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Marine ice sheet dynamics: the impacts of
ice-shelf buttressing

Samuel S. Pegler
School of Mathematics, University of Leeds, Leeds LS2 9JT, UK

(Received 11 September 2018)

Marine ice sheets are continent-scale glacial masses that lie partially submerged in the
ocean, as applies to significant regions of Antarctica and Greenland. Such ice sheets have the
potential to destabilise under a buoyancy-driven instability mechanism, with considerable
implications for future sea level. This paper and its companion present a theoretical analysis
of marine ice sheet dynamics under the effect of a potentially dominant control of the but-
tressing force generated by lateral stresses on the downstream floating component of the ice
sheet (the ice shelf). The analysis reveals critical conditions under which ice-shelf buttress-
ing suppresses the buoyancy-driven collapse of an ice sheet and elucidates the implications
of lateral stresses on grounding-line control and overall ice-sheet structure. Integrations of
a suitably simplified quasi-two-dimensional model are conducted, yielding analytical results
that provide a quick assessment of steady-state balances for a given ice-sheet configuration.
An analytical balance equation describing the spectrum of marine ice sheet flow regimes
spanning zero to strong ice-shelf buttressing is developed. It is determined that the dynam-
ics across this spectrum exhibit markedly different flow regimes and structural characteristics.
For sufficient buttressing, the grounding line occurs near to where a lateral-drag controlled
section of the ice shelf meets the bedrock, implying an independent control of the grounding
line by the ice shelf. The role of basal stresses is relegated to controlling only the thickness of
the ice sheet upstream of the grounding line, with no significant control of the grounding line
itself. It is further demonstrated that lateral stresses are responsible for inducing additional
secondary contacts between the ice shelf and the bedrock downstream of the grounding line,
resulting in a rich variety of additional steady states. These inducements generate a further
stabilising mechanism that can fully suppress grounding-line retreat and eliminate otherwise
irreparable hysteresis effects. The results provide a conceptual framework for numerical and
observational interpretation of marine ice sheet dynamics, and clarifies the manner in which
ice shelves can control grounding-line positions independently. It is thus indicated that a full
resolution of the fine details of the flow of ice shelves and the processes controlling their ero-
sion and disintegration is necessary for the confident forecasting of possible ice-sheet collapse
over the course of the next few centuries.

1. Introduction

Understanding the mechanics of marine ice sheets — those that lie predominantly sub-
merged in the ocean — is vitally important if we are to predict contributions to future sea
level with any confidence. The West Antarctic Ice Sheet (WAIS) is a continent-scale marine
ice sheet that sits on bedrock at an average depth of one kilometre below sea level (Bamber
et al. 2009). The total or partial collapse of the WAIS as a consequence of its detachment
from the bedrock under buoyancy has the potential to outstrip other contributions to global
sea-level rise over the course of the next few centuries (Hanna et al. 2013). Recent unprece-
dented thinning and retreat of its constituent Pine Island and Thwaites Glaciers may be
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independently contributing as much as 6% of the present total rate of global sea-level rise.
However, the future contributions of the WAIS are uncertain owing to significant challenges
in characterising and parametrising the phenomena controlling its evolution. A potentially
dominant phenomenon is an effect of the peripheral floating regions of the ice sheet — the
ice shelves — in creating a buttress that protects the considerably larger grounded interior
against surging outwards into the ocean. The role of this effect in controlling the future of the
WALIS is presently an open question. This paper and its companion will explore the influence
of lateral stresses and ice-shelf buttressing, and elucidate the critical conditions under which
it protects a marine ice sheet from triggering runaway buoyancy-driven collapse.

Concerns over the essential stability of the WAIS are rooted in the hypothesis of the Marine
Ice Sheet Instability (MISI). Simply put, a grounding-line retreat driven by buoyancy has
the potential to manifest rapidly and with irreversible change, particularly for regions where
the underlying bedrock slopes upwards in the direction of flow (a positive slope) (Weertman
1974; Thomas & Bentley 1978). The runaway retreat of a grounding line underlying the
MISI principle can be motivated on the basis of an increasing relationship between the
grounding-line thickness and the rate of thinning of ice at the grounding line. Much of the
bedrock underlying the WAIS deepens towards the centre of the continent owing to isostatic
depression, creating prevailing regions of positive bed slope. If a grounding line retreats
on a positive bed slope then, since it moves into deeper water, the larger buoyancy forces
act to stimulate a yet faster retreat, producing a positive feedback. The potential for this
positive feedback has led to the hypothesis that regions of the WAIS may collapse rapidly
across parametric ‘tipping points’. It has been suggested that ice-shelf buttressing may be
necessary to suppress a potential full-scale or regional collapse of the WAIS (Hughes 1981;
Stuiver et al. 1981).

The viscous creep of marine ice sheets can be modelled using a system of thin-film viscous
flow equations known as the shallow-stream or shallow-shelf approximation (SSA). The equa-
tions describe the interactions between gravitational stresses, basal drag stresses and exten-
sional (stretching) stresses under a shear-thinning flow model (e.g. Morland 1987; MacAyeal
1989). In situations where the ice shelf undergoes unconfined, horizontally one-dimensional
flow, these equations predict that the hydrostatic pressure of the ocean simply transmits
directly through the ice shelf to the grounding line (MacAyeal & Barcilon 1988; Chugunov
& Wilchinsky 1996; Wilchinsky & Chugunov 2000; Schoof 2007 a,b; Robison et al. 2010; Tsai
et al. 2015). The removal of a one-dimensional ice shelf thus has no influence on the dynamics
of the grounding line. The only resistance to flow across the grounding line in this case stems
from the longitudinal extensional (stretching) stresses associated with the non-Newtonian
creep of ice near the front of the grounded region. In light of this simplification, it follows
that the rate of extension, and hence the rate of thinning, at an unbuttressed grounding
line is controlled by the hydrostatic pressure drop between the front of the grounded re-
gion and the ocean in front of it, indicating the potential for runaway feedback between
thinning and retreat on a positive bed slope. This mechanism can be embodied within a
relationship between the flux and thickness at an unbuttressed grounding line derived from a
scaling analysis of the steady-state equations (e.g. Chugunov & Wilchinsky 1996; Wilchinsky
& Chugunov 2000; Schoof 2007a,b; Nowicki & Wingham 2008). By applying this flux rela-
tionship in the context of a time-dependent marine ice sheet under suitable approximations
(Schoof 2007a,b), it can be argued that the retreat of the grounding line on a positive bed
slope increases the flux across the grounding line, consistent with a mechanism of positive
feedback between increasing flux and grounding-line retreat. Grounding lines can therefore
transition to positive-feedback retreat, leading to rapid and potentially permanent changes
in grounding-line positions (Schoof 2007a).

However, observational evidence and the results of numerical simulations have indicated
that a number of properties of one-dimensional flow do not hold as a consequence of two-
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dimensional stresses generated by lateral contact. A significant proportion of the ice shelves
surrounding Antarctica are confined by rock or near-stationary ice, resulting in lateral drag
forces, which accumulate to generate a buttressing force that provides a direct resistive force,
additional to the extensional stress, that suppresses flow across the grounding line. The effect
was demonstrated by the significant accelerations of feeding ice streams following the collapse
of the Larson B Ice Shelf (Rignot et al. 2004; Scambos et al. 2004), accelerations which are
also illustrated by simulations of this configuration (de Rydt et al. 2015). Two-dimensional
modelling of the SSA equations (e.g. MacAyeal 1989; Goldberg et al. 2009; Gagliardini et al.
2010; Gudmundsson et al. 2012; Gudmundsson 2013; Favier et al. 2014) has indicated the
significance of a buttressing ice shelf and, in turn, the melting and calving rates that control its
magnitude. An interesting conclusion is that buttressing can allow a grounding line to settle
stably on a positive bed slope (Goldberg et al. 2009; Gudmundsson et al. 2012), deviating
qualitatively from one-dimensional predictions. Idealised radially flowing marine ice sheets,
in which buttressing is generated by viscous hoop stresses, also leads to stabilisation on
non-negative slopes (Pegler & Worster 2012, 2013).

The effects of ice-shelf buttressing from lateral stresses can also be encapsulated within
so-called flow-line models, which form a mathematically one-dimensional system of equations
in which lateral drag stresses are incorporated in the form of a Navier-type drag law (e.g.
MacAyeal 1989; Van der Veen 1999; Dupont & Alley 2005; Nick et al. 2010; Hindmarsh
2012; Pegler et al. 2013; Walker et al. 2013; Pegler 2016; Kowal et al. 2016; Schoof et al.
2017). The model incorporates the effect of lateral stresses within a framework that yields
considerably faster numerical implementation than full the SSA equations, eases the physical
interpretation of results, and creates analytical and asymptotic inroads. The development of
analytical inroads has been demonstrated in the context of a steady-state ice shelf (Pegler
2016), where it is determined that the floating component can be integrated to yield exact or
asymptotic solutions describing the structure of a buttressing ice shelf. Across the spectrum of
relative buttressing strength, the solutions were determined to undergo a transition from the
broadly concave solution describing a non-buttressing ice shelf (Van der Veen 1983), which has
no sensitivity to its downstream calving position, to a regime containing a prevailing internal
section of relatively milder slope that is controlled to leading order by the calving position.
The connection between the prevailing internal region and the grounding line takes place
through a short transitional boundary layer in which the divergence of extensional stresses
attains magnitudes several orders larger than elsewhere in the ice sheet as the flow adjusts
to the lateral-stress dominated regime. The boundary layer is distinct from the extensional
boundary layer of the kind discussed in the context of the grounded region upstream of the
grounding line (cf. Schoof 2007b) and involves considerably larger gradients in extensional
stresses. For a narrow geometry, a more reduced, nonlinear diffusive form of a flow-line model
of a marine ice sheet can be formulated (Pegler et al. 2013) in which buttressing provides the
dominant resistance to flow across the grounding line and the migration of the grounding line
is controlled by the time-dependent evolution of the ice shelf. Since the rate of thickening
of the ice shelf is independent of the basal slope, it is clear from the perspective of this
reduced model that the possibility of a grounding line to form a stable steady state does
not depend on the local basal gradient. Across the spectrum of aspect ratios, there is thus
a complete switch in the control of a grounding line from being insensitive to the ice shelf
to being entirely controlled by it. In a recent study, Schoof et al. (2017) consider a flow-line
model in which the control of a grounding line is examined subject to two alternative calving
laws different to the case of a direct imposition (e.g. Goldberg et al. 2009; Gudmundsson
et al. 2012). This includes a consideration of the case of a tidewater glacier with no ice-shelf
buttressing but with lateral stresses in the grounded region, which are found to affect the
relationship between thickness and flux at the grounding line. The second is the situation
where an ice shelf forms and calves under a hydrofracture model (Nick et al. 2010), which,
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for steady-state analysis, can be reduced to the imposition of a calving thickness. The results
show that a stable grounding line is possible in this case on a retrograde slope despite the
loss of a necessary relationship between grounding-line retreat and increasing buttressing.

