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Summary 
 Heterogeneity in TB burden is driven by the organism, host, environment and distal determinants. 

 More reliable data are needed, given inconsistent case ascertainment. 

 Targeting high-risk groups is an important consideration in designing interventions, but raises equity 

and efficiency issues. 
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Abstract 

Although less well-recognised than for other infectious diseases, heterogeneity is a defining feature 

of TB epidemiology. To advance toward TB elimination, this heterogeneity must be better 

understood and addressed. Drivers of heterogeneity in TB epidemiology act at the level of the 

infectious host, organism, susceptible host, environment and distal determinants. These effects may 

be amplified by social mixing patterns, while the variable latent period between infection and 

disease may mask heterogeneity in transmission. Reliance on notified cases may lead to 

misidentification of the most affected groups, as case detection is often poorest where prevalence is 

highest. Assuming average rates apply across diverse groups and ignoring the effects of cohort 

selection may result in misunderstanding of the epidemic and the anticipated effects of control 

measures. Given this substantial heterogeneity, interventions targeting high-risk groups based on 

location, social determinants or comorbidities could improve efficiency, but raise ethical and equity 

considerations. 

Key words 
tuberculosis, heterogeneity, epidemiology, case detection, interventions 
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Introduction 

Although estimates of the global burden of tuberculosis (TB) suggest gradual decline, this aggregate 

profile masks a patchy, heterogeneous epidemic that predominantly afflicts society’s most 
marginalised groups. Meanwhile, the causative organism is now the world’s leading infectious killer 

and dramatic reductions in burden will be necessary if the bold new End TB Targets are to be 

realised.[1] Heterogeneity in disease distribution increases as the burden of an infectious disease 

declines and becomes more unevenly distributed across space or social networks[2] – a 

phenomenon which is well recognised in the case of diseases such as malaria.[3] There are many 

reasons to suspect that TB epidemics are highly heterogeneous, such as the prominence of highly 

localised or household transmission, the wide geographical variation in disease burden within and 

between countries and the many individual-level factors strongly associated with risk of disease. 

Here we describe key drivers of heterogeneity in TB burden, discuss the challenges in quantifying 

this heterogeneity and consider implications for transmission dynamics and the design of 

interventions. 

Drivers of Heterogeneity 

Risk of infectious disease is dependent on characteristics of the infectious host, the organism, the 

susceptible host and the environment (Figure 1, Table). The complex interplay between the 

pathogen and the host’s immune system and the propensity for Mycobacterium tuberculosis (Mtb) 

to enter a latent state following infection mean that many exposed individuals will never progress to 

active TB disease. Therefore, individual characteristics that predispose to susceptibility to infection, 

progression to disease after infection and infectiousness during disease episodes all contribute to 

heterogeneity, although the risk factors associated with each differ considerably. For example, risk 

of exposure is driven by sociodemographic factors (e.g. crowding, contact patterns), susceptibility to 

infection once exposed is influenced by processes that impair local immune responses (e.g. 

smoking), progression to disease may reflect systemic immune status (e.g. HIV, nutrition) and 

likelihood of onward transmission may be altered by cough symptomatology and disease duration 

(e.g. through access to care). 

The Infectious Host 

Medical and demographic factors also strongly influence the extent to which each affected person 

propagates Mtb infection. Smear-positive adults and particularly those with cavitary pulmonary 

tuberculosis transmit infection more extensively,[4] while many others, such as those with only 

extrapulmonary involvement, may infect no-one. Although children and persons with HIV are less 

likely to transmit, the degree of infectiousness is variable, with children aged over ten more often 

manifesting adult forms of TB.[5,6] Despite its limitations, smear microscopy remains the mainstay 

of TB diagnosis worldwide with advantages that include its ability to identify highly infectious 

individuals. Social factors such as mixing patterns also influence spread by modifying the number of 

contacts exposed and these patterns also differ by setting (e.g. household, workplace, general 

community). Importantly, social mixing patterns may act differently for Mtb than for other 

infections, given that Mtb, unlike many other major pathogens, is airborne and so can be 

transmitted without the need for direct person-to-person contact. However, the rate of transmission 

per day infectious is considerably lower than for other respiratory pathogens (e.g. measles, 

influenza),[7] meaning that amplifying factors such as cough characteristics, ability to generate 
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aerosols of appropriate size[8] and environmental factors may strongly influence whether infection 

occurs. Finally, myriad programmatic and social factors delay diagnosis and so prolong the infectious 

period and increase the duration of exposure,[9] thereby potentiating heterogeneity through their 

impact on the most marginalised groups.  

