) and were surveyed at every site (two acanthurids, a carangid, a kyphosid, a labrid, three 

lethrinids, two lutjanids, five scarids, three serranids, and two siganids, see Appendix S1 for species 

list). Although reducing the data sets to these key species involved using only a subset of the data, it 

did ensure consistent estimates of current standing stock across the region and among data sets. 

Furthermore, biomass of these 19 key taxa represents a good proxy of the total assemblage biomass 

because they represent a range of families and fishery values (see Appendix S1). Abundances of the 

19 species at each site were summarised as biomass per m2 (subsequently ‘total biomass’). Each 

species was also assigned to a trophic group (primary consumer, secondary consumer, or piscivore, 

Sandin, & Williams, 2010), and biomass data were summarised for each group. Site-level estimates of 

mean parrotfish size, total biomass, and biomass of each trophic group were combined with in situ data 

on coral cover, depth, latitude, longitude, and year of collection for inclusion within the models. 

 

2.3 Predictor variables 

 

Additional site-specific predictor variables that may be biophysical or anthropogenic drivers of fishing 

and fish abundances were compiled to inform the fishing impact and total biomass models (Table 1). 

The derivation of each predictor at each fish survey site is described in detail in Appendix S2, but 

briefly the MCRMP map was used to derive the distance to the nearest reef pass (that may provide 

access for fishers or increase water flow), island geomorphology, and habitat type. The MCRMP map 

was also used to derive the fetch (distance to land or reef crest) at each location, which was combined 

with QuikSCAT data (wind direction and mean speed in 25 km2 cells during 2005 to 2009) using linear 

wave equations to estimate wave exposure (Chollett, & Mumby, 2012). Finally, the MCRMP map was 

used to estimate the potential area of fishable reef within both 20 and 200 km of each survey site (see 

Appendix S1), which were combined with human population size within the same distances to estimate 

population density per km2 of reef (i.e. separate populations densities within 20 km and within 200 

km). Human population size data was from the Global Rural-Urban Mapping Project within the 

Socioeconomic Data and Applications Center (SEDAC), and 20 km represents the typical range of 

local artisanal fishers while 200 km represents the influence of longer-range commercial vessels 

(Nadon et al., 2012; Williams et al., 2015b). Tourist numbers within 20 and 200 km per km2 of fishable 
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reef were calculated by using estimates of total arrivals in 2011 and distributing them in proportion to 

indigenous populations. Other anthropogenic predictors of fishing were distance to the nearest major 

port (potential market), an expert-based rank (low, medium, high) of reef fish exports by air, an expert-

based assessment of the protected status of each reef area (open or effectively open to fishing, partly 

effective reserve, or effective reserve), and a principle coordinates analysis (PCA) of jurisdiction-scale 

indicators of socio-economic development (e.g. GDP) that may influence fishing pressure (Cinner et 

al., 2009). Socio-economic development was then quantified using two predictor variables from the 

first two axes of the PCA. Oceanic net primary productivity was derived using the mean values from 

2010-2013 that were estimated using a chlorophyll-based model (Behrenfeld, & Falkowski, 1997), 

after removing values confounded by bottom reflectance (Gove et al., 2013). Sea surface temperature 

data were obtained from the Coral Reef Temperature Anomaly Database, and the metric used was the 

mean temperature from the coldest month of each year between 2008 and 2012 (following Nadon et 

al., 2012 and Williams et al., 2015b, where this metric was also highly correlated with other metrics 

of temperature). Finally, relative larval supply to each reef from upstream sources (excluding self-

recruitment) was estimated using a biophysical model (see Mora et al., 2012 for full model 

description). 

 

2.4 Data analysis 

 

Models of fishing impact, total biomass, and biomass of primary consumers and piscivores (only three 

of the 19 species were secondary consumers and so this group was not analysed) were generated using 

boosted regression trees (BRTs) (Elith, Leathwick, & Hastie, 2008). All covariates were first tested 

for co-linearity (pairwise r threshold of 0.75), which led to the removal of latitude, tourist pressure, 

and the second axis of socio-economic development from the PCA in the fishing model. Latitude was 

removed from the total biomass model. Variance inflation factors were below recommended limits 

(Dormann et al., 2013). Covariates were untransformed within the BRTs, but mean parrotfish size, 

total biomass, and the biomass of each trophic group were log transformed to better fit the assumptions 

of Gaussian error distributions. BRT parameters (learning rate, tree complexity, and bag fraction) were 

calculated for each model by testing across a series of values, and then using the values that gave the 

lowest model deviance (Elith et al., 2008). In addition to covariates, each BRT included a variable 

comprising of random numbers: variables with less explanatory power than this random number 

variable were removed to generate final, minimal models (Soykan, Eguchi, Kohin, & Dewar, 2014). 

Evidence of spatial autocorrelation was examined by testing the residuals of each model with Moran’s 

I statistic. Model performance was assessed using the amount of deviance explained and the Pearson’s 

correlation coefficient between observed and model-predicted values. 
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Fishing impact and fish biomass maps were generated by using final models to predict values for all 1 

ha cells on reef slopes. The full fishing impact model predicts the mean size of parrotfishes, which is 

influenced by biophysical, anthropogenic, and methodological factors. However, mapping fishing 

impact required isolating the human influence on parrotfish size, and therefore cell-specific values 

were used for each anthropogenic factor (Table 1), while mean values were used for biophysical 

variables and year of data collection. Belt transect was used in predictions as the data collection method 

for all 1 ha cells as it the most common protocol used among the data sets. Predicted values of 

parrotfish size were back-transformed and then rescaled from 0 (largest mean parrotfish size) to 1 

(smallest mean size) before map production. Total biomass and the biomass of each trophic group in 

each 1 ha cell were predicted using the full final model (i.e. spatially variable values for each 1 ha cell) 

except for methodological variables (standardised to mean year of collection and collection by belt 

transect) and coral cover and depth (mean values used in the absence of spatially continuous maps of 

coral cover or bathymetry). Finally, predictions for the potential biomass in each cell in the absence of 

fishing were generated using the total biomass model and setting fishing impact to 0 in every cell. This 

allowed the calculation of the potential absolute and percentage gain in biomass in each cell following 

reserve establishment. 

