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Abstract

In this work, we studied MHD modes in a magnetically twisted flux tube with a twisted flow that is embedded in
the uniform magnetic field. We consider when the azimuthal magnetic field and velocity are linear functions of
radius (case i) and also more generally when they are arbitrary functions of radius (case ii). Under these
assumptions, we obtain the dispersion equation in the incompressible limit. This solution can also be used to
describe the MHD perturbations in plasma pinches and vortices. The dispersion equation is simplified by
implementing the thin flux tube approximation. It is shown that sausage modes (m=0) become unstable for large
enough azimuthal flow speeds. Also, we obtained the unstable modes for m>0. It is shown that the stability
criterion of the m=1 mode (for case i) is independent of the background azimuthal components of the plasma
velocity and magnetic field. These criteria fully coincide with the result that was previously obtained by
Syrovatskiy for a plane interface. Moreover, this result even remains valid when the azimuthal magnetic field and
velocity have an arbitrary dependence on radius (case ii). A criterion for the stability of the m�2 modes is also
obtained. It was found that instability of these modes is determined by both longitudinal and azimuthal flows. It is
shown that if there is sufficient azimuthal background flow, then all modes with m�2 will become unstable.
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1. Introduction

It is well known that plasma flows play an important role in
the Sun’s magnetic atmosphere (see, e.g., Priest 2003;
Kallenrode 2004; Filippov 2007, and references therein). It is
difficult to obtain an exact analytical solution in general cases
that describe, e.g., how wave modes depend on stationary but
arbitrary plasma flows. However, for some special cases, e.g.,
when there is axial symmetry, it is possible to obtain
magnetohydrostatic balance equations and to find analytical
solutions and stability criteria. These solutions can be used for
both qualitative and quantitative analyses of the variety of wave
processes observed in the solar magnetic loops, spicules and
other magnetic configurations in the solar atmosphere.

The cylindrically symmetric flux tube with a twisted magnetic
field is a well-known model for theoretical study of MHD
perturbations (see, e.g., Goossens 1991; Bennett et al. 1999;
Erdélyi & Fedun 2006, 2007, 2010; Giagkiozis et al. 2015). For a
long time, this basic but instructive model was also used to study
plasma processes in space (see, for example, Roberts 1991;
Ladikov-Roev et al. 2013; Cheremnykh et al. 2014, 2018;
Klimushkin et al. 2017) and laboratory high-temperature plasmas
(Suydam 1958; Shafranov 1970; Bateman 1978; Galeev & Sudan
1989; Burdo et al. 1994; Andrushchenko et al. 1999). This model
is also useful for study fundamental plasma physics problems
(see, e.g., Solov’ev 1967; Cheremhykh & Revenchuk 1992;
Andrushchenko et al. 1993; Cheremnykh et al. 1994, 1994;
Filippov 2007; Cheremnykh 2008, to name but a few).

This analytical model can be applied to describe behavior of
twisted jet-like plasma structures in the solar atmosphere that
have been observed in X-ray, EUV, Hα, and other spectral
lines. These structures, such as type I and II spicules may
appear as a result of magnetic reconnection (see, e.g., Shibata
et al. 2007) and have been widely observed by, e.g., the Hinode
satellite and the Swedish Solar Telescope (SST; see, e.g., De
Pontieu et al. 2007, 2012; Kosugi et al. 2007; Sharma et al.
2018). Recently, oscillations in spicules have been interpreted
as kink and sausage MHD wave modes (see, e.g., Jess
et al. 2012, 2015, and references therein). Morton et al. (2012)
have also reported on signatures of transverse oscillations in the
fibril structures. The proposed model of a magnetic flux tube in
the presence of magnetic twist and twisted flow can provide us
with a better understanding of plasma processes and wave
generation by photospheric rotational motion, such as inter-
granular vortices (see, e.g., Bonet et al. 2008, 2010;
Wedemeyer-Böhm & Rouppe van der Voort 2009; Giagkiozis
et al. 2017; Kato & Wedemeyer 2017). Such types of magnetic
configurations and plasma flows are also frequently observed in
solar tornadoes (see, e.g., Li et al. 2012; Su et al. 2012;
Wedemeyer-Böhm et al. 2012) and naturally appear in
numerical MHD simulations of various regions of the solar
atmosphere (see, e.g., Fedun et al. 2011a, 2011b; Shelyag et al.
2011, 2012, 2013; González-Avilés et al. 2017, 2018;
Murawski et al. 2018; Snow et al. 2018).
In the second half of the 19th century, Helmholtz (1868) and

Kelvin (1910) discovered that the plane interface between two
moving liquids with different velocities is unstable. Much later,
in the middle of the twentieth century, Landau & Lifshitz
(1959), based on equations of motion of ideal fluid in the
approximation of a zero thickness interface between two
moving liquids, showed a simple derivation of this type of
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instability. However, this approach does not cover all possible
scenarios of instability development between separate moving
media. For example, the Kelvin–Helmholtz (KH) instability
may be substantially affected by the presence of magnetic field.
Syrovatskiy (1953) has found that a sufficiently strong
magnetic field parallel to the interface leads to quenching of
the KH instability. On the other hand, if the magnetic field is
perpendicular to the media interface, the instability develop-
ment is not hindered (see, e.g., Chandrasekhar 1961).

