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ABSTRACT

Blanket peatlands are globally rare, and many have

been severely eroded. Natural recovery and

revegetation (‘self-restoration’) of bare peat sur-

faces are often observed but are poorly understood,

thus hampering the ability to reliably predict how

these ecosystems may respond to climatic change.

We hypothesised that morphometric/topographic-

related microclimatic variables may be key controls

on successional pathways and vegetation pattern-

ing in self-restoring blanket peatlands. We pre-

dicted the occurrence probability of four common

peatland plant species (Calluna vulgaris, Eriophorum

vaginatum, Eriophorum angustifolium, and Sphagnum

spp.) using a digital surface model (DSM) generated

from drone imagery at a pixel size of 20 cm, a suite

of variables derived from the DSM, and an

ensemble learning method (random forests). All

four species models provided accurate fine-scale

predictions of habitat suitability (accuracy > 90%,

area under curve (AUC) > 0.9, recall and preci-

sion > 0.8). Mean elevation (within a 1 m radius)

was often the most influential variable. Topo-

graphic position, wind exposure, and the hetero-

geneity or ruggedness of the surrounding surface

were also important for all models, whilst light-

related variables and a wetness index were impor-

tant in the Sphagnum model. Our approach can be

used to improve prediction of future responses and

sensitivities of peatland recovery to climatic chan-

ges and as a tool to identify areas of blanket peat-

lands that may self-restore successfully without

management intervention.

Key words: natural revegetation; DSM; eroded

peatland; restoration; drone; topography; random

forest.

MANUSCRIPT HIGHLIGHTS

� We used a fine-scale digital surface model to

investigate drivers of natural revegetation pat-

terning.

� Few topographic variables were required to

accurately predict species’ presence.

� The results can be used to understand future

change trajectories in eroded peatlands.
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INTRODUCTION

Blanket peatlands are globally rare ecosystems.

They occur in disjunct oceanic and hyper-oceanic

high-latitude regions where precipitation (mostly

rainfall) is common throughout the year and

maintains wet conditions at the soil surface so that

peat-forming plants (principally Sphagnum mosses

and the cotton grasses (Eriophorum spp.)) can

establish (Lindsay 2010 Unpublished; Gallego-Sala

and Prentice 2013). In such areas, peat may cover

or cloak whole landscapes. Peat tends to build to

greater depths in hillslope hollows, so that the

landscape becomes ‘softer’ in appearance.

Approximately 13% of the global stock of blanket

peatlands (� 15,759 km2) occurs in the UK (Baird

and others 2009), which is regarded as a ‘type

location’ for these ecosystems (Lindsay 2010). De-

spite suggestions that blanket peatlands formed in

response to forest clearance in the Neolithic and

Bronze Age (for example, Tallis 1998), there is

strong evidence they are also natural phenomena

(Lawson and others 2007; Gallego-Sala and others

2016).

Using a simple static model, Gallego-Sala and

Prentice (2013) concluded that the bioclimatic

space or envelope of blanket peatlands will shrink

under a range of projected future climates. They

noted that this shifting of the bioclimatic space,

whilst not necessarily leading to an immediate

reduction in the area of blanket peatlands, will

lessen their ecological resilience, making them

more prone to degradation and erosion. Although

blanket peatland erosion may become more com-

mon as the climate changes, it has been a feature of

UK blanket peatlands for 100 s of years and was

noted as long ago as the early nineteenth century

(for example, Aiton 1882, cit. Bower 1962); pre-

dating the intensive human use of the uplands (in

the UK) in which most blanket peatlands are

found. Blanket peat erosion has been widely re-

ported since then (see Bragg and Tallis 2001; Evans

and Warburton 2005), and numerous authors have

speculated on the causes of such erosion (for

example, Bower 1962; Bowler and Bradshaw 1985;

Bragg and Tallis 2001; Clement 2005; Evans and

Warburton 2005). The relative importance of the

postulated causes may vary in different settings,

and it is likely that erosion can have both natural

and human-related origins.

According to Wishart and Warburton (2001) and

Clement (2005), there are three classes of erosion

landscape: (1) areas dominated by linear gullies,

roughly parallel to each other, (2) areas where the

gully network is dendritic, and (3) areas where the

gully network is anastomosing. The last type of

landscape is often referred to as a ‘hagged peatland’

(Figure 1) and usually occurs on lower-gradient

areas such as hilltops and plateaus. The term ‘hagg’

or ‘hag’ is commonly used to describe the islands

of, as yet, un-eroded peat found in anastomosing

gully systems (for example, Bowler and Bradshaw

1985; Foulds and Warburton 2007; Figure 1).

Despite Gallego-Sala and Prentice’s (2013) sug-

gestion that blanket peatlands will, in the future, be

prone to further degradation, it is notable that

many erosion complexes, under current climates,

are showing signs of recovery (Figure 2). Recovery

involves the re-establishment of peat-forming

vegetation on bare erosion surfaces, on areas where

eroded peat has been deposited, and on areas of

mineral ground exposed by the complete removal

of peat in gully bottoms. However, whether

revegetation is a temporary or more permanent

phenomenon is contested. Wishart and Warburton

(2001) appear to suggest that revegetation can only

be temporary and that, once erosion has started, it

will continue indefinitely. This view contrasts with

Crowe and others (2008) who suggest that reveg-

etating gullies may eventually fill with a combi-

nation of peat derived from gully walls (which tend

to stabilise as material accumulates in the gully),

material derived from upstream, and new peat

formed in situ. Evans and Warburton (2007) re-

view in more detail the factors involved in reveg-

etation and suggest that it may be a natural part of

an erosion–recovery cycle; however, they also note

that whereas erosion has been studied in some

Figure 1. Example of a hagged peatland showing islands

of un-eroded peat in a complex network of gullies,

Ffynnon Eidda, Upper Conwy, North Wales. The hagg in

the centre of the picture is � 1 m high.

1036 A. Harris, A. J. Baird



detail, very little work has been done on revege-

tation and that our understanding of the mecha-

nisms involved in revegetation remains limited.