 

3 RESULTS 

 

3.1 Fishing impact model 

 

The final model for fishing impact included eight anthropogenic and biophysical variables influencing 

mean parrotfish size (Figure 2), plus the year of data collection (all partial dependency plots including 

year, and the largest interaction, are in Figures S3.4 and S3.5 in Appendix S3). The anthropogenic 

variables of distance to port and population density within 200 km were responsible for ~35% of the 

explained variance, with mean parrotfish size increasing (fishing decreasing) with increasing distance 

from port and decreasing population density. The distance to pass variable was considered to represent 

both an anthropogenic component (reefs far from passes are less accessible to fishers, Thiault et al., 

2017) and biophysical component (reefs close to passes may be more productive, Schrimm, Heussner, 

& Buscail, 2002). Consequently, the relationship with parrotfish size was adjusted to only include the 

anthropogenic component prior to mapping predicted fishing impact (Figure 2). 

 

The fishing impact model explained 36% of the variability in mean parrotfish length, and the 

correlation between observed and predicted values was 0.602. There was significant (Moran’s I; p = 
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0.041) spatial autocorrelation among the residuals of the BRT model. However, this correlation was 

negative with residuals at sites close together more dissimilar than residuals among more distant sites, 

suggesting spatial autocorrelation was not influencing model performance (Stuart-Smith et al., 2013). 

 

3.2 Biomass models 

 

The final model for total biomass of the 19 focal fish species included 11 anthropogenic, biophysical, 

and methodological variables (eight most important variables shown in Figure 3; partial dependency 

plots for data collection year, method, and distance to pass shown, along with the largest interaction, 

in Figures S3.6 and S3.7 in Appendix S3). The most important correlations were with biophysical 

variables, and total biomass was particularly high in deeper, cooler, more productive water and on 

reefs with high larval supply from upstream reefs (Figure 3). Total biomass (log transformed) 

decreased approximately linearly with increasing fishing, and represented ~7% of the variation 

explained by the model (Figure 3). The model explained 52% of the variability in total biomass, and 

the correlation between observed and predicted values was 0.721. There was no significant spatial 

autocorrelation among model residuals (Moran’s I; p = 0.129). 

 

The models for primary consumers and piscivores were qualitatively similar to the model for total 

standing stock (eight most important variables shown in Figures 4 and 5; partial dependency plots for 

all variables are in Figures S3.8 and S3.9 in Appendix S3). Biomass of primary consumers appeared 

particularly sensitive to larval supply, and the negative correlation with fishing was stronger (Figure 

4). Biomass of piscivores was most clearly correlated with temperature, and piscivores were more 

abundant on windward reefs and reef with nearby lagoons (potentially containing nursery habitats) 

(Figure 5). The models explained 50% and 45% of the variability in primary consumer and piscivore 

biomass respectively, and the correlations between observed and predicted values were 0.708 and 

0.669. 

 

3.3 Maps of fishing impact, total biomass, and predicted gain in biomass 

 

Extrapolating values of fishing impact and total biomass throughout the region generated 1 ha 

resolution maps of each variable (Figures 6a, b). Total biomass was predicted to be generally higher 

where fishing was predicted as lower, but also reflects the various biophysical gradients within the 

model (e.g. decreasing temperatures from south to north). Setting fishing impact to 0 allowed the 

generation of a map of predicted potential biomass in each cell, and the percentage potential gain in 

biomass following the cessation of fishing (Figures 6c, d). Potential percentage gains in standing stock 
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were predicted to be highest where fishing was predicted to be highest (e.g. Guam), but absolute 

increases were constrained by biophysical gradients. The maps also facilitated jurisdictional 

summaries of fishing and fish stocks, which are likely to be valuable tools for outreach to a range of 

stakeholders (Figure 7). Additional maps for primary consumers and piscivores were also generated 

(see Appendix S3). 

 

Using a correlative relationship between the total biomass of all species and the 19 focal species used 

in this study, calculated from the large NOAA CRED data set, mean current standing biomass and 

mean potential biomass for all non-cryptic fishes across all cells were 497 kg ha-1 and 567 kg ha-1. 

However, these values were sensitive to the values assumed for coral cover and depth (mean values 

were 21.7% and 6.0 m respectively). For example, estimating potential standing stock at a depth of 10 

m, which is a typical survey depth for many other studies, generated a regional mean of 841 kg ha-1. 

In the most biomass-rich waters the means using a depth of 10 m were 1066 (RMI) and 1070 kg ha-1 

(Palau), which are close to global averages (1000 kg ha-1, MacNeil et al., 2015). Future generation of 

maps of bathymetry and coral cover would significantly aid mapping fish stocks across the region. 

 

4 DISCUSSION 

 

A strength of marine reserve selection algorithms, namely the simultaneous analysis of multiple 

spatially explicit data layers to identify priority areas, is also a weakness because of the reliance on 

comprehensive data sets that are often onerous or impossible to collect. Fishing is a good example of 

spatial information that is rarely available to planners (Thiault et al., 2017), even though fish 

production represents one of the major ecosystem services driving tropical conservation (Russ, 2002). 

Here we build on previous work that has used fishery-independent data to identify the major drivers 

of human impacts on fish assemblages, but show how modelling fishing as a separate, first step towards 

modelling fish biomass can produce an additional data layer that has a range of ecological, 

biogeographical, and conservation uses. 

 

We deliberately use the term fishing ‘impact’ to avoid conflating it with the more common fishing 

‘pressure’ that often refers to current fishing effort or mortality in the fisheries literature (Piet, Quirijns, 

Robinson, & Greenstreet, 2007). In contrast, our metric of fishing is a relative, unitless pattern of 

cumulative exploitation. For example, it identifies areas that have been heavily impacted by fishing 

(small mean size of parrotfishes), where fishers may have subsequently moved to more profitable 

locations, rather than necessarily identifying areas that are currently heavily fished. This relationship 

between fishery-independent and dependent variables is an important topic for future research. 
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However, our map of fishing impact does mirror known contemporary regional patterns of effort, such 

as northwards declines through CNMI with increasing distance from populous islands (Williams et al., 

2015b) and generally low fishing impact in RMI away from Majuro (Martin et al., 2017). More 

importantly, measures of fishing impact represent the only realistic method of generating insights into 

patterns of exploitation in the absence of high resolution fishery-dependent data. 