A detailed analytical study of the effect of longitudinal and
azimuthal flows in the context of tokamaks on MHD waves in a
circular plasma cylinder in the presence of a twisted magnetic
field was carried out in Solov’ev (1967). For a thin plasma
cylinder with a homogeneous current, which is rotating as a
whole around its axis and surrounded by a disturbed
intermediate and ideally conducting casing, it was shown that
current and rotation do not affect the stability criterion of the
mode m= 1. In the case of a plasma tube without a casing, it
was found that the azimuthal rotation of the cylinder leads to
the instability of MHD modes. If the boundary of the plasma
tube is ‘fixed’ on an ideally conducting wall, then there is an
interval of azimuthal rotation speeds at which stability with
respect to arbitrary helical modes takes place. In the same
paper, for the case when magnetic field and velocity vectors are
parallel, a particular Suydam criterion (see, e.g., Suydam 1958)
was obtained for perturbations that are independent of the
boundary conditions and localized in the neighborhood of
points at which the longitudinal wave vector is very small. It
follows from the necessary stability criterion that speed can
have a destabilizing effect on the Suydam modes (see, e.g.,
Cheremhykh & Revenchuk 1992). Solov’ev (1967) has found a
local stability condition for the special case of axially
symmetric oscillations, i.e., sausage modes (m= 0), of the
magnetic flux tube when a longitudinal magnetic field is not
present. The zero azimuthal magnetic field approximation
coincides with the Rayleigh criterion (Rayleigh 1916). Some
results of Solov’ev (1967) were refined in later papers
(Bondeson et al. 1987; Bodo et al. 1989, 1996). For example,
Bondeson et al. (1987) have shown analytically and numeri-
cally that the plasma flow modifies the Suydam criterion and, at
some critical velocity, destabilizes the Suydam modes. Also in
this paper, the behavior of the Suydam modes was analyzed at
velocities above and below the critical velocity.

Waves and instabilities in solar magnetic tubes with
background flow have been investigated in a number of papers
(see, e.g., Goossens et al. 1992; Soler et al. 2010; Zaqarashvili
et al. 2010, 2015, and references there in). In particular,
Goossens et al. (1992) obtained a dispersion relation for MHD
modes in a plasma cylinder with a longitudinal magnetic field
and flow, which in the long-wave approximation coincides with
the dispersion equation obtained by Syrovatskiy (1953) and
describes KH instability. Soler et al. (2010) have found that
azimuthal plasma flow generates an instability of the KH type
in a plasma cylinder with a longitudinal magnetic field. The
destabilizing influence of longitudinal flow on the Suydam
modes (see, e.g., Suydam 1958) in a plasma cylinder with a
helical magnetic field was studied by Zaqarashvili et al. (2010).
In all of these works, it was proposed that the presence of flow
significantly modifies the dispersion equations and, accord-
ingly, the propagation conditions of MHD waves. It is
necessary to mention the general result of all of these works:
similar to the KH instability, there exists a plasma velocity limit

above which MHD modes become unstable. At the same time,
in these studies, the stability analysis of the perturbations was
carried out in plasma tubes with either a nontwisted magnetic
field or with a nontwisted velocity flow. This was primarily due
to the mathematical intractability of consistently dealing with
both small oscillations of the equilibrium twisted magnetic field
and the equilibrium twisted velocity field at the same time. In
the present paper, we solved this problem as follows.
Following Appert et al. (1974), usually the two first-order
differential equations for radial displacement rx and perturbed
total plasma pressure δp1 are used to describe MHD
perturbations in cylindrically symmetric magnetic flux tubes.
Analysis shows that this approach can be effectively used for
magnetohydrostatic equilibria.
Goossens et al. (1992) has shown that perturbed velocity δv

is connected with displacement x as

v V V

V V V

t

t

div

div . 1

x x x

x x x x

d =
¶
¶
+ ´ ´ -

+ =
¶
¶
+ -

▿ ( )

( · ▿) ( · ▿) ( )

Here V is the equilibrium velocity. For this analysis, we will
use the cylindrical coordinate system r z, ,j( ) and assume that
magnetic flux tube is axially symmetric. Also, in our model, we
assume that the structure of the background plasma and
magnetic field depend only on the radial distance r (see also
Goossens et al. 1992). Therefore, the equilibrium velocity V
and magnetic B fields can be represented in the form:

