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Adaptive Beamforming for Target Detection and

Surveillance Based on Distributed Unmanned Aerial

Vehicle Platforms
Qing Shen, Wei Liu∗, Senior Member, IEEE, Li Wang∗, and Yin Liu

Abstract—A distributed sensor array network for target de-
tection and surveillance is studied with sub-arrays placed on un-
manned aerial vehicle (UAV) platforms, where arbitrary locations
and rotation angles are allocated to each UAV-based sub-array in
the predefined Cartesian coordinate system. In this model, one
transmitter sends out a single signal and it is then reflected back
from the targets and received by the distributed sensor array
system. A joint reference signal based beamformer (JRSB) is
proposed for the static/slowly moving targets and UAV platforms
where the Doppler effects can be ignored, leading to improved
performance by exploiting the information collected by all the
sub-arrays simultaneously. Then, the developed beamformer is
extended to the dynamic case considering the Doppler effects,
referred to as the frequency extended joint reference signal based
beamformer (FE-JRSB), achieving the potential maximum output
signal to interference plus noise ratio (SINR) by exploiting the
information across the potential frequencies of interest jointly.
The output signal of the beamformer with increased SINR can
be used to assist the extended target detection in the following
processing. Simulation results show that both are able to extract
the signals of interest while suppressing interfering signals, and
a lower mean square error and higher output SINR are achieved
compared with a regular reference signal based beamformer
using a single sub-array. One unique feature of the provided
solutions is that, although the signals involved are narrowband,
the employed beamforming structure has to be wideband for it
to be effective.

Index Terms—Adaptive beamforming, distributed sensor net-
work, unmanned aerial vehicle, static/moving targets, Doppler
frequency.

I. INTRODUCTION

With the purpose of enhancing the received signals of

interest (SOI) from certain directions while suppressing the

interfering signals from other directions in a data-dependent

manner, adaptive beamforming has been studied over the

decades due to its extensive applications in wireless commu-

nications, radar, sonar, navigation, medical diagnosis, speech

enhancement, and so on [1]–[4].

The linearly constrained minimum variance (LCMV) beam-

former and the reference signal based (RSB) beamformer

are two classes of well known beamformers [5]–[8]. For the
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LCMV beamformer, the direction of arrival (DOA) informa-

tion of the signal of interest is known or can be estimated

in advance. By imposing several linear constraints to the

minimization problem of the output variance, the LCMV

beamformer and their extensions [9], [10] offer improved

robustness against inaccurate DOA estimates as well as sensor

position errors and other advantages such as flexible sidelobe

control. On the other hand, a reference signal is assumed to be

available for the RSB beamformer [11], [12], where adaptive

beamforming is achieved by minimizing the mean square

error (MSE) between the reference signal and the beamformer

output. Most of the adaptive algorithms for both beamformers

are derived based on some stochastic gradient (SG) methods

[13], and many variations and extensions in the wideband case

have been proposed [14]–[18].

In active sensing applications for target detection and pa-

rameter estimation, digital beamforming is applied to phased-

array radars and adaptive radars [19], [20] to maximize the

signal to noise plus interference ratio (SINR). Space-time

adaptive processing (STAP) [21]–[23] is proposed for mov-

ing target indication against strong interference background

through spatial (or space-time) beamforming, and it is com-

monly used for airborne radars.

Traditionally, the aforementioned beamformers are based on

a single array with its sensors considered as part of a whole

centred system, and distributed sensor arrays based on multi-

static platforms have attracted increasing attention in recent

years. For example, distributed microphone arrays are em-

ployed to extract spatial information for acoustic scene anal-

ysis [24], and multistatic radar systems [25], [26] are utilized

for target detection and localization. However, a multistatic

radar system consists of independent radars performing local

processing, with a central processor fusing these information to

form a final decision instead of coherent accumulation across

all signals collected by independent radars simultaneously.

The MIMO radar with widely separated antennas [26], [27]

is employed for target detection and tracking with improved

performance by exploiting radar cross section (RCS) spatial

diversity.

Therefore, in this paper, a distributed sensor array network

for target detection and surveillance with sub-arrays based on

unmanned aerial vehicle (UAV) platforms is studied, where the

sub-array on each UAV may have an arbitrary rotation angle

in the predefined Cartesian coordinate system, which results

in different impinging angles for different UAVs. For such a

distributed sensor array system, it is necessary to enhance the
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received signals of interest for this kind of resource-limited

(in terms of energy consumption, weight, and size) distributed

UAV platforms via exploiting information acquired by all

distributed sub-arrays simultaneously, so that an extended

detection range and accuracy can be achieved. Since the sub-

array based UAV platforms may have unknown positions,

velocities, moving directions, and rotation angles, this is an

extremely challenging problem.