 

Micronesia represents an ideal place to further examine parrotfish mean size as a metric of fishing 

impact because of the unusually high value of herbivores in the region’s fisheries (Houk et al., 2012). 

Although this study did not aim to test parrotfish mean length as a proxy of fishing, the results are 

consistent with it representing a useful indicator. Firstly, the correlates of parrotfish size, particularly 

human density and distance from market, were similar to those identified previously (Cinner, Graham, 

Huchery, & MacNeil, 2013). Secondly, when incorporated into the model of fish standing stock, using 

an independent data set, increasing fishing impact was correlated with a decrease of standing stocks. 

Consequently, we suggest that this first large-scale use of mean parrotfish size as an indicator of 

fishing, and novel use in the Pacific, is consistent with smaller-scale work that identified its practical 

and theoretical advantages in the Caribbean (Vallès, & Oxenford, 2014; Vallès et al., 2015). However, 

the importance of a range of biophysical variables in the fishing impact model, some of which were 

more important than human population density, underscores the importance of controlling for these 

factors when using fishery-independent metrics (Nash, & Graham, 2016). 

 

Mapping fishing impact in this study provided a rarely available data layer for both spatial planning 

and more informal comparisons among reefs and jurisdictions that may prove useful for encouraging 

stakeholders towards conservation goals. The approach can also be extended to other habitats (e.g. 

soft-bottom lagoons) and fisheries (e.g. invertebrates), and can be used with other proxies of fishing 

impact. Furthermore, our approach generated a single metric of fishing that could be included in a 

model of fish biomass, which more clearly identified their relationship than representing fishing by 

multiple interacting proxies. The relationship between fishing and fish stocks, and the importance of 

fishing compared to biophysical gradients, is critical for understanding human impacts on reefs 

(Williams, Gove, Eynaud, Zgliczynski, & Sandin, 2015a; Williams et al., 2015b; Heenan, Hoey, 

Williams, & Williams, 2016). This study demonstrates that increased fishing correlated with 

approximately linear decreases in log fish biomass, meaning that previously unexploited stocks can be 

rapidly depleted by relatively small increases in fishing. This non-linear relationship between fishing 

and fish biomass is consistent with previous studies (Cinner et al., 2013; D'agata et al., 2016; 

McClanahan et al., 2016). 
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The impact of fishing on total biomass across the region was less significant than five biophysical 

variables. Clearly fishing is a critical local driver of fishing biomass, as demonstrated by increased 

abundances inside marine reserves (Tupper, 2007) and significant reductions in species not considered 

here (e.g. Bolbometopon muricatum, Bellwood, Hoey, & Choat, 2003). However, regional-scale 

biophysical variables predominate in our model, to a degree not typically seen in smaller-scale studies 

with less pronounced biophysical gradients and where the effect of fishing is more significant (e.g. 

D'agata et al., 2016). In comparison with many other reef areas, Micronesia includes large areas of 

lightly fished remote reefs, and has a history of traditional forms of sustainable reef management (Houk 

et al., 2015). 

 

The fish biomass model demonstrated the primary influence of correlations with biogeographical-scale 

gradients in net primary productivity and sea-surface temperature. Although acknowledged 

theoretically, empirical evidence of these influences has only relatively recently emerged for reef 

fishes (Nadon et al., 2012; Williams et al., 2015b; Cinner et al., 2016; Heenan et al., 2016). Increasing 

temperature was negatively correlated with the total biomass of Micronesian fishes, which is consistent 

with concerns about how global climate change may affect fisheries (Cheung et al., 2013). 

Furthermore, the presence of large-scale oceanographic features that affect net primary productivity, 

and potentially bottom-up forcing of reef ecosystems (Gove et al., 2013), appears to limit standing 

stocks around islands in less productive waters (e.g. Guam). Fish standing stocks increased with 

increasing depth and coral cover, with apparent thresholds at ~10m and ~10% coral cover that reflect 

high fish abundance on mid-depth reefs (Mumby et al., 2008) and the importance of coral for fish 

habitat (Coker, Wilson, & Pratchett, 2014). Intriguingly, fish standing stocks were also positively 

correlated with increasing larval supply from upstream sources, despite using a regional-scale 

connectivity model. Despite a widespread acknowledgment of the importance of inter-reef 

connectivity to fish demographics (Harrison et al., 2012), evidence of high larval supply significantly 

increasing the biomass of entire assemblages is scarce (see Stier, Hein, Parravicini, & Kulbicki, 2014 

for another example). However, our model suggests larval supply has a significant effect on the 

abundance of multiple Micronesian fish species, despite the connectivity model not resolving self-

recruitment that also affects population persistence (Green et al., 2015). 

 

An advantage of including a single variable representing fishing within fish biomass models is the ease 

of simulating various management options. We used this functionality to reduce fishing impact to 0 to 

investigate the effects of marine reserves, particularly the potential increases in fish biomass towards 

maximum local limits. Such targets may be used both within reserve planning exercises and as 

baselines for monitoring the efficacy of established reserves. Although eliminating fishing is perhaps 
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the most obvious scenario to explore, the single fishing impact variable allows investigations into other 

management options, such as reducing fishing by some proportion to represent potential gear 

restrictions or size limits. Furthermore, the model allows exploration of the benefits to fisheries of 

other scenarios, such as increasing coral cover by improving water quality (Klein et al., 2012). Having 

estimates of current and potential standing stock also facilitates the calculation of the proportion of 

fishable biomass remaining, providing insights into the time to recovery following protection (MacNeil 

et al., 2015). Finally, reducing fishing to 0 demonstrates the significant natural variations in potential 

maximum biomass on reefs, which complements a growing literature suggesting that such variations 

are critical when assessing fishing impacts or the scope for recovery (Nadon et al., 2012; Williams et 

al., 2015b; Heenan et al., 2016; Valdivia, Cox, & Bruno, 2017). 