V e e

B e e

V r V r

B r B r

,

. 2

z z

z z

= +
= +

j j

j j

( ) ( )

( ) ( ) ( )

One can see from Equation (1) that the most convenient
variable for linearization of the MHD equations in the moving
plasma is δv. We will show in Section 3 that if twisted magnetic
field and flow are present, the most convenient approach to
obtain boundary conditions is to use δv. These boundary
conditions can be obtained in the framework of classical
hydrodynamic theory (see, e.g., Landau & Lifshitz 1959). We
will show that under necessary approximations the obtained
results lead to the results of other works on this topic.
In the present study, we will simplify the equations of small

oscillations obtained for the case of a plasma cylinder with a
homogeneous current along the cross section of a plasma
cylinder, with a longitudinal uniform flow that is also rotating
as a whole around the flux tube axis. The equations of small
oscillations obtained for such an equilibrium can be used to
analyze the stability of MHD modes with arbitrary azimuthal
wave numbers. We confine ourselves to considering only
incompressible perturbations of the Alfvén type Miyamoto
(1997), since it is known that these perturbations are the most
unstable (see, e.g., Kadomtsev 1966; Bateman 1978). We will
then go on to focus on realization of the KH instability by
analyzing the stability of a plasma pinch with a constant
external longitudinal magnetic field, a zero external azimuthal
field, and a twisted magnetic and velocity field inside the the
magnetic flux tube. Importantly, we will demonstrate that in the
case of the kink mode (m= 1) the instability criterion is
independent of the background azimuthal components of the
magnetic field and velocity flow.
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2. Initial Equations

Let us start with MHD equations that describe the flow of an
ideally conducting plasma (see, e.g., Kadomtsev 1966; Priest
2003).

v
t
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+ = ( )
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where v is the velocity of the elementary plasma volume, ρ is
the plasma density, p is the kinetic pressure, and γ is the ratio of
specific heats. Here and later in the text we use normalized
magnetic field, i.e., B B4p  .

By using this initial system of equations, we obtain
Equation (55), which describes a steady-state plasma flow. Also,
from these equations, assuming that every perturbation is
proportional to i t im ik zexp zw j- + +( ), we derive the govern-
ing equations for small oscillations shown in Equations (64)–(66).
From these equations, we obtain Equations (71)–(72)), which are
two first-order differential equations coupling the perturbed total
pressure δp1 and perturbed radial velocity component δvr. These
equations can be applied to both the internal r a< and external
r>a regions of the magnetic plasma column, where a is its
radius (see Figure 1). We will denote the quantities that
correspond to each of the internal and external regions with the
indices i and e, respectively. By assuming that the equilibrium
plasma density profile is piece-wise constant, i.e., 0

d

dr
=r

inside and outside of the cylinder, the differential equation for
the radial velocity perturbation can be obtained by substituting
Equation (72) into (71) (see Appendices A and B for details):
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where the frequency ω1 is given by

m

r
V k V .z z1w w= - -j

Equation (7) coincides with Equation (14.36), given in
Miyamoto (1997), and is equivalent to the Hain–Lüst equation
(Hain & Lüst 1958). If Vz=Vj=0 and Bj=0, then
Equation (7) in the incompressible limit is obtained from the
equations of small amplitude perturbations given by Goedbloed
& Hagebeuk (1972), Choe et al. (1977), and Edwin & Roberts
(1983). For Vz=Vj=0 and Bz=0 Equation (7) becomes the
equation obtained by Cheremnykh et al. (2014).

For the case under consideration here, i.e., stationary flow in
the plasma cylinder with a twisted magnetic field, the radial
components of displacement ξr and velocity δvr are related to
each other as:

i
v
.r

r

1

x
d
w

=

Equation (7) can be obtained from Equation (16) in Goossens
et al. (1992) in the incompressible limit and after replacing

vr r 1x d w .
From Equations (71)–(72), differential Equation (73) is

obtained for δp1. For the case Vj=Vz=0, Equation (73)
coincides with Equation (12) in Bennett et al. (1999). For the
following analysis, we will use Equation (7) as well as
Equation (73).

3. Boundary Conditions

To obtain a dispersion relation, we will use the differential
Equation (73), but this must be supplemented with physical
boundary conditions. The first boundary condition can be
found by assuming that the flux is not changing through a time-
varying interface. If the plasma is moving in the presence of a
perturbed discontinuity surface, from the continuity equation
Equation (3), we obtain (Landau & Lifshitz 1959),

v D 0,n nr - ={ ( )}

Figure 1. Magnetohydrodynamic equilibrium of the twisted magnetic flux tube
in presence of helical velocity flow.
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where v nvn = · is the normal velocity component (to the
discontinuity surface) of the elementary plasma volume, Dn is
the interface velocity, directed, by definition, along the normal
to it. The symbol x x xi e= -{ } indicates the difference
between the value of x before discontinuity (index i) and after
(index e). Since ir and er are not equal to zero, the condition

v Dn n=

must be satisfied both inside and outside of the discontinuity
surface.