Although erosion can cease and a peatland start

to recover, from Gallego-Sala and Prentice’s (2013)

analysis it is not clear whether regeneration can

continue over the coming decades as the climate

changes and the bioclimatic envelope for blanket

peatlands shrinks. To understand future trajectories

of regeneration in blanket peatlands, it is necessary

to understand the factors involved in the shift from

erosion to revegetation so that a mechanistic

understanding can be obtained. Such an under-

standing can be used to ‘inform’ and improve

process-based models such as DigiBog, which have

already been used to investigate the effect of drai-

nage ditch construction and later blocking on peat

growth and degradation (Young and others 2017).

Palaeoecological, experimental, and spatial cor-

relative approaches could all be used to study

peatland regeneration. The last of these involves

looking at areas undergoing natural revegetation

and evaluating, from detailed field survey or re-

mote sensing imagery, the topographic and mor-

phological settings characteristic of different

successional pathways. This approach considers

only a snapshot in time, but in areas in which

revegetation is well established it can be useful for

developing a process-based understanding of what

drives change in these systems and the key factors

involved in recovery. A notable example of such a

study is Evans and others (2005), who undertook a

detailed field-based study to investigate links be-

tween the type of revegetation and the morpho-

metric characteristics of the gullies in which

revegetation had occurred. Using cluster and ordi-

nation analysis, they found that gully floor slope

and gully width were particularly influential fac-

tors.

Whilst terrestrial surveys such as the one

undertaken by Evans and others (2005) can pro-

vide detailed information, they require extensive

ground-based measurements, which are time-con-

suming and difficult to collect. Since the study of

Evans and others (2005), there has been an

explosion in the use of drone-based remote sensing

to obtain high-spatial-resolution data on vegetation

composition and microtopography of a wide range

of environments, including peatlands (for example,

Lehmann and others 2016; Simpson and others

2016; Lovitt and others 2017; Rahman and others

2017). Using structure from motion (SfM) tech-

niques, an array of detailed morphological charac-

teristics can easily be obtained from drone imagery.

In the study, we report herein, we used this ap-

proach to establish the factors that control the

distribution of vegetation in a self-restoring hagged

peatland. We hypothesised that morphometric/to-

pographic and related microclimatic variables may

be key controls on vegetation patterning and thus

successional pathways in such self-restoring sys-

tems. Specifically, our objectives were to (1) obtain

an accurate prediction of the current occurrence of

key species across a hagged peatland, using only

fine-scale morphometric and topographic variables,

and (2) quantify the relative importance of each of

Figure 2. Photographs of part of the study site, showing peat haggs and the revegetating areas between them. Both

photographs show areas of E. vaginatum and E. angustifolium, whereas small lawns of S. fallax can be seen in the left

photograph. C. vulgaris is also evident on the haggs in both photographs. The haggs varied in height from � 0.5 to � 2 m.
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the variables and their marginal effects on the

prediction of a species’ probability of occurrence.

METHODOLOGY

Study Area and Target Species

The study site is an area of hagged peatland near

Ffynnon Eidda in the upper Conwy catchment in

North Wales, UK, owned and managed by The

National Trust (a UK conservation charity). It is

approximately 500 m above mean sea level on a

gently sloping hilltop. Limited climate data exist for

the area, but automatic weather station records

from March 2011 to March 2015 suggest an annual

average rainfall of � 2100 mm and an annual

average air temperature of 7.2�C (Green and others

2017). Snow is common during winter and early

spring but rarely lies for more than a few days be-

fore thawing. Air frosts are also common during

winter and early spring, but temperatures below -

5�C are unusual. Fog is frequent, and in summer

daily high air temperatures do not usually exceed

20�C. The peat at the site is underlain by Cambrian

mudstones and siltstones (Lynas 1973), and

reaches maximal thicknesses of between 2 and

4 m. Based on a walkover assessment of the site,

four dominant species/plant groups were selected

for mapping: (1) Calluna vulgaris L. (Common

Heather or Ling), (2) Eriophorum vaginatum L.

(Hare’s Tail Cotton Grass), (3) Eriophorum angusti-

folium Honck. (Common Cotton Grass), and (4)

Sphagnum spp. (Bog Mosses—those investigated

comprised almost exclusively S. fallax (Klinggr.)

Klinggr. and S. cuspidatum Ehrh. ex Hoffm.). Calluna

was selected because it was common on the un-

eroded haggs, whereas the other three were the

most frequently encountered species in the reveg-

etating areas between the haggs.

A subsection of the hagged portion of the peat-

land (0.03 km2) was selected for detailed analysis

(see Section ‘‘Digital Surface Model from Drone

Imagery’’). The selected area contained a complex

of haggs, bare peat, and vegetation (Figure 3) and is

like many hagged landscapes seen across a range of

blanket peatlands in the UK (see Evans and War-

burton 2007). The region also corresponds to the

anastomosing gully network category of erosion

proposed by Wishart and Warburton (2001) and

Clement (2005) (see Introduction).

Digital Surface Model from Drone
Imagery

Image data were acquired and processed by a third-

party drone operator in July 2012. The data were

collected using a SenseFly swingletCam fixed wing

drone and consumer-grade digital camera (Canon

IXUS 220 HS, 12.1 megapixel resolution). Due to

the wind and lighting conditions at the time of data

collection, multiple flyovers (> 100) were under-

taken (� 650 m altitude, WGS84) covering a range

of orientations to ensure sufficient image overlap

(Table S1). The flight pattern resulted in the col-

lection of 1,096 images covering an area of 0.3 km2

with an average ground sampling distance (GSD) of

2.46 cm.