The present study extends the analytical results for steady-state solutions and buttressing
forces given by Pegler (2016) to the context of a full ice-sheet model and explores the domi-
nant flow balances, regimes and ice-sheet flow structures that arise. The aim is to investigate
the variation in these properties across the spectrum of relative buttressing strength bridging
the unbuttressed limit (Schoof 2007b) to the limit of strong buttressing (Pegler et al. 2013).
An overarching objective is to clarify the fundamental switches in dynamical characteristics
and parameter controls resulting from the introduction of lateral stresses. By incorporating
the buttressing stress resulting from the steady-state integration (Pegler 2016), an algebraic
equation for buttressed grounding lines is obtained that allows for a rapid determination of
steady states without the need for any consideration of a differential equation. These results
differ in methodology from the kind of analysis based on direct numerical solution of the
flow-line model (e.g. Schoof et al. 2017). Relationships between the force balances and the
asymptotic structure of the ice shelf are investigated, with the finding that buttressing is
linked to three specific thicknesses defining the structure of the ice shelf: the grounding-line
thickness, the calving thickness and the thickness in front of the input boundary layer of the
ice shelf. It is shown that the grounding line can be set directly by the prevailing profile of the
ice shelf (Pegler 2016), elucidating a complete switch in the mechanical role of the ice shelf
between weak and strong buttressing from having no control to having a completely indepen-
dent control of the grounding line. It will be explained why lateral stresses specifically in ice
shelves — even if orders of magnitude smaller than resistive stresses in the grounded region —
have such a major role in maintaining ice-sheet stability. The flow-line predictions and the
reduced analytical predictions are benchmarked against direct numerical simulations of the
full two-dimensional SSA equations (Gudmundsson et al. 2012), with limitations discussed.
The configurations are also shown to partition between consistent steady-state solutions with
a continuously floating ice shelf (for which the reduced analytical theory applies) and those
where lateral stresses in the ice shelf are sufficient to induce it to reground downstream of
the primary grounding line. The generation and sustainment of ice rises is thus linked to the
sustainment of lateral stresses. The critical prediction of regrounding can result in consider-
ably greater buttressing than the direct nonlocal integration of lateral stresses along the ice
shelf, and produce a rich variety of additional steady-state solutions than predicted by the
simplest forms of the analytical theory. The implied potential for lateral stresses to eliminate
hysteresis effects is discussed.

I begin in §2 by developing the quasi-two-dimensional marine-ice-sheet model from first
principles, corroborating its predictions against full SSA equations and discussing its lim-
itations. A presentation of the essential time-dependent dynamics is provided in §3. This
is followed in §4 with a systematic development of the reduced analytical descriptions of
steady-state grounding-line forces, and a discussion of the fundamental differences between
unbuttressed and buttressed grounding-line dynamics. Section 5 details the effects of lateral
stresses on the structure of a marine ice sheet. Section 6 discusses the concurrent phenomenon
of ‘secondary grounding’ whereby lateral stresses induce further contacts between an ice shelf
and the bedrock. The theory is demonstrated in §7 for an illustrative nonlinear bedrock to-
pography. The implications of the results to the geophysical context are described in §8. The
key conclusions are summarised in §9.

2. Theoretical development

Consider a marine ice sheet comprising a viscous, incompressible fluid layer (ice) of density
p flowing over a rigid bed z = b(x) and lying submerged in an effectively inviscid fluid (the
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FIGURE 2. Plans showing (a) an ice shelf calving exterior to its region of confinement, and (b)
interior to it. The grounding line is illustrated by a solid red curve. In (a), lateral stresses cease at
the detachment points of the ice shelf near the channel mouth. For this case, the detachment point
specifies where condition (2.15) is applied. For (b), (2.15) is imposed directly at the calving front
itself.

ocean) of larger density p, and upper surface z = 0 (figure 1). The domain of the ice sheet
is assumed to extend from a line symmetry or ice divide at xp to a termination or calving
front z¢. The ice sheet has a free upper surface z = h(z, t) and a partially floating, partially
grounded lower surface z = [(x,t). Let the vertical thickness distribution of the ice sheet be
denoted H(x,t) = h(x,t) — l(x,t). A marine ice sheet comprises two regions: the upstream
grounded region, wherein [ = b, and the downstream ice shelf or floating region, wherein
[ > b. The grounded and floating regions connect at the grounding line x = z¢(t).

The flow is confined laterally between margins along y = +w(x), representing either rock
or near-stationary grounded ice, as illustrated in the planform schematics of figure 2. The
calving front (terminus) of the ice shelf can either lie exterior to the confining region [figure
2(a)] or interior to it [figure 2(b)]. In the former case, the ice shelf fills the channel fully and
detaches from the boundaries at or near the channel exit, as is characteristic of some ice
shelves (e.g. the Amery Ice Shelf). For the case of interior calving, the ice shelf instead calves
without detaching, a feature characteristic of Pine Island Glacier, for example. Interior and
exterior calving introduce slightly different modelling considerations, which will be detailed
in §2.1.

The equations of momentum and mass conservation governing the viscous flow are

V-.-0—pgz2=0, V-u=0, (2.1a,b)
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where V is the gradient operator, u(x,t) is the three-dimensional velocity of the flow,
o = —pl + 7 is the stress tensor, p is the pressure, 7 = 2ue is the deviatoric stress ten-
sor, u(x,t) is the effective viscosity, e = (1/2)[Vu + (Vu)T] is the strain-rate tensor, 2 is
the vertical unit vector, and ¢ is the gravitational strength. In accordance with Glen’s law,
I allow for a viscous power-law fluid defined by the relationship for the effective viscosity

1/n)—1]/2 m—1)/2
[(1/n)-1]/ E,uo(%e:e)( )/ : (2.2)

b= o (Lo o)
where 1o is the coefficient of viscosity, n the power-law exponent and m = 1/n (Cuffey &
Paterson 2010). For glacial flow, the shear-thinning case n = 3 [m = 1/3] is most commonly
assumed, and g ~ 10% Pa s'/" is representative.

The zero-stress condition along the free top surface of the ice sheet is given by
n-oc=0 on z = h(x,t), (2.3)

where 1 is the unit outward normal to the surface.

The base of the ice sheet is subject to different conditions depending on whether it is
grounded or floating. In the grounded region, I apply the Weertman drag law (a nonlinear
Navier condition),

teon=mn(t-u)=C_(t u)"" on z = l(z,t) = b(x), (2.4)

where t and n are the unit tangent and normal to the lower surface, C_ is the basal drag
coefficient and m_ is the basal drag-law exponent. Models of this kind are standard in
ice-sheet simulation, and aim to parametrise processes of glacial slip, such as regelation
and sliding over rough bedrock (Weertman 1957; Lliboutry 1987; Gudmundsson 1997). It

is usual to identify the slip-law exponent with the rheological exponent, m_ = m, which
is the case commonly applied in modelling the water-lubricated ice streams that typically
feed ice shelves. Here, I will focus the examples on cases where m_ = m and C_ is uniform.

Drag coefficients of C_ = 10°-10° Pa (m/s) ™™~ are representative (Cuffey & Paterson 2010).
These drag coefficients are are sufficiently small in the grounded regions of the ice sheet that
typically feed ice shlves (the ice streams) that the velocity profile is free of vertical shear to
leading order (u ~ wu(x,y,t) only).

The floating region has a free lower boundary, which differs mechanically from the grounded
region in being both geometrically unconstrained and subject to negligible tangential stresses
from the ocean below it. Assuming a purely hydrostatic ocean pressure, p,, = —pw gz, [ impose
continuity of stress along the base of the floating region with

N0 =—py,n = pygln on z =I(x,t) > b(z). (2.5)

The new effects explored in this paper stem from the drag forces exerted by the lateral
margins, y = +w(x). Velocimetric observations (Rignot et al. 2011) indicate that a no-
slip condition, w = 0, may be the the most widely relevant condition at ice-shelf margins.
However, localised softening or damage may in principle lead to more slip-like behaviour in
ice streams and ice shelves. For any of these cases, a drag law of the form

t-o-n=rs on y = +w(x) (2.6)

can be proposed, where 7, is the lateral stress. A specific model for 75 will be discussed below.
Some previous modelling studies (e.g. MacAyeal 1989) prescribe 75 directly, but this does
not describe the viscous resistance to shearing of the flow.

Assuming sufficiently weak basal drag, (2.1a, b) can be depth-integrated to yield a simplified
system of thin-film viscous flow equations commonly referred to as the ‘Shallow-Stream’ or
‘Shallow-Shelf” Approximation (SSA), which are provided in the supplementary document
(see DiPietro & Cox (1979), MacAyeal (1989) or Pegler & Worster (2012) for alternative
derivations of these equations).

Page 6 of 39
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The first of two thin-flow simplifications underlying this model is that the leading-order
vertical stress is hydrostatic, 0., = pg(h—z). Under this approximation, the height in floating
regions conforms to Archimedes’ principle of flotation, h = (Ap/py)H. For the grounded
region, the trivial relationship of h = b+ H applies instead. The thickness and upper-surface
height can generally be related by the conditional expression

b+ H if H>d(z) (grounded region), 2.7)
1 (Ap/pw)H if H <d(z) (floating region). '
The function d(z) = —(pw/p)b(x) is referred to as the flotation profile. A grounding line

xc(t) occurs where the ice thickness H(z,t) and flotation profile d(z) coincide, giving the
flotation condition

H(zg,t) = d(za) = —(pw/p)b(zc). (2.8)

The second simplification is the depth- and width-integrated form of the longitudinal,
z-component of the Stokes’ equation (2.1a), which I write as

0 Ju oh

— (4dwHp— | — Hrs(u) — wnp(u) = pgwH— 2.9

o (1S ) = Hrt) — wonn) = pout: (2.9
Extensional I;ﬁ:igggl E?Zi Grav;c)t&tclonal

stress

where the effective viscosity p = po|Ou/0xz|™ L. This equation is equivalent to the one-
dimensional form of a standard ice-stream model (e.g. Muszynski & Birchfield 1987; MacAyeal
1989), except augmented to include the drag force owing to lateral stresses 7.

The direct incorporation of basal stress 7, within the one-dimensional extensional flow
model (2.9) can be justified formally on the basis of a leading-order vertical plug flow arising
from sufficient basal lubrication. By analogy, the direct incorporation of lateral stress 7
within (2.9) could be justified, at least mathematically, on the basis of an assumption that
lateral stresses are much smaller than the stress associated with shearing transversely across
the channel, i.e.

Ty L e = 1o (w_lu)m , (2.10)
where 75747 is the intrinsic scale of transverse shear stress that would arise for a condition of
no lateral slip. In this limit of weak lateral drag, the flow is transversely plug-like to leading
order. While considerable softening of ice (e.g. by viscous heating) may theoretically allow
for this limit, I anticipate that the more broadly relevant case for an ice shelf is a no-slip
condition. However, this entails 7, ~ 757¢?" and thus does not satisfy any asymptotic condi-
tion that might allow for the incorporation of the lateral stress 7 into the width-integrated
formulation (2.9) to be justified in any general asymptotic limiting sense. In principle, all
components of the horizontal stress tensor may become important in either the stress diver-
gence or the determination of the effective viscosity u through different regions of the flow.
On this basis, it might be anticipated that explicit two-dimensional modelling is necessarily
in order to accommodate the effects of zero lateral slip in marine ice sheets. Nevertheless, it
will be demonstrated below that the shear stress for no lateral slip can, under situations to
be discussed, be modelled accurately by applying the heuristic shear-drag parametrisation

w

Ts = 10 ()\jrl’ﬁ)m = C+ﬂm where A} = )\ioft + m

(2.11a,b)
is an ‘effective slip length’ representing the sum of a ‘softening slip length’ )\iof " and a
cross-channel average slip associated with a local approximation of plane (two-dimensional)
Poiseuille flow (Pegler 2016). Here, the overbar denotes the width average

u(x,t) = 1 /w u(z,y,t) dy. (2.12)

2w J_,,
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The term /\frof " is included here to represent a possible effect of lateral softening and will
be neglected henceforth. A similar expression to (2.11) for centreline velocity is used by
Hindmarsh (2012) for the purpose of a scaling analysis with a different prefactor. While ap-
propriate for u interpreted as the centreline velocity and sufficient for the scaling analysis,
the form given there leads to an inconsistency with the width-integrated mass conservation
equation (2.18) that does not arise with the prefactor of (2.11b). The shear-drag parametri-
sation (2.11) is applied here as an explicit closure condition within the context of solving a
full mathematical model, and will be benchmarked against the full SSA model. The model
formed by combining (2.9) and the parametrisation (2.11) will be referred to as the quasi-
two-dimensional (Q2D) model.