To obtain vn and Dn, we use the following equation for the
interface

Z r a z t, , 0, 8z j= - - =( ) ( )

where a is the radius of the plasma cylinder (the nonperturbed
surface interface), z t, ,z j( ) is a small displacement of
the interface along r. By taking into account that,

i t im ik zexp zz w j~ - + +( ) from Equation (8), we find that
the normal n to the perturbed discontinuity surface has the
following components,

n
Z

im

r
ik

1
1, , .zz z= - -⎜ ⎟

⎛
⎝

⎞
⎠∣▿ ∣

Now, let us consider an arbitrary small volume near the
interface inside of the plasma cylinder (i.e., at r=a− 0). Since
this volume will always be adjacent to the interface, its
coordinates r, j, and z will always satisfy Equation (8). Then
the normal component of the velocity of this elementary plasma
volume is

v nv
Z

v i
mV

r
k V

1
, 9n r z z
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d z= = - +j
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where v V vd= + . To obtain Equation (9), we neglected
second-order terms. For the points x i of the perturbed interface,
the following conditions are satisfied

Z x t
dx

dt
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i
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and, therefore,
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¶
¶
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Then the normal component of the velocity Dn of the surface in
the presence of perturbations is
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Equating Equations (9) and (10), we obtain
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and, therefore
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. 12a
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z
d
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Since Equation (8) is the same for the internal r a<( ) and
external r a>( ) sides of the interface, for a small volume of
plasma near the surface of the discontinuity, beyond the

boundary of the plasma cylinder, the following condition must
be satisfied,

i v
. 13a

r

a

0
1 0

z
d
w

=+
+

∣ ( )

Let us assume that thickness of the discontinuity is negligibly
small in comparison with the radius of the plasma cylinder.
Then, it is obvious that a a0 0i ez z+ = -( ) ( ) or

0. 14a a0 0z z z= - =+ -{ } ∣ ∣ ( )

From Equations (12) to (14), we obtain the first boundary
condition,

v v v
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r r
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d
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⎩

⎫
⎬
⎭

( )

which is usually called the kinematic boundary condition
(Whitham 1974). Note that in the absence of a plasma flow
through the discontinuity surface this is automatically satisfied.
There is also a dynamic condition (Whitham 1974) that must

be satisfied on the interface. This condition can be derived by
integrating Equation (7) with respect to the radius from a e-
to a e+ and taking the limit 0e  . By taking into account the
continuity of vr 1d w on the interval a a0, 0- +( ), and also
the Equation (72) for δp1, we have the second boundary
condition,

p
i v B V

r
0. 16

r
1

1

2 2

d
d
w

r
-

-
=j j⎪
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⎪
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( )

The quantity vrd
w!

in Equations (15) and (16), according to

Equation (71) can also be expressed in terms of δp1 and the
plasma equilibrium parameters.

4. Dispersion Relation and Solutions when Vj and Bj are
Linearly Dependent on r

In this section, we will derive a dispersion relation for MHD
perturbations in a plasma cylinder with uniform current. To
achieve this, it is necessary to simplify Equations (72), (74),
(16), and (17). The simplification of these equations requires
specification of the background magnetic and velocity fields,
and the chosen conditions at the boundary of the plasma
cylinder. In this case, an internal twisted magnetic field can be
represented as

B e eB r B ,i i zi z= +j j( )

where B B a r ai =j j ( ) and B constzi = are the azimuthal and
vertical components of the magnetic field. We assume that the
magnetic flux tube is surrounded by a constant and nontwisted
(B 0e =j ) magnetic field B 0ze ¹ . We also assume (similarly to
Zaqarashvili et al. 2015) that the twisted plasma flow inside the
cylinder takes the form

v e eV r V ,z z= +j j( )

where we choose V constz = and V r= Wj . Here, W =
V a a const=j ( ) is the vortex intensity.

By taking into account all of these assumptions, we can
consider a particular case of a stationary plasma flow in the
presence of homogeneous twisted background magnetic and
velocity fields, i.e., B r rB constzi =j ( ) and V r rV constz =j ( ) .

4

The Astrophysical Journal, 866:86 (12pp), 2018 October 20 Cheremnykh et al.