In this studied scenario, one transmitter sends out a known

signal and it is then reflected back from the target and received

by the distributed sensor array system. The known transmitted

signal can be considered as a reference signal. Based on this

model, first we consider the case with static or slowly moving

targets and UAV platforms, where the Doppler effect can

be ignored, and a joint reference signal based beamformer

(JRSB) is proposed to exploit the information acquired by all

sub-arrays simultaneously, leading to improved performance

compared with that of a regular RSB applied to a single UAV.

Due to the extremely large spacing among the UAV platforms

compared to half wavelength at the working frequency, signals

received at different sub-arrays should not be considered as

narrowband any more and a wideband beamforming structure

should be employed instead [15], [16].

Then, we consider a dynamic case with moving targets

and UAV platforms, where the Doppler effect cannot be

ignored. To perform beamforming without prior knowledge

of the motion parameters of both the targets and the UAV

platforms, the JRSB is further extended as a solution by

modulating the received signals into different frequency bins

in the first step, referred to as the frequency extended joint

reference signal based beamformer (FE-JRSB), to exploit the

information across the frequencies of interest jointly. The

potential maximum output SINR can be achieved by the FE-

JRSB without sacrificing any information, and the output

signal of the beamformer with increased SINR can be used

for extended target detection in the following processing.

This paper is structured as follows. The distributed sensor

array network consisting of different sub-arrays carried by

UAV platforms is presented in Section II. The developed joint

reference signal based beamformer (JRSB) for static (or slowly

moving) targets and UAV platforms is proposed in Section

III, and the frequency extended joint reference signal based

beamformer (FE-JRSB) for the dynamic case is propsoed in

Section IV. Simulation results are provided in Section V, and

conclusions are drawn in Section VI.

II. SYSTEM MODEL FOR DISTRIBUTED UAV PLATFORMS

We first establish the system model consisting of static (or

slowly moving so that the Doppler effect can be ignored)

targets and UAV platforms, and the dynamic case of moving

targets and UAV platforms will be introduced in Section IV.

Consider a distributed sensor array network with M sub-

arrays and each sub-array is fixed on a UAV platform, where

Um(xm, ym) represents the location of the m-th UAV in a

predefined Cartesian coordinate system as shown in Fig. 1. For

this distributed sensor array network, a transmitter is employed

to send relatively narrowband (compared to the sub-array

x , y

M xM, yM

x , y

x , y

Fig. 1. A general model for a distributed sensor array system based on UAV
platforms.

k

k

m

m k

mN

m
d

m
d

m
d

Fig. 2. A general array structure for the m-th UAV.

aperture) electro-magnetic waves into the space, and the echo

signals reflected from far-field targets are then received by the

sub-array placed on each UAV. There are also interferences

impinging on each sub-array from unknown directions.

Without loss of generality, the structure of an Lm-sensor

linear sub-array on the m-th UAV is shown in Fig. 2. Assume

that there are K narrowband signals sm,k(t) (including the

echo signals and interferences) observed at the m-th sub-array,

impinging from incident angles φk, k = 1, 2, . . . ,K, in the

Cartesian coordinate system, where φk is measured between

the direction of the signal and the y-axis. ϕm is an arbitrary

rotation angle for the m-th UAV which is measured between

the end-fire direction of the linear sub-array and the x-axis,

while θm,k represents the incident angle of the k-th signal

based on the sub-array, which is defined between the direction

of the signal and the broadside of the array. Clearly, θm,k =
φk + ϕm, and the sensor position set Sm is given as

Sm =
{

~
m
lm
d, 0 ≤ lm ≤ Lm − 1, lm ∈ Z

}

, (1)

where Z is the set of all integers, and d is the unit spacing

satisfying d ≤ λ/2 with λ being the signal wavelength.

We use xm(t) to represent the LM×1 array observed signal

vector, and the narrowband array output model is given by

xm(t) = A(θm, t)sm(t) + n̄m(t) , (2)
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Fig. 3. The time delay.

where sm(t) = [sm,1(t), sm,2(t), . . . , sm,K(t)]
T

is the signal

vector consisting of all the impinging signals, and {·}T

denotes the transpose operation. n̄m(t) represents the noise

vector of the m-th sub-array carried by the correspond-

ing UAV, and the Lm × K steering matrix A(θm, t) =
[a(θm,1, t), . . . , a(θm,K , t)], with its k-th column vector

a(θm,k, t) being the steering vector corresponding to the k-

th source signal, expressed as

a(θm,k, t) =
[

am0,k(t), a
m
1,k(t), . . . , a

m
Lm−1,k(t)

]T
, (3)

with

amlm,k(t) = bmlm,k(t)e
−j

2π~
m
lm

d

λ
sin(θm,k) , (4)

where bmlm,k(t) is the reflection coefficient of the target corre-

sponding to the lm-th sensor of the m-th sub-array, and may

be time-varying due to target motion or radar cross section

(RCS) fluctuations. For the observed time window, bmlm,k(t) of

the far-field target can be assumed to be nearly unchanged.