As noted above, the model of (2.11) is not based on any asymptotic approximation The
relationship depends in particular on neglecting the longitudinal extensional stress in for-
mulating (2.11) despite its retainment in the force-balance equation (2.9). For n # 1, the
model also depends on the neglect of transverse shear stress in the expression for the effec-
tive viscosity p in the term representing the divergence of extensional stresses, namely, the
first term of (2.9). Despite the neglect of these contributions, the model does, by design,
consistently recover both the purely extensional (wide) and the transverse-shear-dominated
(narrow) limits (Pegler 2016). However, an ice shelf will naturally undergo transitional bal-
ances involving mixtures of these stresses, particularly in the immediate front of a grounding
line. It is possible, at least in principle, for the model to be less accurate in such regions.
In order to reveal any significant disparities, I conducted a series of numerical benchmarks
against the full, unsimplified two-dimensional thin-flow (SSA) equations for n = 3 applied
across a wide spectrum of planform aspect ratios and compared the results with the pre-
dictions of the Q2D model defined by (2.9) and (2.11). As reported in the supplementary
document, excellent agreement is generally found across the complete range of aspect ratios.
The best relative agreement occurs for wide embayments and a slight discrepancy applies
for the narrow limit. Just two localised regions of the flow exhibit minor discrepancies. One
is the so-called input boundary layer of the ice shelf immediately in front of the grounding
line (Pegler 2016). The other is near the calving front, where the corner singularity at the
margins causes the transverse velocity to become large. It should be noted that the compar-
isons provided in the supplementary results focus on the case of a uniform width. It is likely
that abrupt transitions from narrow ice streams to wide ice shelves will involve additional
stresses not described by the Q2D model. Subject to this caveat and others summarised in
§8.3, the analytical framework provided by (2.9) and (2.11) provides a good description of
the dynamics of marine ice sheets spanning narrow to wide embayments.

For small lateral softening, /\j_of " <« w, the effective slip length A, defined by (2.11b) is a
scaled surrogate for the channel half width w. For example, n = 3 yields A\; = w/20. For
representative values of w = 20-200 km, A\ =~ 1-10 km. The associated effective lateral drag
coefficient C is much larger than the upper bound of the typical values of the basal drag
coefficient given above. Therefore, as expected, the lateral condition in an ice shelf generates
more shear (ie. is ‘harder’) than the basal condition in the grounded ice stream. The relative
significance of basal stress compared to lateral drag, as described by (2.9), is measured by
the ratio of the width-integrated basal drag 2w, to the sum of the two depth-integrated
lateral drag stresses from the margins, 2H 75, namely,

~ 2wn, wCO_ {1100 if H > d(z) (grounded region),

T 2H7,  HC: )0 if H <d(z) (floating region).

(2.13a,b)

It should be noted that the basal stress is modelled using a prescribed drag coefficient C_,
while the lateral stresses in the ice shelf, being shear dominated, is controlled geometrically
by the half width, Ay oc w. The dimensionless basal strength R thus involves a mixture of the
transverse aspect ratio and the ratio of slip lengths. In view of the considerable lubrication
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typical at the base of ice stream, it possible for the overall effect of lateral stresses to be
comparable to that of basal stress despite the much shorter length scale (the glacier’s height)
over which they are applied compared to the basal stress. The estimates of R in the grounded
regions (2.13a) follow from the ranges of values of C— and Cy given above and typical
thickness scales of H ~ 10%2-10% m. The prediction that R 2> 1 indicates that the overall
effect of basal drag in the ice stream is comparable to or larger than the lateral drag. It is
important to note that, irrespective of the relative magnitude of lateral stress in the grounded
region, the lateral stresses in the ice shelf have a central role in ice-sheet stability. This is
because the force against which they compete for significance is not the basal stress but the
extensional stress resisting flow across the grounding line (the only resistance to flow across
the grounding line in the absence of buttressing). The magnitude of the extensional stress
can become readily matched and/or exceeded by the buttressing force generated by lateral
stresses through the length of the ice shelf. A sufficient resistance to flow across a grounding
line forms an independent necessary condition for maintaining a large ice sheet. Thus, in
providing a potentially dominant contribution to this resistance, lateral stresses exerted in
the ice shelf, even if relatively small compared to the lateral and basal stresses upstream of
the grounding line or exerted over a relatively short ice shelf, have the potential to dominate
control of the large-scale mass balance.

Using (2.5) and (2.6) to substitute for the drag laws 7, (u) and 75(u) in (2.9), dropping the
overbars, and using (2.7) to substitute for the surface height h in favour of the thickness H,
I obtain

OH  db

(Cow+CLH)u™ + pgwH (%—i—dx) it H> d(z),

4% <uwH%> = (2.144,b)

0H
x
where ¢’ = (pw — p)g/pw 1s a reduced gravity. Equation (2.14) is a generalisation of one-
dimensional marine ice sheet models to allow for lateral drag (Cy = 0 recovers the unbut-
tressed limit). As discussed above, the key new effects stem from the lateral stress exerted
in the floating component, given by the first term on the right-hand side of (2.14b).

2.1. Dynamic condition at the calving front or detachment location

Whether the calving front of the ice shelf lies exterior to its embayment (exterior calving)
or interior to it (interior calving), the lateral stresses will cease to be exerted beyond a posi-
tion denoted x¢. These two situations are illustrated respectively in figures 2(a, b). Exterior
calving characterises the Pine Island Glacier, Thwaites Glacier, and the Amery Ice Shelf, for
example. Interior calving characterises the Ross and Filchner-Ronne Ice Shelves, as well as
the three largest ice streams of Greenland. For exterior calving, I identify x¢ as the posi-
tion of detachment of the ice shelf from the lateral boundaries (a position coincident with
the mouth of the outlet channel, as illustrated by experiments in Pegler 2016). For interior
calving, I identify z¢ as the calving front itself.
At xz¢, I impose the stress condition
/

u% = %H at r = zc. (2.15)
For interior calving, x¢ depends on the calving processes that control the calving position.
By treating xz¢ as a parameter (cf. Gudmundsson et al. 2012), my analysis will determine
the regimes that arise as a consequence of any specified calving position z¢. An alternative
calving model, such as a condition based on a prescribed calving thickness (Schoof et al. 2017)
can be specified by replacing the imposition of z¢ by the implicit condition H(z¢) = He,
where x¢ is then treated as an unknown and H¢ is a prescribed parameter. In my illustrative
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FIGURE 3. Schematic of a marine ice sheet at large scales, illustrating the ice divide xp, an example
of an effective input position xg used in condition (2.17), and the grounding line x¢. The schematic
illustrates the situation where the location of g is set a characteristic distance of £ upstream of the
grounding line, which underlies the simplification represented by (2.21).

examples, I will initialise the system with no ice shelf and allow it to develop to an imposed
calving position z¢. During the development of the ice shelf, it will be assumed that calving
does not occur. The front of the ice shelf z () is then propagated according to & = u(zy,t)
for xn(t) < zc.

At the ice divide, I impose the symmetry conditions

0
Tzz:ua—Z:O at © = zp, (2.16a,b)
Hu=0 at ¢ = xp, (2.17a,b)

representing a no-stress and no-flux condition, respectively.

2.2. Flow evolution and input specifications

The evolution of the thickness is described by the mass-conservation equation

OH 10
— 4+ —— (wHu) = t 2.18
o (wHu) = (1), (218)
where f(z,t) is the net ice accumulation per unit width (snowfall accumulation minus melt-
ing). For the main illustrative examples of this paper, I will specify a localised input concen-

trated at the ice divide,

f(z) =2Qd(z — zp), (2.19)

where ¢ is the Dirac delta function (cf. Nowicki & Wingham 2008; Robison et al. 2010; Katz
& Worster 2010; Pegler & Worster 2012, 2013; Pegler et al. 2013; Pegler 2016; Kowal et al.
2016). Ice sheets are typically fed in a distributed manner across their full extent, f(x) # 0.
However, the case (2.19) is useful within the context of illustrative examples because it
confers the advantage of maintaining a specified control condition of the input flux. The
examples will thereby be distilled to illustrate the effects of lateral stresses. The assumptions
of a uniform basal drag coefficient C_ and flow width w will be made likewise for distilling
the illustrative examples to the effects of interest. An example of a distributed accumulation
field f(z) # 0 will be provided in the supplementary examples of Pegler (2018). With (2.19)
imposed, (2.17) can be replaced by Hu = @Q at © = xp,, where the plus subscript denotes
approach from the positive x direction.
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2.3. Steady-state reductions

By integrating the steady-state form of (2.18) and applying (2.17), we can determine the
integral expression for the volumetric flux of ice per unit width in steady state,

1 e / / /

q(z) = Hu = o o /10 w(z") f(z") da’. (2.20)
The approximation of a nearly constant channel width, w’(z) = 0, will be applied hence-
forth, but can be reinstated within the general balance equation developed for w'(z) < 1.
The theoretical development of §4 will be conducted in two stages: the first will involve a de-
termination of the depth-integrated extensional resistive stresses associated with the steady
states of the grounded region. The second will address the steady-state forces exerted by the
floating region. For the latter, the full distribution field f(z) can be incorporated directly
into an expression for the buttressing force determined in §4.2. For steady-state analysis of
the flow in the grounded region, it is possible to focus on a demarked region of the ice sheet
nearer the grounding line through the variation in the flux (2.20) can be neglected to leading
order. Let g = xg — L denote the left-hand edge of the numerical domain, where L is the
distance between the left-hand edge of the numerical domain and the grounding line. The
integral defining the flux (2.20) across the interval [z, | can be split according to

/ (&) da’ _/ C ) 42’ = glee) +O(L). (2.21)

Thus, if £ is much less than the length scale of the ice sheet as a whole, £L < (z¢ — xp),
the flux across the demarked region [zg, z¢| can be approximated as equal to ¢(x¢). For the
analysis of steady-state regimes and balances one can therefore specialise to a domain closer
to the grounding line, [z¢, z¢], and apply a condition of uniform flux, gy = ¢(z0), to leading
order, where xg is chosen to be at least an order of £ upstream of the grounding line. It
should be noted that this option to specialise to a demarked region of the ice sheet nearer
the grounding line is only generally applicable for steady states. A resolution of the transient
evolution of the ice sheet depends on a consideration of the flow evolution across the full
domain spanning ice divide to terminus. Thus, for the illustrative examples shown in this
paper and the companion, where time-dependent solutions will be used to verify the steady-
state results and their stability properties, a demarcation will not be used and the numerical
domain should be interpreted as the full ice sheet, [zp,xc]|. However, the possibility to
demarcate in steady states to excellent approximation will be implicit in applying the steady-
state analytical results of §4.1 for situations involving a sheet-wide distributed accumulation.
A similar approximation of neglecting accumulation was used in describing a quasi-steady
inner region of the grounded ice sheet near the grounding line (Schoof 2007b), and can be
interpreted as a boundary-layer property. It should be noted that this property of neglecting
small increases in flux near the grounding line is conceptually distinct from a boundary-layer
property of there existing a region through which the terms in the governing equation (2.9)
change their order of magnitude. The existence of a boundary layer of this second kind will
be scrutinised in §4.1.2.