For these choices of the magnetic and velocity fields, according
to Equation (55), the plasma pressure outside the cylinder pe is
constant. Inside the plasma pressure pi, from Equation (55), is
given by

p r p V a B a
r

a
0 2 , 17i i

2 2
2

2
r= + -j j( ) ( ) ( ( ) ( )) ( )

where p 0i ( ) is the plasma pressure on the cylinder axis. For the

plasma pinch condition, B a V a 22 2r>j j( ) ( ) , which results in
the pressure value decreasing at the cylinder boundary
(Miyamoto 1997). If V a B a22 2r >j j( ) ( ), then pressure radially
increases and reaches the maximum value at the boundary. This
type of behavior is usually observed in vortex cylinders

(Batchelor 1970). Hence, the following derived equations will
be valid for both plasma pinch and plasma vortex scenarios. To
further simplify matters in the derivation, we take the
background plasma densities inside and outside of the cylinder
to be constants. Similar to Bennett et al. (1999), we consider a
“homogeneous plasma” for which
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From Equations (73) and (19), we obtain the Bessel equation
for δp1 (Dwight 1947), i.e.,
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Since the coefficients a11 and a12 in Equation (20) have a
different form when r a< and r>a, the internal and external
solutions can each be determined with their own arbitrary
constants. The boundary conditions given by Equations (15)
and (72) allow us to find an equation connecting these two
arbitrary constants. Another equation for these constants can be
found from Equation (16). As a result, we obtain two equations
for two unknown quantities. Finding solutions to this system of
equations will then allow us to derive the governing dispersion
equation.

In the region where r a< , the solution (20) has no
singularities at r=0 for m 00

2 >

p C I m r r a, , 21i m1 0d = <( ) ( )

where Im(x) is a modified Bessel function of the first kind, and
Ci is an arbitrary constant. For the case when m 00

2 < , the

solution of Equation (20) for r a< is

p C J n r r a, , 22i m1 0d = <( ) ( )

where n m 00 0
2= - > and Jm(x) is a Bessel function of the first

kind. Outside of the cylinder, the required solution of
Equation (20), tending to zero as r  ¥, is

p C K k r r a, , 23e m z1d = >(∣ ∣ ) ( )

where Km(x) is a modified Bessel function of the second kind
and Ce is an arbitrary constant. To obtain the dispersion
equation for the case m 00

2 > , from Equation (15) and (71),
we have
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Here, the subscript i indicates that the value is taken inside the
cylinder, and e is outside. Using the resulting relation for
constants Ci and Ce, from Equation (16), we derive the
dispersion equation,
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When the background flow velocities are set to zero,
Equation (25) reduces to Equation (23) in Bennett et al.
(1999). If we assume Vj=Vz=0 and Bj=0, Equation (25)
reduces to Equation 8(a) in Edwin & Roberts (1983).
In the particular case when Bj=0 and V 0=j , we obtain

from Equation (25),

a
I x

dI

dx
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K y
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1 1
,e

m

m

x k a

i

m
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y k a

11 11

z z

=
= =( ) ( )

∣ ∣ ∣ ∣

which is the same as the dispersion relation derived by
Goossens et al. (1992) under the assumption that Vze=0. This
condition can always be satisfied depending on the choice of
reference frame.
The dispersion Equation (25) is a transcendental equation of

rather complicated form and therefore it is more convenient to
solve it with numerical methods (see, e.g., a numerical study
for the cases when m=±2 and m=±3 in Zaqarashvili
et al. 2015). In the present work, for analytical insight, we will
only consider this equation in the long wavelength (or thin
tube) approximation.

5. (m�1) Modes in the Long Wavelength Approximation
when Vj and Bj Are Linearly Dependent on r

For perturbations with a large characteristic wavelength
k a m a 1z 0~  and for m 1 the following relations between
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Bessel functions can be applied (see, e.g., Dwight 1947):
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These relations significantly simplify dispersion Equation (25) to
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This dispersion relation is valid both for m 00
2 > and m 00

2 < .
The plasma perturbations may become unstable if frequency ω,
which is determined by Equation (27), has an imaginary part.

For Vj=Vz=0, Equation (27) becomes,

k B B
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which, as shown previously by Cheremnykh et al. (2017),
describes stable modes for all m values. If B a 0=j ( ) or m=1
from Equation (28), we obtain the dispersion equation for kink
mode in the long wavelength approximation (see, e.g.,
Roberts 1991):

k
B B

.z
zi ze

i e

2 2
2 2

w
r r
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Note that this equation can also be easily derived from
Equation 8(a) of Edwin & Roberts (1983; using our
corresponding notations). In the particular case in which
B re

1~j
- , Vj=Vz=0 the existence of unstable m=1

modes strongly depends on the value and sign of kz (see, e.g.,
Cheremnykh et al. 2018).

