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Abstract

The basal ganglia are considered vital to action selection - a hypothesis supported by several

biologically plausible computational models. Of the several subnuclei of the basal ganglia, the

globus pallidus externa (GPe) has been thought of largely as a relay nucleus, and its intrinsic

connectivity has not been incorporated in significant detail, in any model thus far. Here, we in-

corporate newly revealed subgroups of neurons within the GPe into an existing computational

model of the basal ganglia, and investigate their role in action selection. Three main results en-

sued. First, using previously used metrics for selection, the new extended connectivity improved

the action selection performance of the model. Second, low frequency theta oscillations were

observed in the subpopulation of the GPe (the TA or ‘arkypallidal’ neurons) which project ex-

clusively to the striatum. These oscillations were suppressed by increased dopamine activity -

revealing a possible link with symptoms of Parkinson’s disease. Third, a new phenomenon was

observed in which the usual monotonic relationship between input to the basal ganglia and its

output within an action ‘channel’ was, under some circumstances, reversed. Thus, at high levels

of input, further increase of this input to the channel could cause an increase of the correspond-

ing output rather than the more usually observed decrease. Moreover, this phenomenon was

associated with the prevention of multiple channel selection, thereby assisting in optimal action

selection. Examination of the mechanistic origin of our results showed the so-called ‘prototyp-

ical’ GPe neurons to be the principal subpopulation influencing action selection. They control

the striatum via the arkypallidal neurons and are also able to regulate the output nuclei directly.

Taken together, our results highlight the role of the GPe as a major control hub of the basal

ganglia, and provide a mechanistic account for its control function.

Keywords: Action Selection, Network models, Globus pallidus externa, Arkypallidal GPe

neurons, Prototypical GPe neurons

∗Corresponding Author

Email addresses: shreyas.suryanarayana@ki.se (Shreyas M Suryanarayana), jeanette@csc.kth.se

(Jeanette Hellgren Kotaleski), Sten.Grillner@ki.se (Sten Grillner), k.gurney@sheffield.ac.uk (Kevin N

Gurney)

Preprint submitted to Neural Networks October 23, 2018



1. Introduction1

The basal ganglia are an evolutionarily conserved group of subcortical nuclei,2

which have long been implicated in action selection (Redgrave et al., 1999; Hikosaka et al.,3

2000; Frank et al., 2004; Frank, 2005; Schroll et al., 2012; Lindahl et al., 2013; Grillner and4

Robertson, 2016; Stephenson-Jones et al., 2011). Several computational models have been de-5

veloped, examining their role in action selection (Mink, 1996; Hikosaka et al., 2000; Gurney6

et al., 2001a,b; Frank et al., 2004; Schroll et al., 2012; Kamali Sarvestani et al., 2011; Berthet7

et al., 2016). They propose the basal ganglia as a ‘selection machine’ resolving conflicts between8

competing behaviours for common and restricted motor resources (Redgrave et al., 1999; Schroll9

and Hamker, 2013; Frank, 2005). This notion is backed by studies showing that the stimulation10

of the striatum, the main input nucleus, can either trigger actions or inhibit them (Kravitz et al.,11

2010; Freeze et al., 2013). Furthermore, loss of dopamine neurons in the substancia nigra pars12

compacta (SNc), result in a reduced ability to select motor responses (Wylie et al., 2009) in13

pathological conditions like Parkinson’s disease. In furtherance of the selection hypothesis, the14

basal ganglia are also implicated in learning of stimulus-response associations (Alexander et al.,15

1986) as well as in establishing stimulus-response-outcome associations (Redgrave and Gurney,16

2006).17

Existing models have dealt with a variety of aspects of basal ganglia function and18

anatomical context. Thus, many discuss the role of reinforcement learning (Brown et al., 2004;19

Frank, 2006; Schroll et al., 2012; Redgrave and Gurney, 2006; Gurney et al., 2015) and have also20

incorporated the thalamo-cortical loops (Humphries and Gurney, 2002; Beiser and Houk, 1998;21

Chersi et al., 2013; Frank et al., 2004; van Albada and Robinson, 2009). These models also22

cover a range of levels of biological description - from abstract system-level to detailed multi-23

compartmental neuronal models, as well as simulations of ensembles of neurons. Addressing24

computations at the level of the subnuclei of the basal ganglia, there have been several models25

of the striatal microcircuitry (Humphries et al., 2009b,a; Damodaran et al., 2015), the subthala-26

mic nuclei (STN, Frank 2006), as well as examinations of the oscillations associated within the27

STN-GPe network (Blenkinsop et al., 2017; Corbit et al., 2016).28

Most models are based on the classical architecture of connectivity of the basal29

ganglia (Fig 1A), focusing on the direct pathway - the striatal D1 projections to the output nuclei30

globus pallidus interna and substantia nigra pars reticulata (GPi/SNr), and the indirect pathway -31

the striatal D2 projections to the GPe, and the GPe projections directly to GPi/SNr and the STN-32

GPe/GPi loop. The GPe has been considered as homologous in structure and function in most of33

these models. However, recent studies have revealed a new subpopulation of GPe neurons, the34

arkypallidal cells (Mallet et al., 2012) that are active in anti-phase to their more common coun-35

terparts, the prototypical GPe neurons (Mallet et al. 2012, see also Methods). These two classes36

are also referred to as the TA and TI neurons respectively (Mallet et al., 2012). The arkypallidal37

cells provide a major input to the striatum (Mallet et al., 2012).38

We aimed to incorporate the arkypallidal neurons into a well-tested model archi-39

tecture of the basal ganglia (Gurney, Prescott, Redgrave, Gurney et al. 2001a,b). The architec-40

ture has been validated at several levels of description: at the systems level using rate coded41

neural populations constrained by anatomical and physiological data (see Gurney et al. 2004;42

Humphries and Gurney 2002; Blenkinsop et al. 2017); spiking neuron models challenged with43

physiological data (Humphries et al., 2006; Stewart et al., 2012; Chersi et al., 2013); and at the44

behavioural level in embodied (robotic) models (Prescott et al., 2006). Most recently, it has been45

used to link a raft of neurobehavioural phenomena to neuronal mechanisms observed in vitro46
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(Gurney et al., 2015). Thus, this model architecture offers a strong platform to try to understand47

the role and function of arkypallidal neurons and their afferent and efferent pathways in action48

selection. Furthermore, we also included another scheme of organisation in the GPe in terms of49

neuronal subpopulations - the outer and inner GPe neurons (Sadek et al., 2007). We built on50

the original model and used the methodologies developed therein to assess them, on extended51

architectures of connectivity of the GPe. The arkypallidal neurons have been accommodated52

in a few computational models (Bahuguna et al., 2017; Lindahl and Hellgren Kotaleski, 2016;53

Moolchand et al., 2017; Bogacz et al., 2016) and their function in supporting optimal action se-54

lection (Bogacz et al., 2016) as well as in network dynamics underlying basal ganglia movement55

disorders have been investigated (Bahuguna et al., 2017; Lindahl and Hellgren Kotaleski, 2016).56

However, their role in action selection and their influence on other basal ganglia subnuclei, needs57

additional investigation. Further, the outer and inner neuron dichotomy has not been included in58

any model so far (to our knowledge), and their role in action selection remains unknown. Our59

work addresses these lacunas and reveals important functions for different neuronal subpopu-60

lations within the GPe, and unites these two prevalent schemes of organisation within the GPe61

(GPe TI/TA and GPe outer/inner, Mallet et al. 2012 and Sadek et al. 2007) and furthermore,62

places the GPe in perspective as an important control center of the basal ganglia.63

2. Materials and methods64

2.1. Anatomy of the basal ganglia65

The classical anatomy of the basal ganglia (Redgrave et al., 1999; Bolam et al.,66

2000; Calabresi et al., 2014) is shown in Fig 1A. It consists of the following principal nuclei:67

the striatum, the globus pallidus ((GPe) and internal (GPi) divisions in primates), the STN and68

the substantia nigra (SNr and SNc). The primary input nuclei are the striatum and the STN.69

The output nuclei are the GPi and the SNr. The input nuclei receive afferent signals from most70

of the cerebral cortex and the thalamus. The output nuclei project back to the thalamus, the71

superior colliculus and other mid-brain regions. The striatum projects to GPi/SNr as well as72

to the GPe. STN provides diffuse excitatory connections to the GPe and GPi/SNr. All other73

connections of the basal ganglia nuclei are inhibitory. The SNc provides dopaminergic input to74

the striatum, but is known to also project to other subnuclei of the basal ganglia (Bolam et al.,75

2000; Calabresi et al., 2014). There are two types of dopamine receptors associated with two76

subpopulations of the principal GABAergic projection neurons (>90%) in the striatum - the spiny77

projection neurons (SPNs) or medium spiny neurons. One population, contains substance P and78

dynorphin, and preferentially expresses the D1-type of receptor, which facilitates cortico-striatal79

transmission. The other population contains enkephalin and preferentially expresses D2-type80

receptors, which attenuates cortico-striatal transmission (Akkal et al., 1996; Jr and Zigmond,81

1997). The SPNs provide phasic inhibitory output through their efferents to the GPe and GPi/SNr.82

Fig 1. Basal ganglia connectivity. (A) Functional architecture of the GPR model, showing the83

selection and control pathways. One component of the architecture - ‘selection pathway’ has its84

output as the GPi/SNr and the other component -‘control pathway’ has its output as the GPe.85

(B) Architecture of connectivity within the basal ganglia, based on the intrinsic connectivity of86

the GPe, showing GPe TI and GPe TA neurons. The prototypical TI neurons project to the TA87

neurons and the GPi/SNr. They also project back to STN and have local collaterals amongst88

their own subpopulation. The TA neurons project exclusively to the striatum. The numbers89

(1-4) represent connections tested in step-wise models based on this scheme of connectivity. (C)90
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Architecture of connectivity within the basal ganglia, based on the intrinsic connectivity of the91

GPe, showing outer and inner neurons. The outer neurons project to the inner neurons and both92

populations project to the STN and GPi/SNr. Both populations have projections to the striatum93

and finally, local collaterals amongst their own populations. The numbers (5-8) represent94

connections tested in step-wise models based on this scheme of connectivity. (D) The extended95

architecture of connectivity modelled in this study detailing the subpopulations within the GPe96

and unifying the GPe TA/TI and outer/inner schemes, is shown here.97

2.1.1. Anatomy of the GPe98

Almost all of the GPe neurons are GABAergic except for a small subpopulation99

(∼ 5%) of cholinergic neurons which are sometimes regarded as an extension of basal fore-100

brain cholinergic neurons (Mastro et al., 2014; Abdi et al., 2015; Hernández et al., 2015). The101

GABAergic GPe neurons were largely considered a homogeneous population until two schemes102

of population classifications emerged from the studies of (Mallet et al., 2012) and (Sadek et al.,103

2007). These two schemes form the basis for our modelling the GPe. New data from several104

studies have also subsequently contributed to the classification of GPe neuronal subtypes which105

we detail below.106

TI and TA Neurons. A hitherto unknown subpopulation of atypical GABAergic GPe neurons107

were first described by (Mallet et al., 2012). The study dichotomises GPe neural population in108

Parkinsonian rats based on physiological behaviour. A major portion of GPe neurons ( 75%),109

discharge during the surface-negative component of cortical slow wave activity and are called110

GPe TI, Type I or ‘prototypical’ neurons. The other major portion ( 20%) of neurons, discharge111

during the surface-positive component of cortical slow wave activity, and are called GPe TA ,112

Type A or ‘arkypallidal’ neurons. The GPe TI neurons give rise to projections which innervate113

the STN and GPi/SNr. Some of them also have modest projections to the striatum, which target114

the fast-spiking interneurons (FSNs, see also Glajch et al. 2016; Saunders et al. 2016). They also115

have extensive local axonal collaterals, targeting other TI neurons as well as GPe TA neurons.116

These neurons are parvalbumin positive and express the transcription factor Nkx2.1 (Abdi et al.,117

2015; Dodson et al., 2015). There is also a subset of these neurons which express Lhx6 (Abdi118

et al., 2015; Hernández et al., 2015; Hegeman et al., 2016). The firing pattern of the prototypical119

GPe cells is regular spiking (Abdi et al., 2015; Hernández et al., 2015). The GPe TA neurons120

on the other hand, are devoid of parvalbumin (Abdi et al., 2015; Hernández et al., 2015) and do121

not conform to this extrinsic axonal projection and do not have descending projections to either122

the STN or the GPi/SNr, but have long range axonal projections which provide a massive and123

dense innervation of the striatum (see also Glajch et al. 2016), along with local axonal collaterals.124

These cells express the transcription factors Npas1 and FoxP2 (Mallet et al., 2012; Hernández125

et al., 2015; Hegeman et al., 2016). The GPe TA neurons are thus described as a novel atypical126

neural population which do not conform to the premise that all GPe neurons invariably project127

back to the STN. The architecture incorporating the GPe TA/TI dichotomy is shown in Fig 1B.128

Outer and Inner GPe Neurons. The other core aspect of our new modelling connectivity archi-129

tecture is from the study of (Sadek et al., 2007). Two neural subpopulations in the GPe have been130

described, based on their relative distance from the striato-pallidal border, and on the number of131

varicosities on their local axonal arborisations as the inner and outer neurons. The outer neurons132

are located closer to the striato-pallidal border (< 96µm), and the inner neurons are located away133

from the striato-pallidal border (≥ 96µm). There is significant asymmetry in the connections of134
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the two subpopulations. Inner neurons have more extensive local axonal collaterals, with neigh-135

bouring GPe neurons, and thus receive more input. The outer neurons substantially innervate the136

inner neurons, through axons traversing through the inner neuron regions on their way to the out-137

put nuclei. While a reverse inner to outer neuron connection exists, it is reportedly weak. Both138

the neural populations receive afferents from the striatum and STN and have efferents back to the139

STN, as well as to the output nuclei GPi/SNr. This dichotomous clustering of the GPe outer and140

inner neurons, can be matched to the dual representation of the striatum in the GPe (Chang et al.,141

1981). There is also mention of projections from both outer and inner neurons to the striatum.142

As a whole, about a third of the GPe neurons have projections to striatum. On cross-referencing143

with other studies, which reported projections of prototypical parvalbumin positive GPe neurons144

innervating the FSNs in the striatum (Bevan et al., 1998; Mastro et al., 2014; Glajch et al., 2016;145

Saunders et al., 2016), we concluded that both the outer and inner neurons project to the striatal146

FSNs. The end effect of these projections being mediated via FSNs, would be reduction of FSN147

GABAergic inhibition of the SPNs (Szydlowski et al., 2013). The connectivity of the GPe with148

respect to other basal ganglia nuclei along with the dual representation of outer and inner neurons149

is shown in Fig 1C.150

While the authors report that they have not correlated data across the two levels of151

organisation - the GPe prototypical,TI/arkypallidal,TA from (Mallet et al., 2012) and - the GPe152

outer/inner from (Sadek et al., 2007), following careful comparisons of the various studies de-153

scribed here, we concluded that the prototypical GPe TI neurons could be assumed to consist of154

both outer and inner GPe neurons. For instance, the axons of GPe TI neurons are quantitatively155

similar to the individual GPe neurons in dopamine-intact rats. Furthermore, the number of bou-156

tons on axonal projections in the striatum and STN of GPe TI neurons are well within the ranges157

of axonal boutons accounted for in single GPe prototypical neurons in dopamine-intact rats. The158

firing patterns of outer and inner neurons during cortical slow wave activity, which is said to be a159

highly regular single-spike pattern, matched with that of the GPe TI neurons. Striatal projections160

reported in the outer neurons (4 out of every 8 neurons), and in inner neurons (2 out of every 9161

neurons), were also reported as modest striatal projections from GPe TI neurons. The GPe TA162

arkypallidal cells on the other hand, form a separate subpopulation.163

Taking the anatomical considerations together, we propose the extended architec-164

ture shown in Fig 1D. We expand the connectivity of the GPe, by including the GPe TA neural165

subpopulation and its afferent and efferent connections, while the prototypical GPe TI neurons166

were accommodated in the modelling of outer and inner neurons.167

2.2. Quantitative model development168

2.2.1. Existing Model169

We used the model by Gurney Prescott and Redgrave (Gurney et al., 2001a,b)170

- henceforth referred to as the GPR model - as the basis for the extended architecture of171

connectivity modelled in this study. The architecture for the GPR model was based on the172

connectivity shown in Fig 1A. It included all the major pathways known at the time of its173

construction (for related review see Prescott et al. 2002, see also Humphries and Gurney 2002;174

Gurney et al. 2004; Humphries et al. 2006; Stewart et al. 2012; Chersi et al. 2013; Blenkinsop175

et al. 2017) and provides a firm base for our model building. The assumption in the GPR model176

was that the brain processes a large number of sensory and cognitive streams or channels acting177

in parallel, each of them representing and requiring an action to be performed. To resolve the178

conflicts arising due to the processing in parallel of representations of different channels, it was179
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proposed that the vertebrate brain has developed a ‘central arbitrating mechanism’ in which180

the ‘urgency’ or salience of the representations are supplied to a ‘centralised arbitrator’, which181

in turn selects the representation with the greatest salience, and to which motor (and possibly182

cognitive) resources are then allocated. The basal ganglia were hypothesised as this centralised183

arbitrator (Redgrave et al., 1999). A functional architecture with two components - ‘selection184

pathway’ and ‘control pathway’ (see Fig 1A) was proposed, which demonstrated that the basal185

ganglia could perform action selection (Gurney et al., 2001a,b). The role of the GPe in the186

GPR model was that of a ‘regulator’ of the selection pathway; the exact nature of the role was,187

however, not clear. By modelling the GPe, we have attempted to define that role more precisely,188

and tried to identify how various subpopulations within the GPe might contribute to that role.189

The underlying assumption in the functional architecture was that an active190

representation of a putative action or action request (in cortex or subcortex) excites a population191

of neurons in striatum. This in turn, inhibits a corresponding population in GPi/SNr. This192

selective suppression of the tonic inhibitory control GPi/SNr normally exerts on its efferent193

targets, allows the action to be expressed. The combination of neural populations in various194

basal ganglia nuclei mediating an action request are said to comprise a processing channel.195

In addition, the STN also receives all action requests and supplies a diffuse excitation to196

GPi/SNr. In this way, striatum and STN comprise an off-centre, on-surround network that197

enables competitive processing between action channels. Each population in a channel, within198

a nucleus, was modelled by a single leaky integrator unit. Salience was represented as a scalar199

value at the input with one salience per channel. Selection in the model was defined with200

respect to a selection threshold in GPi/SNr such that, an output below this level was deemed201

to be associated with selection on the corresponding channel. In addition, a second, somewhat202

higher threshold - distortion threshold, allowed a subclassification of non-selected actions into203

those that are clearly playing no role in the current competition, and those which are just above204

the selection threshold, and which may interfere with selected actions, given small changes in205

salience. Further details are found in ‘assessment and evaluation of selectivity’ below. We now206

describe the model developed in this study.207

208

2.3. Model formalisation209

2.3.1. Neuron Model210

All the models we describe make use of the leaky-integrator artificial neurons,211

which were used in the GPR model (Gurney et al., 2001b). We give a brief description of the212

same. The model will be made available on ModelDB. In each nucleus, the ith channel is repre-213

sented by a single artificial neuron. The level of abstraction of the semilinear neuron means that214

it represents the population activity associated with the entire channel. If u be the total afferent215

input to the artificial neuron, and if k is a constant which determines the rate of activation decay,216

the total activation ȧ of the leaky-integrator is given by:217

ȧ = −k(ai − ui) (1)

If ã is the activation at equilibrium, which is what we use in all our models, ã = u. The output of218

the leaky-integrator denoted by y, is defined as a piecewise linear compression function, which219

ensures its value is bounded below by 0 and above by 1. The relation is given by:220

y = m(a − ✏)H(a − ✏) (2)

6



where m is the slope of the output function, which is set to 1 in all our simulations.221

H( ) is the Heaviside function, and ✏ is an activation threshold, below which, the output is zero.222

2.3.2. Synaptic weights223

The synaptic weights associated with the different modelled pathways are listed224

in Table 1. The synaptic weight symbols have been named using a general mnemonic225

W
excitatory/inhibitory

source−destination
.

