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Abstract 

Bile salts (BS) are important for digestion and absorption of fats and fat-soluble vitamins in the 

small intestine. In this work, we scrutinized, with small angle X-ray scattering (SAXS), the crucial 

functions of bile salts beyond their capacity for interfacial stabilization of submicron sized lipid 

particles. By studying a wide compositional range of BS-lipid dispersions using two widely applied 

lipids for drug-delivery systems (one a monoglyceride being stabilizer-sensitive and the other an 

aliphatic alcohol being relatively stabilizer-insensitive), we identified the necessary BS to lipid 

ratios for guaranteeing full emulsification. A novel ad hoc developed global small angle-X-ray 

scattering analysis method revealed that the addition of BS hardly changes the bilayer thicknesses 

in bicontinuous phases, while a significant membrane thinning is observed in the coexisting fluid 

lamellar phase. Furthermore, we show that BS strongly decreases the average critical packing 

parameter. At increasing BS concentration, the order of phases formed are (i) the bicontinuous 

diamond cubic (Pn3m), (ii) the bicontinuous primitive cubic (Im3m) followed by (iii) the fluid 

lamellar phase (Lα). These distinctive findings on BS driven ‘emulsification’ and ‘membrane 

curvature reduction’ provide new molecular scale insights for the understanding of the interfacial 

action of bile salts on lipid-assemblies. 
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Introduction 

Food fats contain an assortment of different lipid types that self-assemble under excess of water 

conditions into various complex structures including (i) lyotropic liquid crystalline (LLC) phases 

based on bilayers (these include the fluid lamellar Lα and gel lamellar Lβ phase as well as the 

bicontinuous cubic phases with the space groups Pn3m and Im3m); (ii) discontinuous LLC phases 

based on spherical micelles (cubic Fd3m phase) and rod-like micelles (H2 phase); and (iii) reverse 

micelles on their own i.e. L2 phase1-3 (Figure 1). 

 

Figure 1. Chemical structures of a) lipids: monoolein (MO) and monolinolein (ML) (main 
constituents of the commercial lipid source Dimodan U/J (DU) and phytantriol (PT), and c) the 
common bile salt (BS) sodium deoxycholate. Schematic drawings depict the head-tail structures of 
lipids and disk-like shapes of bile salts. b) Edible lipids self-assemble into a remarkable range of 
nanostructures in an aqueous medium 3-4, for example, cubic Pn3m and Im3m, lamellar Lα and Lβ 
as well as inverse hexagonal H2, inverse micellar L2 and inverse micellar cubic Fd3m phases. d) Bile 

Page 3 of 28

ACS Paragon Plus Environment

Langmuir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



4 
 

salts, in aqueous solution induce the formation of mixed micelles5-6; whereas BS and lipids 
together e) tend to form mixed structures including spherical, disk-like and worm-like micelles as 
well as stabilized unilamellar vesicles f).7-12 

The lamellar phases exist as fluid- Lα , gel- Lβ or crystalline- Lc polymorphs being distinguished by 

their type of lipid packing as well as by their degree of bilayer fluidity2. On the other hand, 

common non-lamellar phases comprise the inverse hexagonal (H2) phase and inverse bicontinuous 

cubic phases13 with space groups Im3m, Pn3m and Ia3d. These cubic phases usually exhibit a very 

high viscosity (in the range of 104-105 Pa∙s)14 rendering them problematic for various applications, 

but also contributing to their lower digestibility as compared to other LLC phases.15-19 Further, 

disk-shaped aggregates also termed as bicelles (a portmanteau word created from ‘bilayer’ and 

‘micelles’) can be produced. They are composed of long-chain lipids that make up their planar 

region and either detergent or short-chain lipids are chosen to form their rim; other LLC phases 

concern the micellar cubic Fd3m and sponge (L3) phases20-22. Similar to the inverse bicontinuous 

cubic phases, also the latter two structures display highly viscous agglutinated physical forms, 

potentially hampering their accessibility by digestive molecules. Digestion media in the 

gastrointestinal (GI) tract help to fragment and emulsify these fatty globules into smaller particles, 

thereby increasing the interfacial area, which in turn assists the digestion process7, 12, 23-25. Apart 

from gastric and pancreatic lipase being active in the stomach and small intestine, respectively,26 

bile salts (BSs) are secreted into the lumen of the small intestine and play an important role in fat 

digestion and absorption27. 

Bile salts are biological surfactants, synthesized in the liver, which enhance the solubility of non-

polar molecules including lipids5 (Figure 1a). Main representatives of bile salts are sodium cholate 

(NaC) and sodium deoxycholate (NaDC) molecules (Figure 1c) with air-water interfacial tensions of 

52 mN∙m- 1 and 44 mN∙m-1 at concentrations of 0.01 mol/Kg, respectively28. The low interfacial 

tensions with respect to the one from water cause BS to aggregate into various micellar structures 

including primary or disk-like micelles (Figure 1d) above their critical micellar concentration 

(CMC).5-6 Bile salts’ molecular structure deviates strongly from the classical head-tail structure 

(Figure 1a) of common surfactant molecules, as they exhibit planar shapes with the hydrophobic 

and hydrophilic faces on either sides5 (Figure 1c). Together with lipids, bile salts tend to form 

mixed micelles and vesicles in dilute solutions7-12 (Figure 1f). Structural studies suggest that the 

formation of spherical, worm-like and disk-like micelles (Figure 1f) are preferred over stabilizing 

vesicles, where bile salts are located in the lipid head-group region, while the hydrophobic tails are 

shielded from aqueous medium9, 11-12, 29. These particular BS-lipid interactions primarily contribute 
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to the emulsification of lipidic food lumps7, 12, 23-25, as studied in this work with the emulsification 

capacity of BS on bicontinuous cubic phases. 