2.4. Dimenstonless model system

By forming scaling relationships between the extensional stress, basal stress and gravitational
forces in the equation governing the grounded region (2.14a), and the flux scale hu ~ Q
specified by (2.19), T determine the intrinsic scales of thickness and horizontal length given

by
X a1
m\ M+ o |
# [<“OQ> A:’”] . L
pg

1
m o
[ﬂxf ’”*”] , (2.22a,b)
pg
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respectively, where k,,, = (m + 1)(m + 2) — 1. T also define the associated velocity and time
scales, U = Q/H and T = L/U. These scales are intrinsic to regions of the flow in which the
stresses due to extension, basal drag and gravity are mutually comparable.

The mathematical specification also depends on the bed profile b(z) appearing in (2.14a).
The dynamics will primarily be illustrated using a linear bed specified by b(x) = bg + ax,
where |bg| is the depth of the ocean at the calving position and a is the basal slope.

I use (2.22) to define dimensionless variables by

(H,b) = H(H,b), w=Uu, ==LE t=TIi (2.23)
On dropping the tildes, the governing equation (2.14) becomes
OH db
1+SHu"+H|—+— ) if H>d(2),
0 ou Or dx
4— | pH— | = (2.244,b)
SHu™ 4+ 0 H— it H <d(z),
ox
where i = |0u/0z|™ ", 6 = ¢’ /g ~ 0.1. The key dimensionless parameter is the dimensionless
lateral shear drag coefficient
HC+ r (m+1)
S = =C|— 2.25
wC_ (w) ’ (225)

where C' = 2(1 + n/2)Y/". The parameter S sets the significance of lateral drag stresses,
with S = 0 reducing the model to the one-dimensional, unbuttressed case. The parameter
is affected by the channel half width w and bridges weak to strong lateral stresses. For the
representative values of C_ and C, given above and fluxes of @ ~ 10721072 m? s~ ! I
estimate S = 0-1072. The values of S is small because the ratio of depth-integrated lateral
drag to width-integrated basal drag is typically small. As noted above, lateral stresses in the
ice shelf nonetheless have a major effect on the large-scale dynamics because of its specialised
role in resisting flow across the grounding line: without it, the resistance to flow across the
grounding line is exclusively reliant on the resistance to extensional stretching.

The input symmetry conditions at the ice divide, (2.19) and (2.16), and the stress condition
of (2.15) become

u=20 at © = zp, (2.26)
,u% =0 at x = ap, (2.27)
u% = gH at x = x¢. (2.28)
The evolution equation (2.18) becomes
%—Ij = —%(Hu) + F(x,t), (2.29)

where F(z,t) = Lf(x,t)/Q is the dimensionless net accumulation.
Two further dimensionless parameters specify the linear bed profile,

b(x) = —p+ax, where a=(L/H)a, = —bo/H, (2.30)

are a scaled bed slope and dimensionless terminal ocean depth, respectively. By considering
sections of data for the depth of the Antarctic bedrock below sea level (Fretwell et al. 2013),
I estimate |a| ~ 10711072 and 8 = O(10).

For the choice of distribution (2.19), F = 0 and (2.26) can be replaced by

Hu=1 at x = xpy. (2.31)
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FIGURE 4. Evolutions of a marine ice sheet as described by the numerical integration of (2.24)—(2.29)
for Newtonian rheology n = 1 and zp = —800. Case (a) represents a negative bed slope
a = —2 x 1073, a terminal ocean depth 8 = 2.8 and a non-buttressing ice shelf, S = 0. Case (b)
represents the same geometry but with a positive lateral drag coefficient, S = 2 x 10~2, producing a
buttressing ice shelf. Case (c) shows the negative bed o = 2x 1072 and 8 = 1.4 for an unconfined ice
shelf, S = 0. Case (d) shows the corresponding buttressed case with S = 2 x 1072, In each panel, the
dashed curve shows the initial state. The profiles are shown at times ¢t = 10%,2 x 10%,4 x 10%,8 x 103
and 16 x 10°. The stable steady states in (a) and (b) and the front section of the unstable steady
state in case (c), as predicted by (3.1)—(3.2), are shown as dotted blue curves. No steady state exists
in case (d) because of the invalidation of the only candidate steady state by secondary grounding,
resulting in unconditional advance of the grounding line (a phenomenon to be discussed in §6 and
Pegler (2018)). The right-hand plots show the grounding-line evolutions z¢(t), with the asymptotic
steady states shown as horizontal dashed lines. In case (c), the evolution of z¢(t) for a second so-
lution initiated downstream of the unstable steady state is shown as a thinner curve. A blow-up
showing the early-time retreat of the grounding line while the ice shelf forms is shown in case (d).
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3. Phenomena

As a preliminary overview of the kinds of time-dependent evolutions that arise, I present a
series of numerical solutions of the initial-value problem (2.24)—(2.29). The dynamics are il-
lustrated in this section using Newtonian rheology, n = 1, ice-divide position zp = —800, and
calving position ¢ = 0. A numerical scheme was employed in which the thickness H(x,t) is
represented nodally on an irregularly spaced grid. At each time step, (2.24) is first integrated
subject to (2.26)—(2.28) for u using finite differences. In order to discretise the differentials
to second-order accuracy for the irregularly spaced grid, quadratic interpolants were used.
The forwards time stepping was conducted using a Lagrangian approach of evolving each
node z;(t) time-dependently with the velocity field @; = u(x;,t) and evolving the thickness
at each node H,(t) using the material form of (2.18), namely, H; = DH/Dt. The advantage
of this approach is that it avoids the numerical instability inherent in attempting to integrate
(2.29a) using a fixed grid.

A suite of four solutions illustrating the key phenomena is shown in figure 4. As a bench-
mark, panel (a) illustrates the evolution of a marine ice sheet for no lateral stress S = 0
(producing a non-buttressing ice shelf) and a negative bed slope. Here, I have chosen o =
—2 x 1073 and B = 2.8, but the solution captures the general behaviour. The flow is ini-
tialised from a purely grounded state indicated by a dashed curve, with grounding line at
2 (0) = —700. The right-hand panel shows the evolution of the grounding line, z(t). The
ice sheet evolves towards a steady state shown as a dashed blue curve. The solution illustrates
the concave profile of the ice shelf characteristic of a one-dimensional extensional flow and
the approach towards a stable steady state.

The steady state can be determined directly by substituting the condition of uniform flux
H = 1/u into (2.24) to yield the steady-state equation

S+wu™ tu (= 4+ Y if u=! > d(x),
4(uu71u/)/ = ( ) ( ) (@) (3.1a,b)
Su™ "t — §u 3 if u=! < d(x),
where 1 = [u/|™~ 1. The steady-state forms of (2.17) and (2.28) are
[u_(erS) (v + b’uQ)} =1, ' (zo) = (6/8)u(zc)~t. (3.2a,b)
=T pD

Equations (3.1)—(3.2) were solved numerically by shooting using the Matlab routine odel5s
and treating the input thickness H(0) as a bisected iteration variable. The bisection was
continued until (3.2b) is adequately satisfied. The steady state is shown as a dashed blue
curve for the example of figure 4(a) and confirms the long-term convergence of the time-
dependent numerical solution.

I now introduce lateral stresses. Panel (b) shows the solution for the equivalent geometry
as case (a) except with the positive drag parameter S = 2 x 1073, The grounding line is found
to advance and settle towards a steady position zg ~ —120 further downstream than in case
(a). The shelf develops a relatively shorter, thicker, and approximately wedge-shaped profile.
The later-time profile of the shelf contains a short region of relatively rapid spatial change in
front of the grounding line, representing the input transitional boundary layer (Pegler 2016).
The general structural characteristics of the ice shelf thus differ from the non-buttressing ice
shelf in case (a) and produces a more advanced grounding line.

Panels (¢) and (d) show examples of a positive (reverse) bed slope, which introduces the
interesting possibility of a runaway grounding-line retreat. The unbuttressed case is shown
first in panel (c). Here, I set @ = 2 x 1073, reference depth 8 = 1.4 and initial grounding-
line position 2 (0) = —380. In this case, the grounding line retreats continuously from its
starting position. As shown by the inset of panel (b), the rate of retreat accelerates with
time, ultimately culminating in complete detachment of the ice sheet from the bed. The
calculation was terminated once the grounding line coincides with the ice divide, x¢ = xp,
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FIGURE 5. The universal solution describing the thickness profile of the grounded region of the ice
sheet. The grounded region of a marine ice sheet will be described by this solution subject to to
horizontal translation and truncation at ta certain thickness controlled by the buttressing force. The
leading-order solution for n = 1 and shallow bed slopes |[b'| < 1 is illustrated here. It is obtained
by solving (3.1) numerically by marching forwards until H = 0, a location set here as the reference
position z = 0. The minimum thickness of truncation occurs in the unbuttressed case at thickness
do =~ 2.345 is illustrated by a vertical dashed line (the region to right of this line is therefore
hypothetical an can never arise in steady states). The truncating position for a buttressing force
B = 2 is also illustrated, corresponding to the case of figure 6. The solution is used to determine
the general relationship between the thickness and the thickness gradient, ([H (z)] = dH/dz(z), of
a steady grounded region, which is used to determine the extensional-resistance function (4.3).

at t ~ 9 x 103, A second solution initiated slightly further downstream, xg(0) = —340,
instead advances continuously forwards, as shown by the dotted curve in the right-hand plot
of panel (c). The computation was terminated once xg = x¢. If calving were to persist at z¢
subsequently, then the flow would continue to evolve towards a steady state with a terminal
position at = x¢ and a terminal thickness larger than the flotation thickness, forming a
so-called tidewater glacier. The results here demonstrate the runaway retreat and ultimate
collapse of an unbuttressed marine ice sheet on a positive bed slope, and its strong sensitivity
to initial conditions.

Panel (d) shows the equivalent parameters to the calculation above except with the positive
drag parameter S = 2 x 1073, To best illustrate the evolution, I initiated the grounding line
further upstream than case (c¢) at x¢(0) = —700. Similarly to case (c), the grounding line
initially retreats, as shown by the right-hand plot of panel (d). At ¢ & 250, the retreat ceases
and the grounding line reverses direction. Its advance continues all the way to the channel
exit z = 0, at which time (¢ ~ 9700), I terminated the computation with the conclusion
that the ice sheet is secure. The stark contrast between the final state obtained here and that
of the unbuttressed case (c) illustrates the potential for even slight lateral stresses (S <« 1)
to stabilise an ice sheet in situations that would otherwise readily destabilise. In fact, there is
no steady-state solution to the equations in case (d). The reason is that the ice-shelf profile
necessary to sustain the only candidate steady state also would penetrate the bedrock. This
invalidation represents a distinct physical effect induced by lateral stresses — additional to
ice-shelf buttressing per se — referred to as secondary grounding, which will be detailed in §6
and its implications for grounding-line dynamics discussed further as a component of Pegler
(2018).