The Infecting Organism 

Mtb is a clonal pathogen that displays variable fitness and a complex interaction with its human 

host.[10] Its multiple lineages differ in their genomic make-up and in several aspects of their clinical 

and epidemiological behaviour, including disease progression, disease severity, transmissibility and 

geographic distribution (Supplemental bibliography). With recent advances in molecular 

epidemiology, the influence of Mtb genetic diversity on the outcomes of TB infection and disease is 

increasingly recognised. Strains are thought to have adapted to the human population they 

affect,[11] resulting in a sympatric relationship whereby co-evolved host populations show high 

rates of TB due to certain strains, but concentration within high-risk groups elsewhere.[12] However, 

the discordance in findings between settings and the complex interaction between pathogen, host 

and environment remain challenges to understanding these processes.  

Arguably, the most critical form of pathogen-related heterogeneity is drug resistance, which makes 

clinical management considerably more challenging and expensive. Epidemiologically, transmission 

cycles of drug-resistant TB (DR-TB) differ from those of drug-susceptible TB because of limited access 

to the diagnostics available for determining drug resistance, the long duration of DR-TB treatment 

and clustering of DR-TB patients in high-risk settings. All these factors may act to prolong the 

infectious period, sustaining transmission chains of DR-TB.[13] Resistance-conferring mutations may 

be offset by associated physiological impairments in the organism which limit its ability to survive 

and reproduce (“fitness costs”), although sustained drug exposure may select for bacteria with 

compensatory mutations.[14] Moreover, fitness costs are likely to vary according to the drug in 

question (e.g. higher for rifampicin resistance than for isoniazid or streptomycin),[15] while both 

modelling studies and large-scale outbreaks highlight the potential for DR-TB to proliferate.[16] 

The Susceptible Host 

Characteristics of the susceptible host also markedly influence the likelihood of disease following 

exposure, which may reflect both susceptibility to infection or greater risk of progression to disease 

for those infected. Patterns of reactivation differ markedly by age, and comorbidities such as HIV, 

diabetes, malnutrition and heavy alcohol are critical considerations in the variation of risk of disease 

progression observed (Supplemental bibliography). For example, HIV is the strongest individual-level 

risk factor and a major driver of the TB epidemic in many parts of Africa, while the rising global 

prevalence of non-communicable diseases (e.g. diabetes) may hinder our ability to achieve control 

targets by impairing host immunity at the population level.[17] History of exposure and disease are 

also important, as people who are latently infected likely have partial protection against reinfection 

with the pathogen,[18] whereas previously treated persons are likely to be at substantially increased 

risk for recurrent disease.[19] This latter increase in risk may reflect repeated exposure, incomplete 

treatment, or underlying immunological vulnerability.[20] 
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The Physical Environment 

The setting in which TB is transmitted is also an important modifier of spread – either due to 

increased population density, congregation of individuals with higher rates of specific risk factors or 

directly through environmental features that facilitate airborne transmission. Characteristics of the 

physical environment that may contribute to transmission include crowding, poor ventilation and 

high levels of indoor air pollution.[21] Furthermore, locations with these characteristics (e.g. clinics, 

public transit, churches, prisons, mines and informal drinking spaces) are often frequented by the 

same high-risk individuals, further fuelling heterogeneous transmission in these sites. These 

locations are themselves likely to be in close proximity, enhancing transmission in impoverished 

areas[22] and sustaining the epidemic.[23] 

Structural and Social Determinants 

Heterogeneity at the community level is driven by a complex network of proximal and distal 

determinants that may not always be fully explained by quantifiable risk factors. Migration, 

urbanisation, demographic transition and other broad global trends combined with weak and 

inequitable policy and planning lead to pockets of poverty, unhealthy behaviours and weak health 

systems in which TB thrives.[24] Social or spatial clustering of the individual-level characteristics 

described in the preceding sections may magnify the effect of these risk factors through 

transmission, as persons contact one another more if they share similar characteristics (assortative 

mixing). However, understanding of the effect of the various upstream determinants responsible for 

driving heterogeneity in TB burden is limited by the relative paucity of modelling studies in this 

area.[25] 