Several research groups have investigated the role of bile salts in digesting lipids by simulating 

and/or modelling the different digestive juice conditions, both, in the presence and absence of bile 

salts7, 11, 24, 30-31. Numerous other studies concentrated on in-vivo investigations reporting on 

possible causes for the reduction in fat absorption,32 highlighting the role of mean droplet sizes 

and surface charge densities at different stages of digestion,33 and several groups have been 

studying structural variations in micro-emulsions under simulated gastrointestinal conditions.34, 35 

Studies also demonstrated an intensification of the lipolysis process in emulsion system, e.g. milk 

fats, upon interactions with bile salts.36 On the one hand, such interactions play a critical role in 

controlling the fat absorption, but on the other hand, are important to optimize the absorption of 

lipid soluble bioactives. Finally, the influence of fat stabilizing proteins and/or polysaccharides on 

the fat absorption has been investigated in the presence of bile salts in simulated digestive 

systems.37 

In this study, we investigate a wide range of BS-lipid compositions, but without adding any other 

digestive molecules. Here two widely applied lipids for drug delivery, namely Dimodan-U/J (DU) 

and phytantriol (PT), were employed to form non-lamellar liquid crystalline phases (bicontinuous 

cubic phases),16, 38 whose detailed structural analysis upon interaction with BS has not been 

reported in the literature yet. Nevertheless, a wide range of studies has published on the influence 

of bile salts with other lipid self-assemblies. For instance, Gustafsson et al. have reported on the 

phase behavior and formation of lamellar and cubic liquid crystalline phases in aqueous mixtures 

of monooleate and bile salts.39 Various different lipid phase diagrams and structural changes upon 

interactions with different surfactants including bile salts have been intensively investigated over 

the last two decades.40-46 

We note, based on recent nutritional reports, that our studied non-lamellar self-assembled phases 

can occur and promote the digestion of food products such as human breast milk or mayonnaise 

and aid the absorption of oil-soluble food compounds and various nutraceuticals31, 47-49. In 

addition, monoglycerides and aliphatic alcohols are receiving a growing interest in the formulation 

of smart food and novel drug delivery systems,30, 50-52 because as by-products of hydrolysis of 

common triglycerides, in particular monoglycerides are cheap and at the same time accepted 

food-grade materials. 
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Owing to an ad hoc developed new global small angle-X-ray scattering analysis procedure (based 

on previous work in this field of LLC nanostructural analysis 53-57), we were able to obtain 

nanostructural details from not only the bicontinuous cubic and fluid lamellar phases, but 

moreover, able to extract structural information in the phase coexistence regime. In particular, we 

are able to provide new insights on the architecture of these LLC phases in the presence of BSs and 

provide detailed information BS-lipid interactions on the molecular scale.58-60 Rheological 

measurements support our data on the macroscopic scale. The results demonstrate that the bile 

salts do not only contribute in the emulsification of lipids, but they also possess ‘membrane 

curvature power’ to convert, for instance, the complex bicontinuous cubic phases into vesicles. 

While different digestion processes of lipids have been widely investigated7, 24, 30-31, 48, a systematic 

study on ‘emulsifying role’ of pure bile salts and the concomitant significance of ‘interfacial 

curvature reduction’ of monoglyceride and aliphatic alcohols assemblies is presented for the first 

time. 

 

 

Materials and Methods 

Materials: Dimodan U/J (DU) containing 96% distilled monoglycerides, mainly monoolein and 

monolinolein, and smaller amounts of diglycerides and free fatty acids, was kindly supplied by 

Danisco (Brabrand, Denmark). The other monoglyceride source, namely phytantriol (PT) was a gift 

from DSM Nutritional Products Europe (provided by the local distributor Adina Pharma, UK). The 

bile salt mixture containing sodium cholate (NaC) and sodium deoxycholate (NaDC) was purchased 

from Sigma-Aldrich (UK). All chemicals were used without further purification. All samples were 

prepared using Milli-Q (Millipore, UK) water. 

Preparation of bile salt-lipid emulsions: A wide range of BS-lipid dispersions were prepared by 

weighing appropriate amounts of BS and lipid, respectively, i.e. all concentrations refer to weight 

(wt%). The ratio between bile salt and lipid is defined by the parameter β as: 

� = ��	��	�	
�	�

�
��	��	
	�	� × 100         (1) 

For instance, to prepare 5 wt% emulsion, 500 mg of molten lipid (DU or PT) was transferred into 

an empty glass vial and diluted with a 9.5 g aqueous solution of bile salts. An ultra-sonication 

probe (Sonics & Materials Vibra-Cell VCX750, Jencons, UK) with a 30% amplitude for the duration 

of 5 minutes in pulse mode (1 s pulse and 1 s delay) was employed to prepare BS-lipid dispersions. 
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The stability of dispersions was monitored visually by assessing the homogeneity against phase 

separation. Dispersions with visible phase separation were registered as ‘unstable’, while 

homogeneous mixtures were reported as ‘stable’ emulsions (Figure 2). BS-lipid emulsions were 

prepared varying the lipid concentration in the range of 5 to 20 wt% and the BS concentration in 

the range of 0 to 1 wt%. 

