

This is a repository copy of Global Small-Angle X-ray Scattering Data Analysis of Triacylglycerols in the α -Phase (Part II).

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/138127/

Version: Supplemental Material

Article:

Ladd Parada, M orcid.org/0000-0003-1355-649X, Sadeghpour, A orcid.org/0000-0002-0475-7858, Vieira, J et al. (2 more authors) (2018) Global Small-Angle X-ray Scattering Data Analysis of Triacylglycerols in the α-Phase (Part II). Journal of Physical Chemistry B, 122 (45). pp. 10330-10336. ISSN 1520-6106

https://doi.org/10.1021/acs.jpcb.8b06708

© 2018 American Chemical Society. This is an author produced version of a paper published in Journal of Physical Chemistry B. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

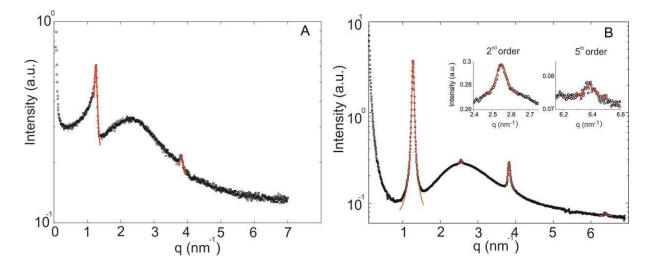
Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supplementary Information

Global Small-Angle X-ray Scattering Data Analysis of Triacylglycerols in the α-Phase

(Part II)


Marjorie Ladd Parada¹⁺, Amin Sadeghpour^{1,2+}, Josélio Vieira³, Megan Povey¹ and Michael Rappolt^{1*}

¹School of Food Science and Nutrition, University of Leeds, LS2 9 JT, Leeds, U.K.

²Center for X-ray Analytics, Department of Materials Meet Life, Empa, St. Gallen, Switzerland

³Nestlé, Product Technology Centre, York, U.K.

*Corresponding author: Michael Rappolt, School of Food Science and Nutrition, University of Leeds, LS2 9 JT, Leeds, U.K., e-mail: M.Rappolt@leeds.ac.uk, Tel: +44 (0)113 3431931. * These authors contributed equally to the paper.

Figure S1. Analyzing the nanostructure of CB at 20 °C. (A) Typical small angle X-ray scattering pattern of the α -polymorph of CB, showing two diffraction peaks (SAXSpace, Anton Paar GmbH, Austria). (B) Small angle X-ray scattering pattern of the α -polymorph of CB, displaying five diffraction peaks (taken at the I22 SAXS beamline from the Diamond Light Source). In the latter case, the sample was contained in thin-walled glass capillary. The beamline was configured to deliver 18 keV X-rays, and the image was recorded using a Dectris Pilatus 2M detector at a distance of 3.74 m from the sample position. Diffraction images were integrated using a custom software package developed using the IDL programming language and calibrated against silver behenate, which has a well-defined layer spacing of 5.84 nm. In both cases, the peak fittings are shown with solid red lines. The obtained amplitude data is summarized in Table 1 of the main manuscript.