The time delay between different sub-arrays reflects the

difference of the observed signals for sensors located at differ-

ent sub-arrays. Since the spacing between sub-arrays is much

larger than the signal wavelength, the difference between those

received signals across sub-arrays can not be considered as a

phase shift any more, although the signal itself is narrowband.

As shown in Fig. 3, taking the origin O(0, 0) as the reference,

the angle ∠XOUm between the x-axis and the direction from

the origin to the point Um(xm, ym) can be obtained by

∠XOUm = arctan 2(ym, xm)

=































arctan( ym

xm
), xm > 0,

arctan( ym

xm
) + π, ym ≥ 0, xm < 0,

arctan( ym

xm
)− π, ym < 0, xm < 0,

+π
2 , ym > 0, xm = 0,

−π
2 , ym < 0, xm = 0,

undefined, ym = 0, xm = 0,

(5)

where arctan 2(ym, xm) ∈ (−π, π] returns the four-quadrant

inverse tangent of ym and xm, while arctan( ym

xm
) returns the

inverse tangent of ym

xm
.

Denote RAB as the distance between positions A and B.

Then, we have ROUm
=

√

x2
m + y2m and ∠Pm,kOUm = π

2 −
∠XOUm + φk. Therefore, we can obtain ROPm,k

= ROUm
·

cos(∠Pm,kOUm), and the time delay of the m-th UAV at Um

is

∆τm,k = −
ROPm,k

c
= −

√

x2
m + y2m · cos(∠Pm,kOUm)

c
,

(6)
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Fig. 4. A general structure of the proposed joint reference signal based
beamformer.

where c is the wave propagation speed.

We stack ∆τm,k for the m-th UAV into a vector as

τm = [∆τm,1,∆τm,2, . . . ,∆τm,K ]T , and the signal observed

at the origin O(0, 0) is denoted as s̃k(t) = sk(t)e
j2πfct,

k = 1, 2, . . . ,K, where fc is the carrier frequency and sk(t)
is the baseband signal. Note that s̃k(t) is a delayed copy of

the transmitted signal if the k-th impinging signal is the echo

signal reflected back from a target. Then, the array output

model of the m-th sub-array is updated to

xm(t) = A(θm, t)sm(t) + n̄m(t)

= A(θm, t)s(t− τm) + n̄m(t) ,
(7)

where the signal vector for the m-th UAV is s(t − τm) =
[s̃1(t−∆τm,1), s̃2(t−∆τm,2), . . . , s̃K(t−∆τm,K)]

T
.

III. JOINT REFERENCE SIGNAL BASED BEAMFORMER FOR

DISTRIBUTED SENSOR ARRAY NETWORK

A. The Structure of the Proposed Beamformer for

Static/Slowly Moving Targets and UAV Platforms

To exploit the information acquired by all sub-arrays si-

multaneously, we propose a novel joint reference signal based

beamformer (JRSB), and its structure after down conversion

to remove the carrier frequency fc and analogue to digital

conversion (ADC) with a sampling frequency fs is given in

Fig. 4, where J−1 delay elements are allocated for each sensor

channel and Ts = 1/fs is the delay between adjacent taps of

the tapped delay-lines (TDLs), which are actually equivalent

to a series of finite impulse response (FIR) filters. xm,l[n]
is the signal received at the l-th sensor of the m-th sub-

array, r[n] is the reference signal considered as a properly

delayed copy of the known transmitted signal, the weight

vector wm[n] =
[

{wm
0 [n]}T , {wm

1 [n]}T , . . . , {wm
J−1[n]}

T
]T

holds LmJ complex coefficients, with each wm
j [n] =

[

wm
0,j [n], w

m
1,j [n], . . . , w

m
Lm−1,j [n]

]T
, j = 0, 1, . . . , J − 1, and

{·}∗ denotes the complex conjugate operation.
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Construct an LJ × 1 weight vector w[n] =
[

wT
1 [n],w

T
2 [n], . . . ,w

T
M [n]

]T
with L =

∑M

m=1 Lm,

and a large LmJ × 1 observed signal vector by

x̃m[n] =
[

xT
m[n],xT

m[n− 1], . . . ,xT
m[n− (J − 1)]

]T
.