Rheological measurements: The viscosity measurements were conducted using a Bohlin 

rheometer (Malvern Instruments Ltd., Worcestershire, England, U.K), with a cone and plate type 

geometry. Apparent viscosity was measured at shear rates in the range of 0.2-200 Pa∙s-1 using 

continuous shear, with a 30 s delay time and a 30 s integration time at 25 °C. 

Dynamic Light Scattering: Particle size distributions (normalized by volume) were measured using 

dynamic light scattering technique (Zetasizer Nano ZS, Malvern Instruments, UK). 

Small angle X-ray scattering experiments: Small angle X-ray scattering (SAXS) technique was used 

for the analysis of liquid crystalline nanostructures. The SAXSpace instrument (Anton Paar, Graz, 

Austria), utilized for these studies is equipped with a sealed-tube Cu anode X-ray generator. It was 

operated at 40 kV and 50 mA and chilled by a closed water circuit. The line-focus camera (Anton 

Paar, Graz, Austria) uses Cu-Kα radiation with a wavelength λ=0.154 nm. For current experiments, 

the minimum accessible scattering vector value, qmin, was 0.05 nm-1 (q = (4π/λ)sinθ, where 2θ is 

the scattering angle). Silver behenate with a known lamellar spacing of 5.84 nm61 was used to 

calibrate the scattering vector modulus q. In order to identify the precise position of the primary 

beam and the transmission correction of the scattering profiles, a semitransparent beam stop is 

used. 

Reusable vacuum tight quartz capillary (Anton Paar, Graz, Austria) with an outer diameter of 1 mm 

was used to study fluid samples. For gel-like samples, a vacuum-tight paste cell (Anton Paar, Graz, 

Austria) sealed with thin Kapton foils was used. The temperature was controlled by a remote 

controlled sample stage (TCStage 150, Anton Paar, Graz, Austria) with a precision of 0.1 °C. The 

SAXSpace is equipped with a Mythen micro-strip X-ray detector (Dectris Ltd, Baden, Switzerland). 

Three separate recordings each with an exposure time of 600 sec were averaged to obtain the 

final scattering profile. 

The scattering patterns were corrected with respect to the position of the primary beam using the 

SAXStreat software (Anton Paar, Graz, Austria). The relative intensity of scattering data was 
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further corrected using the transmittance of the direct X-ray beam (2θ = 0). The background 

scattering from empty cells and water was subtracted. All standard corrections were applied using 

the SAXSQuant software (Anton Paar, Graz, Austria). 

Theoretical models: The theoretical scattering curves were calculated by introducing a new model 

combining the scattering intensities from lamellar (��) and cubic (��) phases with f representing 

the phase fraction of lamellar structures (equation 2), 

����� = �	����� + �1 − ����         (2) 

The scattering intensities of lamellar structures were calculated based on the methods described 

in details elsewhere.53-54 Briefly, the method considers a double-Gaussian model as the electron 

density profile in real space and its Fourier transform as the form factor, (����). In this global 

fitting procedure, the structure factor, ����, is calculated applying the Modified Caillé Theory 

(MCT)
55. The overall scattering from multilamellar and positionally uncorrelated membranes is 

obtained by: 

����� = |����| ����/� + "#|����| /�        (3) 

where "# is the scaling constant for the diffuse scattering contribution from single bilayer. 

The reflections and relative peak amplitudes for Im3m (primitive) and Pn3m (diamond) cubic 

phases were calculated according to a model described by Garstecki et al.56-57 In this model the 

reflections are calculated by the following formula: 

�$%&�'()��*� = ℳ$%& ,-./0
1
23

456�7./089$3:%3:&3;</3	�/2�
7./08�$3:%3:&3�</3 =

 
      (4) 

in which the ℳ$%& is the multiplicities for each reflection, */> is the dimensionless thickness of the 

bilayer separating the two continuous phases, > is the lattice parameter and ?$%& is a correction 

factor and 
-./01
23  are the normalized structure factors. This model also takes into account the 

experimental broadening of the reflections using a Gaussian distribution function. 

�$%&�@AB/'()���� = C
DE� 8�</3∑ GHI JK�L./0KL�3 DE3 M$%& �$%&�'()�     (5) 

where NO  is related to the standard deviation of the experimental Bragg peaks. We have applied 

the global fitting analysis using a Particle Swarm Optimization (PSO) approach62 in order to avoid 

local minima fitting solutions. Finally, the refined form factor values of the cubic phases (Fhkl) 
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obtained from our global fits, were used to reconstruct the 3D electron density maps by applying 

standard Fourier transform procedures63-64. Based on the global data analysis methods for SAXS 

data (Eq. 2 to 5), the bilayer as well as the water-layer thicknesses in the lamellar and cubic phases 

could be estimated. 