The images were synchronised using onboard

GPS positional information and the triggering time

recorded for each image. The imagery was pro-

Figure 3. (A) Orthomosaic of the study area (� 2.5 cm GSD) and (B) corresponding digital surface model (DSM; 20 cm

GSD).
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cessed using Pix4Dmapper Pro software (version

2.0.1000, Lausanne, Switzerland) to generate a

digital surface model (DSM) and a digital ortho-

mosaic. Ground control points (GCPs) were not

obtained at the time of data collection, and thus,

the geolocalisation process was dependent on the

GPS measurements provided by the drone

(Table S1). To minimise geolocation errors caused

by the absence of GCPs during the creation of the

DSM and orthomosaic, we subsequently co-regis-

tered both datasets to a vertical aerial photograph

(23 August 2015; GSD 25 cm) obtained from the

EDINA Aerial Digimap Service (http://digimap.ed

ina.ac.uk). The data provider, Getmapping, states

that the geolocation root mean square error

(RMSE) of the aerial imagery is ± 0.75 m. To

maximise the accuracy of the co-registration pro-

cess, only a subsection of the hagged portion of the

peatland (0.03 km2) was co-registered and used for

subsequent analyses. No clearly observable changes

in the surface patterning of this region were ob-

served between the 2012 (drone survey) and 2015

(aerial survey) imagery. ENVI 5.4 (Harris Geospa-

tial Solutions) was used to automatically generate

210 spatially distributed tie points between the

vertical aerial photograph and the drone data. A bi-

linear interpolation algorithm and nearest-neigh-

bour resampling were applied to co-register the

imagery (RMSE ± 0.74 cm).

We assessed the vertical accuracy and precision

of the DSM by comparing it to a DSM generated

from LiDAR data provided by the National Trust

(see Williamson and others 2017). The drone DSM

was resampled to a spatial resolution (the size of

the pixel) of 50 cm to match the LiDAR DSM, and

vertical agreement was assessed by comparing ele-

vations between the two datasets. Tests for nor-

mality of the residuals (vertical errors between

drone and LiDAR-based DSMs) revealed a non-

normal distribution (data not shown); conse-

quently, the median and normalised median

absolute deviation (NMAD) were calculated as ro-

bust measures of vertical agreement assessment

(Höhle and Höhle, 2009); we also calculated the

RMSE. Table 1 and Figure S1 provide the results of

the vertical agreement assessment. Although the

results suggest poor vertical accuracy due to the

absence of GCPs during processing, precision (as

indicated by the NMAD) was high (� 11 cm) and

thus the DSM was deemed fit for purpose, although

stated elevation values should be interpreted as

relative rather than absolute.

Following the vertical accuracy assessment, the

drone DSM was resampled from its origi-

nal � 2.5 cm GSD to a resolution of 20 cm as an

appropriate resolution for a region where the

characteristic dimensions of microtopographic fea-

tures are of the order of � 100–101 m. A suite of

morphometric and topographic metrics was ob-

tained from the DSM. These variables were taken

as proxies for direct environmental variables (Ta-

ble 2), to explore the controlling environmental

variables influencing the distribution of each of the

chosen key species/plant groups. Terrain-related

gradients are highly correlated with mesoscale cli-

matic and geomorphological factors (Kumar and

others 1997), such as wind and sun exposure and

peat depth, that are often expensive and difficult to

measure in fine detail over large areas. Conse-

quently, there are distinct advantages in using

variables that can be derived entirely from eleva-

tion data. Elevation was extracted directly from the

generated DSM. All other explanatory variables

were computed based on the DSM (Figure 3B)

using the RSAGA package in R (Brenning 2008)

and extracted for each sample location to generate

random forest (RF) models (see section ‘‘Random

Forest Modelling’’).

Table 1. Vertical Agreement Assessment of the Drone and LiDAR-based DSMs

Accuracy measure Notational expression Value

(m)

Median (50% quantile) mDh

where Dh is the difference in height between the two DSMs

55.98

Normalised median absolute devia-

tion (NMAD)

1:4826 medianj Dhj �mDh

�
�

�
�

� �

0.11

Root mean square error (RMSE)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� o2ð Þ
q

where p is the predicted values (drone DSM) and o is the observed

values (LiDAR DSM)

55.97

(n = 86,549).
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Table 2. List of Morphometric and Topographic Variables Derived from the Digital Surface Model (DSM)

Predictor

Variable

Abbreviation Description Formula/Units

Primary

attri-

butes

Elevation ELEV Mean elevation within a 1 m radius Metres

Slope SLP Steepest slope angle within a 1 m

radius

Degrees

Profile curva-

ture

VCU Direction of the steepest slope. Af-

fects the acceleration or decelera-

tion of water (Zevenbergen and

Thorne, 1987)

Degrees

Plan curvature HCU Horizontal curvature intersecting

with the x–y surface plane. Affects

the convergence or divergence of

water (Zevenbergen and Thorne,

1987)

Degrees

Secondary

attri-

butes

Morphometric

protection

index (1, 4)*

MPI Measure of exposure/protection of a

point from the surrounding relief.

Calculated by analysing the de-

gree to which the surrounding

relief (windows with n metres ra-

dii) protects the given cell (Yo-

koyama and others 2002)

No unit

Value is negative when the point

is not protected and positive when

it is

Topographic

position in-

dex (1, 4)*

TPI Difference between elevation of the

cell and the mean of the elevation

in surrounding cells (windows

with n metres radii), calculated by

dividing the elevation difference

by its standard deviation (Guisan

and others 1999)

No unit

Value is positive when the point is

higher than its surroundings, zero

when in a flat area or mid slope

and negative when lower than its

surroundings

Terrain

ruggedness

index (1, 4)*

TRI A measure of terrain complexity/

heterogeneity. It calculates the

sum change in elevation between

a grid cell and its neighbouring

grid cells. The radius of the mov-

ing window determines how

many cells are used to calculate

the change in elevation (Riley and

others 1999)

Metres

Value is always ‡ 0 m, where 0

represents the minimum rough-

ness

Vector rugged-

ness mea-

sure (1, 4)*

VRM A measure of terrain complex-

ity/variance that captures vari-

ability in slope and aspect in a

single measure. Ruggedness is

measured as the dispersion of

vectors orthogonal to the surface

within a specific neighbourhood.