Then, the observed signal vector is further extended to the

size of LJ × 1 by x̃[n] =
[

x̃T
1 [n], x̃

T
2 [n], . . . , x̃

T
M [n]

]T
. As a

result, the output y[n] is

y[n] = wH [n]x̃[n] , (8)

with {·}T denoting the Hermitian transpose. The error between

the reference signal r[n] and the beamformer output y[n] is

obtained by

e[n] = r[n]− y[n]

= r[n]−wH [n]x̃[n] .
(9)

B. Adaptive Algorithms for the Proposed Beamformer

Based on our proposed structure, we can construct a

reference signal based beamformer employing all kinds of

standard adaptive filtering algorithms, such as the least mean

square (LMS) algorithm and the recursive least squares (RLS)

algorithm [4]. As representative examples, the Wiener solution

basd on finite sample approximation and the normalized least

mean square algorithm (NLMS), a stochastic gradient based

algorithm, are employed for beamforming in this paper. The

cost function ξ[n] at the time instant n, which is constructed

by the mean square error (MSE), can be formulated as

ξ[n] = E {e[n]e∗[n]}

= E
{

(r[n]−wH [n]x̃[n])(r[n]−wH [n]x̃[n])∗
}

= σ2
r −wH [n]p− pHw[n] +wH [n]Rxxw[n] ,

(10)

where E{·} is the expectation operation, σ2
r = E {r[n]r∗[n]},

p = E {x̃[n]r∗[n]} is the cross-correlation vector between the

reference signal and the received array signals, and Rxx =
E
{

x̃[n]x̃H [n]
}

is the covariance matrix of the received sig-

nals.

The gradient vector of the above cost function ξ[n] with

respect to wH [n] can be evaluated as

∇ξ[n] = −p+Rxxw[n] . (11)

By setting the above gradient vector to zero, we obtain the

optimum weight vector wopt giving the minimum MSE value,

i.e., the so-called Wiener solution [4], [13]

wopt = R−1
xx

p . (12)

In practice, it is impossible to obtain the covariance matrix

Rxx and the cross-correlation vector p of the received signals

exactly, and we have to estimate them from the available

data samples. In that case, we can use the following sample

covariance matrix R̃xx and sample cross-correlation vector p̃

to replace them, leading to the sample matrix inversion (SMI)

solution based on finite sample approximation, given by

wSMI = w̃opt = R̃−1
xx

p̃ . (13)

where

R̃xx =
1

N

N−1
∑

n=0

x̃[n]x̃H [n] ,

p̃ =
1

N

N−1
∑

n=0

x̃[n]r∗[n] ,

(14)

with N being the number of data samples received.

However, a sufficient number of samples is required for ac-

curate second-order statistics approximation, and its complex-

ity is extremely high due to the inverse operation, especially

for R̃xx with large dimensions.

A low-complexity alternative is to update the weight vector

with each new data sample coming in. By simply replacing

each of the expectation values via an instantaneous single sam-

ple estimate based on the input vector x̃[n] and the reference

signal r[n], given by p̂ = x̃[n]r∗[n] and R̂xx = x̃[n]x̃H [n],
the gradient vector in (12) is approximately to

∇ξ[n] ≈ −p̂+ R̂xxw[n] = −e∗[n]x̃[n] . (15)

Then, we can update the weight vector w[n] in the negative

direction of the gradient with a step size µ0 as follows,

w[n+ 1] = w[n] + µ0e
∗[n]x̃[n] , (16)

which leads directly to the well-known least mean square

(LMS) algorithm. The factor µ0 is a positive real-valued

constant weighting the amount of innovation applied at each

step.

Optimal choice of the step size is data dependent and it

can be normalized to ensure an approximately constant rate

of adaptation by defining

µ0 =
µ

x̃H [n]x̃[n]
. (17)

Replacing µ0 by µ in (16) yields the normalized least mean

square algorithm (NLMS) expressed as

w[n+ 1] = w[n] +
µ

x̃H [n]x̃[n]
e∗[n]x̃[n] . (18)

In practice, to ensure stability of the algorithm, we normally

choose 0 < µ < 0.5.