 

Many marine spatial planning exercises lack comprehensive data to maximise the benefits of marine 

reserves for fisheries, including the status of the resource (e.g. current stocks), the level of threat (e.g. 

fishing), and which areas are likely to provide the most benefits if protected (e.g. current stocks low 

compared to potential maximum). Here we provide a promising new approach for using fishery-

independent metrics to map fishing impact, and then using this variable to estimate current and 

maximum standing stocks. These products can then be used in marine spatial planning to identify areas 

that are heavily fished, contain high standing stocks, and have the greatest scope for recovery. Indeed, 

the value of these products has already been demonstrated in the region. For example, the maps have 

been used to validate the selection of a new, large no-take zone in northern Palau, develop localized 

policy briefs to highlight key messages for a range of stakeholders, and will be used in new marine 

spatial planning exercises (Spalding, Brumbaugh, & Landis, 2016). More generally, the maps are now 

online for local practitioners to explore the patterns and obtain summary statistics 

(http://maps.oceanwealth.org/), and the approach has been extended to support marine spatial planning 

in The Bahamas (the Bahamian data products are also available at the Mapping Ocean Wealth data 

portal). The wider availability of similar maps for other regions would embed a key ecosystem service 

in marine spatial planning, and help ensure the best possible outcomes for people and nature. 
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TABLE 1 Predictor variables used in the models of fishing impact and fish biomass. Further details 
of the derivation of each variable are in Appendix S2. 
 
Variable Category Derivation Fishing 

model? 
Biomass 
model? 

Coral cover Biophysical From in situ fish surveys (continuous)   

Depth Biophysical From in situ fish surveys (continuous)   

Distance to pass Biophysical / 
Anthropogenic 

Distance to the nearest reef pass mapped by 
MCRMP (continuous) 

  

Distance to port Anthropogenic Distance to nearest major port (continuous)   

Export Anthropogenic Extent of reef fish exports from each 
jurisdiction (categorical) 

  

Fishing impact Anthropogenic Fishing impact estimated by this study   

Geomorphology Biophysical Reef type within MCRMP (categorical)   

Habitat type Biophysical Habitat type within MCRMP (categorical)   

Human density 
(20 km) 

Anthropogenic Human population within 20 km per km2 of 
fishable reef (continuous) 

  

Human density 
(200 km) 

Anthropogenic Human population within 200 km per km2 of 
fishable reef (continuous) 

  

Larval supply Biophysical Estimate of larval supply to each reef from 
upstream sources only (continuous) 

  

Latitude Biophysical From in situ fish surveys (continuous)   

Longitude Biophysical From in situ fish surveys (continuous)   

Net primary 
productivity 

Biophysical Oceanic net primary productivity estimated 
from satellite data (continuous) 

  

Protected status Anthropogenic Level of protection from fishing (categorical)   

Sea surface 
temperature 

Biophysical Sea surface temperature estimated from satellite 
data (continuous) 

  

Socio-economic 
development 

Anthropogenic Socio-economic status of jurisdiction 
(continuous) 

  

Survey method Methodological From in situ fish surveys (categorical)   

Tourist pressure 
(20 km) 

Anthropogenic Estimated tourist numbers within 20 km 
(continuous) 

  

Tourist pressure 
(200 km) 

Anthropogenic Estimated tourist numbers within 200 km 
(continuous) 

  

Wave exposure Biophysical Wave theory using satellite data on wind speeds 
and fetch from MCRMP (continuous) 

  

Year Methodological From in situ fish surveys (continuous)   
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FIGURE LEGENDS 

 

FIGURE 1 Geographic area encompassed by the study, representing the islands and marine resources 

considered by the Micronesia Challenge. FSM = Federated States of Micronesia, CNMI = the 

Commonwealth of the Northern Marianas. States within FSM are delineated. 

 

FIGURE 2 Partial dependence plots for the eight most influential variables (anthropogenic variables 

in bold) retained in the minimal boosted regression tree model of mean parrotfish length in Micronesia. 

Figures in parentheses represent percentage of explained deviance attributable to each variable. SST = 

sea surface temperature. Y axes centred to have zero mean over the data distribution (15 – 47.5 cm 

prior to transformation). Rug plots inside the top of plots show distribution of values, in deciles. For 

distance to pass, dotted line shows modification of fitted function used for fishing impact predictions. 

 

FIGURE 3 Partial dependence plots for the eight most influential variables retained in the minimal 

boosted regression tree model of total biomass of the 19 focal fish species in Micronesia. Figures in 

parentheses represent percentage of explained deviance attributable to each variable. SST = sea surface 

temperature; NPP = net primary productivity. Y axes centred to have zero mean over the data 

distribution (0 - 517.9 g m-2 prior to transformation). Rug plots inside the top of plots show distribution 

of values, in deciles. 

 

FIGURE 4 Partial dependence plots for the eight most influential variables retained in the minimal 

boosted regression tree model of total biomass of fish primary consumers in Micronesia. Figures in 

parentheses represent percentage of explained deviance attributable to each variable. SST = sea surface 

temperature; NPP = net primary productivity. Y axes centred to have zero mean over the data 

distribution (0 - 201.4 g m-2 prior to transformation). Rug plots inside the top of plots show distribution 

of values, in deciles. 

 

FIGURE 5 Partial dependence plots for the eight most influential variables retained in the minimal 

boosted regression tree model of total biomass of piscivorous fishes in Micronesia. Figures in 

parentheses represent percentage of explained deviance attributable to each variable. SST = sea surface 

temperature; NPP = net primary productivity. Y axes centred to have zero mean over the data 

distribution (0 - 110.2 g m-2 prior to transformation). Rug plots inside the top of plots show distribution 

of values, in deciles. 
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FIGURE 6 Regional maps of (a) predicted fishing impact (0-1 scale), (b) predicted current total 

biomass of the 19 focal fish species, (c) predicted potential fish standing stock of the 19 focal fish 

species in the absence of fishing, and (d) predicted potential percentage gain in total biomass of the 19 

focal fish species in the absence of fishing. Each panel includes larger-scale insets of Palau and Guam 

to show actual map resolution. 