Challenges in Quantifying Heterogeneity 

Although substantial between- and within-country differences in burden are frequently reported, 

challenges exist in interpreting the differences observed between demographic, geographical or 

other subdivisions of the population. Our understanding of the population-level epidemiology of TB 

disease relies to a large extent on cases that have sought care, received a diagnosis, and been 

recorded through surveillance systems or local studies. The substantial proportion of cases that does 

not reach this stage in many settings[1] means that our estimates of heterogeneity in burden are 

prone to bias (Figure 2, Panels A and B). A particular consequence of relying on data from detected 

cases arises from the negative correlation between TB burden and access to care, which may mask 

heterogeneity in disease. For example, TB prevalence surveys consistently show a male 

predominance among adult TB cases, but this gender gap is much smaller in notifications – 

suggesting that men experience a higher burden but seek or access care at a lower rate than 

women.[26] Similar and even stronger unobserved effects – whereby mechanisms that increase risk 

of TB also decrease the probability of detection – may exist for features such as socio-economic 

status or locality. Moreover, even if bias could be eliminated from health information systems, 

routinely collected data are not typically disaggregated beyond broad age categories, geographic 

regions and drug resistance profiles, thereby limiting our ability to observe heterogeneity between 

smaller sub-populations without specifically designed studies. 

Much less biased measures of disease burden are available from the recent increase in TB 

prevalence surveys. However, prevalence surveys in the general population are expensive 

undertakings and typically designed to yield a relative precision of 20% to 25%,[27] limiting their 
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ability to discern patterns among subgroups or at the district/local level. Moreover, prevalence 

surveys are by design cross-sectional, meaning that they cannot provide information on 

heterogeneity through time without additional assumptions or repeated data collection. 

One important consequence of detection bias is that clusters of notifications are difficult to 

interpret. Apparent hotspots of TB disease may represent either true areas of intense transmission 

or better diagnosis (via targeted campaigns or differential access to care), such that the areas of 

most intense transmission may be those with the highest notification rates in some settings and the 

lowest in others. Travel to access care may further exaggerate this process, creating artefactual 

aggregations of notifications. By contrast, heterogeneity in transmission may be masked by the often 

substantial latent period between infection and disease onset, during which infected individuals may 

relocate (Figure 2, Panels C and D). This process smooths disease distribution and obscures 

transmission chains, while the distribution of transmission and latent infection are even harder to 

observe in an era when population-wide surveys of infection are no longer undertaken. 

Implications for Understanding and Modelling Transmission 

The impact of heterogeneity of infectiousness is influenced by characteristics of the infectious host 

and the organism being transmitted, and can be explored through its specific effects on the basic 

reproduction number, R0.[28] While the point estimate of R0 is often emphasised as a measure of 

the expected number of secondary cases caused by an average index case in an infection-naïve 

population, infectiousness may more appropriately be viewed as a probability distribution across a 

population of individuals, each with their own expected number of secondary cases. While 

superspreading is clearly observable in TB genomic studies,[29] saturation of close contacts – 

whereby contacts occur primarily among individuals who have already been infected – may increase 

the importance of community transmission in high-burden settings.[30] 

When heterogeneity in susceptibility to TB exists, concerns regarding the assumption of a 

homogeneous population parallel concepts familiar in non-communicable diseases, such as cohort 

selection and frailty models in survival analysis. As higher-risk individuals develop incident 

disease,[19,31] the incidence rate of a cohort may decline simply because those who remain 

susceptible have a lower average risk (Figure 2, Panels E and F). This process is disabled in models 

that collapse risk distributions to their mean values, leading to inaccurate simulations and biased 

predictions. Population-level heterogeneity in susceptibility can also induce thresholds near which 

small epidemiological changes will cause dramatic shifts in disease burden, leading to unanticipated 

effects of preventive interventions[32] and faster emergence of drug-resistant strains.[33] 

Any transition rate can be affected by cohort selection, as illustrated in Figure 3. Instead of the 

disease incidence process discussed above, consider a cohort of individuals with active TB comprised 

of two groups: fast and slow care seekers. As the faster care seekers leave the cohort earlier, the 

overall care-seeking rate will decline over time, even though it remains constant in each group. This 

process complicates estimation procedures and can be especially problematic in relation to rates of 

infection, which are proportional to the prevalence of infectious individuals and so part of a 

feedback loop. Moreover, epidemiological uncertainty around the most appropriate parameter 

values for transmission models means that multiple parameter sets may superficially replicate 
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observed burden,[34] which is particularly problematic for an endemic infection with a prolonged 

and unpredictable latency period. 