4. The general grounding-line balance equation

This section develops a reduced analytical theory describing the steady-state grounding-
line positions for a given configuration. Conducting a definite integral of (2.24b) over the
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interval [zq, z¢| and applying the frontal stress boundary condition (2.28), I obtain
ou re 1err2
4pH— + Hrg(u) dz = 50H at x = xg(t). (4.1)
Oz za(t)

The left-hand side represents the sum of two distinct stresses that resist flow across the
grounding line. The first is the depth-integrated viscous resistance to longitudinal extension
at the grounding line. The second is the horizontal integral of the lateral stresses along the
ice shelf (cf. Thomas 1973), referred to as the buttressing force. For a one-dimensional marine
ice sheet, 7, = 0 and (4.1) reduces to a stress condition of equivalent form to the frontal stress
condition of the ice shelf (2.28). In this case, the condition at the grounding line is the same
as that which would apply if calving occurred immediately at the grounding line (z¢ = z¢)
because a one-dimensional ice shelf simply transmits the hydrostatic pressure of the ocean
through to the grounding line. The collapse of a one-dimensional ice shelf thus has no effect
on the grounded region or the grounding line (e.g. MacAyeal & Barcilon 1988).

In steady state, the resistive stresses on the right-hand side of (4.1) can be expressed in
terms of analytical functions of the grounding-line position z¢. This will be demonstrated in
the subsequent analysis, which will reduce (4.1) to an algebraic equation for z¢,

Eld(zg)] + Blzg, zc] = 1dd(zc)?, (4.2)

where E and B are referred to as the extensional resistance function and the buttressing
resistance function, respectively. As a guide, I have here provided a preliminary indication
of the primary dependences of these functions on the grounding-line position g, calving
position x¢, and grounding-line thickness d(z¢), which will be determined in the analysis.

4.1. The extensional resistance function E

For an unbuttressed marine ice sheet, the only resistance to flow across the grounding line
is the stress due to longitudinal extension E. In physical terms, the balancing of the depth-
integrated hydrostatic pressure between the front of the grounded region and the hydrostatic
pressure of the ocean is given by the viscous resistance to stretching the flow over a region
very close to the front of the grounded region. For no ice-shelf buttressing, the flow across
the grounding line is entirely resisted by the rate of stretching in this short section of the ice
sheet. Similarly to a thread of honey falling from a spoon, the basal drag just upstream of
this region partials pins the ice to the bedrock, and the control of the flow rate in front of the
pinning point is predominantly controlled by the resistance to extension. An unbuttressed
steady-state grounding-line balance arises where the extensional resistance in this localised
region balances the driving hydrostatic-pressure discontinuity between the ice sheet and the
ocean, as represented by the right-hand side of (4.2). In considering how the extensional
stress is generally controlled in steady-state balances, it is helpful to note first that the
the grounded region always assumes the same steady-state shape for any given value of n
(at least for the general situation representing the limits of & <« 1 and S < 1, which I
will assume for the time being). The only degrees of freedom for variation in the grounded
profile are the thickness at which it is truncated (i.e. the location of the grounding line),
and the degree of horizontal translation, which are set by the stress condition (2.28) and the
flotation condition, H(xg,t) = d(zg). A general relationship between the local extensional
resistance £ and the ice-sheet thickness — applicable at any position in the grounded ice
sheet including the grounding line — can be derived from a consideration of this ‘universal’
shape of the grounded region.

In order to determine this universal profile for n = 1 for S < 1 and ¥’ < 1, I integrate
(3.1) forwards from an arbitrary thickness H = H, chosen as 10. This forwards-marching
integration attracts rapidly to the universal profile for any upstream condition on H' (H' =0
suffices, for example). The solution for @ = 0, which is representative of shallow slopes,
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FIGURE 6. The extensional resistance function E(d) as a function of grounding-line thickness d
for n = 1 calculated in §4.1 shown by the solid black curve. Its analytical approximation (4.9) is
shown by the thinner black curve. Its intersection with (§/2)d* — B in accordance with (4.2) yields
the unbuttressed steady-state grounding-line thickness dg = do =~ 2.345 for B = 0 and the larger
balancing value dg¢ ~ 3.45 > dy for B = 2.

a = |b/| < 1, is shown in figure 5. The extensional resistance E occurring at any given
position in the steady state can now be ‘read off’ from this universal profile and related to
the local thickness. To this end, I write E as
u dH
E[H(z)] = 4@{% = —4ubr1a = —4uH'¢(H), (4.3)

where I have used the steady-state condition v = 1/H, and ((H) = dH/dx(x) is the rela-
tionship between the thickness gradient and thickness determined from the universal profile.
Using the relationship of ((H) obtained above, I determine the extensional-resistance func-
tion E = E[d(z¢g)] shown as a solid black curve in figure 6. This function can be interpreted
as a database that returns the extensional stress at the grounding line for a steady-state with
any given grounding-line thickness d(z¢). Its decrease with d is consistent with the rate of
extension of the ice sheet increasing as one move downstream. Each value of n has a different
extensional resistance function E[d(z¢)]. A more general expression for E that includes a
dependence on local basal slope and general n is obtained in the appendix.

With E(d) determined, one can explore the predictions of the grounding-line balance (4.2)
for different levels of buttressing B. For zero buttressing, B = 0, (4.2) simplifies to

E(d) = 156d°. (4.4)

In this special situation, all the steady-state grounding-line forces depend purely on the
grounding-line thickness d. Therefore, there is a special balancing value of d given by the
solution of the algebraic equation (4.4). The individual variations of the sides of the balance
as functions of d are shown in figure 6, where (§/2)d? is shown as a blue curve and FE(d)
as a black curve. Their intersection yields the critical balancing value dg = dy =~ 2.345 for
n = 1, which universally describes the steady thickness at an unbuttressed grounding line (for
S <« 1 and ¥ < 1). The dimensional expression of this result, namely d/H = dj, represents
the scaling between grounding-line flux @ and thickness dg obtained by Schoof (2007b).
For the bed profile (2.30), the solution of d(xg) = dy is given by z¢ = [8 — (1 — §)dp]/«,
which is within 1% of the numerically determined grounding-line position for the examples
of figures 4(a) and 4(c). The ‘universal profile’ derived above applies for [V'| < 1 and S < 1.
The estimates given in §2.4 indicate that these parameter limits may be broadly relevant
to many geophysical settings. Nevertheless, the analysis above can be repeated for «, S # 0
to yield a more general form of the extensional-resistance function E[d(z),«, S] that can
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FIGURE 7. Panel (a) shows the general relationship for n = 1 between the balancing steady-state
grounding-line thickness d¢ and the applied buttressing force B, as described by the algebraic
equation (4.5a) in which the extensional resistance function F(d) is represented using its numerical
solution obtained in §4.1. The plot shows the increase of the grounding-line thickness dg from
the special unbuttressed thickness do given by the solution of (4.4). The simplified relationship
implied by the strong-buttressing limit of (4.6) is shown as a dashed blue curve. Panel (b) shows
the corresponding relationship between the relative buttressing € defined by (4.5b) and dg.

differ from E[d(z),0,0]. For example, the first-order correction to the unbuttressed balance
Eld(z),a,0] = (§/2)d? for n = 1 yields dg(a) ~ do + 2.78 v, for a — 0. This represents a
correction to the prefactor of the grounding-line flux formula of Schoof (2007b) owing to the
local basal slope. Thus, so long as |a| = |b/| < 1072, the case E[d(z),0,0] shown in figure 6
provides an excellent approximation.

We can deduce some essential effects of ice-shelf buttressing by considering the function
E(d) in conjunction with the steady-state grounding-line balance equation (4.2) with (for
now) a specified buttressing force B,

E(d B
E(d)+ B = 16d®> or %(S(dg + 5@ =1, (4.5a,b)
eyl

where () is referred to as the relative buttressing. Application of a numerical root finder
to (4.5a) yields the general relationship between the grounding-line thickness dg and the
buttressing force B for n = 1 shown as a solid curve in figure 7(a). The plot illustrates the
increase of the grounding-line thickness dg from the unbuttressed value dj as the buttressing
force B is increased.

For sufficiently strong buttressing, (4.5a) predicts a dominant grounding-line balance be-
tween the buttressing force and buoyancy alone, namely,

B~ Lsd>. (4.6)

This balance represents the strong-buttressing control of a grounding-line underlying the
reduced nonlinear diffusive flow-line model of Pegler et al. (2013). This balance represents a
fundamentally different mode of grounding-line control compared to the unbuttressed balance
(4.4). A simplified interpretation of the nature of this control as stemming directly from the
structure of the ice shelf will be reserved for §4.3. It follows that there is a complete transition
from the ice shelf playing no role whatsoever for a one-dimensional marine ice sheet to playing
a potentially completely dominant role for two-dimensional dynamics.

A key question for marine ice sheet dynamics is the proportion of the driving buoyancy drop
(6/2)d? that is balanced by buttressing, as measured by €. The general relationship between
Q and dg, as derived from the relationship between B and dg determined numerically above,
is plotted in figure 7(b). The parameter §2 describes a spectrum of balances bridging two
limits: weak buttressing, 2 ~ 0 to strong buttressing 2 =~ 1. It is related to a quantity
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FIGURE 8. The profiles of forces comprising the force-balance equation (4.7) along the length of
an unbuttressed marine ice sheet, S = 0. The divergence of extensional stresses I, is shown as
solid black curve, basal stress 7, is shown as a dotted blue curve and gravity G, is shown as a
dashed black curve. Panel (a) illustrates the satisfaction of the basal-drag-dominated ‘shallow ice’
balance (7, &~ G) given by (4.8) for © < z¢. The enlargement of panel (b) shows the jump to an
extension-dominated ice shelf (E, = G).

O = (1—-9Q) used in the literature to impose a buttressing force as a multiplicative reduction
of the driving buoyancy force [E(d) = (©§/2)d?] (e.g. Dupont & Alley 2005). The relationship
of figure 7(b) gives a prediction for € in terms of the dimensionless grounding-line thickness
de. In this case, for >90% of the resistance to flow across the grounding line to stem from
extension, dg must lie in the narrow range dy = 2.35 < dg < 2.40. For >90% to stem from
buttressing, dg > 3.8.