The radius of the moving window

determines how many cells are

used to calculate the change in

ruggedness

No unit

Value is zero when there is no

terrain elevation and 1 when

there is complete variation. Natu-

ral terrain has values between 0

and 0.4

Sky view fac-

tor

SVF The ratio of the radiation received

by a planar surface to the radia-

tion emitted by the entire hemi-

spheric environment (Böhner and

Antonic, 2009)

No unit

Values range from 1 for com-

pletely unobstructed surfaces (for

example, horizontal surfaces,

peaks and ridges) to 0 for com-

pletely obstructed surfaces
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Species Data

Plant species presence data were obtained directly

from the orthomosaic. The high spatial resolution

(� 2.5 cm) of the data, in combination with several

onsite visits made in 2012 and 2013, meant that the

four species selected could be manually identified

from the imagery. The RF algorithm used to de-

velop each species model requires both presence

and absence data. Consequently, absence data for

each species were generated from the presence

points of the other identified species (Buechling

and Tobalske 2011). A total of 4,281 independent

presence locations, where it was clear that a species

was visually dominant, were used to build the four

species models (Table 3, Figure 4).

Data Preparation

To avoid negative bias, the data were randomly

sampled so that the number of absences equalled

the number of presence samples for each species.

Local Moran’s I statistic of spatial association and

associated z-values (R package ‘spdep’, Bivand and

Piras 2015) were used to test for the presence of

spatial autocorrelation in each predictor variable.

The resultant values suggested each variable had a

random spatial pattern (z-values < |1.96|) and

Table 2. continued

Predictor

Variable

Abbreviation Description Formula/Units

Visible sky VIS The percentage of the unobstructed

hemisphere above a certain location

Percentage

SAGA

wetness

index

SWI A variant of the topographic wetness

index (TWI) for soil moisture pre-

diction that models potential areas of

water accumulation. SWI values in

flat areas are spread into larger

neighbourhoods compared with the

standard TWI calculation (Böhner

and others 2002)

No unit

SWI ¼ a
ln S

where a is the specific catchment

area and S the slope

Wind

exposi-

tion in-

dex

WEI Calculates the average wind effect

across all directions using an angular

step (Böhner and Antonic, 2009)

No unit

Values below 1 indicate wind-

shadowed areas whereas values

above 1 indicate areas exposed to

the wind

Direct

insola-

tion

DIR Potential incoming direct solar radia-

tion

KWh m-2

Computed over a 12-month per-

iod

Diffuse

insola-

tion

DIF Potential incoming diffuse solar radia-

tion

KWh m-2

Computed over a 12-month per-

iod

*Morphometric/topographic variables calculated using variable radii. The lower radius is indicative of the conditions surrounding the immediate location, whereas the higher
radius is indicative of broader microtopographic and microclimatic conditions.

Table 3. Performance of Each Species Habitat Model

C. vulgaris E. angustifolium E. vaginatum Sphagnum

OOB error rate (%) 7.02 7.02 8.49 6.65

Recall* 0.91 0.95 0.94 0.97

Precision* 0.93 0.91 0.89 0.89

AUC* 0.98 0.98 0.97 0.98

Prevalence 0.5 0.5 0.5 0.5

Total no. observations 4514 4200 3614 1278

*Obtained from tenfold cross-validation.
The out-of-bag (OOB) error rate, recall, precision, and the area under the ROC curve (AUC) are reported, together with the prevalence and total number of observations (20 cm
9 20 cm grid square) used to train and validate each model.
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showed little evidence of spatial autocorrelation;

thus, all variables were included in initial runs of

the RF models.

Random Forest Modelling

We used the RF method (Breiman, 2001) to de-

velop separate presence–absence models to predict

the occurrence probabilities of each target species

(i.e. one model per plant species/group) based on

the morphometric and topographic variables derived

from the DSM (Table 2; Figure 5). RF is a machine

learning classification and regression tree method,

which uses multiple randomised decision trees to

determine the model output. The key strengths of RF

are that it can capture complex and often nonlinear

interactions and use large numbers of independent

and often correlated variables without over-fitting

(Breiman 2001; Liaw and Wiener 2002). In addition,

RF provides measures of the importance of each in-

put variable to the modelling process, which can

prove valuable for exploratory ecological interpre-

tation (Cutler and others 2007). RF has been used in

a range of disciplines, including ecohydrological

assessments (for example, Peters and others 2007)

and the prediction of vegetation composition from

remotely sensed imagery (for example, Chapman

and others 2010).

The randomForest package in R (Liaw and Wi-

ener 2002) was used to construct the RF models.

For each model, two-thirds of the data were used

for multiple tree growth. The remaining samples

are known as out-of-bag (OOB) observations. At

each node of each tree, the algorithm determined

the explanatory variables (and the values of those

variables) that optimise the differences between the

presence and absence of a given species. The de-

Figure 4. Presence locations used to develop each of the

species models. A greyscale image of the

orthophotograph is used as the background layer.

Figure 5. A generalised workflow of the random forest (RF) modelling process including model inputs, model

development, model performance, and model outputs.
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fault value was used to determine the appropriate

number of variables used to split the data at each

node of each tree (mtry). Each tree was grown to

the largest extent possible. When the trees were

fully grown, they were used to predict the OOB

observations. The number of trees to be grown was

set to 500 per model based on the relationship

between OOB error estimates and number of trees

(data not shown). To classify an object based on its

attributes, each tree is said to ‘vote’ for that class.

The predicted class (i.e. presence/absence) of an

observation was the class with most votes over all

trees in the forest.

Variable Selection and Variable
Importance

Although RF can utilise an extensive number of

correlated predictor variables, parsimonious models

including uncorrelated variables are more easily

interpretable and may have increased predictive

power (Murphy and others 2010). Consequently,

we tested for collinearity amongst predictor vari-

ables and used the model improvement ratio (MIR;

Evans and Cushman 2009) to select only the most

useful uncorrelated variables to include in each RF

model. The MIR is a ratio of the importance of a

variable (the permuted variable importance mea-

sure) to the maximum model improvement score.