Implications for Control 

Targeting Risk Groups 

A consequence of the heterogeneity in transmission, infection, incidence and mortality is that 

benefits of interventions will differ depending on the groups targeted and the distribution of the risk 

factors introduced above. This consideration motivates much current TB policy, with groups at 

higher risk of infection, disease or poor outcomes from TB episodes, such as household contacts, 

children, persons living with HIV, individuals with end-stage renal disease and previously treated 

people identified as high-priority groups for screening and treatment of latent and active TB 

(Supplemental bibliography). Heterogeneity in historical TB exposure is also a focus of interventions, 

with many low-incidence countries targeting services to foreign-born individuals,[35] given their 

higher LTBI prevalence and consequent risk of reactivation. However, interventions targeted at high-

risk populations have not always been successful: a trial of mass screening and preventive treatment 

in South African miners had no impact on TB rates,[36] because of reactivation of non-cured 

infections and reinfection in the context of insufficient treatment and ongoing high environmental 

transmission risk.[37] 

Synergies with non-TB interventions 

Regular interactions with the health care system for the management of chronic and non-

communicable diseases offer the opportunity for intensified case finding efforts, given that many 

such conditions increase TB risk or co-occur in populations with such increased risk. More broadly, 

strengthening health systems for both TB and non-communicable disease control provides the 

potential for synergistic interventions across diseases,[38] while improving control by addressing 

distal determinants should also be a high priority.[39] The observation that both historical and more 

recent declines[24,40] in TB burden have usually been achieved in the context of improvements in 

socio-economic indicators highlights the importance of such upstream determinants and is 

particularly relevant in the Sustainable Development Goals era. 

Geographical Targeting 

TB incidence shows considerable geographical clustering at multiple resolutions[41] and spatial 

targeting of interventions has the potential to achieve major reductions in burden through focusing 

on geographically discernible TB hotspots,[42] although the extent of mixing between hotspots and 

the broader population is important to quantify as it will modify the impact of such 

interventions.[43] Intensive TB control interventions targeted at Inuit communities in northern 

Canada, Alaska and Greenland were effective at substantially reducing the extreme rates of TB 

incidence and mortality observed in the 1950s.[44] New and emerging analytic tools offer 

opportunities to identify and quantify TB hotspots, such as a recent genomic analysis in Peru that 

highlighted the spatial aggregation of multidrug-resistant genotypes.[23] 

Effect of Interventions on Heterogeneity 

Where substantial reductions in TB burden are achieved, heterogeneity in TB distribution may 

increase, as transmission becomes more localised to remaining regions and population groups with 

fewer resources, limited healthcare access, and insufficient adherence to policy. However, even 
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when fully implemented, control efforts may increase or decrease transmission heterogeneity 

depending on the intervention design. Interventions directed at those with poor access to care and 

so high burden of disease may reduce heterogeneity, whereas interventions that strengthen routine 

programmatic management may increase heterogeneity even while decreasing overall burden. 

Heterogeneity may modify the impact of both targeted and untargeted interventions depending on 

the background burden of disease. For example, successful detection and treatment of a single 

active case may eliminate transmission from a community in a low-burden setting, whereas this 

would be harder to achieve in a high-burden setting. This may lead to unexpected relationships 

between control efforts and consequent reduction in the annual risk of Mtb infection.[45] 

Economic and Equity Concerns 

The targeting of TB control interventions to those with high rates of infection or disease is expected 

to increase the effectiveness of interventions. Consequent gains in efficiency will depend on 

coverage levels, accessibility, disease prevalence and contribution to transmission in the wider 

population of the target group. There are economies of scale to be achieved when increasing 

coverage, yet at high levels of coverage or for difficult to reach populations, targeted strategies may 

require additional supporting activities and so increase resource needs. For example, the cost-

effectiveness of active case finding strategies is driven by both the heterogeneity in disease rates 

and in the cost of reaching different subgroups.[46] While maximising impact within a given budget 

is a key objective in priority setting, heterogeneity in burden, health care access and financial 

resources are linked to equity concerns in resource allocation for TB control strategies. Conceptually, 

the difference between inequalities and inequities is a value judgement about whether the observed 

heterogeneity is considered fair. Policy makers should seek to ensure that populations already 

experiencing increases in risk due to socioeconomic or other conditions (e.g., crowding, 

incarceration) do not experience additional disparities in access to TB diagnosis and treatment, 

financial burden of illness, or unwarranted exposure to infection. While the reduction of such 

disparities is a key policy objective, there are situations in which achieving it may imply trade-offs in 

efficiency gains. For example, interventions aiming to place new technologies at decentralised 

locations may not be as cost-effective as placement at higher levels of the health system, yet may 

still be prioritised to reduce social inequities in financial burden, health outcomes and access to 

health services.[47] 

Ways Forward and Conclusions 

Causes of heterogeneity in TB epidemiology are diverse and include characteristics of the infectious 

host, pathogen, susceptible host, environment and distal determinants – factors which may interact 

to amplify or reduce heterogeneity. Observed heterogeneity may not reflect reality and targeted 

epidemiological studies to quantify disease burden in more detail would be valuable, e.g. prevalence 

surveys powered to obtain precise estimates of disease burden in specific population risk groups and 

age-groups. 