 

FIGURE 7 Summary plots of the proportion of 1 ha reefs cells separated by (a) predicted fishing impact, 

(b) predicted current fish standing stock of the 19 focal fish species, (c) predicted potential absolute gain 

in fish standing stock of the 19 focal fish species under a 0 fishing impact scenario, and (d) predicted 

potential percentage gain in fish standing stock of the 19 focal fish species under a 0 fishing impact 

scenario. Values are separated by jurisdiction (and states in FSM) and by remote (within 20 km of the most 

populated islands) and populous (>20 km from the most populated islands) areas in Micronesia. Categories 

in (c) and (d) are defined by 25%, 50%, and 75% quantiles. 
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E. Terk, E.A. Treml, S. Victor, L. Vigliola, I.D. Williams, N.H. Wolff, P. zu Ermgassen, and P.J. 
Mumby. Modelling and mapping regional-scale patterns of fishing impact and fish biomass to support 
coral-reef management in Micronesia. 
 
APPENDIX S1 – DETAILS OF FISH SURVEY DATA 
 
TABLE S1.1 Millennium Coral Reef Mapping Project (MCRMP) level 4 marine classes found in the 
study region. Each class may either be represented by models of fishing pressure and standing stock, 
or not parameterised by these models. In addition, only some habitat classes were considered in 
calculations of human population per unit area of fishable reef (i.e. a ‘fished reef’ habitat). wc = with 
constructions. 
 
MCRM habitat Modelled? Fished 

reef? 

 
MCRM habitat Modelled? Fished reef? 

Bay exposed fringing Yes Yes Forereef Yes Yes 

Bridge Yes Yes 
 

Forereef or terrace Yes Yes 

Channel No No 
 

Inner slope No Yes 

Deep drowned reef 
flat 

Yes Yes 
 

Lagoon pinnacle Yes Yes 

Deep lagoon No No 
 

Pass No Yes 

Deep lagoon wc No No 
 

Pass reef flat No Yes 

Deep terrace Yes Yes 
 

Pinnacle Yes Yes 

Deep terrace wc Yes Yes 
 

Reef flat No Yes 

Diffuse fringing No Yes 
 

Reticulated fringing Yes Yes 

Drowned bank Yes Yes 
 

Ridge and fossil crest No Yes 

Drowned inner slope No Yes 
 

Shallow lagoon No No 

Drowned lagoon No No 
 

Shallow lagoon wc No No 

Drowned pass No No 
 

Shallow lagoonal 
terrace 

No Yes 

Drowned patch Yes Yes 
 

Shallow terrace No Yes 

Drowned rim Yes Yes 
 

Shallow terrace wc No Yes 

Enclosed basin No No 
 

Shelf slope No Yes 

Enclosed lagoon No No 
 

Subtidal reef flat No Yes 

Enclosed lagoon or 
basin 

No No 
 

Undetermined 
envelope 

Yes Yes 

Enclosed lagoon wc No Yes 
 

Uplifted reef flat No Yes 

Faro reef flat No No 
    

 
 
 



 
 
FIGURE S1.1 Location of survey sites used in the study. 
 
TABLE S1.2 Summary of fish survey data sets available to the project, and whether they were used 
to model fishing pressure and / or standing stock. Numbers represent the number of sites used from 
each data set in each model. UVC = underwater visual census. CNMI = Commonwealth of the 
Northern Marianas, FSM = Federated States of Micronesia, RMI = Republic of the Marshall Islands. 
 

Source Sites from Dates Techniques 
used for fish 
and benthos 

Species Fishing 
model 

Standing stock 
model 

Peter 
Mumby 

 Palau 
 Guam 
 Pohnpei 

2009-
2012 

UVC belt 
transects 
(30x4m), 
photo 
quadrats 

All species of parrotfish, 
surgeonfish, and rabbitfish 

54 - 

Maria Beger  Marshall 
Islands (3 
atolls) 

2014 UVC belt 
transects 
(50x5m), 
visual 
estimation of 
coral 

All non-cryptic species. 
372 species from 39 
families 

15 14 

Brett Taylor  Guam 
 7 islands 

in FSM 

2011-
2012 

Video belt 
transects 
(5mx3 min), 
visual 
estimation of 
coral 

143 taxa from 22 families 
 

37 57 

NOAA 
CRED 

 Guam 
 12 islands 

in CNMI 

2011, 
2014 

Stationary 
point counts 
(15m 
diameter), 
visual 
estimation of 
coral 

All non-cryptic species. 
>480 taxa from 53 families 

297 414 



Micronesia 
Challenge 

 4 islands 
in FSM 

 3 islands 
in CNMI 

 3 atolls in 
RMI 

2011-
2015 

Stationary 
point counts 
(10m 
diameter), 
photo 
quadrats 

157 taxa from 22 families 
 

- 79 

PICRC  Palau 2014 UVC belt 
transects 
(50x5m), 
photo 
quadrats 

Focused on 35 key species 
from 11 families 

2 26 

Alison 
Green 

 Helen 
Reef 
(Palau) 

2000 UVC belt 
transects 
(50x3m), 
video 
transects 

All non-cryptic species. 
245 species from 27 
families 2 2 

PROCFish  Palau 
 2 islands 

in FSM 
 3 atolls in 

RMI 

2006-
2007 

Distance-
based UVC 
transects 
(50x10m), in 
situ quadrats 

Most non-cryptic species. 
313 species from 30 
families 63 65 

Total     470 657 

 
TABLE S1.3 Details of the 19 key species used to model standing stock in Micronesia. Trophic group 
follows Sandin and Williams (2010). Vulnerability index taken from Abesamis et al. (2014) where 
available. 
 