For m=1 from Equation (27), it follows that

k V k B B . 29i z z e z zi ze
2 2 2 2 2 2r w r w- + = +( ) ( ) ( )

It can be seen that the dispersion of the kink mode m=1 is
completely independent of the azimuthal components of the
background flow and magnetic field. From Equation (29),

k V
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is satisfied, from Equation (30) it follows that the frequency has
a positive imaginary part and the m=1 mode will be unstable.
When the internal and external densities are the same ( i er r= ),
the instability development criterion (31) coincides with the
criterion of Syrovatskiy (1953) for a plane plasma interface.
From Equation (31), it follows that if a magnetic field is both
strong enough and is parallel to the flow velocity field, it will
quench the instability. For very weak magnetic fields,
Equation (30) shows that the increment of instability, γ, is

k V . 32z z
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i e

g
r r

r r
»
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In the case when e ir r , the increment is much less than in the
case i er r~ .
From Equation (27), for modes with m 2 , we obtain
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From Equation (33), it follows that instabilities of the modes
m�2 occur when 02D < , i.e.,
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Note, that inequality (34), in contrast to inequality (31),
depends on kz, i.e., it depends on the longitudinal wavelength
of the perturbation. It is also seen that both components of the
background flow velocity field may contribute to the develop-
ment of an instability. However, if the longitudinal and
azimuthal components of the background magnetic field are
strong enough, this could act against the growth of the
instability, as could the presence of sufficient plasma density in
the system. For very weak magnetic fields, from Equation (33),
it follows that the increment is
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It can be seen from Equations (34) and (35) that the instability
of modes m�2 can develop even in cases when Vz=0 and
there is a small V aj ( ) flow component. It follows from
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Equations (33) and (34) that a twisted magnetic cylinder is
stable if Vz=Vj=0 which is consistent with the previous
result of Cheremnykh et al. (2017).

Now, let us compare the results of this present work with
relevant results obtained previously by other authors. Soler
et al. (2010) analyzed the development of the KH instability in
a thin magnetic flux tube that was excited due to an azimuthal
velocity component. The authors of this work made the
following background variable choices,
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For these choices of background variables to satisfy the
condition of instability in Equations (33) and (34), it is
necessary to have m 1 . For such values of m Equation (33)
we have that,
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The inequality (34) in this case is approximately
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These equations coincide with Equations (18) and (19) of Soler
et al. (2010).

Zaqarashvili et al. (2010) studied the influence of long-
itudinal flow (V 0z ¹ , V 0=j ) on normal modes in a uniformly
twisted magnetic cylinder (B 0e =j and Bji∼r; see also
Kadomtsev 1966; Shafranov 1970; Miyamoto 1997), which
satisfy the condition k B 0»· , which results in a longitudinal
wavenumber,
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For this type of perturbation, Equation (33) can be written as,
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i z
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2= r
. This equation is equivalent to equation (27)

of Zaqarashvili et al. (2010). In this case, the instability
condition (34) is

mM 1 ,A
i

e

2 r
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which coincides with inequality (28) from Zaqarashvili
et al. (2010).

The case of internal twisted plasma flow was considered by
Goossens et al. (1992). In this paper, the authors considered the
case when B 0zi ¹ , B 0ze ¹ , Bji∼r, B 0e =j , V 0zi ¹ ,

Vze=0, V V 0i e= =j j . With msgn 1=( ) , and longitudinal
external background flow set to zero Equation (33) takes the
form
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This equation is consistent with Equation (71) from Goossens
et al. (1992) when B V 0= =j j and Equation (93) from
Goossens et al. (1992) when B 0¹j and V 0=j .

6. General Case: (m=1) Mode in the Long Wavelength
Approximation for an Arbitrary Vj and Bj Dependence

on r

When obtaining Equations (7), (15), (16), and
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we took into account that the equilibrium plasma flow and
magnetic field were independent of time but dependent on r.
In the approximation of a “thin” plasma cylinder, i.e.,

k m rz  , Equation (7) takes the form
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For the case under consideration, the boundary condition given
by Equation (15) remains unchanged and Equation (16) is
modified to:
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Now let us remove the background linear dependence
imposed on azimuthal magnetic field and velocity components
shown previously in Equation (18) so that inside the cylinder
Vj and Bj are now arbitrary functions of r, i.e., B B ri =j j ( )

and V V ri =j j ( ). In the case for m=1 from Equation (37), we
obtain
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The solution given by Equation (39) is finite for r=0,
vanishes at r  ¥, and satisfies the boundary condition
Equation (15). Assuming in Equation (38) m=1 and
substituting solution (39) into this equation, as a result, we
obtain the dispersion equation

k V k B B . 40i z z e z zi ze
2 2 2 2 2r w r w- + = +( ) ( ) ( )

In the case Vz=0, Equation (40) becomes the dispersion
equation for the kink mode in the long wavelength limit
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without axial background flow.
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From Equation (40), we have:
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Therefore, we obtain that the mode m=1 will be unstable if
the inequality
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is satisfied. It can be seen that the instability condition
Equation (43) is independent of Br(r) and V rj ( ).