IV. FREQUENCY EXTENDED JOINT REFERENCE SIGNAL

BASED BEAMFORMER FOR MOVING TARGETS AND UAV

PLATFORMS

A. System Model for Moving Targets and UAV Platforms

In general, the targets and the UAV platforms are moving

towards different directions, as shown in Fig. 5, where vT and

vUm
represent the velocity of the transmitter based platform

and the m-th UAV platform, respectively, and vk is the

velocity of the k-th target. When they are moving fast enough

relative to each other, the Doppler effect has to be considered.

Denote αT,k as the angle between the moving direction of

the transmitter and the opposite impinging direction of the

k-th echo signal, αm,k is the angle measured between the

moving direction of the m-th UAV and the opposite impinging

direction of the k-th echo signal, while αk is the angle between
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Fig. 5. The relative velocity between the target and the m-th UAV platform.

the moving direction of the k-th target and the imping direction

of its echo signal. Clearly, the radial velocity vT,k between the

k-th target and the transmitter, and the radial velocity vm,k

between the k-th target and the m-th UAV are obtained by

vT,k = vT cosαT,k + vk cosαk ,

vm,k = vUm
cosαm,k + vk cosαk .

(19)

Then, we can obtain the Doppler frequency of the k-th target

received at the m-th UAV as

fm,k =
vT,k + vm,k

λ
, (20)

and therefore, for the moving targets and UAV platforms, the

observed signal model (7) is reformulated as

xm(t) = A(θm, t)sm(t) + n̄m(t)

= A(θm, t)s(t− τm) + n̄m(t) .
(21)

where the column vector s(t−τm) is updated to s(t−τm) =
[s̄1(t−∆τm,1), s̄2(t−∆τm,2), . . . , s̄K(t−∆τm,K)]

T

with s̄k(t) = sk(t)e
2π(fc+fm,k)t and sk(t) being the

baseband signal. Now the k-th impinging signal observed

at the origin is changed to s̃k(t) = sk(t)e
j2π(fc+f0,k)t,

k = 1, 2, . . . ,K, with the Doppler frequency at the origin

being f0,k =
vT cosαT,k+2vk cosαk

λ
.

B. Frequency Extended Joint Reference Signal Based Beam-

former

After down conversion to remove the carrier frequency fc
and ADC with fs, the Doppler frequency is still included

in the obtained signals at each sensor channel, leading to

performance degradation using the proposed JRSB. To per-

form beamforming without prior knowledge of the motion

parameters of both the targets and the UAV platforms, we

propose a frequency extended joint reference signal based

beamformer (FE-JRSB) to exploit the information across the

frequencies of interest by modulating the received signals into

different frequency bins at first. Assume that the maximum

Doppler frequency is fdmax, and the frequency range of

interest [−fdmax, fdmax] is divided to Q bins with the center

frequency of the q-th frequency bin as

fq = −fdmax + q ·
2fdmax

Q− 1
, (22)

r n

Lx n

x n

M

y n

e n

MM Lx n

Mx n

Fig. 6. A general structure for the proposed frequency extended joint
reference signal based beamformer.

m

m
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e

m

m
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m

m
l Qw n m

m
l J Qw n

Fig. 7. A general structure of the adaptive filter for the lm-th sensor of the
m-th UAV.

where q = 0, 1, . . . , Q− 1.

Fig. 6 gives the general structure of the proposed FE-JRSB,

where the adaptive filter for the lm-th sensor of the m-th UAV

is shown in Fig. 7 with J − 1 delay elements allocated for

each frequency bin at each sensor channel and Ts = 1/fs.

The column vector holding LmQ complex coefficients is

constructed by

wm
j [n] =

[

wm
0,j,0[n], w

m
1,j,0[n], . . . , w

m
Lm−1,j,0[n],

wm
0,j,1[n], w

m
1,j,1[n], . . . , w

m
Lm−1,j,1[n],

. . . . . .

wm
0,j,Q−1[n], w

m
1,j,Q−1[n], . . . , w

m
Lm−1,j,Q−1[n]

]T
,

(23)

where j = 0, 1, . . . , J − 1.

Then the LmJQ×1 weight vector is obtained by wm[n] =
[

{wm
0 [n]}T , {wm

1 [n]}T , . . . , {wm
J−1[n]}

T
]T

, and the LJQ×1

weight vector is w[n] =
[

wT
1 [n],w

T
2 [n], . . . ,w

T
M [n]

]T
.

Denote γq = e−j2πfqnTs , q = 0, 1, . . . , Q − 1. Construct a

large LmJQ× 1 observed signal vector by

x̃m[n] =
[

γ0x
T
m[n], . . . , γQ−1x

T
m[n],

γ0x
T
m[n− 1], . . . , γQ−1x

T
m[n− 1],

. . . . . .