Family Species Common name Trophic group Vulnerability index 
Acanthuridae Naso lituratus Orange-spine 

surgeonfish 
Primary Consumer Low - moderate 

Acanthuridae Naso unicornis Blue-spine unicornfish Primary Consumer High 
Carangidae Caranx 

melampygus 
Bluefin trevally Piscivore Moderate - high 

Kyphosidae Kyphosus spp. Chub or drummer Primary Consumer - 
Labridae Cheilinus 

undulatus 
Humphead wrasse Secondary Consumer High – very high 

Lethrinidae Lethrinus 
obsoletus 

Orange-striped emperor Secondary Consumer - 

Lethrinidae Lethrinus 
olivaceus 

Longface emperor Piscivore Moderate 

Lutjanidae Lutjanus bohar Two-spot red snapper Piscivore High – very high 
Lutjanidae Lutjanus gibbus Humpback red snapper Secondary Consumer - 
Scaridae Cetoscarus 

bicolor 
Bicolour parrotfish Primary Consumer High – very high 

Scaridae Chlorurus 
microrhinos 

Steephead parrotfish Primary Consumer Moderate 

Scaridae Chlorurus 
sordidus 

Bullethead parrotfish Primary Consumer Low 

Scaridae Hipposcarus 
longiceps 

Pacific longnose 
parrotfish 

Primary Consumer Low - moderate 

Scaridae Scarus 
rubroviolaceus 

Redlip parrotfish Primary Consumer - 

Serranidae Epinephelus 
fuscoguttatus 

Brown-marbled 
grouper 

Piscivore Moderate - high 

Serranidae Epinephelus 
polyphekadion 

Camouflage grouper Piscivore - 

Serranidae Plectropomus 
laevis 

Black-saddled coral 
grouper 

Piscivore High – very high 

Siganidae Siganus 
argenteus 

Forktail rabbitfish Primary Consumer - 



Siganidae Siganus 
punctatus 

Gold-spotted rabbitfish Primary Consumer - 

 

 
FIGURE S1.2 Scatter plots of site-level data comparing the biomass for all species recorded to the 
biomass for only the 19 species considered by the Phase 1 project. Data sets and Pearson correlation 
coefficients (solid line) are: (a) Maria Beger (0.925), (b) Brett Taylor (0.825), (c) NOAA CRED 
(0.697), (d) Micronesian Challenge (0.957), (e) PICRC (0.993), and (f) PROCFISH (0.777). Alison 
Green (0.913) not shown because of limited number of sites. Dotted lines represent correlations 
including outliers (red circles) where correlation coefficients are (b) 0.764, (c) 0.506, and (f) 0.694. 
Outliers are caused by large shoals of (b) Platax orbicularis, (c) Caranx sexfasciatus, and (f) 
Bolbometopon muricatum (lower) and Lutjanus gibbus (upper). 
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APPENDIX S2 - DETAILS OF PREDICTOR VARIABLES NOT COLLECTED IN SITU 
 
Distance to pass 
Level 4 of the Millennium Coral Reef Mapping Project (MCRMP) classification scheme (Andréfouët 
et al., 2006) includes a habitat class for pass, and so this variable was calculated as the Euclidean 
distance of the reef site to the nearest pass in the reef. To ensure that all distances were relevant to the 
behaviour of fishers distances were truncated at 20 km, which is slightly further than the average 
distance travelled by fishers in the region (~17 km; Sonia Bejarano, unpublished data). This truncation 
also ensured that there were no situations where large distances were returned because there was no 
pass present on a given island or atoll (i.e. no situations where meaningless distances were returned 
because the algorithm was measuring from a reef cell on one island or atoll to a pass on a different 
island or atoll). 
 
Distance to port 
This response variable was estimated as the Euclidean distance between each reef cell and the nearest 
major population centre (Koror on Palau, Apra Harbor on Guam, Rota Seaport and Tanapag Harbor in 
CNMI, Colonia on Yap, Moen on Chuuk, Kolonia on Pohnpei, Tafunsak on Kosrae, and Majouro in 
the RMI). We used Euclidean distance since it is unlikely that many of the small boats that make up a 
large proportion of Micronesian fisheries would take long marine detours to visit ports. Rather, they 
are likely to use a combination of boats and travel by road, and we assume that Euclidean distance is 
a reasonable proxy. This approach is consistent with other measures of distance to port that use a 
combination of across sea and across land distances (Brewer, Cinner, Fisher, Green, & Wilson, 2012; 
Brewer, Cinner, Green, & Pressey, 2013; Cinner, Graham, Huchery, & MacNeil, 2013). 
 
Export 
In some jurisdictions, the export of coral reef fishes can be an important driver of fishing pressure as 
coolers of coral reef fishes are exported by air for markets and off island family members (Grafeld, 
Oleson, Teneva, & Kittinger, 2017). The importance of these exports as drivers of fishing pressure 
depends on the current status of coral reef fish populations (i.e. if there are still enough fish to catch 
for export) and the access to airports. This variable was included in the fishing pressure model by 
developing a semi-quantitative scale for these exports using expert opinion, where every reef cell was 
ranked as 0, except for cells within 20 km of the main islands in some jurisdictions. These island were 
ranked as follows: 
• Main islands in Pohnpei and Yap were ranked as 1 (low);  
• Koror in Palau was ranked as 2 (medium); and   
• Main island in Chuuk was ranked as 3 (high). 
Consequently, this variable allows for reef cells close to these islands to potentially be more heavily 
fished than other reef cells because of the additional pressure of catch for export. 
 
Geomorphology 
Geomorphology was derived from levels 2 and 3 of the MCRMP classification scheme (Andréfouët et 
al., 2006). Level 2 distinguishes oceanic atolls, oceanic banks and ocean uplifted / filled atolls (low 
islands), and oceanic islands (high islands). The classification scheme does not distinguish among 
islands with and without lagoons, and those with lagoons (particularly Palau, Pohnpei, Chuuk, and 
Yap) were classified by hand. Level 3 was used to separate drowned atolls and those atolls with islands. 
 
Habitat type 
Although the majority of the sites modelled and mapped are from a single habitat class in the MCRM 
project classification scheme (forereef), some other habitats were included in the maps since the 
models were judged to be appropriate for extrapolation (Bay exposed fringing, Bridge, Deep drowned 



reef flat, Deep terrace, Drowned bank, Drowned patch, Drowned rim, Forereef or terrace, Lagoon 
pinnacle, Pinnacle, Reticulated fringing, Undetermined envelope). 
 