7. Sausage Modes (m=0) when Vj and Bj Linearly
Depend on r

In this section, we will consider the sausage mode (m= 0)
(Kadomtsev 1966; Miyamoto 1997), which plays an important
role in the dynamics of the solar magnetic tubes (Erdélyi &
Fedun 2006, 2007). For this mode, the dispersion Equation (25)
takes the form
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Equation (44) is valid for m 01
2 > . If m 00

2 < the dispersion
equation for sausage modes is modified as:
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To simplify Equations (44) and (46) in the long wavelength
approximation k a 1z ( ), we use the following relations for
Bessel functions:
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whereC 0.5772» is the Euler–Mascheroni constant. To obtain
the last relation in (47) (see, e.g., Dwight 1947), we took into
account that with accuracy up to the first terms:
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Then, for x 1 by using L’Hôpitalʼs rule, we can derive the
second approximation in (47).
Equations (44) and (46) together with relations (47) simplify

and take the same form
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If in the Equation (48), we assume V V a 0z = =j ( ) and
B a 0=j ( ) , we obtain the dispersion equation:
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where C BAi zi i
2 2 r= , C BAe ze e

2 2 r= . Since for x 1 the relation
xK x C x10 = -( ) ( ) is valid, Equation (49) completely coin-
cides with Equation 10(a) of Edwin & Roberts (1983), which is
obtained under the same assumptions. From Equation (48), we
find
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It follows from Equation (50) that instability is realized when
04D < or in physical variables

V a V
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B
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1

1
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1 . 51
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z
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z ze

2 2
2 2

2

2

2 2 2 2

i

e

z
2 2 r

+
-

+ -
>

+ + -

j r
r

j

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )

(

( ) ( ) ) ( )

In the limit that k a 0z  , from Equation (51), we see that the
instability would primarily depend on the azimuthal plasma
flow speed, i.e.,

V a B B a
1

2 . 52
i

zi
2 2 2

r
> +j j( ) ( ( )) ( )

Therefore, in the thin tube approximation, an unstable sausage
mode can develop in condition (52) if the azimuthal flow speed
is strong enough. Previously, Solov’ev (1967) derived a local
stability criterion V 02 >j for the sausage mode in a rotating
plasma cylinder (V r~j and Vz=0) without a longitudinal
magnetic field (B B 0zi ze= = ). Importantly, this criterion was
shown to be independent of the boundary conditions at the
surface of the plasma cylinder. Therefore, from Equation (51),
we can obtain an even stronger criterion for the existence of
unstable sausage modes, i.e.,

V a
B a

. 53
i

2
2

r
>j

j
( )

( )
( )

8. Summary of Main Results

Recent high resolution observation and detection of MHD
modes in solar magnetic flux tubes show a variety of possible
scenarios of their excitation, development, and propagation. For
accurate MHD mode identification in observational data, it is
crucially important to understand from a theoretical point of view
which magnetic and velocity field components are important or
could effect MHD wave mode generation and stability.

In this paper, we presented a detailed analysis of
incompressible modes for a cylindrical magnetic flux tube
with a uniformly twisted background flow and magnetic field.
In such a configuration, we found that fast MHD modes exist
only in the presence of vertical and azimuthal flows. It was
shown that in comparison with the case of a magnetic cylinder
with no twisted background flow and magnetic field, the
frequency could be modified substantially by the inclusion of
these effects, see, e.g., Equations (33) and (34).

We also obtained the equation of small amplitude perturba-
tions, see, e.g., Equations (64)–(67), which allow us to investigate
MHD modes of any m value in the presence of background flow.
We restricted ourselves to the consideration of incompressible
perturbations only. The resulting dispersion relation (25) is
transcendental and can be most fully studied only by numerical
methods. This relation generalizes the dispersion equation
obtained previously by Bennett et al. (1999).

The main attention was paid to finding eigenfrequencies. To
determine these frequencies, the dispersion Equation (25) was
analyzed in the long wavelength approximation, i.e., k a 1z  .
This simplification led to dispersion Equation (48) for sausage
modes m=0 and dispersion Equation (27)—for modes
with m 1 .

For the sausage mode dispersion relation, Equation (48)
describes unstable perturbations in the presence of sufficiently
high azimuthal flow speeds. Equation (48) coincided with the
previous result of Bennett et al. (1999) for Vj=Vz=0.
To describe modes m 1 in the long wavelength approx-

imation, we derived dispersion Equation (27). From this
equation, it follows that kink mode m=1 can be unstable if
the longitudinal background flow is large enough, but stability
is independent of azimuthal magnetic field and flow compo-
nents, regardless of their radial profiles. Hence, it was
demonstrated that the condition for the transition of this mode
from the stable to the unstable regime is determined by the KH
criterion. Also, we found that modes with m�2 can be
unstable for sufficiently large longitudinal and azimuthal
background flows. To counter these instabilities, the presence
of sufficient longitudinal and azimuthal magnetic field
components is required. Furthermore, it was found that the
larger the m value, the more susceptible the mode is to
instability in the presence of twisted background flow.
Regarding future work, since it is well known that the

compressibility of a plasma is a further destabilizing factor in itself
(see, e.g., Kadomtsev 1966; Miyamoto 1997), this effect should
certainly be included to improve upon the current model and to
allow for more realistic applications to the solar atmosphere.