 

Results and Discussion 

Emulsification of lipid self-assemblies into discrete particles 

By preparing a range of emulsions of DU and PT (stabilizer-sensitive and none-sensitive, 

respectively), we verified the emulsifying role of bile salts. Both lipids, DU16 and PT38 are known to 

form gel-like and highly viscous bicontinuous cubic Pn3m phase in excess water. A variety of 

interfacial stabilizers65-66 have been used to disperse viscous lipid phases and produce fluid 

emulsions targeting their applications for biotechnological industries66-70. In this manner, the 

thermodynamically equilibrated cubic bulk phase are converted into kinetically stabilized discrete 

submicron-sized particles commonly termed as ‘cubosomes’71. In this study, we were able to 

create such dispersions by using a range of BS concentrations. No additional stabilizer was 

required. However, we noticed that a certain BS to lipid ratio is necessary for obtaining 

homogeneous and stable emulsions. At very low bile salt concentration, for instance, 0.06 wt% BS 

and the DU concertation being >5 wt%, the resultant liquid crystalline phases do not disperse very 

well. These phases are insoluble and thus remain completely separated from the aqueous bulk 

phase in the form of lipid lumps (Figure 2b,c: ①). Dispersions displaying this appearance were 

designated as unstable emulsion (Figure 2c; blue region). In contrast, at high BS concentrations, 

e.g. ≥ 0.06 wt% and a DU concentration of 5 wt%, the liquid crystalline phase was dispersed well 

and attained a ‘stable emulsion’ (Figure 2b,c: ③,④; ochre region). Such low bile salt 

concentrations (0.06 to 1.0 wt%) required for stabilization, clearly reveals the strong emulsifying 

property of BS. 
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Figure 2. a) Interfacial stabilization of lipid particles by bile salts into an oil-in-water emulsion. The 
particles contain Im3m or Pn3m cubic phases in the cores of these lipid particles for DU and PT, 
respectively. b) DU-BS mixtures (indicated in panel c) phase diagram) are designated as follows: ① 
unstable emulsion displaying a lipid lump in a phase separated aqueous solution, ② pseudoplastic 
emulsions with a white-yellowish appearance, ③ stable milky fluid emulsion, and ④ translucent 
emulsion at high BS concentration, attributed to the strong presence small unilamellar vesicles 
and/or micelles. c) A phase diagram describing an emulsification behavior of DU for various lipid-
bile salt concentrations. A dotted line indicates the border between unstable and stable emulsion 
(homogeneous) regions supported by the measurements taken (blue diamonds). In a small 
concentration regime, this boarder displays a linear behavior as shown in d). The cubic Pn3m, 
cubic Im3m and Lamellar phases shown in the corresponding regions were determined from SAXS 
analysis. e) Normalized volume distribution data for DU based emulsions (5 wt%) for various BS 
concentrations monitored using the DLS technique. f) The hydrodynamic diameter values 
(obtained from DLS) indicate the decrease in particle size of DU-based emulsions as a function of 
BS concentration (for points a, b, c, see phase diagram in panel c). g) Rheological behavior of DU-
BS emulsions with the solid lines displaying fits to the Carreau model72. h) The increase in zero 
shear viscosity with increasing lipid concentration is displayed. 
 

A range of compositions for DU or PT with BS resulted in the formation of homogeneous 

emulsions, which remained stable over the examined period of a month. For a generalized 

comparison, we use the previously defined parameter β (see Eq. 1 in the Materials and Methods 

section) as the BS to lipid weight ratio given in percent. We note that stable emulsions were 

evident for mixtures with β-values ranging from 1.25% to 6%. Using visual inspections of the 

samples (at least three samples prepared under the same conditions), a clear stabilization-

boundary could be determined (Figure 2c: dotted line). The boundary line follows a linear trend up 

to 10 wt% DU (Figure 2d). Here the β-values required for full stabilization, display an asymptotic 

behavior approaching the value β = 2.35%. This signifies that at about 10 wt% lipid, the β-value has 

reached a point of saturation, equal to say, the lipid particles sizes have reached a local minimum 

here. At higher lipid concentrations, however, the β-values start to increase again (non-linear 

regime of the lipid to BS weight function) (Figure 2c). In other words, even larger BS to lipid ratios 

are required for stabilizing emulsions with DU contents above 10 wt% (Figure 2c). 

Self-assembled nanostructured phases in the stable DU emulsions were determined by small angle 

X-ray scattering (SAXS) and their detailed analysis will be discussed further with Figures 3, 5 and 6, 

here we shall only illustrate their appearance within the evaluated phase diagram. At 0.06 wt% BS 

for 5 wt% DU a stable bicontinuous cubic Im3m phase dispersion was detected, which upon 

increase in BS concentration, converted into a stabilized lamellar Lα phase dispersion (Figure 2c: 

point a to b to c), and as can be expected with increasing amount of stabilizer, the overall particle 

sizes decrease significantly with increasing BS-concentration (Figure 2e, f). The particle size, as 
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determined by DLS technique (Figure 2e) in the stable region stayed in the range of 120 to 280 nm. 