Human density 
Standardised, rasterized, global data sets of human populations are available online, and the Phase 1 
project used data from SEDAC, the Socioeconomic Data and Applications Center (SEDAC), which is 
part of the Earth Observing System Data and Information System (EOSDIS) of NASA1. The project 
used the Global Rural-Urban Mapping Project (GRUMP) 2000 data layer, which provides estimated 
population sizes within at a resolution of 30 arc-seconds (~1km). Full details of the derivation of this 
data layer is provided in Balk et al. (2010), but it is generated using population counts and night-time 
light intensities. Defining the area included in assessing human populations affecting a survey site was 
informed by previous studies that have estimated populations within 5 km2 (Stallings, 2009; Cinner, 
Graham, Huchery, & MacNeil, 2013), a radius of 15 km (Williams et al., 2008), and a radius of 25 km 
(Halpern et al., 2008; Mora et al., 2011). Furthermore, interviews with fisherfolk in Palau, Pohnpei, 
and Guam suggest that on average they travel ~17 km to fish (Sonia Bejarano, unpublished data). 
Therefore, the project considered human populations within 20 km of each fish survey site, and divided 
this figure by the area of reef within the same distance, resulting in a metric of human population 
pressure per km2. In addition, we followed Williams et al. (2015) and calculated population pressure 
per km2 of reef within 200 km as a metric of the potential for a reef to be fished by more distant 
populations that are increasingly using larger, faster boats that are able to fish more widely. 
 
Larval supply 
We used a biophysical model of larval supply throughout the area (see Mora et al., 2012 for a full 
description of the model). Briefly, patches of reef habitat were identified, and then ‘virtual larvae’ were 
released within a computer simulation of oceanic conditions. Larval release was at the midpoint of 
each season (i.e. 2 February, 5 May, 6 August, and 11 November) and across six years (2004–2009), 
for a total of 24 simulations. Virtual larvae were tracked for 100 days, a duration encompassing the 
majority of pelagic larval durations in tropical reef fishes, and where they ‘settle’ was recorded (either 
back to the same reef, to a different reef, or lost into oceanic water). These data generate a connectivity 
matrix, showing the proportion of larvae moving from each patch to every other patch. The 
connectivity matrix was used to quantify upstream larval supply following removal of self-recruiting 
arrivals at each patch (arrivals originating and settling at the same patch). This metric was calculated 
because local-retention patterns tend not to be reliable when extracted from biophysical models 
because they ignore all local processes (e.g. tides, local-scale eddies, and near-shore turbulence). The 
larval arrival metric for each modelled patch was assigned to every reef cell that was located within 
that patch. 
 
Net primary productivity 
Mean monthly net primary productivity from 2010-2014 at a resolution of ~350 km2 was obtained 
from an online source2. Remotely sensed estimate of productivity of over reefs are confounded by 
bottom reflectance, so only data from pelagic areas around each reef were used. These areas were 
identified using the protocol described in Gove et al. (2013): productivity data was excluded where 
they intersected with any polygon delineated by the MCMP, and then the productivity value for each 
reef cell was derived as the value contained within the nearest, entirely pelagic data cell. 
 
Protected status 
Regional data layers of the extent of marine protected areas were available within the region, but 
included both well-enforced no-take reserves, areas with only limited regulations (e.g. no commercial 
fishing), and ‘paper parks’. Therefore, expert opinion was used to refine this data layer and classify 

                                                 
1 http://sedac.ciesin.columbia.edu/ 
2 http://www.science.oregonstate.edu/ocean.productivity/index.php 



only no-take reserves as either ineffective (essentially comparable to areas open to fishing), partly 
effective (some enforcement of regulations), or effective (well enforced). 
 
Sea surface temperature 
Sea surface temperature data were obtained online from the Coral Reef Temperature Anomaly 
Database (CoRTAD)3, and used data from 2008-2012 at a 4 km resolution. The metric of sea surface 
temperature followed Williams et al. (2015), namely the mean temperature from the coldest month of 
each year (i.e. the lower climatological mean) at each reef location (calculated from weekly means). 
The final metric was calculated as the mean temperature of the coldest month (which could potentially 
vary among years) over the five-year period from 2008-2012 (i.e. the mean of five temperatures, with 
one value from each year). 
 
Socio-economic development 
Socio-economic status could not be assessed for each island in the region, but was derived at a 
jurisdiction level using standardised data from online sources4,5 (Table S3). 
 
TABLE S2.4 The jurisdiction-scale, raw socio-economic data used in the Phase 1 project. 
  

CNMI Guam FSM Palau RMI 
Population density 
(people per km2 of land) 

112.8103 297.3989 149.8803 46.32898 398.8453 

Median age (years) 31.6 29.9 23.8 33 22.5 
Annual population 
growth rate (%) 

2.18 0.54 -0.46 0.38 1.66 

Annual birth rate 
(per 1000 people) 

18.32 16.82 20.54 11.05 25.6 

Annual death rate 
(per 1000 people) 

3.71 5.12 4.23 7.99 4.21 

Urban population (%) 89.2 94.5 22.4 87.1 72.7 
Life expectancy (years) 77.82 78.98 72.62 72.87 72.84 
GDP (US$ million) 1232 4600 315 269 193 
GDP growth rate (%) 4.5 0.6 0.1 8 0.5 
GDP per capita ($) 13300 30500 3000 16300 3300 
Unemployment rate (%) 11.2 8.4 16.2 4.2 36 

 
Rather than use each variable separately, they were combined into a composite index using principle 
components analysis (PCA, Fig. S2.3). This analysis separated the jurisdictions with, for example, 
Palau, CNMI, and Guam having a higher median age, GDP, and life expectancy (negative scores on 
PC1) compared to FSM and RMI. Similarly, FSM and RMI have higher unemployment and population 
growth rates than the other three jurisdictions (positive scores on PC1). Finally, Palau is separated 
from CNMI and Guam by having a lower life expectancy (more positive values on PC2). 
 

                                                 
3 http://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0126774 
4 http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators 
5 https://www.cia.gov/library/publications/the-world-factbook/ 



 
 
FIGURE S2.3 Position of each jurisdiction on the first two axes (PC1 and PC2) of a principle 
components analysis of the raw socio-economic data. 
 