O.C. and Yu.L.-R. would like to thank the Ukrainian
Scientific and Technical Center, PN 6060; Integrated Scientific
Programme of the National Academy of Science of Ukraine on
Plasma Physics for partial support. V.F. and G.V. are grateful
to The Royal Society (International Exchanges Scheme) and
STFC Consolidated Grant for support provided. This work also
greatly benefited from the discussions at the ISSI workshop
“Toward Dynamic Solar Atmospheric Magneto-Seismology
with New Generation Instrumentation.”

Appendix A
Governing Equations of Small Oscillations

By taking into account the unit vector differentiation rules, e.g.,

e
e

e
e, , 54

r
r

j j
¶
¶

=
¶

¶
= -j

j
( )

from Equations (4) and (2), we obtain an equation for steady-state
plasma flow (see, e.g., Chandrasekhar 1961; Goossens et al. 1992):

dp

dr

B V

r
p p

B
0,

2
. 551

2 2

1

2r
+

-
= = +j j

( )

This equation shows a dependence both on the equilibrium
magnetic field and azimuthal velocity. Equations (3), (5), and (6)
under the above assumptions are satisfied automatically. To obtain
the equations for perturbed quantities (which we will denote by
symbol δ), let us linearize Equations (3)–(5) by assuming that the
perturbed quantities depend on time as i texp w-( ).
From Equations (3) and (6), the expressions for the perturbed

density and pressure, after some algebra, can be expressed as
follows:

v

v

i
v
d

dr

p
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v
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p

div ,

div , 56
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and

v
r r

r v
r

v
z
vdiv

1 1
.r zd d

j
d d=

¶
¶

+
¶
¶

+
¶
¶

j( )

The frequency in Equation (56) ω1 is given by
m

r
V k V . 57z z1w w= - -j ( )

After linearization, Equation (4) can be written as

v V v v V V

B B B B

i

p

V

, 581

wrd r d r d dr
d d d

- + + +
= - + +

( · ▿) ( · ▿) ( · ▿)

▿ ( · ▿) ( · ▿) ( )

where δp1 corresponds to the perturbation of the total plasma
pressure:

B Bp p . 591d d d= + · ( )

By taking the scalar product of Equation (58) with er , ej, and
ez, and taking into account Equation (54), we obtain

v i
V

r
v i
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dr
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k B B

v i v
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In the derivation of Equations (60) the dependence of the
perturbed quantities on the coordinates j and z is of the form

im ik zexp zj +( ). Here kP is longitudinal (in the direction of
the equilibrium magnetic field) wave vector, i.e.,

k
B

m

r
B k B

1
. 61z z= +j ⎜ ⎟

⎛
⎝

⎞
⎠
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From the linearized Equation (5), we obtain

B B V B v
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div 62d
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d d
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and from Equations (2) to (54), we find the components of the
perturbed magnetic field, i.e.,
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Eliminating from (60) the perturbation of the magnetic field
(63), we obtain the governing equations of small oscillations,
where the perturbed quantities are the velocity vector

components and the total plasma pressure only,
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Appendix B
Equations of Incompressible Small Amplitude

Perturbations

Let us reduce the system of Equations (64)–(66) to two
equations for the small amplitude perturbations δvr and δp1.
Furthermore, we restrict ourselves to incompressible perturba-
tions only, i.e., c ,S g ¥  ¥( ), where cS is the sound
speed, for which

vdiv 0. 67d = ( )

Let us also assume that equilibrium plasma density satisfies the

condition 0
d

dr
=r inside and outside of the cylinder. Under this

assumption, from the first Equation of (56) there is no perturbed
plasma density, i.e., δρ=0, and Equations (64)–(66) take the
form
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Here we have introduced the notation,

a k B a
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Multiplying Equation (68) by a11, Equation (69) by 2ia12, and
adding the resulting equations together, we obtain the
following equation, which shows the coupling between δp1
and δvr,
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From Equations (56) to (67), we have that
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and from Equations (68) to (70), we obtain the following
relation between δp1 and δvr,
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Eliminating vr 1d w from Equations (71) and (72), we obtain a
differential equation in terms of the total perturbed pressure
only,
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Here we have introduced the following notations,
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Equation (73) can be obtained from Equation (18) in Goossens
et al. (1992) in the incompressible limit.
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