Noteworthy, stable emulsions prepared from PT, required lower concentrations of bile salts as 

compared to DU; for instance, 15 wt% DU required at least 0.5 wt% BS, whereas the same 

concentration of PT needs only 0.2 wt% BS. PT-based emulsions also displayed lower particle sizes 

in the range of 120 to 190 nm (Figure S1 in Supporting Information). The particle size 

(hydrodynamic diameter) for DU emulsions decreased with increasing the BS concentration 

(Figure 2f) depicting the fact that greater β-values at a given lipid concentration lead to a better 

emulsification, i.e., increasing the surface to volume ratio of the particles, hence, decreasing the 

overall particle sizes. The same trend was observed for PT-based systems (Figure S1); relatively 

greater accumulations of bile salts at the lipid-water interface led to the stabilization of smaller 

discrete lipid particles. Thus, an important outcome of the lipid emulsification process driven by 

bile salts is that highly viscous cubic phases get fragmented into smaller discrete particles, which in 

turn, can be easily assessed by digestive molecules as compared to sticky and insoluble lipid 

lumps. 

At low lipid concentrations (5 wt% DU) stable non-viscous dispersion were observed (Figure 2b,c: 

③④), however, at higher DU concentrations the viscosity was seen to clearly build up in these 

samples. Especially >10 wt% DU emulsions displayed a highly viscous appearance (Figure 2b: 

①②), which contrasts the fluid consistency observed for the low lipid concentration emulsions. 

This behavior was confirmed by rheological studies at 25 °C (0.5 wt% BS varying DU from 10 to 20 

wt%) revealing a pseudoplastic behavior of these emulsions (Figure 2g, h). The viscosity profiles 

(Figure 2g) display a decay in viscosity as a function of shear rate, which is an indication of shear 

thinning or pseudoplastic behavior; such viscosity behavior fits well with the Carreau model72-73 

defined by solid lines in Figure 2g. The zero-shear viscosities deduced using this model represent a 

clear increase at high lipid concentrations (Figure 2h). Such increase in shear viscosity with the 

increase in lipid concentrations is common for self-assemblies and has been reported earlier74. We 

note that shear thinning properties of liquid crystalline material-based emulsions are desirable for 

formulation processing in pharmaceutical and cosmetic industries75. However, the pseudoplastic 

behavior was observed only for DU based emulsions; on the contrary, all PT based emulsions could 

be dispersed without difficulty (no lipid lumps formed), i.e. their consistency was fluid even at high 

lipid concentrations (>10 wt%). Their optical appearance was milky white and only at very low PT 

concentrations, it was translucent to shiny. From this entirely fluid consistency of the PT-samples 

and from their optical inspection, one can anticipate their Newtonian fluid behavior. This 
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demonstrates that the increasing amounts of non-dispersed Im3m phase assemblies are mainly 

responsible for the augmenting pseudoplastic behavior with increasing DU concentrations (also 

represented by the lumpy appearance of sample ① in Figure 2b). Similarly, the viscosity build-up 

caused by an entanglement of worm-like mixed micelles in lipid-bile salt mixtures has been 

reported earlier.8, 29, 76 

 

Influence of bile salts on the nanoscale architecture of self-assembled 

nanostructures 

As mentioned in the introduction, it is well documented that DU and PT form the Pn3m cubic 

phase in excess water in bulk (non-dispersed state).16, 38 The nanostructural analysis of BS 

stabilized emulsions formulated from DU reveals that BS molecules not only interact with the 

surface of the submicron sized particles and stabilize them, but also induce changes in the 

interfacial membrane curvature leading to phase transitions as explained below. The type and 

nanostructural changes of the internal lipid self-assembly of various dispersed DU particles (lipid 

concentrations = 5, 10, 15 and 20 wt%) were analyzed by small angle X-ray scattering (SAXS) 

(Figure 3a). At 20 wt% lipid (β = 2.5%), the Im3m cubic phase with a lattice parameter of 15.5 nm 

was observed, rather than the cubic Pn3m phase as expected from bulk DU-water systems (Figure 

3a). The same phase transition, i.e., from Pn3m to Im3m, has been observed for various DU based 

systems using the ‘gold standard’ block-copolymer Pluronic® F-127 and various other types of 

stabilizers77-78. Reducing the lipid concentration, from 20 down to 15, 10 and 5 wt%, meaning 

increasing the relative BS concentration in the emulsion (increasing β-values), leads the gradual 

disappearance of cubic phase structures (peaks indicated by arrows in Figure 3a). 

The SAXS analysis on PT based emulsions confirms the presence of the cubic Pn3m phase instead, 

as originally observed for the bulk PT-water system38, for all (lipid concentrations = 5, 10, 15 and 

20 wt%) samples stabilized by 0.2 wt% BS (Figure 3b). The absolute lattice parameters of the Pn3m 

phase, however, increased from 6.75 to 7.23 nm as the BS-lipid ratio was increased (β value from 

1 to 4%). 
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Figure 3. SAXS patterns for a) DU and b) PT based emulsions stabilized by bile salts. The global 
analysis of scattering curves was performed by fitting of the curves with a model provided by 
Garstecki and Holyst56-57 (for cubic phases) combined with a planar bilayer model from Pabst and 
co-workers54, 79. The solid lines represent the optimized model fits attained by Particle Swarm 
Optimization48. These studies demonstrate that lamellar (Lα) phase co-exists with cubic phases and 
the broad background scattering mainly originates from the form factor contribution of lamellar 
phases. The cubic Im3m phase (indicated by arrows for Braggs diffractions with Miller indices of 
110, 200 and 211) for DU disappears when the bile salt to lipid ratio is increased, while the cubic 
Pn3m phase (with Braggs peaks of miller indices 110, 111, 200 and 211) persists in the case of PT 
based emulsions. 