The variables are put into subsets using MIR

thresholds (0-1, in 0.1 increments). The optimal

threshold, and thus selection of variables, is found

where the number of retained variables and the

model mean squared error (MSE) are both min-

imised and the percentage of variation explained is

maximised (Murphy and others 2010). We used

the rfUtilities package in R (Evans and Murphy

2016) to run the MIR for each species model.

The mean decrease in accuracy was used as a

measure of the relative importance of each of the

remaining predictor variables. The mean decrease in

accuracy is calculated according to how much the

prediction error increases when OOB data for that

variable are permuted whilst all others are left un-

changed (Liaw and Wiener 2002). The higher the

mean decrease in accuracy, the more important the

variable. As RF models are stochastic, we also tested

for the stability of the variable importance by run-

ning each model 25 times and comparing the rank-

ing of the top five variables for each model run.

Model Outputs

Each RF model was run to provide species proba-

bility predictions, predicted using a ratio of the RF

majority votes matrix to create a probability dis-

tribution:

P cj
� �

¼ Ncj=Ntot

where P cj
� �

is the probability of the occurrence

class cj (i.e. presence or absence), Ncj is the number

of trees classifying the species as occurrence class cj,

and Ntot is the number total number of trees in the

random forest (i.e. 500).

A series of partial dependence plots (PDPs) was

created to assess the dependence of the response

variable (i.e. probability of species occurrence) on

the most important morphological and topographic

explanatory variables. PDPs summarise the effect of

a given predictor variable on the probability of

species occurrence after accounting for the average

effect of all other variables. Partial dependence

plots were created using the rfUtilities package in R

(Evans and Murphy 2016) and are presented using

a logit scale (due to the presence/absence classifi-

cation) in relation to the probability for predicting

the presence class. We used the raster package in R

(Hijmans 2016) to make spatial model predictions

from the final RF models.

Model Performance

The OOB error rate was used to determine model

fit and the generalisation power of each model. To

further assess the error in the prediction perfor-

mance, we used tenfold cross-validation. The data

for each species were split into ten subsets, with

equal numbers of presence and absence data in

each. For each species model, the RF model was

fitted ten times, each time leaving out one of the

subsets in the fitting, and predicting the left-out

subset. The following threshold-dependent and

threshold-independent performance metrics were

obtained from the cross-validation predictions

using the rms (Harrell Jr 2016) and caret (Kuhn

and others 2015) packages in R:

(1) Recall—The proportion of observed presences

correctly predicted (> 50% of the tree votes).

The higher the recall, the fewer the number of

presence points that the algorithm will miss;

(2) Precision—The proportion of predicted pres-

ences that are observed to be present;

(3) Area under the receiver operating characteris-

tic curve (AUC)—Illustrates the diagnostic

ability of a binary classifier to correctly predict

each class (i.e. presence–absence) as the dis-

criminant threshold is varied. The AUC is the

probability that the classifier will assign a

higher score to a randomly chosen presence
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observation than a randomly chosen absence

observation. The AUC value is not threshold

dependent. A model with no better accuracy

than chance has an AUC of 0.5, whereas a

model with perfect accuracy has an AUC of 1.

RESULTS

Overall Performance

The results of the performance tests for each model

(Table 3) indicated strong predictive performance,

with models reporting OOB error rates of between

about 6 and 9% and AUC values greater than 0.9.

Recall and precision values were also very good

(> 0.8) across all models (Table 3).

Figure 6 indicates the probability range associ-

ated with each of the predicted presence locations

(correctly and incorrectly predicted), based on the

cross-validation, and provides an indication of the

strength of the occurrence predictions (Peters and

others 2007). The total number of correct presence

predictions was always greater than the number of

incorrect presence predictions (i.e. false positives).

For all models, the number of correct predictions

was positively related to prediction probability. The

number of false positives was always highest for

locations with low predicted probability; thus,

more care should be taken when interpreting spa-

tial predictions of presence where prediction

probabilities are low (Figure 7).

Multi-collinear analysis indicated that the mor-

phometric protection index (4 m radius; MPI4), the

topographic protection index (4 m radius; TPI4),

and the sky view factor (SVF) showed evidence of

correlation with other explanatory variables

(p = 0.001) and thus were removed from further

analyses. The C. vulgaris and E. angustifolium models

utilised the least number of input variables (six out

of 14), whereas the Sphagnum model used the most

(Figure 8). Of the variables selected, elevation,

topographic position, and ruggedness indices were

consistently the most important. All models made

use of indices calculated across different spatial

extents (i.e. 1 m and 4 m radii). Variable impor-

tance was stable across repeat runs of the RF

models (results not shown).

Partial dependence plots (PDPs) were explored to

better understand the effects of the most important

variables in each model (Figures 9, 10, 11, 12).

Specifically, we used the PDPs to illustrate the

marginal effect of the selected explanatory variable

on the probability of species presence, whilst

averaging out the effect of all other parameters.

Figure 6. Probability distributions of correct and incorrect presence predictions (i.e. false positives) for A C. vulgaris; B E.

angustifolium; C E. vaginatum and D Sphagnum mosses
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Positive values on the y-axis mean that the occur-

rence of a species is more likely for that value of the

independent variable (x axis) and vice versa. A

value of zero on the y-axis implies no average im-

pact on the probability of species occurrence. In the

following sections, we describe the explanatory

Figure 7. Spatial patterns of predicted probabilities of occurrence for each species. Areas of intact bog have been masked

(in black)

Figure 8. Variable importance based on mean decrease in model accuracy. The higher the value, the more important the

variable is to the model
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variables, their rankings, and their partial depen-

dence plots, within the context of each spe-

cies/group studied.

Calluna vulgaris

Elevation, topographic position, ruggedness, and

wind exposure were the most important predictors

Figure 9. Partial dependence plots for each explanatory variable in order of importance (A–F) for the C. vulgaris model.