Table 1: Synaptic weight symbols

Weight Pathway

wstr
i

Cortico-striatal weight for the ith channel

w−
d2−ot

Striatum D2 to GPe outer

w−
d2−in

Striatum D2 to GPe inner

w−
d2−ta

Striatum D2 to GPe TA

w−
d1−snr

Striatum D1 to GPi/SNr

wstn
i

Cortico-STN weight for the ith channel

w+stn−ot STN to GPe outer

w+
stn−in

STN to GPe inner

w+stn−ta STN to GPe TA

w+stn−snr STN to GPi/SNr

w−
ot−d2

GPe outer to striatum D2

w−
ot−d1

GPe outer to striatum D1

w−
in−d2

GPe inner to striatum D2

w−
in−d1

GPe inner to striatum D1

w−ot−stn GPe outer to STN

w−ot−snr GPe outer to GPi/SNr

w−
in−stn

GPe inner to STN

w−
in−snr

GPe inner to GPi/SNr

w−
ta−d2

GPe TA to striatum D2

w−
ta−d1

GPe TA to striatum D1

w−ta−ta GPe TA to GPe TA

w−ot−ot GPe outer to GPe outer

w−
in−in

GPe inner to GPe inner

w−
ot−in

GPe outer to GPe inner

w−ot−ta GPe outer to GPe TA

w−
in−ta

GPe inner to GPe TA

Symbols used for synaptic weights of the different pathways modelled.

226

2.3.3. Striatum227

In the GPR model, the SPNs of the striatum have been modelled whereas the in-228

terneurons have been omitted. We limit to the modelling of SPNs here as well. The SPNs are229

divided into two populations, distinguished by the neurochemistry and response to dopamine230
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which they receive from the SNc. This in turn divides the striatal model into two striatal sub-231

systems. The ‘up/down’-state behaviour of SPNs, shifting between the more depolarised mem-232

brane potential -‘up’ state, and the resting -‘down’ state has been modelled by using a positive233

threshold in the output equation described in (2). Coming to the input to the striatum, we use a234

cortico-striatal weight wstr
i

for the ith channel. We now describe the dopamine input to striatum.235

2.3.4. Dopaminergic influence on selectivity236

The role of dopamine in basal ganglia function was a pivotal aspect of this inves-237

tigation. We have included dopaminergic influence through the innervations of the striatum by238

the SNc. While this influence is not modelled as a ‘pathway’ explicitly, we included dopamine239

influence with modulation of striatal weights. Dopaminergic influence has been reported in two240

instantiations, a short phasic burst (∼100 ms) and tonic activity (upto 8 Hz, Grace et al. 2007;241

Schultz 1998). We have modelled only the tonic level variations. We captured the difference in242

dopamine modulation on the D1 and D2 SPNs with dopaminergic transmission being facilitatory243

on D1 SPNs and cortico-striatal transmission being attenuated on D2 SPNs (Akkal et al., 1996;244

Jr and Zigmond, 1997; Planert et al., 2013). We replaced wstr
i

with (1 ± �)wstr
i

, where � is the245

value of the tonic dopamine (see also Gurney et al. 2001b, 1998). To define the dopamine level,246

it was more instructive to consider a ratio of facilitation and attenuation - the Dopamine ratio,247

Rw given by,248

Rw =
1 + �

1 − �
(3)

where, 0 ≤ � ≤ 1249

2.3.5. Modelled inputs250

We summarise the modelled synaptic inputs for each subpopulation of neurons in251

various subnuclei of the basal ganglia. The activation function and the output relation as well as252

more details for each modelled subpopulation in all the nuclei can be found in the Appendix S1.253

Striatum D1. The SPN D1 subpopulation in the striatum receives excitatory input from the cor-254

tex, diffuse inhibitory input from the GPe TA neurons, and the projections from the GPe outer255

and GPe inner neurons to striatum, as well as dopamine input from the SNc.256

Striatum D2. The SPN D2 subpopulation in the striatum receives excitatory input from the cor-257

tex, diffuse inhibitory input from the GPe TA neurons, and the projections from the GPe outer258

and GPe inner neurons to striatum, as well as dopamine input from the SNc.259

STN. The STN receives excitatory input from the cortex and inhibitory inputs from the GPe260

outer and GPe inner subpopulations.261

GPe outer (part of GPe TI). GPe outer neurons receive diffuse excitatory input from the STN,262

inhibitory input from the striatum SPN D2 and inhibitory local collaterals from other GPe outer263

neurons.264

GPe inner (part of GPe TI). GPe inner neurons receive diffuse excitatory input from the STN,265

input from the striatum SPN D2 and local inhibitory collaterals from other GPe inner neurons.266

Additionally, they also receive processed input from the GPe outer neurons.267
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GPe TA. GPe TA neurons receive diffuse excitatory input from the STN, input from striatum268

SPN D2 neurons, local inhibitory collaterals from GPe outer and GPe inner neurons along with269

local inhibitory collaterals from other GPe TA neurons.270

GPi/SNr. The output nuclei receive inhibitory input from the striatum SPN D1 neurons, diffuse271

excitatory input from the STN along with inhibitory inputs from the GPe outer and GPe inner272

neuron subpopulations.273

2.4. Parameter Values274

The fixed parameter values included the thresholds for different neuronal subpop-275

ulations and some synaptic weights. They were chosen based on the criteria set out in the GPR276

model (Gurney et al., 2001b, 2004). Most of the synaptic weights and thresholds associated with277

the GPR model nuclei were simply extended to new neural populations. The rate constant k in278

Eq (1) was set at 25 (equivalent to a neural membrane time constant of 50ms), and the slope for279

each nuclei m, was set to 1 (see Gurney et al. 2001b). The thresholds associated with different280

subnuclei are given in Table 2. All the synaptic weights which were fixed, are shown in Table 3.281

The simulations also required varying a number of synaptic weights and combinations of synap-282

tic weights from different pathways for trying to understand functions of different pathways. The283

weights were varied in steps of 0.25, between 0 and 1, except for the GPe pathway weights to284

the GPi/SNr, which were varied in steps of 0.2.

Table 2: Thresholds.

✏str 0.2 ✏in -0.2

✏stn -0.25 ✏ta -0.2

✏ot -0.2 ✏snr -0.2

Threshold values of the various nuclei and neural subpopulations used in the model.

Table 3: Fixed synaptic weights.

wstr
i

-1 wstn
i

1

w−
d2−ot

-1 w+stn−ot 0.8

w−
d2−in

-1 w+
stn−in

0.8

w−
d2−ta

-1 w+stn−ta 0.8

w−
d1−snr

-1 w+stn−snr 0.9

Synaptic weights of the pathways used in the model, which were fixed.

285

2.5. Simulations - guiding principles286

The original GPR model had shown that the basic basal ganglia connectivity archi-287

tecture when investigated from a systems-level, can behave like an effective selection mechanism.288

We incorporate more biological detail into the model, and are guided by the following principles289

while simulating and evaluating the model.290
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2.5.1. Enhancement of selectivity291

The model is driven by the hypothesis that action selection is a primary function of292

the basal ganglia connectivity architecture, and with more biological detail we incorporate, there293

must be an enhancement of the ability of the model to select. Selectivity is essentially the ability294

of the model to ‘choose’ an action representation with the highest salience in a competition295

between different action representations. We define a metric to quantify selection and evaluate it296

which is detailed in subsequent sections.297

2.5.2. Mechanisms underlying selectivity298

Incorporation of significant biological detail also required us to investigate whether299

new mechanisms of enforcing selectivity were generated.We observed for instance, in some mod-300

els with the extended connectivity, there was a decrease in the channel output with increasing301

salience, which could prevent the selection of that channel. ‘Reversal’, as we called this mech-302

anism - was a new way through which the system could enforce selections in specific cases of303

conflict. Reversal was able to resolve a conflict between two representations with high salience304

(see also Sec 2.7.6).305

2.5.3. Roles of pathways306

The extended connectivity resulted in addition of a large number of biologically307

grounded pathways. A primary question we addressed here, was to look into how these individual308

pathways contributed to action selection. This was extended subsequently to neural populations309

and then to the entire subnucleus (GPe).310

2.5.4. Role of dopamine311

Dopamine plays a crucial modulatory role in the basal ganglia, and to investigate312

its influence on selection was another major goal of the simulations. We investigated the conse-313

quences of different degrees of dopaminergic modulation in the striatum for each new pathway314

modelled. This was pertinent, since dopamine loss and resultant oscillatory activity in the basal315

ganglia underlies several pathological conditions like Parkinson’s. The aim was to investigate de-316

pendency of selection on dopamine, but also to try to dissect out circuits which caused oscillatory317

activity during lack of dopamine modulation.318

2.6. Experimental strategy319

The lack of decisive empirical evidence on the connectivity of the newly discov-320

ered GPe sub-populations means that there is a proliferation of possible pathways, consistent with321

the data. We therefore sought to investigate, as far as possible, the role of individual pathways322

before bringing them together into a more realistic, but complex, configuration. We achieved323

this by running a series of Step-wise models which simulated individual connections/pathways324

added to the GPR model. The Step-wise models allowed us to tease out the contribution of every325

new pathway we simulated, in action selection, from the new connectivity scheme we added on326

in the GPe (See Fig 1D). This resulted in a Step-wise model for each new pathway modelled327

(and named based on the pathway modelled) and whose performance was evaluated and com-328

pared with the original GPR model (See Figs S1 & S2). Thus, for each subpopulation of GPe,329

there are projections to other basal ganglia nuclei, projections to other GPe subpopulations, and330

projections within the same population. Then, in a series of Combined models, we combined331

connections in stages to simulate first, the entire projective connectivity of each subpopulation,332
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before repeating this with multiple subpopulations together. This enabled us to determine the333

functions for the various pathways and subpopulations of the GPe, as well as draw conclusions334

on the function of the GPe as a whole. Consequently, we present the simulation results broadly335

in three phases. In the first phase, we show step-wise models for the GPe TA subpopulation. In336

the second phase, we show a similar set of simulations of the GPe TI subpopulation. In the final337

phase, we draw these two subpopulations together in different ways into the extended architecture338

of GPe connectivity shown in Fig 1D.339

2.7. Assessment and evaluation of selectivity340

In order to assess the capabilities of each model variation, we established several341

metrics that described ‘selectivity’. Their definition builds on a simple pairwise competition342

protocol, the notions of ‘hard’ and ‘soft’ selection, and how these modes of selection vary with343

dopamine. We now describe the metrics and their construction in detail.344

2.7.1. Basic selection procedure345

In our simulations, we have actively driven two channels in a six channel model346

to replicate the stimulus protocols used in characterising the original GPR model (Gurney et al.,347

2001a, 2004). Selection was explored using a fixed protocol of salience variation of the two348

active channels (Fig 2). The selection threshold (✓s) was set to 0 and the distortion threshold (✓d)349

was set to 0.5×ysnr
o , where ysnr

o was the tonic level of GPi/SNr (Fig 2A). In the time interval t ≤ 1,350

the output reaches its ‘default’ or ‘equilibrium’ value which is the tonic value of the GPi/SNr (Fig351

2A). We further define time intervals 1 and 2 as 1 ≤ t ≤ 2 and 2 ≤ t respectively. We consider the352

two channel outputs during these intervals as ysnr
1

(1) and ysnr
2

(2). At time t = 1, channel 1 salience353

c1 increases from 0 to 0.4 (shown in blue, Fig 2A). This induces a selection of channel 1 and an354

increase in ysnr
2

(2). At time t = 2, channel 2 increases its salience to 0.7 (shown in red, Fig 2B).355

This induces a selection of channel 2, and a clear deselection of channel 1 (since now, ysnr
1

(1) >356

✓d, Fig 2B). This particular outcome is called Switching (See description below). However, this357

dual threshold scheme and pairwise competition between two channels could result in several358

outcomes - conditions of selectivity, which are detailed below.359

2.7.2. Conditions of selectivity360

The six possible conditions of selectivity are described here (see also (Gurney361

et al., 2004)). They are the basic criteria used to classify selection possibilities. If ∧ stands for362

conjunction then,363

1. No Selection No channel selected: [ysnr
1

(1) > ✓s] ∧ [ysnr
1

(2) > ✓s] ∧ [ysnr
2

(2) > ✓s]364

2. Single Channel Selection: Each interval has a clear single channel selected with no interfer-365

ence, distortion or switching. Two possibilities:366

• Channel 1 selected: [ysnr
1

(1) ≤ ✓s] ∧ [ysnr
1

(2) ≤ ✓s] ∧ [ysnr
2

(2) > ✓s] ∧ [ysnr
2

(2) > ✓d]367

• Channel 2 selected: [ysnr
1

(1) > ✓s] ∧ [ysnr
1

(2) > ✓s] ∧ [ysnr
2

(2) ≤ ✓s] ∧ [ysnr
1

(2) > ✓d]368

3. Switching: Channel 2 is selected while channel 1 is deselected after being selected first,369

with no interference: [ysnr
1

(1) ≤ ✓s] ∧ [ysnr
1

(2) > ✓s] ∧ [ysnr
2

(2) ≤ ✓s] ∧ [ysnr
1

(2) > ✓d]370

4. Dual Channel Selection: Channel 1 is selected in interval 1 and both channels are selected371

in interval 2:[ysnr
1

(1) ≤ ✓s] ∧ [ysnr
1

(2) ≤ ✓s] ∧ [ysnr
2

(2) ≤ ✓s]372
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5. Interference: Channel 1 selected in interval 1. Channel 2 causes deselection of channel 1 in373

interval 2, while it does not itself become selected: [ysnr
1

(1) ≤ ✓s]∧ [ysnr
1

(2) > ✓s]∧ [ysnr
2

(2) >374

✓s]375

6. Distortion: Single channel may be selected or switching might occur, the difference being376

that the losing channel is not clearly deselected, i.e, it is less than ✓d. Three possibilities:377

• Channel 1 selected: [ysnr
1

(1) ≤ ✓s] ∧ [ysnr
1

(2) ≤ ✓s] ∧ [ysnr
2

(2) > ✓s] ∧ [ysnr
2

(2) ≤ ✓d]378

• Channel 2 selected: [ysnr
1

(1) > ✓s] ∧ [ysnr
1

(2) > ✓s] ∧ [ysnr
2

(2) ≤ ✓s] ∧ [ysnr
1

(2) ≤ ✓d]379

• Switching: [ysnr
1

(1) ≤ ✓s] ∧ [ysnr
1

(2) > ✓s] ∧ [ysnr
2

(2) ≤ ✓s] ∧ [ysnr
1

(2) ≤ ✓d]380

Fig 2. Experimental protocol with pairwise competition. Description of the basic selection381

procedure (A) Channel 1 salience is increased to 0.4 which leads to its selection at t = 1 (B)382

Channel 2 salience is then increased to 0.7 at t = 2, which leads to its selection and a clear383

deselection of channel 1, a condition of selectivity called ‘switching’. Note that the output of384

channel 1 at t = 2, is above the distortion threshold (✓d) indicating its clear deselection.385

2.7.3. Hard and Soft selection through template matching386

The salience on the two competing channels was varied from 0 to 1 in steps of 0.1,387

totalling 121 outcomes. We then observed which condition of selectivity, the pattern of outputs388

defined, for each salience pairing. This was done for a fixed value of dopamine ratio. In the GPR389

model, it was shown that for moderate levels of dopamine (Rw = 1.83) the outcomes favour hard390

selection, which is dominated by single-channel selection (Gurney et al., 2001a, 2004). Hard391

selection, was more crucial for a system working as a selection mechanism, as it was defined on392

the basis of a clear winner amongst competing channels. An ideal selection mechanism would393

normally require that there be a clear ‘winner’ of the competition for behavioural expression,394

facilitated by intermediate levels of dopamine. At sufficiently low levels of dopamine (Rw = 1)395

there is failure to select (See Figs 3C, 5A & B). This is consistent with the pathology of Parkin-396

son’s disease in which low levels of dopamine (typically more than 80% loss, Roessner et al.397