 

The novel global analysis of scattering curves (see Methods section) was performed by fitting each 

with the models provided by Garstecki and Holyst56-57 (for cubic phases) combined with a planar 

bilayer model description based the modified Caillé theory (for lamellar phase)55. It revealed the 

co-existence of lamellar phase along with Im3m and Pn3m phases as observed correspondingly for 

DU and PT emulsions. Drawing an interim conclusion, we have clearly shown that the BS is not 

only an efficient emulsifier, but at the same time also promotes less curved lipid/water interfaces. 

This is experimentally confirmed (i) by the formation of the least-curved bicontinuous Im3m phase 

after the addition of BS to DU (originally displaying the cubic Pn3m phase) (Figure 2c: point a), (ii) 

by the transformation of the Im3m phase into the Lα phase at higher BS concentrations (Figure 2c: 

point a to b to c, and Figure 3a), and (iii) in the case of PT, by the lattice parameter increase of the 

Pn3m phase as a function of BS concentration (Figure 3b, 6f). 
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Remarkably, other bile salts such as sodium taurochenodeoxycholate (NaTCDC) have been 

reported earlier to stabilize egg yolk lecithin (phosphatidylcholine) (EYPC) based vesicles at low BS 

concentrations, while inducing worm-like cylindrical mixed micelles at higher concentrations9. 

These mixed micelles were investigated with small-angle neutron scattering and displayed semi-

flexible rods with the persistence length of about 18-20 nm (Kuhn length 36-40 nm). Similarly also 

glycochenodeoxycholate (GCTC) was studied by the same group.10 Again, GCTC induced the 

formation of worm-like mixed micelles at higher BS concentrations, which would further grow 

with increasing GCTC concentration. 

 

Figure 4. a) Average molecular shapes adopted by common lipids and corresponding self-
assembled nanostructures observed. Inverse conical molecules (with γ > 1) form inverse 
nanostructures exhibiting negative interfacial curvature, whereas conical molecules (with γ < 1) 
form phases with positive interfacial curvature; cylindrical molecules commonly self-assemble into 
planar (lamellar) phases. b) In case of DU/PT and BS mixtures (studied here), BS molecules reside 
in the head group regions thereby altering the inverse conical shapes into more cylindrical shapes. 
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Similarly, the cylindrical shape of the molecules like EYPC is transformed into conical shape due to 
BS effect.9-10 c) In case of DU, the Pn3m phase formed by pure lipid in water is converted into 
Im3m cubic phase, which upon further addition of bile salts converts into lamellar phase indicating 
systematic deviation from inverse conical to cylindrical molecular shape. 

Although our applied bile salt mixture, and the pure NaTCDC and GCTC from the above mentioned 

studies do exhibit differing side groups, their ‘membrane curvature power’ is qualitatively the 

same. In all cases, the bile salts have driven the lipidic membrane systems towards positive 

curvature (Figure 4): that is, for DU we observed a Pn3m to Im3m to Lα phase conversion with 

increasing BS concentration (Figure 2c: point a to b to c), and for PT an increase in the lattice 

parameter of Pn3m phase (Figure 3b, 6f), and for EYPC the Lα phase was found to get converted 

into normal cylindrical-shaped micelles.9-10 

On a molecular level this observation is best explained with the related critical packing parameter 

(CPP) usually denoted by γ , which according to Israelachvili80 is 

γ = P	
2Q	&R           (6) 

where v is the hydrophobic volume of the lipid, a0, is the interfacial area of the hydrophilic head 

group and lc is the critical chain length, which is the maximum effective length that the 

hydrophobic chains can assume. Bicontinuous cubic phases are formed with molecules that have a 

γ of above 1, which in case of monoolein (main component in DU) molecules is 1.3064. Note, the 

relatively small head group of monoglycerides (relatively small a0) and the unsaturated oleic chain 

(relatively short lC) render the monoolein molecular shape to be inversely cone-shaped promoting 

negative interfacial curvatures, or in other words, leading to inverse phase assemblies (water-in-oil 

phases) (Figure 4). These lipids are sometimes referred to as non-lamellar lipids as they form non-

lamellar phases. The influence of BS on PT assemblies was least efficient, since only small changes 

towards positive curvature were observed (increased lattice parameter of the conserved Pn3m 

phase upon addition of BS). This becomes immediately understood by taking into account the 

bulky hydrocarbon chain given in PT (additional methyl groups along the chain lead to an overall 

increase in the chain volume). Last, NaTCDC and GCTC added to EYPC membranes in the Lα phase 

with a γ of about 1, were reported to induce the formation of normal worm-like micelles having a γ 

in the range of 0.33 to 0.509-10 (Figure 4). Thus, we can recapitulate that bile salts do drive lipid 

self-assemblies towards aggregates with a lower γ, i.e., towards positive interfacial curvatures 