The y-axis has a log scale [the logit function gives the log-odds, or the logarithm of the odds p/(1 - p)]. The shaded area

represents the 95% confidence interval of the smoothed curve. The dotted line of zero average impact is plotted to aid

interpretation

Figure 10. Partial dependence plots for each explanatory variable in order of importance (A–F) for the E. angustifolium

model
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of C. vulgaris (Figure 8). The PDPs show that the

relationship between the probability of occurrence

and all variables was generally positive but non-

linear, often increasing towards an asymptote be-

fore decreasing (Figure 9). The probability of

occurrence of C. vulgaris initially increased with

elevation (Figure 9A) and with increasing topo-

graphic position index (TPI; Table 2), suggesting

that this species is associated with higher elevations

and locations where the surrounding (i.e. 1 m ra-

dius) terrain is lower, for example, ridges or hum-

mocks (Figure 9B). The wind exposure index (WEI;

Table 2) PDP plot (Figure 9E) suggests that C. vul-

garis is more likely to occur in areas exposed to the

wind, than in wind-shadows, although the proba-

bility of occurrence decreased as the WEI increased

above 1.05, suggesting a limit to the tolerated level

of wind exposure. Variables that measured

ruggedness or surface heterogeneity were also

important predictors of C. vulgaris (Figure 9C–F).

Surface heterogeneity was positively correlated

with the probability of species occurrence at all but

the most heterogeneous locations (Figure 9C, D).

At the more localised scale, the surface immedi-

ately surrounding the plant was likely to be more

homogenous (Figure 9F). The model’s spatial pre-

dictions confirmed this interpretation and predicted

many high presence probability patches of C. vul-

garis along the elevated margins of the hagged area

and on the haggs (Figure 7A).

Eriophorum angustifolium

Elevation, wind exposure, topographic position,

and ruggedness were also the most important pre-

dictors of E. angustifolium (Figure 8), although the

relationships with each variable were often the

opposite for those found for C. vulgaris (Figure 10).

In general, the probability of E. angustifolium

occurrence decreased as elevation, ruggedness, and

topographic position increased (Figure 10A, C, D,

Figure 11. Partial dependence plots for each explanatory variable in order of importance (A–G) for the E. vaginatum

model
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E, and F). E. angustifolium was also less likely to

occur in very sheltered or extremely exposed

locations (Figure 10B). Spatial predictions of the

probability of species presence showed E. angusti-

folium to be most likely to occur in the flat gullied

regions between the haggs and in some of the

minor depressions, which form at the outer limits

of the hagged area (Figure 7B). There were also

areas that are currently bare peat where the spatial

model predicted the presence of E. angustifolium.

Eriophorum vaginatum

Elevation, ruggedness, wind exposure, and topo-

graphic position were the most important predic-

tors of the probability of E. vaginatum presence

Figure 12. Partial dependence plots for each explanatory variable in order of importance (A–J) for the Sphagnum model
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(Figure 8). The elevation PDP of the probability of

E. vaginatum occurrence showed a slightly positive

relationship up to approximately 553 m but then

decreased sharply (Figure 11A). E. vaginatum was

most likely to be found in areas sheltered from the

wind (Figure 11C) and least likely to be found in

topographically exposed sites (Figure 11E). In

general, the surface ruggedness PDPs suggested that

topography within the immediate and surrounding

vicinity of the vegetation was likely to be relatively

flat (Figure 11D, F and G). The only exception was

the PDP plot of the vector ruggedness measure

(VRM4; Table 2 and Figure 11B) which showed a

positive relationship between probability of pres-

ence and ruggedness, although the values of VRM4

were very small, suggesting that the model was

influenced by small increases in heterogeneity that

occurred within a homogenous terrain (i.e.

VRM < 0.15). The spatial predictions made by the

model indicated that E. vaginatum was most likely

to occur in flat gullied areas and on the bases of the

haggs (Figure 7). Like the E. augustifolium model,

there were several areas where the spatial model

predicted the presence of E. vaginatum that are

currently bare peat.

Sphagnum

The Sphagnum model contained the highest num-

ber of morphometric and topographic variables.

The five most influential explanatory variables

were similar to those of the other three species

models, although two light-related variables and a

wetness index were also selected (Figure 8). The

probability of Sphagnum presence dropped rapidly

with increased ruggedness, elevation, and topo-

graphic position before levelling off (Figure 12A, B,

D, G, and H). Low levels of diffuse radiation and

drier conditions (low values of the SAGA wetness

index (SWI); Table 2) both negatively influenced

Sphagnum presence (Figure 12I, J), although very

wet conditions (high values of SWI) also reduced

the probability of Sphagnum occurrence (Fig-

ure 12J). Sphagnum was least likely to occur in

areas where solar radiation may be moderate to

high (i.e. VIS (visible sky) 80–90%), although the

influence of VIS on predicting Sphagnum reduced

(i.e. partial dependence tended towards zero) as

VIS increased or decreased beyond this range

(Figure 12F). The spatial predictions (Figure 7)

show high probabilities of Sphagnum presence are

predicted to be confined to some of the lower ele-

vations along the western side of the hagged area

and for some areas currently occupied by E. vagi-

natum. Sphagnum was not frequently predicted to

occur on the exposed bare peat in the central and

eastern areas of the region.

DISCUSSION

The overarching goal of this study was to determine

whether morphological and topographic variables,

derived from a fine-scale DSM, can improve our

knowledge and understanding of the patterns of

revegetation in naturally eroding blanket peat-

lands.

Elevation models based on remotely sensed data

have previously been used in peatland research,

with applications of topographic data ranging from

delineating and identifying wetlands and peatlands

within the wider ecological landscape (for example,

Chasmer and others 2016; Hird and others 2017;

O’Neil and others 2018) to mapping water-

table depths (Rahman and others 2017) and

microtopography (Lovitt and others 2017) within

an individual peatland. However, our results pre-

sent the first demonstration that drone-based ele-

vation data can be used as an exploratory tool for

understanding processes governing natural pat-

terns of peatland revegetation in eroding land-

scapes. The amount of topographic data that can be

obtained from drone imagery far surpasses what

was collected in previous ground-based peatland

morphological studies (for example, Evans and

others 2005; Pouliot and others 2011; Malhotra

and others 2016). Our approach, which models

topographic–species relationships, has the added

advantage of providing spatially explicit predictions

of species occurrence, as opposed to mapping cur-

rent distribution (for example, Knoth and others

2013; Lehmann and others 2016). Comparisons

between where a species is predicted as likely to

occur and where it currently occurs can help

understanding of future change trajectories. The

above-ground predictions of species occurrence can

also be validated using follow-up drone surveys.