2011; Yoon et al. 2007) cause akinesia, which we interpret as a failure of action selection.398

However, it may be desirable in some circumstances, that selection be more399

‘promiscuous’ so that inhibition is removed from multiple channels. We refer to this as soft400

selection which consists largely of dual channel selection in the template description. Soft se-401

lection is favoured at higher levels of dopamine (Rw = 10). In its extreme form, such selection402

may be associated with undesired expression of actions simultaneously (or near simultaneous)403

with the desired, as shown, for example, in Tourette’s syndrome, where undesirable behavioural404

‘tics’ accompany normal target behaviours (Roessner et al., 2011; Yoon et al., 2007). However,405

there are other, more positive ways of interpreting soft selection and the nominal simultaneity of406

selection, which we discuss below.407

2.7.4. Understanding behavioural correlates of soft selection408

Consider a model situation with dual channel selection. This is maintained in409

the model only via the artefact of sustained application of fixed input saliences on the relevant410

channels. In reality, if we close the environment-agent loop, the very act of committing an action411

by the agent will modify the agents perceived environment, thereby facilitating a change in412

salience which, in turn, may release any dual channel deadlock. This will also be assisted by any413

neural noise which we have omitted in the current model for simplicity. In either case, the final414

selection after this ‘symmetry breaking’ will be somewhat randomly obtained, and contingent415
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on small phasic disturbances in the agent or its dynamically evolving environment. This kind of416

non-determinism in salience input will force the agent to explore a variety of actions in response417

to a general environmental context, as required, if the agent is to undergo effective reinforcement418

learning (Barto and Mahadevan, 2003; Barto, 1994). In our model, soft selection is favoured by419

higher levels of dopamine, indicating more exploratory behaviour under these conditions. This420

is consistent with some interpretations of the biological implications of increased dopamine; for421

example, increased activity in the dopamine system has been associated with higher levels of422

‘risk’ taking during adolescence in human development (Wahlstrom et al., 2010). Furthermore,423

modelling suggests that low to moderate levels of tonic dopamine activity in the striatum induces424

exploratory behaviours (Humphries et al., 2012; Chakravarthy and Balasubramani, 2013), while425

higher levels induce exploitive or ‘Go’ behaviours (Frank, 2006)426

While the ‘symmetry breaking’ account of soft selection may apply to a single427

competitive loop in the basal ganglia (the target of our model), soft selection may occur more428

generally in the wider context of multiple, parallel (and competitively more independent)429

loops. Parallel loops have been proposed in the basal ganglia for automatic and voluntary430

behaviours (Kim and Hikosaka, 2015). These can mediate behaviours which can and do occur431

simultaneously, in reward-seeking behaviours - as for instance eating and reaching out for food.432

This would mean disinhibition of different pattern generator circuits devoted to specific types433

of movements (Grillner et al., 1998). The basal ganglia output nuclei target all these motor434

generating circuits (Grillner et al., 2005; Grillner, 2003; Kim and Hikosaka, 2015).435

436

2.7.5. Quantifying selection437

We quantify selection outcomes by comparing the degree of match of our own438

experimental outcomes with ‘ideal’ templates for both hard and soft selection. The candidate439

templates we used for these comparisons are shown in Fig 3A (hard selection) and Fig 3B (soft440

selection, see also Gurney et al. 2001a, 2004). We thus used the comparison parameters, Hard441

selection match Ph, and the Soft selection match Ps as,442

Ph =
Nh100

N
, Ps =

Ns100

N
(4)

where Nh and Ns were the salience value pairs for which the simulation outcomes matched their443

counterparts in the ideal hard and soft selection templates respectively, and N, the total number of444

salience value pairs. By repeating the 121 experiments in the ‘salience grid’ with several values445

of � (0 < � < 1), we measured the Ph and Ps values across dopamine levels and plotted them446

against Rw. The points were fit using a cubic spline and the maximum Ph and Ps (Max Ph, Max447

Ps, peak of the corresponding spline, see Fig 3C) were calculated. The value of the dopamine448

ratio at which the Ph(Rw) and Ps(Rw) trajectories cross was defined as the Cross-over point Wc (Fig449

3C).450

Fig 3. Selection templates and performance trajectories. (A) Ideal Hard and (B) Soft451

selection templates used for comparisons of our simulation outcomes. (C) Hard and soft452

trajectories across dopamine range, of the best performance of the GPR model, which highlights453

the desirable trajectories of Ph and Ps, each having high values and sufficient difference454

between them. The values are Max Ph = 65.22, Max Ps = 86.78 and the cross-over point455

Wc = 2.35 (D) shows a model run with a biologically implausible weight from one of our456

step-wise models, indicates the failure of the model-the hard and soft curves nearly overlap.457

The curves are cubic spline fits to data.458
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The general metric was to compare Ph and Ps values of our models with the corresponding459

values of the best performance simulation of the GPR model (Gurney et al., 2001b). We defined460

performance from a computational perspective based on the ability of the selection mechanism461

to perform better hard selection. Thus, an increase in Max Ph compared to the Max Ph of the462

GPR model (65.22, Fig 3C, Gurney et al. 2001a, 2004) was taken to be a performance increment.463

However, the selection system was also required to demonstrate large values of Ps similar to the464

GPR model, ensuring sufficient access to both hard and soft selection regimes. We thus took465

minimal deviation of the Max Ps value, or an increase from that of the GPR model (86.78, Fig466

3C) as another indicator of model performance.467

We also evaluated the general trajectories of both Ph and Ps plots across Rw in468

terms of their resemblance to what was seen in the GPR model (Fig 3C). In general, the Ph469

trajectory > Ps for low dopamine, must cross each other subsequently at a point defined as the470

crossover-point Wc, and for higher dopamine values Ps > Ph. This translates to the function471

Ph(Rw) increasing from Ph(1) reaching its peak Max Ph at relatively small values of Rw and472

then decreasing gradually with increase in Rw. The function Ps(Rw) on the other hand, increased473

monotonically from Ps(1) reaching the peak value Max Ps at large values of Rw. The cross-474

over point Wc essentially determined that for 1 < Rw < Wc, Ph > Ps the system was in the hard475

selection regime. For Rw > Wc, Ps > Ph the system was in the soft selection regime. Thus, there476

had to be a clear distinction and difference between the fits of Ph and Ps across Rw, and any477

overlap was considered as a failure of the model (Fig 3D, See also Gurney et al. 2004). This478

was important in that it forced a clear distinction in the models behaviour in terms of hard and479

soft selection. The cross-over point in addition, also determined the range of dopamine values480

through which hard selection may be accessed by the model, and its value being equal to or481

greater than that of the GPR model (2.35, Fig 3C), was also an additional determinant of model482

performance.483

Each of the three parameters defined - Max Ph, Max Ps and Wc, represented a484

feature of the model and contributed in its own right towards the assessment of the performance485

of the model. We thus had the feature set F = {Max Ph, Max Ps, Wc}. However, the basis of486

our performance metric was changes of performance in relation to that of the GPR model. We487

therefore defined these features relative to those of the GPR model as Ri = log(ri), where ri =488

fi/ fGPR with fi ∈ F, and where fGPR was the value of the corresponding feature in the GPR model.489

This resulted in the defining of relative features to the three features F = {Max Ph, Max Ps, Wc}490

as {Ri} = {H
∗

MAX
, S ∗

MAX
, W∗c } respectively. Bringing these ideas together allows us to define a491

single scalar metric Q∗ which added up the three relative features as,492

Q∗ =
X

i

log(ri) (5)

Thus, an increase in Q∗ following any addition of a biologically plausible pathway to the GPR493

model would indicate an increment in performance, implying greater support for the action se-494

lection hypothesis.495

2.7.6. Reversal phenomenon496

In the extended architecture simulated in this study, we observed a hitherto unseen497

‘reversing’ of tendency of a particular channel to get selected, with increasing salience. In gen-498

eral, as the salience is increased for a particular channel, its output decreases and approaches the499

selection threshold (which is zero). However, in some models with newly included pathways500
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here, it was observed that across a range of high salience values, with increasing salience values,501

when the salience on one channel was kept constant and that on the second increased, the output502

of the latter channel increased, rather than decrease (and thereby approach the selection thresh-503

old) reversing the tendency to get selected. We defined a value to quantify this phenomenon - a504

Reversal Rv which was given by,505

Rv =
Nr100

N
(6)

where Nr was the number of channel 1 and channel 2 salience value pairs for which reversal506

occurs and N the total number of salience value pairs (within the experimental ‘salience grid’507

defined previously). This unitary phenomenon (increase in output with increased salience), re-508

sulted in four possible cases: Single Ch selection → No Selection, Dual channel selection →509

Interference/Distortion/Switching, Switching → Interference/Distortion and Distortion → Inter-510

ference. Some of these cases are illustrated in Fig 4. These various cases were seen in control511

models of pathways underlying reversal (see reversal architecture, Fig 10B). In the final model,512

only the cases resulting in Dual channel selection → Interference/Distortion/Switching, were513

seen, largely in the soft selection regime (see Fig 7F and Discussion). We do not detail the types514

of reversal in different models, but present its occurrence in terms of Reversal value defined here.515

Thus, mechanistically, reversal by large, enables soft selection outcomes (dual516

channel selection) being reversed to hard selection outcomes (single channel outcomes). Since517

reversal occurred across a range of high salience values, we speculate that it may be indicative518

of exploratory behaviours (Humphries et al., 2012; Chakravarthy and Balasubramani, 2013) but519

also resolution of ‘flight-fight’ instances of behavioural decision-making.520

Fig 4. Reversal phenomenon. Reversal seen here on the selection outcomes from (A) one of521

the control models (1,2,green dotted box) shows the case where after switching the selected522

channel is pulled back causing interference. In (2) distortion is followed by interference instead523

of the normal switching. These types of reversal cases were only seen in control models. (B)524

Reversal in the final model, in (3) dual channel selection is followed by distortion and switching525

while in (4) it is followed by distortion and interference. These cases aid in better action526

selection performance in that they lessen the number of more promiscuous selections. (C-D)527

Time course of a typical reversal case occurring in the final model as per the sequence seen in528

(3), in (C) channel 1 is selected upon reaching the selection threshold, following which in (D)529

the salience of channel 2 increases sufficiently to result in its selection as well - dual channel530

selection. Reversal kicks in, and in (E) channel 2 output can be seen to increase (black arrow),531

causing distortion (its output is still lesser than the distortion threshold). Subsequently however532

in (F), the channel 2 output increases above the distortion threshold, resulting in its clear533

deselection, resulting in switching. Thus reversal resulted in a reversion back to a clear selection534

of channel 1 from the scenario where both channel 1 & 2 were selected.535

2.7.7. Other features536

As well as determining the values of metrics such as Q∗ and Rv, we also report a537

range of features about model behaviour, such as presence or absence of oscillations, changes in538

tonic rates of the GPi/SNr. We also attempt to dissect out neural connectivity underlying some of539

these features and identify the roles of different pathways in these features, which are tabulated540

in Table 4.541
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2.8. Extended Architecture - omissions542

The extended architecture incorporates most of the neural subpopulations and in-543

trinsic connectivity of the GPe known. However, not all logically possible pathways are inves-544

tigated as we had to limit the combinatorics to be tractable. The rationale for omissions is as545

follows: The projections from striatal D1 neurons to GPe TI and GPe TA have been omitted,546

since their primary role is in relation to the direct pathway. With respect to the projections of547

the GPe TA neurons to the striatum, we have modelled only the projections to the SPNs. The548

extent and distribution of the GPe TA neuronal projections to the striatum is not yet completely549

clear, although they are known to target both the SPNs and the interneurons (Mallet et al., 2012;550

Hegeman et al., 2016; Burke et al., 2017). Furthermore, there are some indications that GPe551

TA input to striatum D2 SPNs is stronger (Glajch et al., 2016), however, we have not varied552

the relative strengths of GPe TA projections to D1 and D2 SPNs. We have also not modelled553

the GPe TA local collaterals to the GPe TI, whereas the reverse connection has been included.554

There is recent evidence from modelling that GPe TA neurons receive inputs from the GPe TI555

(Lindahl and Hellgren Kotaleski, 2016), which agrees with our own modelled connectivity. The556

final form of the new extended architecture is seen in Fig 1D. The TI and TA neurons are shown557

within the GPe boundary, whereas the outer and inner neurons are shown within the TI boundary.558

The extrinsic connections of both the outer and inner neurons are commonly represented by the559

TI, except for the distinguishing connection between the outer and inner neurons.560

3. Results561

Recall from the methods that we make use of step-wise and combined models,562

investigating single and multiple pathways respectively, and that their deployment is carried out563

in three modeling phases. This approach is reflected here in reporting the Results.564

3.1. Phase 1: TA step-wise models565

In phase 1, the GPe TA neurons were added to the GPR model. The results of each566

of the step-wise models are described below. The different weights used in each of the step-wise567

models are tabulated in Appendix S2.568

3.1.1. GPe TA - GPe TA step-wise model569

This model tested the feedback pathways of the GPe TA neurons (pathway 1 in570

Fig 1B). The feedback loop of the GPe TI w−
ti−ti

, was set to 0 to isolate the GPe TA - GPe TA571

pathway as much as possible. Only w−ta−ta was varied. The projections to striatum, w−
ta−d1

and572

w−
ta−d2

were set at -1, while the w−
ti−ta

was set at -1. w−ta−ta had no effect on Ph or Ps, as it was573

varied. H∗
MAX

and W∗c were slightly higher than the GPR values while S ∗
MAX

was unchanged.574

The performance Q∗ was only slightly higher than the GPR model (Fig 6A-D). There was no575

change in tonic level of GPi/SNr. This pathway has no significant influence on selection as the576

Ph(Rw) and Ps(Rw) trajectories were similar to that of the GPR model (Fig S1A). Reversal was also577

not noticed; this path had no role in reversal phenomenon. The model produced oscillations,578

and in order to find the source of oscillations more precisely, w−
ta−d1

and w−
ta−d2

were varied.579

It was found that oscillations were sustained for w−
ta−d1

= w−
ta−d2

= -1, indicating that both the580

arkypallido-striatal components were required to generate them (see Table 4). Oscillations were581

sustained at lower DA levels and were maximum when there was no dopamine activity (DA =582

0, Fig 5A). They reduced in amplitude as DA level increased DA ≤ 0.3 (Fig 5B & C), and were583
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completely suppressed for DA ≥ 0.4 (Fig 5D). The oscillations had a frequency of 4.7 Hz and584

were therefore classified as being in the theta band. Furthermore, for DA = 0, the outputs at585

the level of GPe subpopulations and STN were also evaluated. Both the GPe subpopulations -586

arkypallidal and prototypical neurons were oscillating (Fig 5G) as well as STN (Fig 5H). Thus587

the entire STN - GPe - GPi/SNr network oscillates.588

STN stimulation. We checked whether over activation of the STN in the model conditions which589

produced oscillations, could relieve oscillations. All the weights associated with the STN were590

set to +1 to capture the conditions of STN stimulation. The model performance was tested for591

DA = 0 and the model was able to select and the oscillations were suppressed (Fig 5G, see also592

Fig S4B&D, for weights of different pathways see ‘STN - DBS model’ in Appendix S2). The593

Max Ph value was higher than the oscillating condition (Fig S4D).594

STN lesion. We furthermore checked whether the lesioning of STN could provide similar out-595

comes - in this case all the weights associated with STN were set to 0). Interestingly, for DA =596

0, the model was able to select as well as suppress oscillations (Fig 5H, see also Fig S4C&D, for597

weights of different pathways see ‘STN - lesion model’ in Appendix S2).The Max Ph value was598

higher than the oscillating condition (Fig S4D).599

Fig 5. Theta oscillations induced by lack of dopamine. Oscillations across dopamine levels,600

Max Amplitude at (A) DA = 0, Intermediate levels (B) DA = 0.2 and (C) DA = 0.3, Suppressed601

at (D) DA = 0.4. The oscillations were due to the arkypallidal TA projections to the striatum.602

(E) Oscillations at DA = 0, also at the level of GPe subpopulations - both the arkypallidal and603

prototypical neurons. (F) Oscillations also at the level of STN for DA = 0. (G) Suppression of604

oscillations and selection induced for DA = 0 for maximum weights on STN mimicking STN -605

deep brain stimulation conditions. (H) Similar supression of oscillations and selection when606

STN weights are made zero reflecting ‘STN - lesion’ condition.607

Fig 6. Performance metrics. Performance metrics for the step-wise models (A) H∗
MAX

values608

showing the relative change in Hard selection of the step-wise models to that of the GPR model609

(B) S ∗
MAX

values showing the relative change in Soft selection of the step-wise models to that of610

the GPR model (C) W∗c values showing the relative change in cross-over point of the step-wise611

models to that of the GPR model (D) Q∗ Performance metric values of step-wise models612

relative to the GPR model. In all, red plots indicate increment in value while blue plots indicate613

decrement in value.614

3.1.2. GPe TA - STR step-wise model615

This model tests the diffuse projections of the GPe TA neurons to the striatum616

(pathway 2 in Fig 1B). The weights w−
ta−d1

and w−
ta−d2

were varied but were kept equal. The GPe617

TI - GPe TA pathway weight w−
ti−ta

was also varied. GPe TI was necessary since the GPe TA618

neurons have no efferents to the GPi/SNr. To test the pathways in as much isolation as possible,619

the feedback weights of GPe TI and GPe TA neural populations were ‘lesioned’, w−
ti−ti
= w−ta−ta =620