These first two axes were used as the two metrics of socio-economic development for reef cells. 
However, these values were only applied to reef cells within 20 km of the islands with major 
populations (Palau, Guam, Rota, Aguijan , Tinian, Saipan, Yap, Chuuk, Pohnpei, Kosrae, Majuro, and 
Kwajalein Atoll). The socio-economic situation at more remote islands with limited populations do 
not necessarily reflect the situation on these populous islands, and indeed these remote islands are 
more likely to be more socio-economically similar to each other than nearby population centres. 
Because no socio-economic data were available for these remote islands, values for these reefs cells 
were not included (‘missing data’). 
 
Tourist pressure 
Across the entire region, reliable tourist arrival data are only available at the jurisdiction level6 (Table 
S4). These data were compared to total jurisdiction population predictions from the SEDAC data layer 
(see section on Human density) to generate a tourist to local population ratio. This ratio was then used 
to change the ‘Human density’ metrics at 20 and 200 km for each cell (i.e. Human density values were 
multiplied by 4.134 in CNMI and by 0.320 in FSM). This assumes that tourist numbers are distributed 

                                                 
6 http://data.worldbank.org/indicator/ST.INT.ARVL 



around the jurisdiction in the same proportion as local populations, which seems likely as most tourists 
spend at least some time in the population centres. Consequently, this calculation leads to an estimate 
of the total number of tourists per km2 of reef within 20 and 200 km of each reef cell.  
 
TABLE S2.5 Total number of annual tourist arrivals into each jurisdiction, and the tourist to local 
population ratios. 
 
Jurisdiction 2011 tourist arrivals Local population Tourist to population ratio 
CNMI 336000 81275 4.134 
FSM 35000 109411 0.320 
Guam 1160000 152423 7.610 
Palau 109000 19290 5.651 
RMI 4600 52066 0.088 

 
Wave exposure 
Exposure was calculated using linear wave theory, which has successfully been used to predict habitat 
distribution and benthic beta-diversity on reefs (Harborne, Mumby, ĩychaluk, Hedley, & Blackwell, 
2006; Chollett, & Mumby, 2012). Full details of the method are described elsewhere (Ekebom, 
Laihonen, & Suominen, 2003), including their application to reefs (Harborne et al., 2006; Chollett, & 
Mumby, 2012), and are only described briefly here. Firstly, average weekly wind speed and direction 
for each ~25 km2 cell across the region was obtained from QuikSCAT satellite scatterometer data 
(from 2005 to 2009), available online7. These data were then used to calculate mean wind speed in 
each 25 km2 cell in each of eight directions (N, NE, E, SE, S, SW, W, and NW), and the proportion of 
time the wind blew from that direction. The fetch to the nearest land mass or reef crest in each of eight 
directions (N, NE, E, SE, S, SW, W, and NW) from each reef cell was then calculated using bespoke 
MATLAB code. The wave exposure in each direction was then calculated using fetch, mean wind 
speed and direction data, and linear wave exposure equations (Ekebom et al., 2003). An estimate of 
total wave exposure was calculated by summing the eight individual estimates of wave energy, 
weighted by the proportion of time the wind blows from each direction. Because of the lack of detailed 
bathymetric data needed to attenuate wave exposure with increasing water depth, surface wave 
exposure was used. However, this metric is likely to be a good estimate of the exposure experienced 
in each cell since this project focuses on shallow-water habitats. 
 
  

                                                 
7 http://www.ssmi.com/qscat/ 



APPENDIX S3 – ADDITIONAL ANALYTICAL RESULTS AND MAPS 
 

 
 
FIGURE S3.4 All partial dependence plots retained in the minimal boosted regression tree model of 
mean parrotfish length. Figures in parentheses represent percentage of explained deviance attributable 
to each variable. SST = sea surface temperature. Y axes centred to have zero mean over the data 
distribution (15 – 47.5 cm prior to transformation). Rug plots inside the top of plots show distribution 
of values, in deciles. For distance to pass, dotted line shows modification of fitted function used for 
fishing pressure predictions. 
 



 
FIGURE S3.5 Three-dimensional partial dependence plot for the strongest interaction (coral cover 
and sea-surface temperature) in the model for fishing pressure (mean parrotfish size). 
 



 
 
FIGURE S3.6 All partial dependence plots for variables retained in the minimal boosted regression 
tree model of total biomass of the 19 focal species. Figures in parentheses represent percentage of 
explained deviance attributable to each variable. SST = sea surface temperature; NPP = net primary 
productivity. Y axes centred to have zero mean over the data distribution (0 - 517.9 g m-2 prior to 
transformation). Rug plots inside the top of plots show distribution of values, in deciles. 
 



 
FIGURE S3.7 Three-dimensional partial dependence plot for the strongest interaction (net primary 
productivity and sea-surface temperature) in the model for total biomass of the 19 focal species. 
 



 
 
FIGURE S3.8 All partial dependence plots for variables retained in the minimal boosted regression 
tree model of total biomass of primary consumers. Figures in parentheses represent percentage of 
explained deviance attributable to each variable. SST = sea surface temperature; NPP = net primary 
productivity. Y axes centred to have zero mean over the data distribution (0 - 201.4 g m-2 prior to 
transformation). Rug plots inside the top of plots show distribution of values, in deciles. 
 
 



 
 
FIGURE S3.9 All partial dependence plots for the variables retained in the minimal boosted regression 
tree model of total biomass of piscivores. Figures in parentheses represent percentage of explained 
deviance attributable to each variable. SST = sea surface temperature; NPP = net primary productivity. 
Y axes centred to have zero mean over the data distribution (0 - 110.2 g m-2 prior to transformation). 
Rug plots inside the top of plots show distribution of values, in deciles. 
 



  
 

 

 

 
 
FIGURE S3.10 Regional maps of predicted current biomass and predicted potential percentage gain 
in biomass in the absence of fishing of (a, b) primary consumers and (c, d) piscivores among the19 
focal fish species. Each panel includes larger-scale insets of Palau and Guam to show actual map 
resolution. 
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