All four models generated using the random

forest procedure showed high accuracy, recall,

precision, and AUC scores, indicating reliable pre-

diction performance. Despite the inclusion of a

large number of different morphometric and

topographic variables, fewer than half of the vari-

ables were consistently selected by the models. The

most important variable was often elevation (mean

within a 1 m radius), followed by variables related

to the topographic position within the hagged area,

the degree of exposure of the surface to the wind,

and the heterogeneity or ruggedness of the sur-

rounding surface. The consistent and substantial

influence of a small number of variables highlights
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their importance in controlling species distribu-

tions. Morphology and topography are likely to

have an important influence on species presence

within a peatland because of the close relationships

that exist between vegetation, topography, and

moisture regime (for example, Bubier and others

2006; Malhotra and others 2016). In non-eroding

peatlands, microtopography occurs because of dif-

fering rates of net peat accumulation (Nungesser

2003), and nonlinear interactions between mois-

ture regimes and vegetation production result in

long-term evolution of microtopography (Belyea

and Clymo 2001; Eppinga and others 2009; Morris

and others 2013). Whilst the microtopography of

the Upper Conwy is a result of a long history of

erosion (Ellis and Tallis 2001) rather than differ-

ences in net peat accumulation, in terms of

hydrology, microforms on eroding and non-erod-

ing peatlands are likely to be broadly similar. Sur-

prisingly, the morphometric variable specifically

designed to represent changes in moisture (for

example, SWI) was only chosen by the Sphagnum

model. It is unlikely that moisture is not a primary

driver of species presence more generally and its

relative absence suggests that other morphometric

and topographic variables provided a better repre-

sentation of hydrological conditions in this locality.

Although the ecology of many key peatland

species is already well described (Rydin and Jeglum

2006) and correlates well with the most important

variables identified by our models, the partial

dependence plots revealed spatial associations and

quantified the distribution of each species in rela-

tion to local (10 s m) and landscape-scale (100 s–

1000 s m) environmental factors. C. vulgaris, E.

angustifolium, and Sphagnum were the species most

successfully modelled, according to the OOB

accuracy measure. The C. vulgaris model identified

elevation as one of the most important predictors of

species presence in the eroded landscape. Overall,

elevation had a positive effect on the probability of

occurrence. C. vulgaris is a common species in om-

brotrophic peatlands and is known to be generally

intolerant of water logging (Bragazza and Gerdol

1996). Previous studies have also shown that C.

vulgaris abundance is often greater on drier parts of

the microtopography, namely hummocks and high

lawns (for example, Laine and others 2007). Simi-

larly, Wallèn (1987) recorded no above-ground

evidence of C. vulgaris within the zone where the

ground surface was within 3 cm of the maximum

water level on a raised bog in south Sweden. We

did not measure water-table position, but those

parts of the terrain with higher relative elevations

can be expected to have the deepest water

tables and vice versa. Although the overall rela-

tionships between the probability of C. vulgaris

presence and elevation were positive, the begin-

nings of a negative relationship were observed at

the highest elevations. Similar switches between

positive and negative relationships were observed

in the other selected explanatory variables, sug-

gesting that C. vulgaris is less likely to occur at the

highest, most exposed, and most heterogeneous

locations than it is in more topographically mod-

erate settings. Several other studies have reported

similar findings in relation to elevation. For

example, Wallèn (1988) reported C. vulgaris bio-

mass to be highest at microsites a few cm lower

than the highest and driest parts of the microto-

pography, whilst, for a greater water-table range

(� 70 cm), Bragazza and Gerdol (1996) noted that

C. vulgaris cover increased but then decreased as

depth to the water-table increased, with this rela-

tionship being mediated by pore-water pH.

Both Eriophorum models predicted Eriophorum

presence on what is currently bare peat (Figures 7

and 3). Given that vegetation distribution is a result

of both environmental conditions and ecological

processes, the relative importance of which is hard

to capture, our spatial model predictions should be

interpreted as habitat suitability maps. Many of the

E. angustifolium presence predictions were of high

probability, suggesting that these locations were

particularly suitable for Eriophorum growth. The

lack of Eriophorum at these locations may not

indicate an incorrect model prediction but simply

suggest that insufficient time has passed for Erio-

phorum to colonise these areas. Figure 13 shows

evidence of large patches of E. angustifolium

spreading across depositional flats at the field site,

Figure 13. E. angustifolium and E. vaginatum growing on

peat flats. Repeat visits to the study site suggest that both

species are spreading across the flats
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and anecdotal evidence indicates an expansion of

E. angustifolium in these areas since 2010. The

predicted and observed recolonisation of bare peat

by Eriophorum is similar to previous observations

made in disturbed peatlands (Lavoie and others

2005) and more generally in studies of peatland

formation and succession (for example, Hughes and

Dumayne-Peaty 2002; Dudova and others 2013;

Tuittila and others 2013). The success of Eriophorum

establishment and survival in degraded peatlands

can be attributed to both its deep root system (Shaver

and Billings 1977), which can tolerate long periods

of drought (Buttler and others 2015), and the

effective dispersal of its seeds by wind (Campbell and

others 2003). For example, Lavoie and others (2005)

observed the rapid colonisation of E. vaginatum in an

abandoned vacuum-mined Canadian bog following

measures to increase the water-table level and peat

moisture content. Rapid expansion of E. vaginatum

often occurs when the water table is less than 40 cm

below the peat surface (Komulainen and others

1998; Tuittila and others 2000). Below this thresh-

old, Eriophorum tussocks are likely to form but

growth and expansion are likely to be slower (Lavoie

and others 2005). The orthomosaic of the Migneint

erosion complex suggests that E. vaginatum can

establish from seed and subsequently form tussocks

on areas of bare peat. E. vaginatum appears to be

spreading into the bare peat areas from areas of high

abundance in the north (north-west) of the study

area (Figure 3A). E. angustifolium is less frequently

cited as a pioneer coloniser of bare peat. However,

plant macrofossil records obtained from a UK eroded

blanket peatland have revealed that revegetation in

gullied regions was often initiated by E. angustifolium

(Crowe and others 2008). More recently, E. angus-

tifolium has been observed as one of the first

colonisers of more nutrient-rich portions of a re-

stored Swedish bog (Kozlov and others 2016).