0. H∗
MAX

was lower than the GPR value showing this projection reduced the performance of the621

model in the hardness regime. However, with increase in W∗c , it increased the range of the622

hardness regime across dopamine values. S ∗
MAX

was also reduced. The performance Q∗ was623

higher than the GPR model, largely due to the marked increase of W∗c (Fig 6A-D). Oscillations624

were observed for w−
ti−ta
= −1 and w−

ta−d1
= w−

ta−d2
= −1, just as they were observed in the625
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GPe TA - GPe TA step-wise model. It was confirmed that these pathways were responsible626

for oscillations (see Table 4). The dependence of oscillations on low dopamine levels was also627

confirmed. Even for the values of best performance, w−
ti−ta
= −0.75 and w−

ta−d1
= w−

ta−d2
= −0.25,628

the Ph(Rw) and Ps(Rw) trajectories overlapped (Fig S1B). This was a failure of the model - indicating629

that the connectivity was incomplete and not fit for optimum action selection. Reversal was not630

observed indicating that these pathways had no role role in reversal phenomenon.631

GPe TI - TA step-wise model632

This model tested the GPe TI - GPe TA pathway w−
ti−ta

, which was added to the633

GPR model (pathway 3 in Fig 1B). This would be analogous to the GP-outer to GP-TA connec-634

tion in future models. Both w−
ti−ti

and w−ta−ta were set to 0 or ‘lesioned’ to provide for exclusive635

testing. The TA projections to the striatum, w−
ta−d1

and w−
ta−d2

were set to -1. H∗
MAX

was higher636

the GPR value which resulted in the performance Q∗ being slightly higher than the GPR. S ∗
MAX

637

and W∗c were unchanged (Fig 6A-D). The model showed no selection till w−
ti−ta
= −0.75, and638

selection was observed at w−
ti−ta
= −1 (Fig S1C). There was no influence on the GPi/SNr tonic639

level or any significant influence on selection. There was no role of this pathway in reversal,640

which was not noticed. This pathway allows the prototypical TI neurons to maintain control on641

the arkypallidal TA neurons, inturn allowing them to influence striatal activity (see Table 4).642

3.1.3. GPe TI - TI step-wise model643

This model tested the local inhibitory connections of GPe TI neurons, considered644

as a single homologous population (pathway 4 in Fig 1B, analogous also to pathway *, GPe645

outer - GPe outer in Fig 1C). This didnt include the GPe TA neurons or the outer/inner neuron646

distinction of GPe TI neurons. The GPe TI-SNr weight was fixed at w−
ti−snr

= −0.4. The GPe TI-647

GPe TI feedback weight, w−
ti−ti

was varied. Both H∗
MAX

and S ∗
MAX

were reduced, however W∗c was648

increased which yielded in an increased performance Q∗ than the GPR model (Fig 6A-D). Max649

Ph occurred for w−
ti−ti
= 0, which was the same as the GPR model. Clearly this pathway was, at650

this stage not useful for action selection. This indicated lack of sufficient circuitry modelled. We651

have, however, shown the simulation result with w−
ti−ti
= −0.25 (Fig S1D), which was the weight652

of this pathway, for best performance in the final model (see below). Reversal was observed653

for w−
ti−ti
> 0 (see Fig 7A) showing that the TI neurons play a role in reversal. Tonic value of654

GPi/SNr increased with increase in w−
ti−ti

(see Fig 8A and Table 4). The pathway thus influences655

selection by setting the tonic value of GPi/SNr.656

Fig 7. Reversal phenomenon generated by prototypical GPe neurons. Reversal (in %)657

across dopamine levels with change in the weights of (A) w−ot−ot ((B) w−
in−in

(C) w−
ot−in

(D) w−
ot−d1

658

& w−
ot−d2

(E) w−
in−d1

& w−
in−d2

. (F) shows reversal observed in the final model across dopamine659

values, occurring largely in the soft selection regime.660

3.2. Phase 2: TI step-wise models661

In phase 2, the GPe TI neurons with the outer - inner dichotomy were added to662

the GPR model. The results of each of the step-wise models are described below. The different663

weights used in each of the step-wise models are tabulated in Appendix S2.664
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3.2.1. GP IN - GP IN step-wise model665

This was the first model incorporating the dichotomy of GPe TI neural population666

- the outer and inner neurons. The GPe TI - GPe TI step-wise model was equivalent to GPe outer667

- GPe outer step-wise model, so we start from investigating the GPe inner - GPe inner step-wise668

model (pathway 5 in Fig 1C). To investigate this pathway exclusively, we set the GPe outer -669

GPe outer (TI -TI ) weight, w−ot−ot = −1 and the GPe outer - GPe inner weight w−
ot−in
= −1, and670

varied w−
in−in

. We also ’lesioned’ the GPe outer - SNr pathway w−ot−snr = 0, so as to have only671

the output of GPe inner neurons to the GPi/SNr. Both H∗
MAX

and S ∗
MAX

were reduced, however672

W∗c was increased which yielded in an increased performance Q∗ than the GPR model (Fig 6A-673

D), similar to the GPe TI - GPe TI model, indicating these two pathways may be involved in674

similar functions. Reversal was noticed, even when w−ot−ot = 0 (Fig 7B) indicating this pathway675

and by extension - the inner neuron play a role in generating reversal (see Table 4). Tonic676

value of GPi/SNr increased with increase in w−
in−in

(Fig 8A) also implicating the inner neurons677

in influencing the tonic output of the GPi/SNr (see Table 4). Max Ph occurred for w−
in−in
= −0.5.678

However, there was a near overlap of Ph(Rw) and Ps(Rw) trajectories, which was clearly undesirable679

(Fig S1E) and indicated incomplete connectivity. In the final model (see below) a weight of680

w−
in−in
= −0.75 was used, which yielded best performance.681

Fig 8. Effects of prototypical GPe neuron projections on tonic level of GPi/SNr. Step682

changes in GPi/SNr tonic levels with change in the weights of (A) w−ot−ot , w−
in−in

& w−
ot−in

(B)683

w−ot−snr & w−
in−snr

.684

3.2.2. GP OT - GP IN step-wise model685

This model investigated the crucial GPe outer - GPe inner link, which was the686

inhibitory connection between the GPe outer and GPe inner neuron populations (pathway 6 in687

Fig 1C). w−
ot−in

was varied, whereas same population inhibitory connection weights were set688

to, w−ot−ot = w−
in−in

= −1. H∗
MAX

was unchanged from that of the GPR model, while S ∗
MAX

689

was reduced. W∗c was increased which yielded in an increased performance Q∗ (Fig 6A-D).690

When w−
ot−in
= 0, the model behaved like the GPR model, which was also the best performance691

(Fig S1F). However we used a value of w−
ot−in

= −0.25 in the final model, which gave best692

performance, which we have shown here as well. Reversal was noticed across the values of693

w−
ot−in

(Fig 7C). However, when the same population inhibitory weights were ‘lesioned’, i.e,694

w−ot−ot = w−
in−in

= 0, no reversal was noticed. Thus, this pathway had no role in generating695

reversal. Tonic level of GPi/SNr increased with increase in w−
ot−in

(see Fig 8A and Table 4).696

3.2.3. GP OT - SNr step-wise model697

This model investigated the efferents of the GPe outer neurons to the GPi/SNr (part698

of pathway 7 in Fig 1C, considering only GPe outer). The same population inhibitory weight was699

set at w−ot−ot = −1. The GPe outer - SNr weight w−ot−snr was varied. Both H∗
MAX

and S ∗
MAX

were700

reduced. W∗c was increased which resulted in an increased performance Q∗ (Fig 6A-D). This701

pathway decreased the tonic level of GPi/SNr markedly with increase in w−ot−snr (Fig 8B, see also702

Table 4). Clearly, this would facilitate selection, since a lower salience would be sufficient to703

ensure selection. Thus, the outer neurons made it easier for competing channels to be selected704

- soft selectors (Fig 10D, see Discussion). Although reversal was observed, this was due to the705

same population inhibitory weight being w−ot−ot = −1. When w−ot−ot = 0, no reversal was seen.706

Thus, this pathway does not generate reversal but executes it (see Table 4), as it is the pathway707
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targeting the output nuclei. Best performance occurred for w−ot−snr = −0.6 (Fig S2A), and Max708

Ph increased with increasing w−ot−snr till -0.6 and then decreased.709

3.2.4. GP IN - SNr step-wise model710

This model investigated the efferents of the GPe inner neurons to the SNr (part of711

pathway 7 in Fig 1C, considering only GPe inner). The same population inhibitory weight was712

set at w−
in−in

= −1 and that of GPe outer neurons w−ot−ot = −1 as well. The GPe outer - GPe713

inner weight was set at w−
ot−in
= −1. The GPe inner - SNr weight w−

in−snr
, was varied. The GPe714

outer - SNr pathway was ‘lesioned’, w−ot−snr = 0, so as to enable examination of GPe inner - SNr715

pathway in isolation. Both H∗
MAX

and S ∗
MAX

were reduced. W∗c was increased which resulted in716

an increased performance Q∗, the metrics resemble those of the GPe outer - SNr step-wise model717

(Fig 6A-D). The tonic level of GPi/SNr, like with their GPe outer counterparts, decreased with718

increase in w−
in−snr

(Fig 8B, see also Table 4), indicating similar roles for these pathways in setting719

the tonic level of GPi/SNr, although the decrease was lesser compared to the latter. Thus, the720

inner neurons made it less easier for channels to be selected, since they required higher salience721

in comparision to the outer neurons. This made the inner neurons - hard selectors (Fig 10D,722

see Discussion). Reversal was observed, even when both same population inhibitory pathways723

were set to w−ot−ot = w−
in−in
= 0. However GPe outer - GPe inner weight was high w−

ot−in
= −1.724

When w−
ot−in
= 0, reversal disappeared. Thus, this pathway had no role in generating reversal but725

executed it (see Table 4), just like its GPe outer - SNr counterpart. Best performance occurred726

for w−
in−snr

= −0.6 (Fig S2B).727

3.2.5. GP OT - STRD1 step-wise model728

This model investigated the effect of the projections of GPe outer neurons to the729

striatum, in this case, striatum D1 (part of pathway 8 in Fig 1C, considering only GPe outer730

to STRD1). These projections were modelled as excitatory, since they innervate the FSNs in731

the striatum. This model investigates the effect on the selection pathway. We vary the weight732

w+
ot−d1

. The same population inhibitory weight was set to w−ot−ot = 0. All features, H∗
MAX

, S ∗
MAX

733

and W∗c showed a decrement in performance which consequently reduced Q∗ (Fig 6A-D). This734

indicated that this pathway was not favourable for action selection. However, this was due to735

lack of more complete circuitry. Although best selection occured for w+
ot−d1

= 0, we use a value736

of w+
ot−d1

= 0.5, which gave best performance in the final model (Fig S2C). At a high weight,737

w+
ot−d1

= 1, at DA = 0, distortion and interference was noticed across saliences, while at high DA,738

dual channel selection across saliences was observed. Tonic level of GPi/SNr remained constant739

till w+
ot−d1

= 0.5 and then increased for subsequent higher weights. Clearly, high weights on this740

pathway were detrimental to action selection (see Discussion). Reversal was observed for DA ≤741

0.3, indicating its role in causing reversal in the hard selection regime (Fig 7D, see Table 4).742

3.2.6. GP OT - STRD2 step-wise model743

This model investigated the effect of the projections to the GPe outer neurons to744

the control pathway - striatum D2 (part of pathway 8 in Fig 1C, considering only GPe outer to745

STRD2). All the conditions of the previous model remained, except for the GPe outer projections746

to the selection pathway, which were ‘lesioned’ w+
ot−d1

= 0. H∗
MAX

and S ∗
MAX

showed a decrement747

while W∗c showed a marked increase consequently improving performance Q∗ (Fig 6A-D). This748

shows that this pathway is more favourable for action selection unlike its sister projections which749

affects striatum D1 SPNs (see Discussion). Reversal was noticed for w−
ot−in
= −0.25 and w+

ot−d2
≤750
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0.5 and DA ≥ 0.3, indicating its role in causing reversal largely in the soft selection regime (Fig751

7D, see Table 4).752

3.2.7. GP IN - STRD1 step-wise model753

This model investigated the projections of GPe inner neurons to striatum D1, to754

the selection pathway, which were modelled as excitatory due to their targeting FSNs (part of755

pathway 8 in Fig 1C, considering only GPe inner to STRD1).The weight of the GPe outer - GPe756

inner pathway, w−
ot−in

, was varied as well. The output of the GPe outer neurons was ‘lesioned’757

w−ot−snr = 0, to isolate GPe inner output. H∗
MAX

and S ∗
MAX

showed a marked decrement. Although758

W∗c showed a slight increase, there was a decrease of performance Q∗ (Fig 6A-D). Again this759

is an undesirable pathway for action selection similar to GP OT - STRD1. The model had best760

performance for w+
in−d1

= w−
ot−in
= 0, equal to GPR model. However, we used weight of w+

in−d1
=761

0.25 and w−
ot−in

= −0.25 (Fig S2E) in the final model which yielded best performance. Tonic762

level of GPi/SNr remained constant till w+
in−d1

= 0.5 then decreased. Reversal was noticed for763

w−
ot−in
= −0.25 and w+

in−d1
≤ 0.5, and for DA ≤ 0.6 (Fig 7E), indicating its role in causing reversal764

largely in the hard selection regime and at intermediate dopamine levels (see Table 4).765

3.2.8. GP IN - STRD2 step-wise model766

This model investigated the projections of GPe inner neurons to striatum D2, to767

the control pathway (part of pathway 8 in Fig 1C, considering only GPe inner to STRD2). The768

weight of the GPe outer - GPe inner pathway, w−
ot−in

, was varied as well. The output of the769

GPe outer neurons was ‘lesioned’ w−ot−snr = 0, to isolate GPe inner output. H∗
MAX

and S ∗
MAX

770

show a decrement while W∗c showed a marked increase, consequently improving performance771

Q∗ (Fig 6A-D). This shows that this pathway is more favourable for action selection similar to772

GP OT - STRD2. The model had best performance for w+
in−d2

= w−
ot−in
= 0, equal to GPR model.773

However we used the weight of w+
in−d2

= 0.25 and w−
ot−in
= −0.25 (Fig S2F) in the final model,774

which yielded best performance. Tonic level of GPi/SNr remained constant till w+
in−d2

= 0.5 then775

increased. Reversal was noticed for w−
ot−in
= −0.25 and w+

in−d2
≤ 0.5 and for DA ≥ 0.4 indicating776

its role in causing reversal largely in the soft selection regime (Fig 7E and Table 4), similar to777

GP OT - STRD2.778

3.3. Phase 3: Combined model - I779

In the third phase, combinations of connections were simulated to dissect out their780

function. This gave rise to a large number of simulations but essentially it was accomplished in781

two broad ways. We first captured the dichotomy of the GPe TI neural population - outer and782

inner neurons added together onto the GPR model which had a single homologous GPe , which783

we called Combined model - I and we present here two instantiations of the same as Case A and784

Case B.785

3.3.1. Combined model - I: Case A786

In Case A, the GPe TI projections to striatum, w+
ot−d1

, w+
ot−d2

, w+
in−d1

, w+
in−d2

,787

along with GPe outer - GPe inner pathway w−
ot−in

, were varied (pathways 8 + 6 in Fig 1C).788

The inhibitory same population weights were ‘lesioned’ w−ot−ot = w−
in−in

= 0. H∗
MAX

showed789

a marked increase while S ∗
MAX

was reduced. W∗c shows a marked decrease. Overall, there790

was a decrement of performance Q∗ (Fig 9A-D). The model showed best performance for791

w−
ot−in

= −0.5,w+
ot−d1

= w+
ot−d2

= 0.5 and w+
in−d1

= w+
in−d2

= 0.25 (Fig S3A). Reversal was792

also noticed implicating the modelled pathways in causing it (see Table 4).793

21



Fig 9. Performance metrics. Performance metrics for the combined models (A) H∗
MAX

values794

showing the relative change in Hard selection of the combined models to that of the GPR model795

(B) S ∗
MAX

values showing the relative change in Soft selection of the combined models to that of796

the GPR model (C) W∗c values showing the relative change in cross-over point of the combined797

models to that of the GPR model (D) Q∗ Performance metric values of combined models798

relative to the GPR model. In all, red plots indicate increment in value while blue plots indicate799

decrement in value.800

3.3.2. Combined model - I: Case B801

In Case B, the GPe TI projections to striatum were fixed w+
ot−d1

= w+
ot−d2

= 0.5802

and w+
in−d1

= w+
in−d2

= 0.25. The inhibitory same population weights were varied w−ot−ot, w−
in−in

803

along with GPe outer GPe inner pathway w−
ot−in

(pathway 4 in Fig 1B + pathways 5 + 6 in804

Fig 1C). H∗
MAX

showed an increase while S ∗
MAX

showed a marked reduction. W∗c also showed805

a marked decrease, causing a decrement of performance Q∗ (Fig 9A-D). The model shows best806

performance for w−ot−ot = w−
in−in
= w−

ot−in
= −0.25 (Fig S3B). Reversal and changes in tonic value807

of GPi/SNr were noticed implicating these pathways in both of these functions (see Table 4).808

3.4. Phase 3: Combined model - II809

This second major part of combined model simulations, called Combined model -810

II augmented the combination model - I, with GPe TA neurons. We divided the model into three811

stages, each of which is detailed below.812

3.4.1. Stage 1: Inter-Population Connections813

This model focussed on varying the weights of the inter-population inhibitory814

weights within the GPe. The weights w−
ot−in

, the pathway between GPe outer and GPe inner815

neurons, w−ot−ta, the pathway between GPe outer and GPe TA neurons, w−
in−ta

, the pathway be-816

tween GPe inner and GPe TA neurons were varied (pathway 3 in Fig 1B + pathway 6 in Fig 1C).817

The GPe TI projections to striatum, were set to zero, w+
ot−d1

= w+
ot−d2

= w+
in−d1

= w+
in−d2

= 0.818

H∗
MAX

and S ∗
MAX

showed an increase. W∗c however, showed a marked decrease resulting in a819

decrement of performance Q∗ (Fig 9A-D). Best performance of the model was for the weights820

w−
ot−in
= 0 and w−ot−ta = w−

in−ta
= −1 (Fig S3C). The role of GP OT - GP IN pathway in reversal821

as well as in influencing tonic value of GPi/SNr were confirmed. It also became apparent here822

that using the other two pathways GP OT - GPe TA and GP IN - GPe TA, the GPe TI neurons823

control the activity of the TA neurons and maintain their influence over the striatum.824