γ0x
T
m[n− (J − 1)], . . . , γQ−1x

T
m[n− (J − 1)]

]T
.

(24)

Then, the observed signal vector is further extended to the size

of LJ × 1 by x̃[n] =
[

x̃T
1 [n], x̃

T
2 [n], . . . , x̃

T
M [n]

]T
. Similarly,



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2875560, IEEE Access

6

the output y[n] is

y[n] = wH [n]x̃[n] , (25)

while the error between the reference signal r[n] and the FE-

JRSB output y[n] is obtained by

e[n] = r[n]− y[n]

= r[n]−wH [n]x̃[n] .
(26)

Based on the proposed FE-JRSB structure, the NLMS

algorithm and the SMI solution can be also employed for

beamforming.

Remarks: The proposed FE-JRSB can also be applied to the

scenario where the baseband signal is sent through multiple

carrier frequencies to exploit the frequency diversity of the

target’s RCS fluctuations simultaniously. In that case, γq is

changed to the step frequencies between the multiple carrier

frequencies and the reference frequency, and this modulation

part regarding γq may be implemented at the down conversion

stage using different frequencies.

V. SIMULATION RESULTS

Consider M = 3 sub-arrays distributed on three UAV

platforms, and each sub-array is a uniform linear array with

Lm = 5 sensors, ∀m = 1, 2, 3, and d = λ/2. The posi-

tions of the three sub-arrays are U1(0,−50), U2(25, 10), and

U3(−70, 90), while their rotation angles are 45◦, 28◦, and

−19◦, respectively. With a coarse estimation of the target range

of interest, we adjust the reference signal with a proper time

delay compared to the transmitted signal, and set J = 80, and

µ = 0.1. For the far-field targets, the reflection coefficients

bmlm,k(t) are randomly generated constant complex values

sharing the same amplitude for all sensors, and the signal

to noise ratio (SNR) is set to be 20dB, defined within the

bandwidth of interest. The working frequency is 10 GHz

and the signal propagation speed is 3 × 108 m/s with the

signal wavelength λ = 0.03m. The spacings among the UAV

platforms are 65.00m, 124.20m, and 156.52m, respectively,

and all of them are at least 103 times larger than the signal

wavelength. It is noted that these information are unknown for

the beamformers. In practice, all the information collected by

UAVs can be sent to a base station for centralized processing.

A. Simulation Results for Static/Slowly Moving Targets and

UAV Platforms

1) Simulation Results for K = 1

In the first scenario, there is only one far-field target with

incident angle of θ1 = −10◦, i.e., K = 1. Then, we focus on

the ensemble mean square error (MSE) results of e[n] with

respect to the number of samples, which is also the iteration

number of the NLMS algorithm. The ensemble MSE is defined

as

EMSE[n] =

√

√

√

√

1

Q

Q
∑

q=1

|êq[n]|2 , (27)
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Fig. 8. Ensemble mean square error of different beamformers for K = 1.
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Fig. 9. Output SNR of different beamformers for K = 1.

where Q is the number of independent simulation runs, and

êq[n] represents the error at iteration number n of the q-th

trial.

The ensemble MSE results for different beamformers are

shown in Fig. 8, where each point is based on an average of

the results obtained by Q = 500 Monte Carlo simulation runs,

the regular NLMS RSB represents the reference signal based

beamforming results using the NLMS algorithm based on a

single sub-array located at U1(0,−50) with a rotation angle

45◦, the NLMS JRSB is the proposed JRSB employing the

NLMS algorithm, and the SMI JRSB represents the proposed

JRSB using the SMI solution. It is noted that R̃xx is a matrix

with a size of 1200×1200, and there exists serious degradation

in the performance of the SMI JRSB for a small number of

samples less than 1000 due to worse approximations to the

second-order statistics. Clearly, both the NLMS JRSB and

the SMI JRSB (when the number of samples are larger than

1000) outperform the regular one, and the best performance

is achieved by the SMI JRSB.

Then, the output SNR of different beamformers are shown

in Fig. 9. It is obvious that the output SNR of the regular

NLMS RSB is the worst among the three beamformers, while

the output SNR of the NLMS JRSB and the SMI JRSB are

close to each other with that of the NLMS JRSB a bit higher.

We then fix all the reflection coefficients to 1, and the

beampatterns obtained by the NLMS JRSB and the SMI JRSB

are shown in Fig. 10(a) and Fig. 10(b), respectively. Since the

spacing between UAVs are extremely larger than the signal
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Fig. 10. Beampattern for K = 1.

wavelength at the working frequency, the grating lobes result

in rapid fluctuations in the beampattern. However, we can still

see that the signal of interest is located at the DOA angle −10◦

with a corresponding main beam.