4.1.1. The force-balance structure

Let the four forces comprising the governing force-balance equation be denoted according
to

A(Hpg)y —Hrs — 7y = Hhy . (4.7)
Em Gm

This section will focus on discussing the force balance specifically in the grounded region
and hence 7, will be set as zero for the time being (its effects on force-balance structure
are reserved for §5). The three remaining forces are plotted for the final steady state for
the unbuttressed example (75 = 0) shown earlier in figure 4(a). Here, the divergence of the
depth-integrated extensional stress F, is shown as a solid curve, the basal stress 7, is shown
as a dashed curve and the gravitational term G, as a dotted curve. Upstream, the divergence
of extensional stresses F, is small and hence the flow is dominated by a balance between the
total drag and gravity, 7, ~ G, for which (2.24a) reduces to the simplified flow equation
oh

™~ —H e (4.8)
This drag-dominated balance is mathematically similar to the balance associated with the
shallow-ice-approximation, which referes specifically to a leading-order balance between ver-
tical shear stresses and gravity (Fowler & Larson 1978; Cuffey & Paterson 2010). Towards
the grounding line, F, increases very slightly, but remains small, and hence the approxima-
tion (4.8) holds all the way up to and including the grounding line. Across the grounding
line, basal stress vanishes abruptly, 7, = 0, and E, = G, for x > xg. The steady-state
grounding-line position z¢ is set by where the extensional stress E balances the buoyancy
force in accordance with (4.4). Tt is therefore interesting that its divergence E, remains uni-
formly small throughout the grounded region. As a consequence, there is no boundary layer
through which the basal-drag-dominated approximation of (4.8) breaks down. The lack of
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this boundary layer can be attributed to the smallness of the dimensionless density difference
0 ~ 0.1, which appears as a prefactor to the gravitational term in (2.28) but not in (2.24a).
As a consequence, E, = O(JF) at the location where the grounding-line balance of (2.28)
is satisfied, and is therefore small. By rewriting (2.28) as H = 86 *udu/dz, it is explicitly
seen that (2.28) is attained for a relatively larger thickness H as § — 0. In other words,
the universal profile of the grounded region shown in figure 5 is truncated further upstream
for smaller . The geophysical value of § = 0.1 is sufficiently small that the grounding line
occurs at a thickness where E, is still small (the value of E, only becomes important in the
‘hypothetical region’ residing to the right of the vertical dashed line in figure 5). The limit of
0 — 0 thus represents an asymptotic condition under which the basal-drag-dominated zone
can be matched to the extensional ice shelf formally, and to excellent approximation, using
a direct patching condition. In this regard, there is no boundary layer through which terms
in the governing equation (2.14a) change their order of magnitude. It should be emphasised
that the notion of an extensional boundary layer discussed here is conceptually distinct from
the notion of a boundary layer described in §2.3, which is used only to neglect accumulation
near the grounding line.

It will be verified later in §5.1 that the force balance of the grounded region shown in
figure 8 is qualitatively similar with buttressing. Indeed, buttressing only strengthens the
drag-dominated approximation (4.8) because it causes the universal profile to be truncated
at a yet thicker grounding line d¢ > dy, as illustrated for B = 2 in figure 5. However, lateral
stresses fundamentally complicate the force-balance structure of the ice shelf (Pegler 2016),
an aspect reserved for §5.

4.1.2. Analytical approximation for E

By using (4.8) to evaluate the thickness-gradient function ((H) in (4.3), one obtains the
analytical approximation for the extensional-resistance function

E(d) ~ 4d~3, (4.9)

given here for n = 1. This approximation is plotted alongside the numerical solution in
figure 6 as a dotted curve. The generalisation of this result to other values of n, and an
effect of local slope ¥/, is obtained in the appendix. The approximation provides an excellent
representation of the numerically determined curve. To illustrate its accuracy, note that a
substitution of (4.9) into (4.4) and rearrangement for dy yields do =~ (8/6)'/°, which is within
15% of the exact value. The corresponding result for n = 3 is within a mere 0.1% of the exact
result (see the appendix). Thus, the neglect of the divergence of extensional stresses, which is
responsible for long-range communication of forces in the grounded region of an ice sheet, has
practically no effect on the predictions of the SSA model (at least for steady or near-steady
grounding-line balances).

4.2. The buttressing resistance function B

This section determines the steady-state buttressing force B in terms of the parameters
specifying the ice-shelf dynamics. In steady state, the integral form of the buttressing force
defined in (4.1) is given by

xrCo xc
Blzg,zc,dg] = / Hrs(u) do = S/ Hu™ dz, (4.10)
TG el

where u(x) is the solution to the steady-state system describing the ice shelf (3.1b) integrated
subject to a ‘prescribed’ grounding-line thickness dg and the frontal stress condition (3.2a),
namely,

u(rg) = dg;l, ' (zo) = [5/8u(xc)]1/m. (4.11a,b)
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FIGURE 9. The relationship between the buttressing force (4.10) and shelf length L = z¢ — za
for grounding-line thicknesses of dg = 4 (solid) and 16 (dashed) and power-law exponent n = 3
obtained by repeatedly solving (3.1) and (4.11) numerically and evaluating the integral in (4.10)
using quadrature. The analytical approximation (4.13) is shown as a dotted blue curve, illustrating
its excellent representation of the buttressing force.

The system defined by (3.1) and (4.11a,b) depends on x¢, ¢ and dg, and hence the steady-
state buttressing force (4.10) is a function of these variables alone. The function Blzg, z¢, dg]
can be interpreted as a ‘database’ giving the steady-state buttressing force for any given
rg, vc and dg. A similar method of constructing database functions for the steady-state
buttressing forces was developed for a radially spreading ice shelf (Pegler & Worster 2012,
2013), for which a reduction to an algebraic system analogous to (4.2) was obtained.

The translational invariance of the system defined by (3.1) and (4.11a,b) implies that the
dependences of B on xg and z¢ can be combined into a single dependence on shelf length,
L = x¢ — z¢. Integrating (3.1d) subject to (4.11a,b) numerically using a scheme similar
to that described earlier in the text below (3.1) and evaluating the integral of (4.10) using
quadrature over a range of L, I determine the general relationship between B and shelf length
L for two illustrative fixed values of dg = 4 and 16 in figure 9. The numerical similarity of the
two curves indicates a very weak dependence of buttressing on grounding-line thickness dg.
In other words, for each value of n, there is a near-universal relationship between buttressing
and shelf length spanning fully the limit of a short, weakly buttressing ice shelf to a long,
strongly buttressing ice shelf.

For n =1, (4.10b) can be integrated directly to give (Pegler 2016)

B = S(:Z?C - Ig), (412)

showing that, for linear rheology, the buttressing force is directly proportional to the length of
the ice shelf. The possibility of this simple integration applies uniquely for n = 1 because the
integrand of (4.10b) is uniformly proportional to the width-averaged flux Hu = 1. Expression
(4.12) implies that there is no dependence of the steady-state buttressing force for n =1 on
the grounding-line thickness dq.

For n > 1, one can develop the generalised analytical approximation

5 [[NS 2N
Bzi{{T(xc—xg)—l—Hév} —Hg}, (4.13)

where N = (n + 1)/n, He ~ 8/N”y is the calving thickness and 5 = §—1/N §1/»N*_ This
excellent approximation follows from substitution of the analytical solution for the prevailing
interior of the ice shelf derived in Pegler (2016) into the buttressing integral (4.10), as detailed
in the appendix. The result of (4.13) is shown as a dotted blue curve in figure 9 and closely
approximates the two numerical curves. The lack of a dependence of (4.13) on d¢ corroborates
the very weak dependence of the numerical solutions on dg. The weak dependence occurs
because dg only affects flow in the transitional boundary layer in front of the grounding
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FIGURE 10. Panels (a)—(c) illustrate the profile of the marine ice sheet as the dimensionless lateral
drag coefficient S is increased through 0, 2 x 1072 and 1072, respectively, for topography defined
by a = —2 x 1072 and § = 2.8. The plot illustrates the change in form of the ice sheet from zero
buttressing to positive buttressing. Panel (d) shows the corresponding grounding-line position z¢
across this range. The strong-buttressing prediction of (4.6) is shown as a curve of blue circles. Panel
(e) shows the corresponding variation of the relative buttressing parameter 2 defined by (4.5). The
threshold (4.15) for large S is shown as a horizontal dashed line.

line, which provides a relatively small contribution to the buttressing integral (4.10). For
n > 1, (4.13) shows that a shear-thinning rheology causes B to depend nonlinearly on the
shelf length (z¢c — z¢) and introduces a dependence on the calving thickness He (a known
quantity that is determined as part of the analytical solution of the universal profile (A 4)).

As noted in §5, net accumulation in the ice shelf has a direct dynamical effect via its control
of ice-shelf buttressing. By integrating the steady-state form of (2.18), one obtains the non-
uniform flux per unit width ¢(z) = Hu =1+ f;c F(2") dz. With this, the generalisation of
(4.13), derived in the appendix, is

g [[N [ a
B {F/ Sq(a") V™ da’ + H]CV} —HZ %, (4.14)
TG

which relates the distribution of melting F(z) to the buttressing force. This expression em-
bodies the key link between the oceanographic control of melting (e.g. Jenkins 1991) and
glacial dynamics. The result shows that buttressing generally depends on the integral of the
flux along the ice shelf ¢(x). An interesting implication is that melting near the grounding
line, which can be the most significant along the ice shelf, has a larger effect on the buttress-
ing than melting further downstream because of the longer region over which it reduces the
flux of the ice shelf.

4.3. Dynamical variation across the spectrum of relative buttressing strength

When the function (4.12) [or one of its generalisations, (4.13) or (4.14)] is incorporated
into (4.2) along with E[d(x)], the full equation provides a closed algebraic equation for the
position of steady-state grounding lines z. The equation bridges the complete spectrum
connecting unbuttressed to strongly buttressed grounding lines. This equation incorporates
ice-shelf buttressing predictively, contrasting with a direct prescription of © (e.g. Dupont &
Alley 2005; Schoof 2007a).

To demonstrate the application of the balance equation (4.2), I solve it for z for the
illustrative example of the negative slope o = —2 x 1073 and reference ocean depth 3 = 2.8.
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FIGURE 11. Suites of steady-state profiles of a marine ice sheet for (a) zero lateral stress, S = 0,
and (b) a positive lateral stress, S = 2 x 102 shown as the calving position z¢ is varied. The plot
illustrates the complete independence of the grounding line from the calving position x¢ for case
(a) and the considerable sensitivity to it in case (b). Overlaid as a red dotted curve in panel (b) is a
solution with the same parameters as the case xc = 400 but with the basal stress set identically equal
to zero to leave just the lateral drag, illustrating the effective independence of the grounding-line
from the nature of the drag force in the grounded region.

The predicted grounding-line position z¢ is plotted as a function of the dimensionless lateral
drag coefficient S in figure 10(d), showing the positioning of the grounding line in deeper water
for larger S. Panels (a)—(c) illustrate the flow profile of a marine ice sheet as S is increased,
showing the transition from the broadly concave ice-shelf profile of a non-buttressing ice shelf
(Van der Veen 1983) to the more wedge-shaped profile of a buttressing ice shelf (Pegler 2016).
The corresponding relative buttressing €2 is shown in figure 10(b). The plot shows a sharp
increase in the relative buttressing with S towards the regime of strong buttressing. As S is
increased, () asymptotes towards the value 0.7 shown as a horizontal dashed line. This value
is less than unity because the buttressing that can be generated is ultimately constrained
by the thickness at the calving front. A larger value of S contributes to a larger buttressing
force in accordance with (4.12), but also decreases the length of the ice shelf in such a way as
to constrain 2 ultimately as S — oco. The asymptotic value of €2 is obtained by substituting
the flotation depth of the ocean at the calving front, de = /(1 —6), into (4.5b) to determine
that
E(dc)
20
For = 2.8, Q¢ =~ 0.7, in agreement with the asymptotic behaviour of 2 determined numer-
ically. The large-S solution can be approximated by the strong-buttressing limiting balance
of (4.6), which is shown as a curve of blue circles in figure 10(a).

As S is increased, there is a fundamental switch in the dominant forces controlling the
grounding line. To illustrate this, I express the limiting end-member balances predicted by
(4.2) in their dimensional forms. For n = 1, these are given by

CApeQ*C- pgld(x)?

N<Qc=1~-

(4.15)

E(d) = (€2 =0),
pyd(z)’ ? i (4.16a,b)
B(ze —2g) = 3ZO2Q (xc —xg) ~ % (Q~1).