3.4.2. Stage 2: Intra-Population Connections825

This model added onto stage 1, the within population inhibitory pathways, which826

were fixed in the former. The weights in stage 1 along with w−ot−ot, w−
in−in

and w−ta−ta were varied827

(pathways 3 + 4 + 1 in Fig 1B + pathways 6 + 5 in Fig 1C). This led to a large number of828

simulations with many instantiations having performances greater than the GPR model. Only829

the projections from the GPe TI neurons to the striatum were ‘lesioned’, w+
ot−d1

= w+
ot−d2

=830

w+
in−d1

= w+
in−d2

= 0. H∗
MAX

and S ∗
MAX

showed an increase. W∗c however showed a marked831

decrease resulting in a decrement of performance Q∗ (Fig 9A-D). Best performance occurs for832

w−
ot−in

= w−ot−ot = w−
in−in

= w−ta−ta = −0.25 and w−ot−ta = w−
in−ta

= −0.5 (Fig S3D). The intra-833

population connections of the GPe TI neurons were confirmed to be involved in influencing the834

tonic value of GPi/SNr and in reversal. However, the GPe TA - GPe TA pathway did not seem to835

partake in any function nor contribute to selection (see Table 4).836
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3.4.3. Stage 3: Extended Architecture837

This model incorporated the extended architecture we planned to simulate (Fig838

1D). The set of weights for best performance selected from this model is presented as the final839

model.840

3.5. Final Model841

The weights were w−
ta−d1

= w−
ta−d2

= −0.75, w−
ot−in
= −0.3, w−ot−ta = w−

in−ta
= −0.5842

and w−ot−ot = w−
in−in

= w−ta−ta = −0.75. The GPe outer and GPe inner to SNr, output pathway843

weights were set to w−ot−snr = w−
in−snr

= −0.4. We called this model Fin 1(Fig S3E). We also show844

a variant of the final model which had a higher Max Ph when there was a difference in the output845

weights to SNr from the GPe outer and GPe inner neurons, w−ot−snr = −1 w−
in−snr

= −0.2. We846

called this model Fin 2 (Fig S3F).847

Fin 1. H∗
MAX

showed an increase while S ∗
MAX

showed a slight decrease. W∗c showed a slight848

decrease, but the overall performance Q∗ showed a slight but clear increase than the GPR model849

(Fig 9A-D). Of all the combined models, this was the only model which showed an increase in850

performance indicating that the complete architecture was necessary to perform optimal action851

selection. The model also had reversal largely in the soft selection regime (Fig 7F), thus reducing852

promiscuous selection. Thus, the model performs better selection per se than the GPR model,853

along with the added functionalities derived from the extended connectivity which are detailed854

below.855

Fin 2. This model tested the differences in output weights to GPi/SNr from GPe TI neurons.856

Best performance occured for w−ot−snr = −0.8 and w−
in−snr

= −0.2. Although H∗
MAX

showed an857

increase, S ∗
MAX

and W∗c showed a decrement bringing down the model performance Q∗ (Fig 9A-858

D). The results confirmed the step-wise model results and showed that higher weights on outer859

neuron projections to the output nuclei promoted easier selection, compared to the inner neuron860

projections to the output nuclei.861

3.6. New control functions of GPe862

In the original GPR model, routes through GPe were interpreted as ’control path-863

ways’ since GPe supplied signals to ensure that the main ’selection pathway’ worked correctly864

(Fig 1A). Some of our modelling results have an interpretation within this context, highlighting865

new control properties of the GPe.866

3.6.1. The striatal switch network867

The arkypallidal TA neurons can act as a ‘striatal switch’ and with increased activ-868

ity, can essentially ‘switch off’ the striatum (Table 4). The prototypical outer and inner neurons869

maintain control over the striatum through the TA neurons and by inhibiting their activity can870

‘turn on’ the striatum. The crucial link is the TI (outer/inner) - TA connection through which871

the TI neurons can operate the ‘switch’. STN also plays an important role in the operation of872

the switch, in that by exciting the TA neurons they can ‘switch off’ the striatum (see also Dis-873

cussion). Thus, we can dissect out the ‘striatal switch network’ consisting of the striatal D2 -874

GPe TA pathway which initiates the network, the GPe TI - GPe TA and STN - GPe TA pathways875

which operate the switch and the GPe TA - STR pathways which execute the function of the876

‘switch’ (See Table 4 and Fig 10A). This is also the network which produces oscillations for low877

dopamine values, and hence could be a potential source for Parkinsonian oscillations (Fig 5).878
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Fig 10. Functional roles of the control pathway. Functional networks (in orange) (A) Striatal879

switch (B) SNr Control (C) Reversal (D) Population functions - the GPe inner neurons (red) are880

hard selectors, the GPe outer neurons (blue) are soft selectors and the GPe TA neurons (green)881

are the striatal switch.882

3.6.2. SNr control network883

The TI (outer/inner) neurons control the GPi/SNr - the output nuclei, by setting the884

tonic level of inhibition the GPi/SNr have on their efferents, in turn, maintaining control over the885

basal ganglia output. Through the same population inhibitory pathways and the GPe OT - GPe886

IN pathway, the outer and inner neurons can increase the tonic activity of the output nuclei (Fig887

8A, Table 4). Through their projections to the output nuclei, the outer and inner neurons can turn888

down the activity of GPi/SNr (Fig 8B, Table 4). This ability to influence basal ganglia output889

gives the GPe prototypical neurons effective control of selection. In this, the outer neurons are890

‘soft selectors’ since they facilitate selection at lower saliences, while the inner neurons are ‘hard891

selectors’ owing to their requiring higher saliences to result in selection (Fig 10D). The network892

of these pathways which form the ‘SNr control network’ are shown in Fig 10B.893

3.6.3. Reversal network894

Through their same population inhibitory connections, the TI (outer/inner) neurons895

give rise to the reversal phenomenon (Fig 7A & B, Table 4). They maintain reversal across896

dopamine levels through their projections to the striatum (Fig 7D & E, Table 4). The outer-inner897

pathway does not generate reversal, but is crucial to sustain it (Fig 7C, Table 4), and if ‘lesioned’,898

reversal phenomenon is lost. This is due to upsetting of the two-stage processing of outer and899

inner neurons (Fig 10D, see Discussion). The pathways comprising the ‘reversal network’ are900

shown in Fig 10C.901

Table 4: Functions of different pathways

Pathway Oscillations Striatal

Switch

Reversal Tonic

level of

GPi/SNr

Network

GPe TA to striatum

D1

Generates Executes - - Striatal

switch

GPe TA to striatum

D2

Generates Executes - - Striatal

switch

GPe TA to GPe TA - - - - -

GPe TI (outer/inner)

to GPe TA

- Operates - - Striatal

switch

STN to GPe TA - Operates - - Striatal

switch

GPe outer to GPe

outer

- - Generates Increases Reversal/

GPi/SNr

control

GPe inner to GPe

inner

- - Generates Increases Reversal/

GPi/SNr

control
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GPe outer to GPe

inner

- - Sustains Increases Reversal/

GPi/SNr

control

GPe outer to

GPi/SNr

- - Executes Decreases Reversal/

GPi/SNr

control

GPe inner to

GPi/SNr

- - Executes Decreases Reversal/

GPi/SNr

control

GPe outer to

striatum D1

- - In the hard

selection

regime

- Reversal

GPe outer to

striatum D2

- - In the soft

selection

regime

- Reversal

GPe inner to

striatum D1

- - In the hard

selection

regime and

intermediate

DA

- Reversal

GPe inner to

striatum D2

- - In the soft

selection

regime

- Reversal

Striatum D2 to GPe

TI (outer/inner)

- - Initiates Initiates Reversal/

GPi/SNr

control

Striatum D2 to GPe

TA

Initiates Initiates - - Striatal

switch

Striatum D1 to

GPi/SNr

- - - - Direct

pathway

STN to GPe TI

(outer/inner)

- Operates - - Striatal

switch

STN to GPi/SNr - - - - Hyperdirect

pathway

Functions of the different pathways simulated in our models and the network architecture that902

they belong to. The GPe TA projections give rise to oscillations but input from the striatum D2903

to the GPe TA initiates them. The ‘Striatal switch’ function is executed via the GPe TA904

prjections to the striatal SPNs. The ‘switch’ is operated by both the STN and GPe905

TI(outer/inner). ‘Reversal’ is generated by the same subpopulation inhibitory connections of the906

GPe TI (outer/inner) neurons, while the outer-inner projection is needed to maintain it. The907

striatal projections of the outer/inner neurons ensure that reversal occurs across the range of908

dopamine activity in the striatum, while reversal eventually occurs via the GPe TI projections to909

the output nuclei GPi/SNr.910
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4. Discussion911

We have investigated the newly discovered intrinsic connectivity of GPe in consid-912

erable detail. Quantitative evaluation of selection performance in this model has revealed several913

new functions of GPe that may be understood within the selection framework. The prototypical914

neurons have been shown to be the principal subpopulation influencing action selection. The915

arkypallidal neurons are used by both the prototypical neurons and the STN, to modulate the916

activity of the striatum. These arkypallidal neurons are also revealed as a novel source of theta917

oscillations in the absence of dopaminergic modulation in the striatum. The prototypical neurons918

furthermore, exert their influence on the output nuclei GPi/SNr, by setting the level of their tonic919

activity. We can thus infer from the results, that the GPe is a nucleus of vital importance for920

action selection playing a range of roles in its control and modulation.921

4.1. Support for action selection hypothesis922

The action selection hypothesis (Gurney et al., 2004) is further supported by the923

present results. The incorporation of more anatomically plausible detail (compared with the924

original, GPR model), and the optimization of the model on action selection capabilities show925

quantitative improvement in selection. Moreover, new functional roles of the control pathway926

have emerged along with a greater understanding of the roles of neural subpopulations within927

the GPe. Earlier models with the classical connectivity of the basal ganglia did demonstrate the928

ability to perform action selection. However, this had not been addressed with the newly revealed929

projections and connectivity of the GPe.930

4.2. TA neurons can turn up or turn down striatal activity931

Our results indicate that the arkypallidal TA neurons, through their activity, can932

turn down activity in the striatum and can be regarded as a sort of striatal ‘switch’ (Fig 10D).933

Furthermore, the prototypical TI neurons through their modulation of the TA neuronal excitabil-934

ity, can restore striatal activity. The GPe TI - GPe TA pathway seems to be the crucial link935

through which the TI neurons control the TA neurons, in turn maintaining operational control936

over the striatum. There is some evidence from modelling indicating a strong GPe TI - TA937

projection (Lindahl and Hellgren Kotaleski, 2016). In our simulations, for high weights on the938

arkypallidal projections to striatum, activity in striatum was very low, and the TA neurons had939

effectively turned striatum ‘off’. This resulted in no selection occurring. As soon as the weights940

on the arkypallidal projections to striatum were reduced, activity in the striatum was restored and941

selection was induced, with performance metric Q∗ higher than the GPR model. The striatum942

had been turned ‘on’.943

These results are supported by a recent study which showed that arkypallidal TA944

neurons in the GPe, send a ‘Stop’ signal and can essentially curtail developing action representa-945

tions in the striatum (Mallet et al., 2016). Although it is not clear whether the arkypallidal cells946

are the source or simply relay this ‘Stop’ signal as noted in (Mallet et al., 2016), our simulations947

suggest that the GPe TI prototypical cells could have a role in determining when the arkypallidal948

cells can ‘turn off’ the striatum.949

Another factor to consider here is the role of the STN, which is known to generate950

a stop signal via the hyperdirect pathway (Gillies and Willshaw, 1998; Frank, 2006) and the in-951

direct pathway. STN and GPe TA neurons fire in phase with cortical activity (Mallet et al., 2012)952

and there is also computational evidence indicating that STN might target GPe TA neurons more953

strongly than GPe TI (Nevado-Holgado et al., 2014). Thus, the STN could clearly activate the954

26



GPe TA neurons, thereby switching-off the striatum. However, the GPe TI neurons can inhibit955

the GPe TA as well as the STN, thereby stopping the ‘stop’ signal from the STN - GPe TA net-956

work, given that the GPe TI neurons fire out of phase with cortical activity (Mallet et al., 2012).957

Thus, both the STN and the GPe TI contribute to the striatal switch network, and they operate958

the switch - in that STN can turn the switch ‘on’, while the GPe TI can turn it ‘off’. This also959

suggests the possibility of both the STN and the prototypical GPe neurons being involved in ex-960

plorative behaviour. Along with the tonic dopaminergic modulation of the striatum, there have961

been suggestions of the involvement of the STN - GPe network, as well as the lateral intrinsic962

connectivity within the STN in explorative behaviour (Chakravarthy et al., 2010; Gillies et al.,963

2002; Kalva et al., 2012; Mandali et al., 2015). More work is required with our model to explore964

these possibilities, but the model provides a basis for doing so in future simulations.965

4.3. Oscillations from TA neuronal projections - consistent with Parkinsons disease966

Modelling of the arkypallidal TA neurons has revealed low-frequency theta oscil-967

lations (3-10 Hz) which are reliant on the GPe TA - striatal pathway. Low frequency oscillations968

have been associated with Parkinsons disease and are said to be in synchrony with tremor (Bevan969

et al., 2002). Oscillations around this range are said to arise in the basal ganglia and spread to970

the cortex, producing an ‘antikinetic’ effect (Hutchison et al., 2004). Loss of dopamine has been971

associated to these oscillations (Rivlin-Etzion et al., 2006; Weinberger and Dostrovsky, 2011).972

Furthermore, modelling also suggests that increase in oscillations interfering with information973

processing in the basal ganglia is characteristic of Parkinsonian conditions (Bergman et al., 1998;974

Lindahl and Hellgren Kotaleski, 2016). Our model shows that the oscillations have maximum975

amplitude for no dopamine activity (DA = 0) consistent with Parkinsons disease, and are sup-976

pressed for higher dopamine values. The model reveals TA projections to the striatum to be the977

source of these low frequency oscillations, but high inhibitory input from the prototypical TI978

neurons are also necessary to sustain them. The model also shows better performance for a cor-979

responding high inhibitory weight of TI (outer/inner) - TA pathways, which are accordingly set980

high in the final model. Furthermore, the GPe TI neurons are known to have have more axonal981

collaterals within GPe, targeting GPe TA neurons (Sadek et al., 2007; Lindahl and Hellgren Ko-982

taleski, 2016). There is also evidence implicating the GPe TA neurons as well as the GPe-STN983

network in inducing oscillations (Nevado-Holgado et al., 2014; Lindahl and Hellgren Kotaleski,984

2016). In summary, we can conclude from our results that the anatomical substrate exists to985

sustain these oscillations, and without dopamine, there may be no stopping them.986

While beta oscillations are discussed more often in relation to Parkinson’s disease,987

theta oscillations are associated with a very characteristic pathological deficit - freezing of gait.988

Clinical studies show an increase of theta oscillations with freezing, referred to as ‘trembling in989

place’ (Plamen et al., 2006; Shine et al., 2014). It has been hypothesised that oscillatory inter-990

action in the STN-GPe network underly these oscillations (Shine et al., 2013). Our results show991

that the oscillations manifest when there is competition between two action representations (See992

Fig 5).993

It thus appears that the arkypallidal TA neurons are a novel potential source of994

theta oscillations under dopamine depleted conditions, similar to pathophysiological conditions995

of Parkinsons disease. But how are they generated? Our results clearly reveal the cause - lack996

of dopamine. Dopamine is well known to modulate excitability of the SPNs in the striatum997

(Humphries et al., 2009a; Jr and Zigmond, 1997) and our results show that the arkypallidal neu-998

rons are able to turn up or turn down the activity of the SPNs via their massive projections. Our999

results indicate that removing dopamine could alter the excitability of SPNs during high salience1000
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competing inputs, resulting in a continuous switching between the ‘striatum on’ and ‘striatum1001

off’ conditions (translates to switching between their ‘up’ and ‘down’ states (Wilson and Groves,1002

1981; Kasanetz et al., 2006)), which would also engage the STN - GPe, inducing the theta os-1003

cillations in the network. This possibility is corroborated by the suggestion that rhythmic inputs1004

from striatum, but also from cortex and thalamus could engage STN-globus pallidus network in1005

Parkinsonian oscillations (Nevado-Holgado et al., 2014). Furthermore, these oscillations seen in1006

the STN - GPe - GPi/SNr network (see Figure 5E & F) agree with the evidence of high level1007

of synchronous oscillations, including the theta band, observed in these nuclei in Parkinsonian1008

conditions (Weinberger and Dostrovsky, 2011; Tachibana et al., 2011).1009

Our model also suggests a possible explanation for a long standing paradox in PD1010

treatment. Current treatment therapies to alleviate parkinsonian deficits by lesions and deep-1011

brain stimulations of the STN present an incongruity - in that both lesioning of the STN, or its1012

increased activity (by high frequency deep brain stimulation) reduces Parkinsonian symptoms1013

(Okun and Vitek, 2004; Benabid et al., 2009). Our results also indicated that mimicking these1014

conditions in the model which produced the oscillations under dopamine depleted conditions1015

could remove the oscillations and improve selection (See Results and Fig 5G,H and S4). Our1016

network architecture for the striatal-switch (Fig 10A) suggests that lesioning STN, would result1017

in the lesser activation of the GPe TA, preventing the inhibition of SPNs, which means that the1018

striatal switch architecture would simply be bypassed - thus preventing oscillations in the net-1019

work. This hypothesis is supported by several of our step-wise models, which lacked the GPe1020

TA neurons, for instance, the GPe TI - GPe TI step-wise model. Although the striatal switch1021

network was absent, the model could perform action selection per se, as well as the GPR model1022

(Fig 6A-D).1023

On the other hand, high-frequency stimulation of the STN would ‘switch-on’ the1024