2) Simulation Results for K = 3

In the second scenario, there are K = 3 impinging signals

with the echo signal s1[n] along with its delayed ones observed

at each sub-array sm,1[n], m = 1, 2, . . . ,M , being the signals

of interest, while others are interferences to be suppressed. The

incident angle of the echo signal is θ1 = −10◦, whereas the

two interferences come from −30◦ and 20◦, respectively. The

signal to interference ratio (SIR) for each interfering signal is

0dB, defined within the bandwidth of interest.

The ensemble MSE results for different beamformers are

shown in Fig. 11. It is clear that both the NLMS JRSB and the

SMI JRSB provide a much faster convergence speed as well as

lower MSEs compared with the regular one. Furthermore, the

SMI JRSB provides the best results for a sufficient number of

samples involved in the second-order statistics approximation,

but with a high computational complexity. Similar to the first

scenario, there is serious degradation in the performance of

the SMI JRSB when the number of samples is less than 1000.

Fig. 12 gives the output signal to interference plus noise

ratio (SINR) of different beamformers, which is consistent

with the ensemble MSE results in Fig. 11, and an improved

output SINR has been achieved by both JRSBs compared to

the regular NLMS RSB, with the SMI JRSB being the best.
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Fig. 11. Ensemble mean square error of different beamformers for K = 3.
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Fig. 12. Output SINR of different beamformers for K = 3.

Then, we give the beampatterns of the proposed NLMS

JRSB and the SMI JRSB by fixing all the reflection co-

efficients to be 1, as shown in Fig. 13(a) and Fig. 13(b),

respectively. Clearly, the signal of interest at incident angle

−10◦ is enhanced while interferences at DOAs of −30◦ and

20◦ are suppressed.

3) Simulation Results for K = 4

To further study the performance of different beamformers,

another far-field target with incident angle of −50◦ is added

compared to the second scenario, and now there are four

impinging signals with two being of interest. The ensemble

MSE results and the output SINR of different beamformers

are shown in Figs. 14 and 15, respectively, which again verify

the superior performance of the proposed NLMS JRSB and

SMI JRSB.

Finally, we fix all the reflection coefficients to 1, and the

beampatterns of the proposed NLMS JRSB and the SMI

JRSB for two targets are shown in Fig. 16(a) and Fig. 16(b),

respectively. We can see clearly that the two signals of interest

at incident angles −50◦ and −10◦ are enhanced, whereas the

two interferences at DOAs of −30◦ and 20◦ are suppressed.

4) Detection Probability

From Figs. 9 and 12, we can see that the output SNR or

SINR of the JRSBs for a large number of samples is around

4.5dB higher than that of the regular NLMS RSB, which

is close to the gain brought by the three sub-arrays with

10 log10 3 = 4.8dB. Furthermore, as indicated in Fig. 15, the
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Fig. 13. Beampatterns for K = 3.
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Fig. 14. Ensemble mean square error of different beamformers for K = 4

with two targets.
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Fig. 15. Output SINR of different beamformers for K = 4 with two targets.

−180 −120 −60 0 60 120 180
−50

−40

−30

−20

−10

0

M
ag

n
it

u
d
e 

R
es

p
o
n
se

 (
d
B

)

Direction of Arrival of the Signal (Degree)

X=−50
Y=−0.6167

X=−10
Y=−0.1579

X=−30
Y=−20.58

X=20
Y=−23.06

(a) Beampattern of the NLMS JRSB for K = 4 with two targets.

−180 −120 −60 0 60 120 180
−50

−40

−30

−20

−10

0

M
ag

n
it

u
d
e 

R
es

p
o
n
se

 (
d
B

)

Direction of Arrival of the Signal (Degree)

X=−10
Y=0

X=−30
Y=−22.41

X=20
Y=−18.31

X=−10
Y=−0.8001

(b) Beampattern of the SMI JRSB for K = 4 with two targets.

Fig. 16. Beampatterns for K = 4 with two targets.

output SINR with two targets of interest is nearly 3dB higher

than the other two scenarios with only one target of interest.

As a result, the proposed JRSB is capable of performing

coherent addition across all sub-arrays and targets, achieving

a maximum output SINR for target detection.

To compare the detection probability of the proposed beam-

former, we consider the second scenario as a representative

example. The linear frequency modulated (LFM) signal is

chosen as the transmitted signal, where the bandwidth of the

LFM signal is 10MHz, the modulation period (pulse width)

is 5us, and the pulse repetition time (PRT) is 25us. Other

settings remain the same as in the second scenario with K = 3.