All TB modelling studies must judge which aspects of heterogeneity are sufficiently important to 

include given the question posed and the local context, and which should not be specifically 

incorporated for parsimony. This highlights the importance of: 1) detailed, context-specific data, 2) 

refining parameter estimation through epidemiological research, 3) communicating uncertainty in 
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predictive modelling and 4) confirmation of the predicted effectiveness and cost of interventions 

through operational research. 

Heterogeneity has implications for the effectiveness and efficiency of control interventions. 

Targeting of interventions is an appropriate consideration in designing intervention strategies, 

although evidence to support specific targeted approaches is sometimes weak or contradictory. 

Therefore, such strategies must be considered in the context of resource availability and the ethical 

imperative to ensure universal access to high-quality care. Moreover, it is also important to balance 

the need for clear guidelines that can facilitate the broad implementation of interventions at a 

national or global level against the importance of developing interventions that are targeted towards 

specific characteristics of regional or local epidemics. 

As the global TB control community looks towards ending TB, understanding and harnessing 

heterogeneity to improve control will become increasingly important. Key considerations in 

addressing heterogeneity include better assessment of disease burden in population subgroups, 

context-specific modelling, targeting of interventions and a focus on distal determinants of 

inequities in health status. 
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Figure 1 . Conceptual framework for understanding heterogeneity in TB epidemiology 

The cone indicates that the most local drivers are positioned towards the top of the figure and the broadest drivers 

towards bottom, rather than reflecting the importance of these factors. 

Figure 2 . Illustration of some selected concepts from the text 

Panel A illustrates the degree of heterogeneity that might be observed among individuals with good access to the 

healthcare system (unblurred discs) compared to those with poor access (blurred discs). This may be substantially less than 

the heterogeneity that exists in the population as a whole (Panel B). 

Panel C represents a series of transmission events and Panel D illustrates the subsequent relocation of infected and 

uninfected individuals. This results in a more homogeneous distribution of infection across the population at this later time 

point, even though transmission was highly heterogeneous. 

Panel E represents a series of individuals at variable risk of infection and Panel F illustrates selection of higher risk 

individuals through the infection process. Although infection is the selecting illustrated process here, similar principles 

would apply to progression from infection to disease, through stages of the disease process and to interaction with the 

health system. 

Figure 3. Composition of a simple two-stratum heterogeneous cohort over time from entry to an 

epidemiological state (active undiagnosed TB) 

Plot displays the percentage of patients with active tuberculosis remaining undiagnosed after the onset of infectiousness 

(time 0 on the horizontal axis), under the assumption that 50% of the initial cohort has an average duration of 

infectiousness of one month (“high rate group”, blue), and 50% of the cohort has a duration of infectiousness of 6 months 

(“low rate group”, red). The true total percentage of patients remaining infectious with time since onset of 

infectiousness (solid line) is compared against: the proportion that would be expected to remain if the whole cohort was 

assumed to have the average time to diagnosis (3.5 months); and the proportion that would be expected to remain if the 

whole cohort was assumed to have a rate of diagnosis that is the average of the rates of the two groups (dotted line). The 

amount of the total population comprised of high-rate and low-rate persons at each time point is indicated by coloured 

shading, demonstrating that the remaining cohort is increasingly comprised of low-rate individuals over time.    
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  Main messages 

 Although often masked by reported aggregate estimates, the distribution of TB is 

heterogeneous and harnessing this heterogeneity may be critical to further 

progress in the fight against TB. 

 Drivers of heterogeneity in TB burden include characteristics of the organism, 

infectious host, susceptible host, environment and distal determinants. 

 More detailed epidemiological data are needed to define and quantify this 

variation. 

 Quantification of heterogeneity in TB distribution is complicated by 

heterogeneity in the process of detecting cases. 

 Incorporating heterogeneity in TB transmission models is necessary when 

capturing epidemiological phenomena that include superspreading and cohort 

selection. 