GPe TA - but this would also activate the GPe TI neurons, which would play their part in con-1025

trolling STN excitation as well as in inhibition and ‘switch-off, of the GPe TA neurons. We1026

speculate that this activation of the GPe TA from STN and the consequent modulation of their1027

excitability by the TI neurons, would inhibit the SPNs in striatum to prevent their oscillatory1028

swapping between ‘on’ and ‘off’ states caused by lack of dopamine.1029

Lastly, with respect to the preferential targets of the massive arkypallidal projec-1030

tions to striatum, there is by far, no clear consensus. However, there is evidence suggesting that1031

they target not only the spines of the SPNs, but also different interneuron subtypes (Mallet et al.,1032

2012; Glajch et al., 2016; Hegeman et al., 2016; Burke et al., 2017). We have modelled only the1033

diffuse arkypallidal inhibitory projections to the SPNs. The final model gave best performance1034

for a lower weight of the arkypallidal projections to SPNs (see Results), which corroborates1035

anatomical evidence indicating that the projections are not exclusive to the striatal SPNs.1036

4.4. GPe TA predominantly receive local collaterals from GPe TI neurons1037

Our results indicated that the probability of GPe TI - GPe TA connections were1038

more likely, rather than GPe TA - GPe TA connections. While in the step-wise models, both the1039

pathways showed similar performance (see Fig 6A-D), subsequent combined models revealed1040

no role for the GPe TA - GPe TA pathway. Furthermore, change of weights of the TA - TA did1041

not result in any change in performance. However, the GPe TI - GPe TA pathway was a vital1042

component of the striatal switch network, enabling the TI neurons to control the TA neurons.1043

While it is generally known that GPe neurons receive local collaterals, the organisation of local1044

collateral inputs to the GPe TA neurons is not yet clear. However, it is known that the TI neurons1045

send out more local collaterals than the TA neurons (Mallet et al., 2012), and that they are also1046
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the predominant subpopulation, indicating a stronger TI - TA connection probability. This allows1047

us to predict that a TI - TA pathway is more likely, which also agree with those of (Lindahl and1048

Hellgren Kotaleski, 2016), which predict a stronger TI - TA connection.1049

4.5. Prototypical TI neurons promote better hard selection through reversal1050

Reversal phenomenon noticed in these simulations was another significant result.1051

The GPR model had shown only a monotonic decrease in channel output with increase in salience1052

or input. With the inclusion of the reversal network (Fig 10C), which are essentially the proto-1053

typical neurons (see subsequent section), this trend can be reversed.1054

Reversal can occur as several cases, some of which can be detrimental to a selec-1055

tion mechanism. For instance, in the case which resulted in the deselection of a selected channel1056

(Single Ch selection→ No Selection). However, these cases were only seen in step-wise models1057

and were not observed in the final model, indicating that they were due to an incomplete mod-1058

elled architecture. In the final model, reversal cases comprised entirely of Dual channel selection1059

→ Interference/Distortion/Switching occurring in both the hard and soft selection regimes, al-1060

though largely in the soft selection regime (Fig 7F). This contributed to the better performance1061

of the model than the GPR model, in that some of the soft selection outcomes were reversed into1062

hard selection outcomes. This also indicated that the prototypical neurons aid in better decision-1063

making by making a ‘choice’ between competing channels of high salience. Thus, when faced1064

between two possible action outcomes, the prototypical neurons can essentially ‘choose’ one at1065

a time.1066

The simulations have shown that within population inhibitory connections of outer1067

and inner neurons, are responsible for causing the reversal phenomenon (Fig 7 and Table 4). It is1068

also evident that with higher weights they ensure reversal occurring across the range of dopamine1069

values. High weights are also necessary for reversal to occur in subsequent combined models,1070

in addition to their contribution for better performance. It is with this view that higher weights1071

were fixed for these pathways in combined models, which in addition, agrees with anatomical ev-1072

idence showing prototypical neurons having more extensive local collaterals (Sadek et al., 2007).1073

In addition to the within inhibitory projections of the outer and inner neurons, the outer to inner1074

neuron inhibitory projections are also vital for reversal, as well as for improving the performance1075

of the model. These three pathways form the core aspect of the reversal network (Fig 10C).1076

4.6. Striatal projections of prototypical TI neurons facilitate reversal over a range of dopamine1077

levels1078

The striatal projections of outer and inner neurons seem to play the crucial role of1079

spreading the reversal phenomenon across dopamine levels (Fig 7 and Table 4). The projections1080

of outer neurons to the selection pathway (STRD1) cause reversal at low dopamine levels DA ≤1081

0.3, The outer neuron projections to the control pathway (STRD2) cause reversal for DA ≥ 0.31082

onwards. Striatal projections of inner neurons to both the selection and control pathways, cause1083

reversal for mid-valued dopamine (0.2 ≤ DA ≤ 0.8). This allows for ‘reversal’ of promiscuous1084

selections into hard selection outcomes occurring at different levels of dopamine activity - aiding1085

in more optimal selection.1086

Regarding the striatal projections of the prototypical neurons, from (Sadek et al.,1087

2007), we have data indicating every 4/8 outer neurons and 2/9 inner neurons projecting to the1088

striatum. The final model yielded best performance for matching corresponding weights at 0.51089

and 0.25 respectively. Having higher weights on outer neuron striatal projections resulted in1090
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complete soft selection, while higher weights on inner neuron striatal projections resulted in no1091

selection occurring. Thus, the best performance weights in the final model shows a degree of1092

agreement on available biological data on these pathways.1093

4.7. Differences in prototypical TI neural population influences1094

The outer neurons seem to be associated more with soft selection owing to1095

the decreased tonic level of the GPi/SNr they set, through their efferents. This allows action1096

representations with relatively lower saliences to be selected. This was further substantiated1097

in the final model, wherein an increased weight of outer-SNr pathway and decreased weight1098

of inner-SNr pathway increased the hard selection performance H∗
MAX

(Fin 2, see Results).1099

Although H∗
MAX

was increased, there was a decrease of W∗c and the performance was less than1100

the GPR model. The range of dopamine values where hard selection dominates was reduced1101

considerably (Fig S3F) because this condition allows for more promiscuous selection, which1102

decreases performance. Overall, this indicates that the outer neurons can help in easier selection1103

making them ‘soft selectors’ (Fig 10D).1104

In contrast, the inner neurons seem to be more associated with hard selection (Fig1105

10D), since they reduce the tonic level of GPi/SNr to a much less extent than the outer neurons.1106

Thus, the inner neurons encourage only actions with stronger saliences to be selected thus1107

reducing promiscuous selection - making them ‘hard selectors’. Additionally, we verified this1108

by running a variant of the Fin 2 model with higher inner neuron to GPi/SNr and reduced outer1109

to GPi/SNr weights. The extent of hard selection regime across dopamine values did increase.1110

However, maximum value of hard selection was less than that of the Fin 1 model which had the1111

outer and inner neuron to GPi/SNr weights equal.1112

The overall conclusion was that both the differential influences of the outer and1113

inner neurons, on soft and hard selection are necessary to promote optimal selection. In the1114

final model, the best performance was for having equal weights on these two pathways. This1115

allows us to predict that the outer and inner neuron efferents to the GPi/SNr are relatively1116

equal in magnitude and strength. There is no evidence so far to support any differences in1117

the relative strengths of the extrinsic efferents of outer and inner neurons to the GPi/SNr, as of yet.1118

1119

4.8. GPe influence on the GPi/SNr1120

The within population inhibitory pathways of the outer and inner neurons and the1121

outer - inner pathway, increase the tonic value of GPi/SNr with increasing weights which results1122

in higher salience being required to reach the selection threshold (Fig 8A). The extrinsic efferents1123

of the GPe outer and inner neurons to GPi/SNr, tend to decrease the tonic value of GPi/SNr,1124

making it easier to reach the threshold (Fig 8B). Since the weight change in the semilinear1125

neuron is equivalent to changing afferent drive, this indicates a ‘push-pull’ mechanism, wherein,1126

based on the relative ‘importance’ of a particular action, the feasibility of its selection can be1127

enhanced or decreased by the prototypical neurons. This reveals an additional mechanism,1128

through which the GPe can maintain an operational control over the GPi/SNr; without the GPe1129

prototypical neurons, there would be no modulation of the level of tonic activity of the GPi/SNr.1130

Lesion studies of the GPe result in a marked increase in the level of tonic activity of the GPi/SNr,1131

as well as exacerbated Parkinsonian symptoms (Zhang et al., 2006). Our results agree in that1132

lesions of the outer-SNr and inner-SNr pathways leads to the loss of the ‘push’ mechanism,1133

and hence induces difficulty in selection. The outer-SNr pathway lesion reduces the ability for1134
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soft selection, while the inner-SNr pathway lesion results in reduced ability for hard selection.1135

Lesions of outer-outer and inner-inner pathways result in loss of the ‘pull’ mechanism - as well1136

as loss of reversal.1137

1138

5. Concluding remarks1139

The simulations have thrown light on the importance of the GPe in the basal gan-1140

glia, and its crucial and myriad role in action selection. It seems to be a ‘control centre’ of the1141

basal ganglia with considerable influence on the functioning of other basal ganglia nuclei. The1142

results show the GPe controlling the striatum, the GPi/SNr and as shown also in previous mod-1143

els, the STN (Gurney et al., 2001a). In particular, the prototypical GPe TI (outer/inner) neurons,1144

seem to be the ‘controllers’, maintaining operational control over different subnuclei, and on1145

striatum via the arkypallidal TA neurons. They can use the arkypallidal neurons to turn on or1146

turn off the striatum, can effect selection by setting the level of tonic activity of the GPi/SNr, and1147

can contribute to optimizing action selection via reversal.1148

The implication is that the GPe cannot be modelled as a simple uniform relay nu-1149

cleus. On the contrary, each subpopulation plays a distinct and direct role in action selection.1150

The arkypallidal neurons clearly have a massive influence on the striatum and when more data1151

is available on their connectivity, they must be incorporated in future models. Our model has1152

allowed for the unification of the two levels of neuronal organization in the GPe - the prototyp-1153

ical neurons and the outer/inner neurons. These subtypes of the prototypical neurons also have1154

differences in their influence on action selection. The prototypical neurons along with the tonic1155

dopaminergic activity from the SNc in striatum, may also play a role in explorative behaviours.1156

Furthermore, their ability to regulate the tonic level of activity of the output nuclei (GPi/SNr) in1157

a ‘push-pull’ manner could also indicate a role in learning. Thus, the indirect pathway would1158

seem to have a wider scope of functionality in addition to being the classical ‘no-go’ pathway.1159

Overall, the simulations have reinforced the hypothesis of action selection as a primary function1160

of the basal ganglia.1161

Looking forward, the simulation results open up new questions. For instance, the1162

ability of the arkypallidal neurons to suppress action representations and the ability of the STN-1163

GPe prototypical network to ‘use’ this function, leads to the question whether these decisions1164

are made at the level of the basal ganglia? Does the GPe, and more specifically the prototypical1165

neurons themselves, have a part in the decision-making? Or are they merely relaying inputs?1166

The range of roles the GPe has in action selection as suggested by our simulation results, hint at1167

a more proactive role in decision-making rather than being just a relay of decisions made else-1168

where. Although we have modelled to a considerable extent, the intrinsic connectivity of the1169

GPe known till date, we are yet to capture the connectivity in toto. The extended architecture1170

proposed however, must be simulated in the much wider contexts of cortical and thalamic loops1171

as well as the intrinsic and extrinsic connectivity of other basal ganglia nuclei.1172

Finally, the involvement of the GPe-STN-GPi/SNr network in generating oscilla-1173

tions and in particular, the arkypallidal projections to striatum, demand for more comprehensive1174

circuit investigations in pathological conditions of the basal ganglia like Parkinson’s disease.1175

These results can act as useful pointers for clinical assessment as well as remedy for these patho-1176

logical conditions. However, as with all our results, we look forward to their being extended and1177

tested further against new data.1178
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Supporting information1179

Fig S1. Step-wise model simulation plots. Step-wise model Ph and Ps plots (cubic spline fits)1180

across dopamine levels and parameter values: (A) TA - TA model (B) TA -STR model (C) TI -1181

TA model (D) TI - TI model (E) IN - IN model (F) OT - IN model.1182

Fig S2. Step-wise model simulation plots. Step-wise model Ph and Ps plots (cubic spline fits)1183

across dopamine levels and parameter values: (A) OT - SNR model (B) IN - SNR model (C) OT1184

- STRD1 model (D) OT - STRD2 model (E) IN - STRD1 model (F) IN - STRD2 model.1185

Fig S3. Combined model simulation plots. Combined model Ph and Ps plots (cubic spline fits)1186

across dopamine levels and parameter values: (A) OT IN Case A (B) OT IN Case B (C) Stage 11187

(D) Stage 2 (E) and (F) Two versions of the final model.1188

Fig S4. Selection templates for STN DBS/Lesion models (A) Selection template for the model1189

with DA = 0, producing oscillations (see also Fig 5A) (B) Selection template for the STN – DBS1190

model (C) Selection template for the STN – lesion model (D) Max Ph values for the oscillating,1191

STN – DBS and STN – lesion models. Both the STN – DBS and STN – lesion models show1192

better hard selection than the oscillating model.1193

Appendix A1. Detailed modelling formalism of the various subnuclei. Activation and output1194

functions of the various subpopulations and subnuclei are presented here.1195

Appendix A2. Synaptic weights. Synaptic weights used in various step-wise and combined1196

models are tabulated here.1197
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Prescott, T. J., Montes González, F. M., Gurney, K., Humphries, M. D., Redgrave, P., 2006. A robot model of the basal1382

ganglia: Behavior and intrinsic processing. Neural Networks 19 (1), 31–61.1383

URL http://www.sciencedirect.com/science/article/pii/S08936080050015891384

Redgrave, P., Gurney, K., 12 2006. The short-latency dopamine signal: a role in discovering novel actions? Nat Rev1385

Neurosci 7 (12), 967–975.1386

Redgrave, P., Prescott, T., Gurney, K., 1999. The basal ganglia: a vertebrate solution to the selection problem? Neuro-1387

science 89 (4), 1009 – 1023.1388

Rivlin-Etzion, M., Marmor, O., Heimer, G., Raz, A., Nini, A., Bergman, H., 2006. Basal ganglia oscillations and patho-1389

physiology of movement disorders. Current Opinion in Neurobiology 16 (6), 629 – 637, motor systems /Neurobiology1390

of behaviour.1391

Roessner, V., Plessen, K. J., Rothenberger, A., Ludolph, A. G., Rizzo, R., Skov, L., Strand, G., Stern, J. S., Termine, C.,1392

Hoekstra, P. J., 2011. European clinical guidelines for tourette syndrome and other tic disorders. part ii: pharmaco-1393

logical treatment. European Child & Adolescent Psychiatry 20 (4), 173–196.1394

URL https://doi.org/10.1007/s00787-011-0163-71395

35



Sadek, A. R., Magill, P. J., Bolam, J. P., 2007. A single-cell analysis of intrinsic connectivity in the rat globus pallidus.1396

Journal of Neuroscience 27 (24), 6352–6362.1397

Saunders, A., Huang, K. W., Sabatini, B. L., 02 2016. Globus pallidus externus neurons expressing parvalbumin inter-1398

connect the subthalamic nucleus and striatal interneurons. PLOS ONE 11 (2), 1–20.1399

URL https://doi.org/10.1371/journal.pone.01497981400

Schroll, H., Hamker, F., 2013. Computational models of basal-ganglia pathway functions: focus on functional neu-1401

roanatomy. Frontiers in Systems Neuroscience 7, 122.1402

Schroll, H., Vitay, J., Hamker, F. H., 2012. Working memory and response selection: A computational account of1403

interactions among cortico-basalganglio-thalamic loops. Neural Networks 26 (Supplement C), 59 – 74.1404

Schultz, W., 1998. Predictive reward signal of dopamine neurons. Journal of Neurophysiology 80 (1), 1–27.1405

Shine, J. M., Handojoseno, A. M. A., Nguyen, T. N., Tran, Y., Naismith, S. L., Nguyen, H., Lewis, S. J. G., 2014.1406

Abnormal patterns of theta frequency oscillations during the temporal evolution of freezing of gait in parkinson’s1407

disease. Clinical Neurophysiology 125 (3), 569–576.1408

URL http://www.sciencedirect.com/science/article/pii/S13882457130104201409

Shine, J. M., Matar, E., Ward, P. B., Bolitho, S. J., Gilat, M., Pearson, M., Naismith, S. L., Lewis, S. J. G., 04 2013.1410

Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in1411

parkinson’s disease. Brain 136 (4), 1204–1215.1412

URL http://dx.doi.org/10.1093/brain/awt0491413

Stephenson-Jones, M., Samuelsson, E., Ericsson, J., Robertson, B., Grillner, S., 2011. Evolutionary conservation of the1414

basal ganglia as a common vertebrate mechanism for action selection. Current Biology 21 (13), 1081 – 1091.1415

URL http://www.sciencedirect.com/science/article/pii/S09609822110052881416

Stewart, T., Bekolay, T., Eliasmith, C., 2012. Learning to select actions with spiking neurons in the basal ganglia.1417

Frontiers in Neuroscience 6, 2.1418

Szydlowski, S. N., Pollak Dorocic, I., Planert, H., Carlén, M., Meletis, K., Silberberg, G., 2013. Target selectivity of1419

feedforward inhibition by striatal fast-spiking interneurons. Journal of Neuroscience 33 (4), 1678–1683.1420

URL http://www.jneurosci.org/content/33/4/16781421

Tachibana, Y., Iwamuro, H., Kita, H., Takada, M., Nambu, A., 2018/08/25 2011. Subthalamo-pallidal interactions un-1422

derlying parkinsonian neuronal oscillations in the primate basal ganglia. European Journal of Neuroscience 34 (9),1423

1470–1484.1424

URL https://doi.org/10.1111/j.1460-9568.2011.07865.x1425

van Albada, S., Robinson, P., 2009. Mean-field modeling of the basal ganglia-thalamocortical system. i: Firing rates in1426

healthy and parkinsonian states. Journal of Theoretical Biology 257 (4), 642 – 663.1427