Based on the beamformer output, pulse compression followed

by a constant false alarm rate (CFAR) detector is applied.

The detection probability of different beamformers are shown

in Fig. 17. Clearly, the SMI JRSB consistently outperforms

the regular SMI JRSB (JRSB based SMI solution) due to

the higher output SINR. The NLMS JRSB has a very similar

performance to the SMI JRSB and is not shown there.

B. Simulation Results for Moving Targets and UAV Platforms

1) Simulation Results for K = 3

Assume that the maximum potential radial velocity between

the target and the UAV platform is 30m/s, corresponding to

the Doppler frequency of fdmax = 2000Hz with λ = 0.03m.

In the proposed FE-JRSB, the frequency range of interest

[−fdmax, fdmax] is divided into 5 frequency bins with fq =
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Fig. 17. Detection probability of different beamformers for K = 3.

−2000 + 1000q, q = 0, 1, . . . , 4. In the first scenario, we set

K = 3 with one signal of interest and two interferences,

and the incident angle of the echo signal is θ1 = −10◦,

whereas the two interferences come from −30◦ and 20◦,

respectively. The radial velocities between the moving target

and each of the three UAV platforms, i.e., U1(0,−50) with

rotation angle 45◦, U2(25, 10) with rotation angle 28◦, and

U3(−70, 90) with rotation angle −19◦, are -30m/s, 0m/s,

and 15m/s, respectively. Please note that these information

are unknown to the beamformers except for the maximum

potential radial velocity. The ensemble mean square error

(MSE) results of e[n] with respect to the number of samples

employing the SMI solution is shown in Fig. 18. Obviously,

the convergence speed of the FE-JRSB is smaller than that of

the JRSB, however, its MSE after adaption is lower than the

other one.

Then, the output SINR of the proposed FE-JRSB and the

JRSB are shown in Fig. 19. Consistent with the ensemble

MSE results in Fig. 18, we can see clearly that the FE-JRSB

outperforms the JRSB after adaption, and the information

across the frequencies of interest collected by all the sub-array

channels are exploited jointly.

2) Simulation Results for K = 4

In the second scenario for the dynamic case, another target

with incident angle of −50◦ is added based on the first sce-

nario, and its relative radial velocities towards the three UAV

platforms are set to be -15m/s, 15m/s, and 30m/s, respectively.
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Fig. 18. Ensemble mean square error results of different beamformers for
K = 3 with one moving target.
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Fig. 19. The output SINR of different beamformers for K = 3 with one
moving target.

Fig. 20 shows the ensemble MSE results versus the number

of samples, while Fig. 21 gives the output SINR of the two

proposed beamformers, which again verifies that the FE-JRSB

is capable of exploiting possible information involved in all

frequency bins, leading to improved performance compared to

the JRSB after adaption. Furthermore, the output SINR of the

FE-JRSB is approximately 3dB higher than the achieved SINR

in the first scenario, which is caused by performing coherent

accumulation adaptively across all sub-arrays, frequencies of

interest, and targets, and therefore a maximum output SINR

for target detection is achieved by the proposed FE-JRSB for

moving targets and UAV platforms without sacrificing any

information.

VI. CONCLUSIONS

In this paper, a distributed sensor array network for target

detection and surveillance consisting of sub-arrays with arbi-

trary locations and rotation angles placed on UAV platforms

has been studied, where a transmitter is used to send out a

single signal while the echo signals reflected from far-field

targets are then received by the distributed sensor array system.

Two cases were investigated: one is for static or slowly moving

targets and UAV platforms, where the Doppler effect can be

ignored, while the other one is for moving targets and UAV

platforms where the Doppler effect is considered. To enhance

the signals of interest while suppressing interferences for the
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Fig. 20. Ensemble mean square error results of different beamformers for
K = 4 with two moving targets.
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Fig. 21. The output SINR of different beamformers for K = 4 with two
moving targets.

first case, a joint reference signal based beamformer (JRSB)

was proposed to exploit all the collected information across

different sub-arrays, where the standard NLMS algorithm

and Wiener solution based on finite sample approximation

are employed for adaptive beamforming. For the case with

moving targets and UAV platforms, a frequency extended joint

reference signal based beamformer (FE-JRSB), capable of

extracting all the information across frequencies of interest,

was then derived. It has been shown by simulations that the

developed JRSB can work effectively and offer a much better

performance than the regular beamformer applied to a single

sub-array, and further improved performance is achieved by

the proposed FE-JRSB for the dynamic case compared with

the JRSB.
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