The probability of occurrence predictions made

by the Sphagnum model indicates that Sphagnum

mosses in the hagged portion of the peatland are

most likely to occur at relatively wet and compar-

atively low elevations and topographic positions.

The Sphagnum models were for S. cuspidatum and S.

fallax in combination, and both are known to occur

in wetter parts of a bog surface (Bragazza and

Gerdol 1996). S. fallax does not grow well in com-

pletely submerged conditions, whereas S. cuspida-

tum grows well in pools, which may explain the

observed hump-shaped relationship with wetness

observed in the PDP. The modelling results also

suggest that available light or the level of shadow-

ing may be an important predictor of Sphagnum.

Increases in diffuse light increased the probability

of Sphagnum occurrence, whereas increases in vis-

ible sky initially decreased the probability of

Sphagnum occurrence until a point beyond which

the influence of light began to weaken. Diffuse

radiation has much less tendency to cause canopy

photosynthetic saturation than direct radiation as

the light is more evenly distributed amongst leaves

in the plant canopy (Gu and others 2002) and thus

may be advantageous for Sphagnum growth. In

contrast, locations that have a high percentage of

visible sky overhead are likely to be more exposed

and thus susceptible to higher levels of direct

radiation. Increased radiation is often accompanied

by higher surface temperatures and increased des-

iccation, both of which may have a negative

influence on Sphagnum establishment and growth

(Murray and others 1993; Green and others 2017).

It is not entirely clear why predicted probability of

Sphagnum occurrence begins to increase as visible

sky levels increase above 85%, but it could be re-

lated to the differences in species tolerance to

microclimate and thus their location within the

peatland. For example, whilst S. fallax is commonly

found in wet locations, previous studies have

shown that it is able to survive in drier locations

(Wagner and Titus, 1984) and thus recolonise areas

of bare or dried-out peat (Grosvernier and others

1997; Buttler and others 2015), which are often

exposed and susceptible to higher levels of light

exposure.

The influence of light and water on Sphagnum

growth has previously been studied (for example,

Hayward and Clymo 1983; Gerdol and others 1996;

Grosvernier and others 1997; Bonnett and others

Bonnett et al. 2010), but often in isolation or under

experimental conditions. Such knowledge has not

been used to simulate where Sphagnum is likely to

grow or be absent in a topographically complex

peatland. Our spatial predictions somewhat over-

predict current Sphagnum occurrence but suggest

that habitats currently occupied by E. vaginatum are

suitable for Sphagnum growth (Figures 7 and 3).

Several studies have reported evidence that

Sphagnum regrowth in degraded bogs is often

accompanied by the presence of Eriophorum (But-

tler and others 1996; Hughes and Dumayne-Peaty

2002). Eriophorum is thought to create a suit-

able microclimatic for Sphagnum growth (Grosver-

nier and others 1995; Tuittila and others 2000).

Field observations indicate that Sphagnum is cur-

rently colonising stands of E. vaginatum within the

Migneint study area (Figures 2 and 7).

Whilst our spatial model predictions are neces-

sarily site specific, the morphological/topographic

relationships with species presence, identified for
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the Migneint peatland, may be applicable to other

erosion sites and of use to other researchers. As

noted in ‘‘Methodology’’, the site is similar to many

other UK hagged peatlands. A better understanding

of the microtopographic drivers of vegetation pat-

terning in eroding peatlands is also import for

effective peatland management. Although our

methodological approach results in predictive

models that are inherently static in nature, both the

contemporary vegetation status and variability are

represented; thus, a baseline model can be created.

If the relationships between the most important

predictive variables and species occurrence are

understood, the models can subsequently be used

for monitoring purposes (Alexander and others

2016). For example, any observed changes in the

relationship between elevation and species occur-

rence, in comparison with the baseline model, may

provide an indication of changes in the underlying

hydrology or microclimate, which could further be

investigated. Active restoration is another impor-

tant objective for the management of many de-

graded peatlands. However, restoration

approaches, which commonly involve damming

gullies and installing barriers to flow, can be very

expensive. Our modelling approach, which can

identify those circumstances under which peat-

lands are likely to self-restore successfully without

management intervention, would clearly be a

useful and cost-effective management tool.

CONCLUSION

We used topographic and morphometric variables

derived from a high-spatial-resolution DSM to

investigate microtopographic controls on vegeta-

tion patterning in a blanket peatland recovering

from erosion. To our knowledge, this study is the

first of its kind to use a fine-scale topographic

model to explore the wide range of factors thought

to influence revegetation in eroded blanket peat-

lands. RF models accurately predicted the occur-

rence of four common peatland species (Calluna

vulgaris, Eriophorum vaginatum, Eriophorum angusti-

folium, and Sphagnum spp.), which represented

three important plant functional types. The models

used relatively few variables, thus confirming the

importance of microtopography in controlling

peatland species distributions. Elevation, topo-

graphic position, wind exposure, and the hetero-

geneity or ruggedness of the surrounding surface

were key variables identified in all species models,

whereas light-related variables and a wetness index

were important in the Sphagnum model. The out-

puts from our RF models provided very-fine-scale

predictions of habitat suitability and thus where

species were likely to establish. Continued moni-

toring of the topography and morphology of self-

restoring peatlands and their evolving relationship

with species composition will improve our knowl-

edge of the mechanisms involved in revegetation

by validating our model predictions. Our novel

approach can be used to not only improve upon

predictions of future responses and sensitivities of

peatland recovery to climatic changes but also as a

cost-effective management tool to identify areas of

blanket peatlands that may self-restore successfully

without intervention.
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