Wahlstrom, D., Collins, P., White, T., Luciana, M., 2010. Developmental changes in dopamine neurotransmission in1428

adolescence: Behavioral implications and issues in assessment. Brain and Cognition 72 (1), 146–159.1429

URL http://www.sciencedirect.com/science/article/pii/S027826260900205X1430

Weinberger, M., Dostrovsky, J. O., 03 2011. A basis for the pathological oscillations in basal ganglia: the crucial role of1431

dopamine. Neuroreport 22 (4), 151–156.1432

URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076312/1433

Wilson, C. J., Groves, P. M., 1981. Spontaneous firing patterns of identified spiny neurons in the rat neostriatum. Brain1434

Research 220 (1), 67 – 80.1435

URL http://www.sciencedirect.com/science/article/pii/00068993819021101436

Wylie, S., van den Wildenberg, W., Ridderinkhof, K., Bashore, T., Powell, V., Manning, C., Wooten, G., 2009. The effect1437

of parkinson’s disease on interference control during action selection. Neuropsychologia 47 (1), 145 – 157.1438

Yoon, D. Y., Gause, C. D., Leckman, J. F., Singer, H. S., 2007. Frontal dopaminergic abnormality in tourette syndrome:1439

A postmortem analysis. Journal of the Neurological Sciences 255 (1), 50–56.1440

URL http://www.sciencedirect.com/science/article/pii/S0022510X070009491441

Zhang, J., Russo, G. S., Mewes, K., Rye, D. B., Vitek, J. L., 2006. Lesions in monkey globus pallidus externus exacerbate1442

parkinsonian symptoms. Experimental Neurology 199 (2), 446 – 453.1443

URL http://www.sciencedirect.com/science/article/pii/S00144886060001361444

36



GPe

SNr/GPi

D1 direct
D2 indirect

Hyperdirect

SNc
STN

Cortex/thalamus

Excitatory

Inhibitory

Dopaminergic

GP-TA

Striatum D1 Striatum D2

GP-TI

Basal ganglia output

GPe
1

2

3
4

SNr/GPi

D1 direct
D2 indirect

Hyperdirect

SNc
STN

Cortex/thalamus

Striatum D1 Striatum D2

Basal ganglia output

GPe

Control

Select

Excitatory

Inhibitory

Dopaminergic

A B

C D

SNr/GPi

D1 direct
D2 indirect

Hyperdirect

SNc STN

Cortex/thalamus

Excitatory

Inhibitory

Dopaminergic

GPe

Outer

GPe

Inner

Striatum D1 Striatum D2

Basal ganglia output

GPe
5

6

7

8

SNr/GPi

D1 direct D2 indirect

Hyperdirect

SNc

STN

Cortex/thalamus

Excitatory

Inhibitory

Dopaminergic

GP-TA

Striatum D1 Striatum D2

GPe

Outer

Basal ganglia output

GPe

Inner

GP-TI

GPe

D2 indirect

D2 indirect

D2 indirect

D2 indirect



A B

0. 2

0. 4

0. 6

0. 8

1

0 1 2 3 4 5

Channel 1 salience

Channel 1 output

0. 2

0. 4

0. 6

0. 8

1

0 1 2 3 4 5

Channel 1 salience

Channel 2 salience

Channel 1 output

Channel 2 output

Distortion threshold

00

Distortion threshold
Selection threshold

Selection threshold

S
ig

n
a
l 
le

v
e
l

Time

S
ig

n
a
l 
le

v
e
l

Time

Tonic value of GPi/SNr



0

0. 2

0. 4

0. 6

0. 8

1

0 0. 2 0. 4 0. 6 0. 8 1

C
h
a
n
n
e
l 
s
a
lie

n
c
e
 1

Channel salience 2

Dopamine Weight Ratio

    5   10

%
 f
it
 w

it
h
 s

e
le

c
ti
o
n
 t
e
m

p
la

te

0 

   

   

   

   

50 

   

   

   

   

100

Hard select
Soft select

          

5 
      

  

10

%
 f
it
 w

it
h
 s

e
le

c
ti
o
n
 t
e
m

p
la

te

0 

   

   

   

   

50 

   

   

   

   

100

Hard select
Soft select

Dopamine Weight Ratio

A

C D

Max P
h

Max P
s

Channel salience 2

C
h
a
n
n
e
l 
s
a
lie

n
c
e
 1

B

0 0. 2 0. 4 0. 6 0. 8 1

0

0. 2

0. 4

0. 6

0. 8

1

No selection 

Single channel selection 

Dual channel selection 

Switching 

Interference 

Distortion 

W
c



0

0. 2

0. 4

0. 6

0. 8

1

0 0. 2 0. 4 0. 6 0. 8 1

C
h
a
n
n
e
l 
s
a
lie

n
c
e
 1

Channel salience 2

0 0. 2 0. 4 0. 6 0. 8 1

Channel salience 2

0

0. 2

0. 4

0. 6

0. 8

1

C
h
a
n
n
e
l 
s
a
lie

n
c
e
 1

No selection 

Single channel selection 

Dual channel selection 

Switching 

Interference 

Distortion 

1

2

3

4

0

0. 1

0.  2

0.  3

0. 4

0 1 2 3 4 5

Channel 1 salience

Channel 2 salience

Channel 1 output

Channel 2 output

0 1 2 3 4 5

0

0. 1

0.  2

0.  3

0. 4

Channel 1 salience

Channel 2 salience

Channel 1 output

Channel 2 output

Distortion threshold

Distortion threshold

S
ig

n
a
l 
le

v
e
l

Time

S
ig

n
a
l 
le

v
e
l

Time

A B

0

0.  1

0.  2

0.  3

0.  4

0.  5

0.  6

0.  7

0.  8

0 1 2 3 4 5

S
ig

n
a
l 
le

v
e
l

Time

Channel 1 salience

Channel 2 salience

Channel 1 output

Channel 2 output

Distortion threshold

C D

0

0.  1

0.  2

0.  3

0.  4

0.  5

0.  6

0.  7

0.  8

0.  9

1

0 1 2 3 4 5

Channel 1 salience

Channel 2 salience

Channel 1 output

Channel 2 output

Distortion threshold

E F

S
ig

n
a
l 
le

v
e
l

Time



A B

0

0. 2

0. 4

0. 6

0. 8

1

0

0. 2

0. 4

0. 6

0. 8

1

C D

0

0. 2

0. 4

0. 6

0. 8

1

0

0. 2

0. 4

0. 6

0. 8

1

Channel 1 output

Channel 2 output

Channel 1 output

Channel 2 output

Channel 1 output

Channel 2 output

Channel 1 output

Channel 2 output
S

ig
n
a
l 
le

v
e
l

Time

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

Time

Time Time

S
ig

n
a
l 
le

v
e
l

S
ig

n
a
l 
le

v
e
l

S
ig

n
a
l 
le

v
e
l

Channel 1 output (GPe TA)

Channel 2 output (GPe TA)

0

0. 2

0. 4

0. 6

0. 8

1

0 1 2 3 4 5

Time

S
ig

n
a
l 
le

v
e
l

0 1 2 3 4 5

0

0. 2

0. 4

0. 6

0. 8

1

S
ig

n
a
l 
le

v
e
l

Time

Channel 1 output (GPe TI)

Channel 2 output (GPe TI)

DA = 0 DA = 0.2

DA = 0.3 DA = 0.4

DA = 0 Channel 1 output STN

Channel 2 output STN

DA = 0
E F

0

0. 2

0. 4

0. 6

0. 8

1

S
ig

n
a
l 
le

v
e
l

G
DA = 0

Channel 1 output

Channel 2 output

0

0. 2

0. 4

0. 6

0. 8

1

S
ig

n
a
l 
le

v
e
l

H

0 1 2 3 4 5

Time

0 1 2 3 4 5

Time

Channel 1 output

Channel 2 output

DA = 0STN DBS STN Lesion



0

0
.0

2

TI TI

TA TA

TI TA

TA STR

IN IN

OT IN

OT SNr

IN SNr

OT STRD1

OT STRD2

IN STRD1

IN STRD2

H
*

M
A

X

-0
.0

2

-0
.0

4

-0
.0

6

-0
.0

8

-0
.1

-0
.1

2

-0
.1

4

-0
.1

6

0

-0
.0

2

-0
.0

4

-0
.0

6

-0
.0

8

-0
.1

-0
.1

2

-0
.1

4

-0
.1

6

TI TI

TA TA

-0
.1

8

-0
.2

TI TA

TA STR

IN IN

OT IN

OT SNr

IN SNr

OT STRD1

OT STRD2

IN STRD1

IN STRD2

S
*

M
A

X

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

-0
.1

-0
.2

-0
.3

TI TI

TA TA

TI TA

TA STR

IN IN

OT IN

OT SNr

IN SNr

OT STRD1

OT STRD2

IN STRD1

IN STRD2

W
c

*

0

0
.1

0
.2

0
.3

0
.4

-0
.1

-0
.2

-0
.3

-0
.4

-0
.5

TI TI

TA TA

TI TA

TA STR

IN IN

OT IN

OT SNr

IN SNr

OT STRD1

OT STRD2

IN STRD1

IN STRD2

Q
*

A
B

C
D



WOT-D1 =        

0

2

4

6

8

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

WIN-IN = -0.25,-0.5,-0.75

Dopamine level

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

2

4

6

8

R
e
v
e
rs

a
l 
v
a
lu

e
s
 (

%
)

Dopamine level

WOT-OT = -0.25,-0.5,-0.75

Hard 

selection 

regime

Soft 

selection 

regime

A B

0

1

2

3

4

  5

R
e
v
e
rs

a
l 
v
a
lu

e
s
 (

%
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Dopamine level

WOT-IN = -0.25,-0.5,-0.75

0

2

4

6

8

10

12

14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Dopamine level

0

R
e
v
e
rs

a
l 
v
a
lu

e
s
 (

%
)

Hard 

selection 

regime

Soft 

selection 

regime

Hard 

selection 

regime

Soft 

selection 

regime

Hard 

selection 

regime

Soft 

selection 

regime

{ -0.25      
-0.5      

WOT-D2 =        { -0.25      
-0.5      

C D

Hard 

selection 

regime

Soft 

selection 

regime

WIN-D1 =        { -0.25      
-0.5      

WIN-D2 =        { -0.25      
-0.5      

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Dopamine level

0

0

2

4

6

8

10

12

14

R
e
v
e
rs

a
l 
v
a
lu

e
s
 (

%
)

E

R
e
v
e
rs

a
l 
v
a
lu

e
s
 (

%
)

0

1

2

3

4

5

6

7

8

9

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

Hard 

selection 

regime

Soft 

selection 

regime

Final Model       

Dopamine level

R
e
v
e
rs

a
l 
v
a
lu

e
s
 (

%
)

F



0

0
.1

0
.2

0
.3

0
.4

W
O

T
-
O

T
 

-0.25

-0.5

-0.75

-0.25

-0.5

-0.75

-0.25

-0.5

-0.75

W
IN

-
IN

 

Tonic value of GPi/SNr

0

0
.1

0
.2

0
.3

0
.4

0
.5

Tonic value of GPi/SNr

W
O

T
-
S

N
R
 

-0.2

-0.4

-0.6

-0.8

W
IN

-
S

N
R
 

-0.2

-0.4

-0.6

-0.8

A
B

W
O

T
-
IN

 



 C
a
s
e
 A

 C
a
s
e
 B

S
ta

g
e
 1

S
ta

g
e
 2

F
in

 1

F
in

 2

H*
MAX

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 C
a
s
e
 A

 C
a
s
e
 B

S
ta

g
e
 1

S
ta

g
e
 2

F
in

 1

F
in

 2

-0.005

0

0.005

0.01

0.015

-0.01

-0.015

-0.02

S*
MAX

-0.05

0

-0.1

-0.15

-0.2

-0.25

 C
a
s
e
 A

 C
a
s
e
 B

S
ta

g
e
 1

S
ta

g
e
 2

F
in

 1

F
in

 2

W
c
*

-0.08

-0.06

-0.04

0

0.02

-0.1

-0.12

-0.14

 C
a

s
e
 A

C
a
s
e
 B

S
ta

g
e
 1

S
ta

g
e
 2

F
in

 1

F
in

 2

Q*

C D

A B



SNr/GPi

D1 direct D2 indirect

Hyperdirect

SNc

STN

Cortex/thalamus

Excitatory

Inhibitory

Dopaminergic

GP-TA

Striatum D1 Striatum D2

GPe

Outer

Basal ganglia output

GPe

Inner

GP-TI

GPe

A B

C

SNr/GPi

D1 direct D2 indirect

Hyperdirect

SNc

STN

Cortex/thalamus

Excitatory

Inhibitory

Dopaminergic

GP-TA

Striatum D1 Striatum D2

GPe

Outer

Basal ganglia output

GPe

Inner

GP-TI

GPe

SNr/GPi

D1 direct D2 indirect

Hyperdirect

SNc

STN

Cortex/thalamus

Excitatory

Inhibitory

Dopaminergic

GP-TA

Striatum D1 Striatum D2

GPe

Outer

Basal ganglia output

GPe

Inner

GP-TI

GPe

SNr/GPi

D1 direct D2 indirect

Hyperdirect

SNc

STN

Cortex/thalamus

Excitatory

Inhibitory

Dopaminergic

GP-TA

Striatum D1 Striatum D2

GPe

Outer

Basal ganglia output

GPe

Inner

GP-TI

GPe

D



Hard select

Soft select

   

   

   

   

   

   

   

   

%
 f

it
 w

it
h
 s

e
le

c
ti
o
n
 t

e
m

p
la

te

0 

   

   

   

   

50 

   

   

   

   

100

Dopamine Weight Ratio
    5   10

%
 f

it
 w

it
h
 s

e
le

c
ti
o
n
 t

e
m

p
la

te

0 

50 

100

Dopamine Weight Ratio
  5   10

Hard select

Soft select

Hard select

Soft select

   

   

   

   

   

   

   

   

%
 f
it
 w

it
h
 s

e
le

c
ti
o
n
 t

e
m

p
la

te

0 

   

   

   

   

50 

   

   

   

   

100

Dopamine Weight Ratio
    5   10

Hard select

Soft select

%
 f
it
 w

it
h
 s

e
le

c
ti
o
n
 t

e
m

p
la

te

0 

50 

100

Dopamine Weight Ratio

  5   10

%
 f
it
 w

it
h
 s

e
le

c
ti
o
n
 t
e
m

p
la

te

0 

50 

100

Dopamine Weight Ratio
  5   10

Hard select

Soft select

%
 f
it
 w

it
h
 s

e
le

c
ti
o
n
 t
e
m

p
la

te

0 

50 

100

Dopamine Weight Ratio
  5   10

Hard select

Soft select

A B

C D

E F



%
 f

it
 w

it
h
 s

e
le

c
ti
o
n
 t

e
m

p
la

te

0 

50 

100

Dopamine Weight Ratio

  5   10

Hard select

Soft select

%
 f

it
 w

it
h
 s

e
le

c
ti
o
n
 t

e
m

p
la

te

0 

50 

100

Dopamine Weight Ratio

  5   10

Hard select

Soft select

%
 f
it
 w

it
h
 s

e
le

c
ti
o
n
 t

e
m

p
la

te

0 

50 

100

Dopamine Weight Ratio

  5   10

Hard select

Soft select

%
 f
it
 w

it
h
 s

e
le

c
ti
o
n
 t

e
m

p
la

te

0 

50 

100

Dopamine Weight Ratio

  5   10

Hard select

Soft select

%
 f
it
 w

it
h
 s

e
le

c
ti
o
n
 t
e
m

p
la

te

0 

50 

100

Dopamine Weight Ratio
  5   10

Hard select

Soft select

%
 f

it
 w

it
h
 s

e
le

c
ti
o
n
 t
e
m

p
la

te

0 

50 

100

Dopamine Weight Ratio

  5   10

Hard select

Soft select

A B

C D

E F



A B

                  

Channel 1 salience

Channel 2 salience

%
 f
it
 w

it
h
 s

e
le

c
ti
o
n
 t

e
m

p
la

te

Dopamine Weight Ratio

%
 f
it
 w

it
h
 s

e
le

c
ti
o
n
 t

e
m

p
la

te

Dopamine Weight Ratio

Channel 1 salience

Channel 2 salience

0 

   

   

   

   
50 

   

   

   

   

100

    5   10 0 

   

   

   

   
50 

   

   

   

   

100

    5   10

%
 f
it
 w

it
h
 s

e
le

c
ti
o
n
 t
e
m

p
la

te

Dopamine Weight Ratio

0 

   

   

   

   
50 

   

   

   

   

100

    5   10

Channel 1 salience

Channel 2 salience
%

 f
it
 w

it
h
 s

e
le

c
ti
o
n
 t
e
m

p
la

te

Dopamine Weight Ratio

0 

   

   

   

   
50 

   

   

   

   

100

    5   10

C D

%
 f
it
 w

it
h
 s

e
le

c
ti
o
n
 t
e
m

p
la

te

Dopamine Weight Ratio

0 

   

   

   

   
50 

   

   

   

   

100

    5   10

%
 f
it
 w

it
h
 s

e
le

c
ti
o
n
 t
e
m

p
la

te

Dopamine Weight Ratio

0 

   

   

   

   
50 

   

   

   

   

100

    5   10

E F



C
h
a
n
n
e
l 
s
a
lie

n
c
e
 1

Channel salience 2

0

0. 2

0. 4

0. 6

0. 8

1

0 0. 2 0. 4 0. 6 0. 8 1

C
h
a
n
n
e
l 
s
a
lie

n
c
e
 1

0

0. 2

0. 4

0. 6

0. 8

1

Channel salience 2

0 0. 2 0. 4 0. 6 0. 8 1

C
h
a
n
n
e
l 
s
a
lie

n
c
e
 1

0

0. 2

0. 4

0. 6

0. 8

1

Channel salience 2

0 0. 2 0. 4 0. 6 0. 8 1

DA = 0 DA = 0, STN DBS

DA = 0, STN lesion

0

5

10

15

20

25

30

35

40

S
T

N
 l
e
s
io

n
, 
D

A
 =

 0

S
T

N
 D

B
S

, 
D

A
 =

 0

D
A

 =
 0

M
a

x
 P

h

A B

C D

No selection 

Single channel selection 

Dual channel selection 

Switching 

Interference 

Distortion 



Appendix S1

Detailed modelling formalism of the various subnuclei

The activation and output equations and modelling details of all the subpop-

ulations in various subnuclei of the basal ganglia are described here.