(towards oil-in-water phases) (Figure 4). 
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To investigate this BS-induced interfacial curvature trend further and understand the effect of bile 

salts in more details, we performed another set of experiments, where the lipid content was kept 

constant and the BS concentration was increased (Figure 5). The BS concentration was varied 

between 0.06 and 1.0 wt% for emulsions prepared from 5 wt% DU or PT. The cubic Im3m phase 

with lattice parameter of 12.8 nm was observed at 0.06 wt% BS for DU emulsions (Figure 5a). By 

further increasing BS concentration to 0.1 wt% or above, the cubic phase gradually disappeared 

and undergone a rearrangement to lamellar Lα phase (Figure 5a). We note, primarily only 

unilamellar bilayers were formed and then, at BS concentrations about 0.2 wt%, a bilayers 

correlation peak arises, indicating the formation of multilamellar bilayer stacks (inset of Figure 5a). 

The disappearance of cubic phase and concomitant formation the Lα phase were computed as a 

function of the β-value (BS/lipid ratio in %); the volume fraction of the Im3m phase is shown in 

Figure 5c. At about β = 3% (BS = 0.15 wt%) half of the cubic phase has converted into the Lα phase. 

 

Figure 5. SAXS patterns for 5 wt% a) DU and b) PT based emulsions stabilized by various 
concentrations of bile salts. The solid lines represent the globally best fits to the data (for details 
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see methods section). Relative intensities of cubic phase peaks decrease with increasing bile salt 
concentration. The insets in panel a) and b) do show traces of multilamellar vesicles and of the 
Pn3m phase, respectively. Bile salt driven transformation of cubic to lamellar phases via 
coexistence regime is depicted by the computed fractions of cubic phases as function of β for DU 
and PT in the corresponding panels c) and d). 

 

Similarly, the experiments conducted on PT indicate the coexistence of lamellar phase with cubic 

Pn3m phase. However, the fraction of the cubic phase decreases slower: only at about β = 10% (BS 

= 0.5 wt%) half of the cubic phase has converted into the Lα phase, which can be seen from the 

stronger Bragg peak intensities of the Pn3m phase as compared to the Im3m phase (Figure 5b) and 

from the turnover function in Figure 5d. We note, the phase transitions from bicontinuous cubic to 

vesicles or even mixed micelles are anticipated to be beneficial for digestion purposes. This is 

because, the cubic phase remains insoluble in water even at a very high dilution levels, whereas 

vesicles and mixed micelles are more easily accessible by different lipases81. Thus, the nanoscale 

organization of lipid self-assemblies, from complex inverse structures (water-in-oil phases) 

towards vesicle formation and normal micelles (spherical, wormlike and disc-like), endowed by 

bile salts, aids lipid digestion and absorption. 

 

Nanoscale changes in the bilayer structure: thickness, molecular shape and 

interfacial curvature 

The global fine analysis of scattering profiles allows to deduce estimates for the bilayer 

thicknesses, both for the cubic phases as well as for the lamellar phase. Note, for the Lα phase a 

simple 2-Gaussian model82 was refined during the fitting procedure and the results are displayed 

in Figure 6a and b. For 5 wt% DU and 0.06 wt% BS based emulsion, the bilayer thickness for 

lamellar phase was estimated to be 3.1 nm. Similarly, for 5 wt% PT and 0.05 wt% BS sample, the 

bilayer thickness in lamellar phase was determined to be about 2.7 nm. Its lower value is explained 

throughout the shorter chain length of PT, when compared to oleic acid in monoolein, which is the 

main glycerol component in DU (C14 versus C18:1). The bilayer thickness in the cubic phases is 

determined by a simple one-component slip model83, which gave within errors the same bilayer 

thicknesses as for the coexisting lamellar bilayers. Nevertheless, it is interesting to note that, the 

membrane thickness in both DU and PT based lamellar phases reduces by increasing BS 

concentration, while the retrieved bilayer thicknesses in cubic phases remain within given error 
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margins constant (data not shown). This notion directs to the fact that in both cases BS is actually 

interacting with the head group region and causing an increase in the area per lipid, a0. On the 

other hand, the chain volume, v, is expected to remain constant at a given temperature. For the Lα 

phase (cylindrical molecular shape; γ = 1), this actually means, that an effective shortening of the 

chain length lC can be expected with increasing BS concentration (βi < βf). Note, you may also 

express this in the simply relationship: vi = vf or a0i ∙ lCi = a0f ∙ lCf, and with a0i < a0f follows lCi > lCf. For 

the cubic phases, the arguments on effective chain length changes, ΔlC, are expected to show an 

opposite effect. 
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Figure 6. Computed bilayer electron density profiles for the lamellar phases for a) DU and b) PT 
emulsions for varying bile salt concentrations. Plots c) for DU and d) for PT indicate that the bilayer 
thickness decreases with bile salt to lipid ratio. Lattice parameters increase as a function of BS 
concentration for both e) the cubic Im3m phases in DU and f) the cubic Pn3m phase for PT. Insets 
of e) and f) correspondingly elucidate the increase in the mean interfacial curvature as the bile salt 
concentration increases. 