The extension-dominated unbuttressed balance of (4.16a) recovers the expression for @ as
a function of grounding-line thickness d given by Schoof (2007b). This first result shows
that an unbuttressed grounding-line position is influenced by the viscosity of the ice pg and
the basal drag coefficient C'_. In this case, the balance can be interpreted as an expression
for the grounding-line thickness, as represented by the special dimensionless thickness dg
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discussed above. The pure dependence of (4.16a) on the single dependent variable d(x) is
consistent with the simplified situation of an unbuttressed grounding being controlled directly
by the local grounding-line thickness. The strong-buttressing expression of (4.16b) represents
a completely different physical control of the grounding-line position dominated instead by
the ice-shelf dynamics. This includes an inherent dependence on the calving position x¢ and
width of the ice shelf w, and a loss of dependence on the basal drag coefficient C'_. Thus, there
is a full switch in dynamical control from the calving position playing no role whatsoever for
a one-dimensional or non-buttressing marine ice sheet to playing a dominant control under
the effect of even relatively weak lateral stresses on the ice shelf.

Because (4.16b) is entirely distinct from (4.16a), it follows that the application of the
augmented expression for grounding-line flux in a form that incorporates the multiplicative
reduction in the hydrostatic pressure drop owing to buttressing © (Schoof 2007b), and used
in simulations (e.g. DeConto & Pollard 2016), becomes degenerate for sufficiently strong
buttressing. The general balance equation in the form (4.2) will seamlessly incorporate both
unbuttressed and strongly buttressed situations.

The key switch in parametric dependence from the ice shelf playing a non-existent role to a
dominant role is illustrated by variation of the steady-state solutions for a selection of calving
positions x¢ shown in figure 11 for (a) S = 0 and (b) S = 2 x 1073. For the unbuttressed
case (a), there is no change in the grounding-line position z¢. In the buttressing case (b), a
considerable change in grounding-line position occurs. As the calving position is varied, the
change in grounding-line position is in fact larger than the change in the ice-shelf length.
In this same plot, I illustrate as a red dotted curve a solution in which the basal stress,
given by the third term in (3.1a) is set identically equal to zero for the case xc = 400. The
grounding-line position is essentially unaffected despite the complete removal of basal stress.
The grounding line is therefore being controlled completely by the ice shelf.

5. Marine ice sheet structure

Analysis of the solutions of the floating component of the Q2D model (Pegler 2016) shows
that the form of a buttressing ice shelf differs from the broad concave profile of a non-
buttressing ice shelf (e.g. Van der Veen 1983) in containing a short region of rapid thinning
in front of the grounding line connected to a prevailing region of relatively mild slope leading
to the calving front. This section will review this structure and draw connections between
certain variables defining the structure of an ice shelf and the relative strength of buttressing
that it generates.

5.1. Effect of lateral stresses on the structure of the ice sheet

To illustrate the force-balance structure with lateral stresses, I show the profiles of the four
individual forces comprising the continuum balance (4.7) for the illustrative case of S =
2 x 1073 in figure 12, where the lateral stress 7, is indicated by a red dashed curve, which is
horizontal for > z¢. In common with the unbuttressed case shown earlier in figure 8, the
grounded region is basal-drag-dominated, with the divergence of extensional stress F, being
negligible along its full length. However, the ice shelf forms two distinct regions: the ‘input
boundary layer’ in which extensional stresses are important and the prevailing ‘universal
profile’ of the ice shelf further downstream (Pegler 2016).

To analyse this asymptotic structure, I first recall the general analytical solution describing
the confined ice shelf for n = 1 given by solving (3.1) subject to (4.11a,b), namely,

_ —1/2
H(z) = n |/ dge—2e/t 4 1 ey 5.1
=1 le ae + 2 ) s e £ , (5.1)

where n = (5/62)Y/4, (2, 2g) = SY2(x, zg), dg = n~ 'dg (Pegler 2016). The solution (5.1) is
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FIGURE 12. Panel (a) shows the numerical solution for 8 = 2.8, « = 2x 1072 and S = 2x 1072, and
illustrates the three-component structure of a buttressed marine ice sheet. The profiles of forces, as
defined in (4.7), are shown in panel (b). Here, the divergence of extensional stresses E, is shown as
solid black curve, basal stress 7, is shown as a dotted blue curve, the dimensionless depth-integrated
lateral stress HTs is shown as a dotted red curve and the gravitational force G, is shown as a
dashed black curve. The plots illustrate the basal-drag-dominated grounded balance (1, ~ G4),
the extensional inlet boundary layer in front of the grounding line, z¢ < = < z¢ + A, and the
lateral-drag dominated region downstream (H7s ~ G). The enlargement of panel (b) shows the
extensional balance (F; ~ G) in the inlet boundary layer.

illustrated for two shelf lengths L = 100 and 500 in figures 13(b, ¢). The solution for L = 100
clearly illustrates the inlet boundary layer of rapid thinning. The prevailing downstream
region is of a universal shape that is independent of the grounding-line thickness dg and
with a horizontal translation set by the calving position x¢. By considering the asymptotic
structure of (5.1), one can determine the solution for the prevailing downstream region,

Hy(z) =n [$v/merfex (—33)] 172

where erfcx( = 642(1 —erf¢) and A is the length of the inlet boundary layer, which varies
depending on the solution (Pegler 2016). The solution (5.2) is shown as a dashed blue curve
in panels (b) and (c¢) of figure 13 and is confirmed to describe the prevailing shape. The
corresponding analytical result for power-law fluid (Pegler 2016) is reviewed in the appendix.
If the ‘matching thickness’ of the universal profile (5.2) extrapolated to the grounding line,
namely H; = Hy(zg), is less than the grounding-line thickness, H; < dg, then the flow
through the inlet boundary layer is characterised by thinning and acceleration. This situation,
referred to as ‘over-thick’, corresponds to the profile of an ice shelf typically observed in
nature. On this basis, it was hypothesised in Pegler (2016) that the predictions of a full
marine ice sheet model for steady-state balances should only produce this situation. If instead,
H, > dg, then the inlet involves thickening and deceleration, and was referred to as ‘under-
thick’. An under-thick input is a theoretical possibility only if one has full control over
the specification of the inlet thickness and position, and may never arise in the glaciological
context. However, for input configurations involving the direct input at an imposed position or
along a backwall, an under-thick flow is possible; this situation was observed in the laboratory
experiments of Pegler (2016) and may occur in float-glass manufacture.

To illustrate the variation in the ice-shelf structure as the shelf length L is increased from
zero, I show the grounding-line thickness d¢ predicted by the grounding-line balance equation

(A <z <uzo), (5.2)
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FIGURE 13. Panel (a) shows the steady-state grounding-line thickness d¢ as a function of the shelf
length L = zc — xg for S = 2 x 1073, compared alongside the value of the universal profile (5.2)
extrapolated to the input Hy = Hy(z¢). It is found that d¢ > H, implying that only over-thick
regimes of input occur for marine ice sheets. The vertical dashed line indicates the characteristic
length 25712 ~ 44 above which the distinction between the universal profile and the inlet boundary
layer is clearly developed. The inset shows the relative buttressing parameter 2 defined by (4.5)
plotted as a function of shelf length and the associated approximation based on (5.4). Panels (b)
and (c) show the analytical solution (5.1) (solid black curve) and the universal profile (5.2) (dashed,
blue curves) for L = 100 and 500, respectively.

(4.2) alongside the matching thickness H, predicted by (5.2) against L for S = 2 x 1073
in figure 13(a). The results show that dg > Hy, confirming the hypothesis that only over-
thick input boundary layers can arise in the glacial context (at least in steady state). It
should be noted that the inlet boundary layer is clearly defined only for a sufficiently long
ice shelf, L > S~1/2[, ~ 44, a value indicated by the vertical dashed line in figure 13(a)
(this corresponds to the length of the ice shelf being greater than approximately one-third of
its width). For sufficiently large L, figure 13(a) shows that the extrapolated and grounding-
line thicknesses become similar, H; =~ dg. The grounding line then occurs to excellent
approximation where (5.2) intersects the bedrock, as illustrated in figure 13(c), implying
that the grounding-line is being controlled by the lateral-drag-dominated section of the ice
shelf (cf. Pegler et al. 2013).

5.2. Relationship between the buttressing force and the structure of the ice shelf

Analogously to the simplifications arising from the basal-drag-dominated approximation in
the grounded region (4.8), analytical results can be determined using the uniform smallness
of E, throughout the component of the ice shelf downstream of the inlet boundary layer.
Similarly to that case, the divergence of extensional stresses F, remain small throughout the
flow downstream of the input boundary layer, as shown in figure 12. It was noted in §4.1.2
that this could be justified on the basis of the smallness of §. However, in the purely floating
context there is no parameter limit analogous to 6 — 0 to justify the uniform smallness of
E,. Despite this, the numerical value of E, ~ 1072F at = x¢ for n = 3, is verifiably small
(in a sense, ‘0 = 1’ is small enough). Thus, the analytical approximations for the universal
profiles resulting from the neglect of E,, as derived in Pegler (2016) and reviewed by (A 4) in
the appendix, provide practically exact descriptions of the prevailing region of the ice shelf
downstream of the inlet boundary layer (there is a maximum error of just 2%).
The neglect of E, in (2.24b) yields the lateral-drag-dominated flow approximation

Ts 2 —0H', (5.3)
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FIGURE 14. The steady-state solution predicted by solving the steady-state equation (3.1) subject
to the stress condition (4.2) with the buttressing force (4.13) for n = 1. The dimensionless coefficient
of lateral drag is (a) S =0, (b) S =5x107* and (c) S = 1073, and the topography has the positive
bed slope o = 2 x 107% and § = 1.4. Cases (a) and (b) provide consistent solutions. However, case
(c) is invalidated by the ice shelf penetrating the bedrock. This situation exhibits Type-I secondary
grounding, as per the definitions of (6.1).