Striatum

Striatum D1 Let the input salience on the ith channel be c, and the dopamine

level for ‘Selection’/D1 pathway be λs. The other inputs to the striatum D1

are the inhibitory input from the GPe TA neurons, and the back projections

from the GPe outer and GPe inner neurons. Let the output of GPe TA neu-

rons be ytai , and since its diffuse, input will be Y ta
− =

∑N
j ytai , where N is the

total number of channels. Let output of GPe outer neurons be yoti , and that

of GPe inner neurons be yini . The total activation function will be,

ãsi = ci(1 + λs)w
str
i − Y ta

− w−
ta−d1 + yoti w

+

ot−d1 + yini w+

in−d1 (1)

where, w−
ta−d1 is the synaptic weight of the GPe TA to STRD1 pathway, w+

ot−d1

and w+

in−d1 are the synaptic weights of back projections from GPe outer and

GPe inner neurons respectively. The output relation will be,

ysi = m(ãsi − ǫstr)H(ãsi − ǫstr) (2)

where ǫstr is the output threshold.

Striatum D2 Let the input salience on the ith channel be c, and the dopamine

level for ‘Control’/D2 pathway be λc. The other inputs to the striatum D2

1



are the diffuse inhibitory input from the GPe TA neurons, and the back pro-

jections from the GPe outer and GPe inner neurons. Considering the inputs

already defined in previous section, the total activation function will be,

ãci = ci(1− λc)w
str
i − Y ta

− w−
ta−d2 + yoti w

+

ot−d2 + yini w+

in−d2 (3)

where, w−
ta−d2 is the synaptic weight of the GPe TA to STRD2 pathway, w+

ot−d2

and w+

in−d2 are the synaptic weights of back projections from GPe outer and

GPe inner neurons respectively. The output relation will be,

yci = m(ãci − ǫstr)H(ãci − ǫstr) (4)

where ǫstr is the output threshold.

STN

Let synaptic weight of the input from the cortex to the STN be wstn
i , the

synaptic weights of GPe outer to STN and GPe inner to STN pathways be

w−
ot−stn and w−

in−stn respectively. The activation function is,

ãstni = ciw
stn
i − yoti w

−
ot−stn − yini w−

in−stn (5)

The output relation will be,

ystni = m(ãstni − ǫstn)H(ãstni − ǫstn) (6)

where ǫstn is the output threshold.

2



GPe

This section forms the focus of this study, wherein we have modelled different

neural populations and their afferent and efferent pathways. We will look at

each subpopulation in turn.

GPe outer (part of GPe TI) GPe outer neurons receive diffuse input from

the STN, so every GPe outer unit gets an excitatory input Y stn
+ =

∑N
j ystni ,

input from the striatum D2 yci , and intrinsic local collaterals providing an

inhibition of Y ot
− =

∑
j 6=i w

−
ot−oty

ot
j , where w−

ot−ot is the local collateral weight.

If w+
stn−ot and w−

d2−ot are the synaptic weights of STN to GPe outer and STRD2

to GPe outer pathways respectively, then the activation function becomes,

ãoti = Y stn
+ w+

stn−ot − yciw
−
d2−ot − Y ot

− (7)

The output relation will be,

yoti = m(ãoti − ǫot)H(ãoti − ǫot) (8)

where ǫot is the output threshold.

GPe inner (part of GPe TI) GPe inner neurons receive diffuse input from

the STN, so every GPe inner unit gets an excitatory input Y stn
+ =

∑N
j ystni ,

input from the striatum D2 yci , and intrinsic local collaterals providing an

inhibition of Y in
− =

∑
j 6=i w

−
in−iny

in
j , where w−

in−in is the local collateral weight.

Further, they also receive processed input from the GP-outer neurons, yoti ,

which is inhibitory. If w+

stn−in, w
−
d2−in and w−

ot−in are the synaptic weights of

STN to GPe inner, STRD2 to GPe inner and the GPe outer to GPe inner

3



pathways respectively, then the activation function becomes,

ãini = Y stn
+ w+

stn−in − yciw
−
d2−in − yoti w

−
ot−in − Y in

− (9)

The output relation will be,

yini = m(ãini − ǫin)H(ãini − ǫin) (10)

where ǫin is the output threshold.

GPe TA GPe TA neurons receive diffuse excitatory input from the STN,

Y stn
+ =

∑N
j ystni , input from STRD2 yci , local different population collater-

als from GPe outer and GPe inner neurons which are inhibitory, yoti and

yini respectively, and local intrinsic collaterals from neighbouring TA neurons

,Y ta
− =

∑
j 6=i w

−
ta−tay

ta
j . If w−

d2−ta, w
+
stn−ta, w

−
ot−ta and w−

in−ta are the synaptic

weights of STRD2 to GPe TA, STN to GPe TA, GPe outer to GPe TA and

GPe inner to GPe TA pathways respectively, then the activation function is,

ãtai = Y stn
+ w+

stn−ta − yciw
−
d2−ta − yoti wot−ta − yini w−

in−ta − Y ta
− (11)

The output relation will be,

ytai = m(ãtai − ǫta)H(ãtai − ǫta) (12)

where ǫta is the output threshold.
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GPi/SNr

The output nucleus receives inhibitory input from the STRD1 ysi , diffuse ex-

citatory input from STN Y stn
+ =

∑N
j ystni , inhibitory inputs from the GPe

outer and GPe inner neuron populations yoti and yini respectively. If w+
stn−snr,

w−
d1−snr, w

−
ot−snr and w−

in−snr are the synaptic weights of STN to SNr, STRD1 to

SNr, GPe outer to SNr and GPe inner to SNr respectively, then the activation

function becomes,

ãsnri = Y stn
+ wstn−snr − ysiwd1−snr − yoti w

−
ot−snr − yini w−

in−snr (13)

The output relation will be,

ysnri = m(ãsnri − ǫsnr)H(ãsnri − ǫsnr) (14)

where ǫsnr is the output threshold.
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Appendix S2

All the models and the weights used in them are given below for reference. If

the value says ‘Varied’, then these were the weights which were varied in that

particular model.If the value is 0, then either the path didn’t exist or had been

‘lesioned’ in the model.If two or more weights have ‘varied/0’, then it means

that while testing one, it was varied while the others were set to 0.This has

been provided owing to the large number of models and weights associated

with them.

GP TI - GP TI Control Model

wstr

i
= 1 w+

stn−in = 0 w−

ot−stn = −0.8 w−

ot−ot = V aried
w−

d2−ot
= −1 w+

stn−ta = 0 w−

ot−snr = −0.4 w−

in−in = 0
w−

d2−in
= 0 w+

stn−snr = 0.9 w−

in−stn = 0 w−

ot−in = 0
w−

d2−ta
= 0 w−

ot−d2 = 0 w−

in−snr = 0 w−

ot−ta = 0
w−

d1−snr
= −1 w−

ot−d1 = 0 w−

ta−d2 = 0 w−

in−ta = 0
wstn

i
= 1 w−

in−d2 = 0 w−

ta−d1 = 0
w+

stn−ot = 0.8 w−

in−d1 = 0 w−

ta−ta = 0

GP TA - GP TA Control Model

wstr

i
= 1 w+

stn−in = 0 w−

ot−stn = −0.8 w−

ot−ot = 0
w−

d2−ot
= −1 w+

stn−ta = 0.8 w−

ot−snr = −0.4 w−

in−in = 0
w−

d2−in
= 0 w+

stn−snr = 0.9 w−

in−stn = 0 w−

ot−in = 0
w−

d2−ta
= −1 w−

ot−d2 = 0 w−

in−snr = 0 w−

ot−ta = −1
w−

d1−snr
= −1 w−

ot−d1 = 0 w−

ta−d2 = −1 w−

in−ta = 0
wstn

i
= 1 w−

in−d2 = 0 w−

ta−d1 = −1
w+

stn−ot = 0.8 w−

in−d1 = 0 w−

ta−ta = varied

GP TI GP TA Control Model

1



wstr

i
= 1 w+

stn−in = 0 w−

ot−stn = −0.8 w−

ot−ot = 0
w−

d2−ot
= −1 w+

stn−ta = 0.8 w−

ot−snr = −0.4 w−

in−in = 0
w−

d2−in
= 0 w+

stn−snr = 0.9 w−

in−stn = 0 w−

ot−in = 0
w−

d2−ta
= −1 w−

ot−d2 = 0 w−

in−snr = 0 w−

ot−ta = varied
w−

d1−snr
= −1 w−

ot−d1 = 0 w−

ta−d2 = −1 w−

in−ta = 0
wstn

i
= 1 w−

in−d2 = 0 w−

ta−d1 = −1
w+

stn−ot = 0.8 w−

in−d1 = 0 w−

ta−ta = 0

GP TI and GP TA Combined Model - I

wstr

i
= 1 w+

stn−in = 0 w−

ot−stn = −0.8 w−

ot−ot = varied
w−

d2−ot
= −1 w+

stn−ta = 0.8 w−

ot−snr = −0.4 w−

in−in = 0
w−

d2−in
= 0 w+

stn−snr = 0.9 w−

in−stn = 0 w−

ot−in = 0
w−

d2−ta
= −1 w−

ot−d2 = 0 w−

in−snr = 0 w−

ot−ta = varied
w−

d1−snr
= −1 w−

ot−d1 = 0 w−

ta−d2 = −1 w−

in−ta = 0
wstn

i
= 1 w−

in−d2 = 0 w−

ta−d1 = −1
w+

stn−ot = 0.8 w−

in−d1 = 0 w−

ta−ta = varied

GP TA - STR Control Model

wstr

i
= 1 w+

stn−in = 0 w−

ot−stn = −0.8 w−

ot−ot = 0
w−

d2−ot
= −1 w+

stn−ta = 0.8 w−

ot−snr = −0.4 w−

in−in = 0
w−

d2−in
= 0 w+

stn−snr = 0.9 w−

in−stn = 0 w−

ot−in = 0
w−

d2−ta
= −1 w−

ot−d2 = 0 w−

in−snr = 0 w−

ot−ta = varied
w−

d1−snr
= −1 w−

ot−d1 = 0 w−

ta−d2 = varied w−

in−ta = 0
wstn

i
= 1 w−

in−d2 = 0 w−

ta−d1 = varied
w+

stn−ot = 0.8 w−

in−d1 = 0 w−

ta−ta = 0

GP Inner - GP Inner Control Model

2
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i
= 1 w+

stn−in = 0.8 w−

ot−stn = −0.8 w−

ot−ot = −1
w−

d2−ot
= −1 w+

stn−ta = 0 w−

ot−snr = 0 w−

in−in = varied
w−

d2−in
= −1 w+

stn−snr = 0.9 w−

in−stn = −0.8 w−

ot−in = −1
w−

d2−ta
= 0 w−

ot−d2 = 0 w−

in−snr = −0.4 w−

ot−ta = 0
w−

d1−snr
= −1 w−

ot−d1 = 0 w−

ta−d2 = 0 w−

in−ta = 0
wstn

i
= 1 w−

in−d2 = 0 w−

ta−d1 = 0
w+

stn−ot = 0.8 w−

in−d1 = 0 w−

ta−ta = 0

GP Outer - GP Inner Control Model

wstr

i
= 1 w+

stn−in = 0.8 w−

ot−stn = −0.8 w−

ot−ot = −1
w−

d2−ot
= −1 w+

stn−ta = 0 w−

ot−snr = −0.4 w−

in−in = −1
w−

d2−in
= −1 w+

stn−snr = 0.9 w−

in−stn = −0.8 w−

ot−in = varied
w−

d2−ta
= 0 w−

ot−d2 = 0 w−

in−snr = −0.4 w−

ot−ta = 0
w−

d1−snr
= −1 w−

ot−d1 = 0 w−

ta−d2 = 0 w−

in−ta = 0
wstn

i
= 1 w−

in−d2 = 0 w−

ta−d1 = 0
w+

stn−ot = 0.8 w−

in−d1 = 0 w−

ta−ta = 0

GP Outer - SNr Control Model

wstr

i
= 1 w+

stn−in = 0 w−

ot−stn = −0.8 w−

ot−ot = −1
w−

d2−ot
= −1 w+

stn−ta = 0 w−

ot−snr = varied w−

in−in = 0
w−

d2−in
= 0 w+

stn−snr = 0.9 w−

in−stn = 0 w−

ot−in = 0
w−

d2−ta
= 0 w−

ot−d2 = 0 w−

in−snr = 0 w−

ot−ta = 0
w−

d1−snr
= −1 w−

ot−d1 = 0 w−

ta−d2 = 0 w−

in−ta = 0
wstn

i
= 1 w−

in−d2 = 0 w−

ta−d1 = 0
w+

stn−ot = 0.8 w−

in−d1 = 0 w−

ta−ta = 0

GP Inner - SNr Control Model

3
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i
= 1 w+

stn−in = 0.8 w−

ot−stn = −0.8 w−

ot−ot = −1
w−

d2−ot
= −1 w+

stn−ta = 0 w−

ot−snr = 0 w−

in−in = −1
w−

d2−in
= −1 w+

stn−snr = 0.9 w−

in−stn = −0.8 w−

ot−in = −1
w−

d2−ta
= 0 w−

ot−d2 = 0 w−

in−snr = varied w−

ot−ta = 0
w−

d1−snr
= −1 w−

ot−d1 = 0 w−

ta−d2 = 0 w−

in−ta = 0
wstn

i
= 1 w−

in−d2 = 0 w−

ta−d1 = 0
w+

stn−ot = 0.8 w−

in−d1 = 0 w−

ta−ta = 0

GP Outer - STR Control Models

wstr

i
= 1 w+

stn−in = 0 w−

ot−stn = −0.8 w−

ot−ot = 0
w−

d2−ot
= −1 w+

stn−ta = 0 w−

ot−snr = −0.4 w−

in−in = 0
w−

d2−in
= 0 w+

stn−snr = 0.9 w−

in−stn = 0 w−

ot−in = 0
w−

d2−ta
= 0 w−

ot−d2 = varied/0 w−

in−snr = 0 w−

ot−ta = 0
w−

d1−snr
= −1 w−

ot−d1 = varied/0 w−

ta−d2 = 0 w−

in−ta = 0
wstn

i
= 1 w−

in−d2 = 0 w−

ta−d1 = 0
w+

stn−ot = 0.8 w−

in−d1 = 0 w−

ta−ta = 0

GP Inner - STR Control Models

wstr

i
= 1 w+

stn−in = 0.8 w−

ot−stn = 0 w−

ot−ot = 0
w−

d2−ot
= −1 w+

stn−ta = 0 w−

ot−snr = 0 w−

in−in = 0
w−

d2−in
= −1 w+

stn−snr = 0.9 w−

in−stn = −0.8 w−

ot−in = varied
w−

d2−ta
= 0 w−

ot−d2 = 0 w−

in−snr = −0.4 w−

ot−ta = 0
w−

d1−snr
= −1 w−

ot−d1 = 0 w−

ta−d2 = 0 w−

in−ta = 0
wstn

i
= 1 w−

in−d2 = varied/0 w−

ta−d1 = 0
w+

stn−ot = 0.8 w−

in−d1 = varied/0 w−

ta−ta = 0

GP Outer - GP Inner Combined Model:Case A
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i
= 1 w+

stn−in = 0.8 w−

ot−stn = −0.8 w−

ot−ot = 0
w−

d2−ot
= −1 w+

stn−ta = 0 w−

ot−snr = −0.4 w−

in−in = 0
w−

d2−in
= −1 w+

stn−snr = 0.9 w−

in−stn = −0.8 w−

ot−in = varied
w−

d2−ta
= 0 w−

ot−d2 = varied w−

in−snr = −0.4 w−

ot−ta = 0
w−

d1−snr
= −1 w−

ot−d1 = varied w−

ta−d2 = 0 w−

in−ta = 0
wstn

i
= 1 w−

in−d2 = varied w−

ta−d1 = 0
w+

stn−ot = 0.8 w−

in−d1 = varied w−

ta−ta = 0

GP Outer - GP Inner Combined Model:Case B

wstr

i
= 1 w+

stn−in = 0.8 w−

ot−stn = −0.8 w−

ot−ot = varied
w−

d2−ot
= −1 w+

stn−ta = 0 w−

ot−snr = −0.4 w−

in−in = varied
w−

d2−in
= −1 w+

stn−snr = 0.9 w−

in−stn = −0.8 w−

ot−in = varied
w−

d2−ta
= 0 w−

ot−d2 = 0.5 w−

in−snr = −0.4 w−

ot−ta = 0
w−

d1−snr
= −1 w−

ot−d1 = 0.5 w−

ta−d2 = 0 w−

in−ta = 0
wstn

i
= 1 w−

in−d2 = 0.25 w−

ta−d1 = 0
w+

stn−ot = 0.8 w−

in−d1 = 0.25 w−

ta−ta = 0

Combined Models:Final Model

Though there were three stages, only the final model is presented, which in-

cluded all the instantiations.

wstr

i
= 1 w+

stn−in = 0.8 w−

ot−stn = −0.8 w−

ot−ot = varied
w−

d2−ot
= −1 w+

stn−ta = 0.8 w−

ot−snr = varied w−

in−in = varied
w−

d2−in
= −1 w+

stn−snr = 0.9 w−

in−stn = −0.8 w−

ot−in = varied
w−

d2−ta
= −1 w−

ot−d2 = 0.5 w−

in−snr = varied w−

ot−ta = varied
w−

d1−snr
= −1 w−

ot−d1 = 0.5 w−

ta−d2 = varied w−

in−ta = varied
wstn

i
= 1 w−

in−d2 = 0.25 w−

ta−d1 = varied
w+

stn−ot = 0.8 w−

in−d1 = 0.25 w−

ta−ta = varied
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