As argued before, lipid molecular packing follows a simple trend: the addition of BS always leads 

to a reduction in the γ value. In cubic phases, an increase in a0 makes molecular shape more 
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straight, cylindrical-like, i.e. leading to an reduction in γ (1.30 towards 1.00) (Figure 4). Again, we 

can expect the lipid chain volume, v, in the cubic phases not to change significantly, when 

increasing the BS concentration. Thus, a reduction in γ, should actually lead a reduced chain-splay, 

particularly at the terminal ends of the lipid chains. Consequently, lC values in the bicontinuous 

cubic phases are expected to increase with augmenting BS concentration. However, the given low-

resolution data of the cubic phases in this work only allow a rough estimate of the bilayer 

thickness and minor bilayer thickness trends are not possible to be deduced with the Garstecki-

Holyst42, 43 model in this case. 

Figures 6e and f display the lattice parameter trends of the Im3m and Pn3m phase, which both 

increase with BS content, i.e. both cubic phases swell (reduction of the interfacial curvature 

modulus). Accordingly, on a molecular level, we estimate the γ value to change from 1.25 (Im3m) 

at low BS concentrations to 1.00 (lamellar) at high BS concentration for DU, whereas the γ value 

changes from 1.46 (Pn3m) to 1.00 (lamellar) for PT based self-assemblies. Note, here we estimated 

the γ by Hyde’s ansatz84 applying γ	 = 1 + S5T + U5T /3, in which Hi is the mean interfacial 

curvature modulus, U5 denotes the Gaussian interfacial curvature modulus and T the lipid length (= 

half the bilayer thickness). 

In summary, the induction of positive (or less negative) average mean interfacial curvature by bile 

salts, confirms the molecules’ tendency to mostly occupy the head group (or interfacial) region. 

Inverse bicontinuous cubic phases are known to exhibit slightly negative mean curvatures, 

whereas it is close to zero for planar lamellar phases.51 The insets in Figure 6e and f represent the 

variation of mean interfacial curvature 〈S5〉 calculated with, 

〈S5〉 = 2Z[T/�5           (7) 

where [ is the Euler characteristic and �5 is the area at the interface integrated over a single 

monolayer (�5 = �\> + 2Z[T ). > is the lattice parameter and T is the lipid length.85 

 

Conclusion and Perspectives 

Strong emulsifying power of bile salts (BS) is clearly demonstrated via interfacial stabilization of 

fragmented oily and rather hydrophobic lipid residues into submicron-sized particles. Relative 

hydrophilicity and consequential solubility of lipids was elevated by BS-shielding of the self-

assembled inverse lipid nanostructures that are otherwise less soluble in water (Figure 2b). 

Furthermore, the effective surface to volume ratio of bulk cubic phases was improved due to the 
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formation of discrete submicron (< 300 nm) particles (Figure 2e). The particle size was clearly 

reduced with increasing the BS concentration depicting efficient emulsion stabilizing role of bile 

salts (Figure 2f). The overall viscosity (~104-105 pa∙s)14 of bulk cubic phases was drastically reduced 

by transforming them into dispersions. However, some degree of viscosity was raised again at 

higher concentrations of lipid, especially in case of DU, but it was not as high as for the original 

bulk cubic phases (~102 pa∙s) (Figure 2g). Such an increase in viscosity can be attributed to the 

non-dispersed fractions of viscous cubic phases. To summarize, the bile salts act as interfacial 

stabilizers for oil-in-water emulsions prepared from lipid cubic phases. 

Another important role of BS, portrayed in this work, is its influence on the type of lipid 

nanostructure; at increasing BS concentrations highly complex cubic phases were transformed into 

vesicles. Having applied an ad hoc developed novel global SAXS fitting procedure, we were able to 

underpin the mechanism behind these phase transitions at a molecular level. Increasing bile salt 

concentrations, the obtained decrease in the bilayer thickness in lamellar phases (Figures 6), and 

simultaneous increase in the area per lipid, a0 indicate that BS prefers to interact in the lipid head-

group region. This was also illustrated by a BS-driven change in the molecular shapes (inverse cone 

to cylinder) adopted by cubic phases (Figures 4). Results reveal that the BS significantly decreases 

the average critical packing parameter, γ, i.e. bile salts drive the interfacial membrane curvature 

towards positive values (Figures 4a, 6e, f). These results are in good agreement with the literature 

reports, where cylindrically shaped molecules were shown to adopt conical shapes due to the 

interaction of BS molecules and the interfacial curvature modulus of the resultant phase changes 

from zero to positive values.8-10 Formation of higher positive curvature lipid assemblies evidently 

means an enhancement of accessible hydrophilic interface area, and therefore leading to a greater 

propensity to disperse or solubilize them in aqueous digestion media. 

This work highlights the importance of the ‘dual role of bile salts’ in fat digestion. Not only, that fat 

globules get efficiently emulsified by bile salts, but inverse lipid assemblies (oil-in-water phases) 

are driven - depending on the initial lipid composition - to form either BS-stabilized vesicles or 

normal BS-lipid mixed micelles, which are both more readily accessible in subsequent digestion 

steps and enhance lipid absorption. 
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