 Targeting high-risk groups is an established approach and is an important 

consideration in designing control interventions, but may not always improve 

effectiveness and may incur additional costs. However, targeting interventions 

should be considered in the context of ethical and equity concerns, 

programmatic efficiency and synergies across the broader health system. 
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Table. Examples of Specific Forms of Heterogeneity and Ways Forward 

Source of 

Heterogeneity 

Examples of existing evidence Data needs Analytic needs Intervention needs 

The Infectious 

Host 

Sequencing and social network 

analysis suggest that some 

individuals may act as 

“superspreaders”[48] 

Importance of biological 

variables, e.g. aerosolisation, 

cough frequency 

Implications of hosts with 

differential infectiousness and 

superspreading 

Tools to identify the most infectious 

patients 

 

 Available data on contact patterns 

(principally from low-burden 

settings) suggest age-specific 

(assortative) mixing 

Data on contact patterns 

from high-burden settings 

and for risk factors relevant 

to TB (e.g. HIV status) 

Importance of population groups to 

sustaining transmission relative to 

their burden of disease 

Case-finding efforts designed to identify 

patients with high-risk mixing patterns for 

broader dissemination of infection 

The Infecting 

Organism 

Strain responsible for extensive 

community spread confirmed to 

be highly virulent in mouse 

model[49] 

Mechanisms of strain 

diversity and virulence 

Implications of selecting for strains 

of greater fitness 

Interventions to limit infectiousness of 

difficult-to-treat strains 

 Highly resistant forms of TB 

causing extensive outbreaks, e.g. 

XDR-TB in Tugela Ferry, South 

Africa[50] 

Fitness costs associated with 

drug resistance 

Likely future trajectory of drug 

resistance 

Improved identification and treatment of 

highly transmissible strains of drug-

resistant tuberculosis 

The Susceptible 

Host 

Individuals previously treated for 

TB had higher rates of recurrent 

TB due to reinfection than the 

general population in Cape Town, 

South Africa[51] 

Protection or susceptibility 

afforded by past TB episodes 

and whether this is 

attributable to infection or 

progression risk 

Distinguish the individual-level 

effect of increased susceptibility 

post-disease episode from the 

effect of selecting for a more 

susceptible cohort through 

infection 

Protection of highest risk individuals from 

infection or progression to disease 
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 Specific risk groups may 

experience polyclonal 

outbreaks[52] 

Better estimates of disease 

prevalence in risk groups  

Anticipated effects of trends in 

comorbid risk factors on TB 

TB control interventions that link with 

systems for other high-risk conditions 

 

The Physical 

Environment 

Incarceration may have been a 

significant driver of community 

transmission [53] 

Better estimates of location-

specific TB transmission risk 

Valid models for translating 

environmental heterogeneity into 

transmission risk 

Active case-finding targeted at high-risk 

environments (e.g. prisons, transit) 

 Greater proportion of infected 

contacts in less well ventilated 

hospital wards[54] 

Ability of specific 

interventions (e.g. improved 

ventilation) to reduce that 

risk 

Projected population-level impact 

of targeted environmental 

interventions 

Mitigation of TB transmission through 

modification of high-risk built 

environments 

Distal 

Determinants 

Ecological observation of declining 

TB rates during times of 

improvements in living 

standards[40] 

Mechanistic linkages 

between poverty alleviation 

and TB transmission 

Projected ability of social 

protection and similar efforts to 

reduce heterogeneity 

Linkage between TB control programs 

and schemes to alleviate poverty and/or 

address other distal determinants 

 Association between coverage of 

Brazil’s conditional cash transfer 
program and improved TB 

control[55] 

TB-specific effects of broader 

interventions 

Models of the impact of TB on 

other outcomes in vulnerable 

populations 

Implementation of TB interventions in a 

fashion that mitigates burden on the 

highest risk populations, thus promoting 

equity and reducing disparities in risk 

XDR-TB, extensively drug-resistant tuberculosis.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
id

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/c

id
/c

iy
9
3
8
/5

1
5
4
8
9
2
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 0

8
 N

o
v
e
m

b
e
r 2

0
1
8



 

2
0

 

 F
ig

u
re

 1
 

 

 
 

Downloaded from https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciy938/5154892 by University of Sheffield user on 08 November 2018



 

2
1

 

 F
ig

u
re

 2
 

 

 
 

Downloaded from https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciy938/5154892 by University of Sheffield user on 08 November 2018



 

2
2

 

 F
ig

u
re

 3
 

 

Downloaded from https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciy938/5154892 by University of Sheffield user on 08 November 2018