(a) Secondary grounding (type 1) (b) Secondary grounding (type 1)

x T

FIGURE 15. Schematics illustrating the two types of secondary grounding that invalidates a possible
steady-state grounding-line position on the basis that the ice shelf necessary to sustain it would
penetrate the bedrock, corresponding to one of conditions (6.1a, b) being satisfied. Panel (a) shows
type-1, where the predicted profile penetrates the bed immediately in front of the grounding line.
Panel (b) shows type-II, where the profile instead penetrates the bed some distance downstream of
the grounding line in the manner of an ice rise.

which is the floating analogue of (4.8). Since this approximation applies uniformly down-
stream of the inlet boundary layer (Pegler 2016), one can evaluate (4.13) as

zc
Bm/ Hry do =~ [—%5H2EZ+A ~ %5[HU($G)]2—%5H% (5.4)
rxa+A
on neglecting the contribution over [z¢, z¢ + A]. The result of (5.4) shows that the buttress-
ing force can be related straightforwardly to the difference in depth-integrated hydrostatic
pressure between the ends of the lateral-drag-dominated region of the ice shelf. The func-
tion Hy (x) used to determine these thicknesses is given by the analytical solution for the
drag-dominated region (A 4). The implied relative buttressing, Q = d*(H? — HZ), where
H, = Hy(zg) is illustrated by the green dashed curve in the inset of figure 13(a) and
provides an excellent approximation. The result shows that the relative significance of but-
tressing can be linked directly to the three thicknesses dg, H4 and H¢ defining the ice-shelf
structure. In addition to providing an insightful representation of the buttressing force, (5.4)
also provides a helpful analytical shorthand for the evaluation of B once Hy(x) has been
determined (this was employed in evaluating (5.4), as discussed in the appendix). The effects
of rheology, calving position and flux variations due to melting all encapsulate within the
solution for Hy (x) given analytically by (A 4). A simple physical interpretation of the effect
of the first term on the right-hand side of (5.4) is that the thickness at the start of the lateral-
drag-dominated region, Hy ‘blocks’ a certain proportion of the driving buoyancy force at
the grounding line, (§/ 2)dé. In a sense, the residual between the driving hydrostatic stress
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FIGURE 16. The steady-state grounding-line position zg as a function of S for (a) a = —2 x 1073

and f = 2.8, and (b) @ = 2 x 107® and 8 = 1.4. The grounding-line positions for which the
steady-state solution results in secondary grounding (SG) is shown by the blue shading in each case.
These regions were determined using the method of finding the steady-state solutions subject to
the critical cotangency condition (6.2) described in §6. Type-I secondary grounding (6.1a) is shown
as a lighter shade and type-II (6.1b) is shown by the darker shade. In case (b), there is a critical
value S, ~ 6.9 x 10™*, for which no steady state exists for all S > S. because of its invalidation by
secondary grounding.

and the ‘blocking thickness’ Hy; represents the remaining effective hydrostatic pressure drop
available to drive flow across the grounding line. The second term in (5.4) represents a further
negative contribution to the buttressing stemming from the hydrostatic pressure drop at the
calving front. This term can be interpreted as a contribution to the overall depth-integrated
pressure drop that remains unresisted by the lateral stresses in the ice shelf. Thus, in view of
the fact that the blocking thickness cannot exceed the grounding-line thickness, Hy < dg,
and a calving front He typically has an appreciable non-zero thickness (in accordance with
observations and the analytical result of (A 4)), it follows that a buttressing force can never
fully balance the hydrostatic pressure drop at the grounding line completely.

6. Secondary grounding

An assumption underlying the results of (4.12)—(4.14) is that the ice shelf forms a region
of continuous flotation along a single continuous interval between the grounding line and the
calving front. This assumption is implicit in the integration of (2.14b) leading to (4.1) and
(4.2). However, it is possible that a solution to (4.2) predicts an ice shelf that penetrates the
bedrock, leading to an unphysical solution and a breakdown of (4.1). Figure 14 shows a suite
of steady-state solutions for n = 1 with increasing lateral drag S obtained by solving (3.1b)
subject to the condition (4.2) with the buttressing force (4.12). For cases (a) and (b), the
solutions involve a single, continuous interval of flotation. Therefore, they are consistent with
the use of (4.12). However, for case (c), the ice shelf penetrates the bedrock, implying that
the solution is invalid. This phenomenon of ‘secondary grounding’ is a distinct mechanical
effect induced by lateral stresses additional to the generation of ice-shelf buttressing per se.

In figure 15, I illustrate the two different types of secondary grounding that are theoreti-
cally possible. Panel (a) shows type I, in which the steady ice-shelf profile (5.1) is predicted
to penetrate the bed immediately at the grounding line. Panel (b) shows type-II, where
penetration instead occurs further downstream. Mathematically, the two types occur if

H'(zg) > d'(zc) (type-I),
/() < d(z0), (6.10,0)
and H(z) > d(x) for some = > z¢

} (type-IT),
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where H is the thickness profile of the ice shelf resulting from the assumption of continuous
flotation. It should be noted that type-II secondary grounding forms a necessary condition
for the formation of a so-called ice rise or rumple, which is a localised region of the ice shelf
that contacts the bedrock downstream of the primary grounding line. However, it is not a
sufficient condition because the resulting (typically considerable) increase in the buttressing
force resulting from a basal contact of the ice shelf will result in a more advanced steady-
state grounding line. The advancement of the grounding line resulting from this additional
buttressing can close the gap upstream of the position of secondary basal contact where
(6.1d) is satisfied, implying that an ice rise does not necessarily form instead state despite the
prediction of type-II secondary grounding. The inducement of type-I secondary grounding
(6.1a) can result in a special form of grounding-line advancement in which the ice shelf
‘regrounds’ continuously in front of the present grounding line. This mode of grounding-line
advancement differs from the more typical mode of migration controlled by thickening of
the ice sheet on the grounded side of the grounding line. It can also result in the formation
of an extended grounding region, an aspect reserved for dedicated treatment as part of the
companion paper (Pegler 2018).

The critical regions of the space (S, x¢) where secondary grounding occurs can be examined
by first determining the ‘locus’ over this space for which the ice shelf is critically cotangent
with the bedrock at the grounding line,

H(zs) =d(zs), and H'(zs)=d (xs). (6.2a,b)

The curve of zg(S) provides both the boundary of the region for which secondary grounding
occurs as well as the boundary of the critical switch from type-I to type-II. The curve of
z5(9) is generally multi-valued and hence it is easier to specify ¢ = xg and determine the
critical drag parameter S(zg) for which (6.2a,b) are mutually satisfied. For general n, this
curve can be determined numerically by solving (3.1b) subject to (6.2a,b) and iterating S
bisectively until (3.2b) is adequately satisfied. For n = 1, this curve can instead be obtained
analytically by using the first-integral of (3.1b), namely,

4Hu' + S(zc — x) = L6H? (6.3)

(Pegler 2016). Using the steady-state expression for the derivative, u’' = —H 2H’, substi-
tuting the cotangency conditions of (6.2a,b) directly into (6.3) and rearranging, I obtain
S(zs) = (3d*> + 4d3d')/(xzc — xg). The implied regions for which type-I and type-II sec-
ondary grounding occur are shown by the lighter and darker shaded regions in figure 16,
respectively.

For the negative sloped example of figure 16(a), 25 < 2, and hence secondary grounding
does not interfere with the validity of any steady states. For the positive-slope case of figure
16(b), satisfaction of (6.1a,b) occurs only for S > S., where S, = S.(a,) =~ 6.9 x 10~*
is a critical drag parameter. The sharp ‘switch-on’ of secondary grounding at S, abruptly
removes a significant branch of consistent stead-state grounding-line positions. These invali-
dated steady states are indicated by a dashed curve in figure 16(b). This invalidation explains
the lack of any steady state in the numerical example of figure 4(d), for which S =2 x 1073
is greater than S,. The critical inducement of secondary grounding by lateral stresses pro-
duces a distinct mechanism for grounding-line migration, which is additional to the direct
effect of ice-shelf buttressing. The implications of this phenomenon for marine ice sheet struc-
ture, grounding-line migration, and the suppression of otherwise destabilising grounding-line
retreat will be addressed as part of the companion paper (Pegler 2018).
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FIGURE 17. Panel (a) shows the steady-state grounding-line positions z¢ predicted by (4.2) for the
nonlinear bed topography (7.1) and the rheological exponent n = 3 as a function of drag parameter
S. The regions in which secondary grounding (SG) invalidates the consistency of a steady state are
shown by the blue shaded regions; Type-I and Type-II are shown by the lighter and darker shades,
respectively. The steady states invalidated by secondary grounding are shown as dotted curves. The
solution to the full system (3.1)—(3.2) reveals additional steady-state branches shown as red curves.
Panel (b) shows the bed topography (7.1) and its intersections with the horizontal line z = —do(1—9)
(dashed) producing the four steady states possible for zero buttressing, S = 0. Panel (c) shows the
state involving a secondary contact with the bedrock, corresponding to the position of the blue circle
in panel (a).

7. Illustrating the determination of ice-sheet balances

The two mechanically distinct effects of lateral stresses described in this paper are, first, its
direct generation of ice-shelf buttressing and, second, its inducement of secondary grounding.
The analyses of §4 and §6 addressed these effects individually. In order to determine the con-
sistent steady-state grounding line positions for a given topography, it is necessary to consider
these phenomena in tandem. This section brings the different mathematical machineries used
to analyse these two phenomena together in application to establishing the consistent bal-
ances possible for an illustrative nonlinear bedrock topography. For demonstration, I consider
n = 3 and a basal topography with a double-bump defined by

b@) = e (ag? + 7€) — B, where &= (a/k) - &, (7.1)
a=4de, =9, v=—1,k=10% and & = 3, which is illustrated in figure 17(b).

7.1. Steady states and the removal of hysteresis

The first step is to determine the solutions to the grounding-line equation (4.2) with the
expressions for the extensional-resistance function (A 1) and the buttressing function (4.13),
for x¢. Solving this algebraic equation using a numerical root finder, I obtain the steady-state
grounding-line position z¢ as a function of S shown as a thick solid curve in figure 17(a).
With the candidate steady states determined, the second step is to determine which are
rendered inconsistent by secondary grounding. To determine the locus of critical grounding-
line positions for which secondary grounding occurs, I apply the numerical method outlined
below (6.1). The grounding lines positions that would be affected by secondary grounded are
overlaid on figure 17(a) in blue, with type I and IT shown by the lighter and darker shades,
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respectively. The invalidated steady states are shown as dotted curves extended into the blue
region.

For the unconfined case, S = 0, (4.2) reduces to d(x) = dy = 7.96. The solutions to this
equation represent the intersections between b(z) and the line z = —dy(1—9), shown in figure
17(b). There are a total of four such states. As S is increased, the first effect of lateral stresses
is to cause the unbuttressed steady states on positive bed slopes to move backwards and those
on negative bed slopes to move forwards. Another effect is to introduce a fifth steady state far
upstream (not shown). At certain critical values of S, certain pairs of steady states meet and
‘annihilate’ one another. The annihilations represent saddle-node bifurcations, which are a
feature of dynamical systems with multiple steady states. The solutions near the bifurcation
points in this example are invalidated by type-II secondary grounding causing an intersection
between the ice shelf and one of the topographic maxima. The invalidations occur sharply
at critical values given by S = 4.6 x 107° and S = 1.4 x 10~%. For values of S > 1.4 x 1074,
there is just one steady state remaining.

The existence of multiple steady states (there can be a total of five in the example above)
implies the possibility for hysteresis effects, where the system will be attracted to a different
state depending on its initial condition. For example, if a change in climate were to induce a
reduction in ice flux @, a grounding-line retreat can be stimulated. If the flux were to reinstate
in future than, if the grounding line has migrated upstream of the unstable steady state, then
it will not return to its former state. Instead, it will continue to retreat upstream, potentially
leading to either irreversible runaway retreat or stabilisation towards a new position further
upstream. The steady-state plot of figure 17 shows that, with just one stable state remaining
for S > 1.4 x 1074, lateral stresses have the effect of removing the possibility for hysteresis.
Above this value, the system converges unconditionally towards this stable steady state.
Above this threshold, the possibility for hysteresis has been eliminated. A detailed analysis
of the conditions necessary to maintain the global stability of a marine ice sheet under the
effects of ice-shelf buttressing and secondary grounding forms the subject of the companion
paper (Pegler 2018).

7.2. Steady secondary contact

An ice rise or rumple represents a localised region of contact between an ice shelf and the
bedrock downstream of the primary grounding line. The position of the primary grounding
line and the ice rumple for such a state are not predicted by (4.1) because of the underlying
assumption that the ice shelf forms a single region of flotation. To inspect the possibility
of states that sustain a region of secondary grounding in steady state, I conducted a com-
prehensive search of the solutions to the full steady-state equation (3.1). This was achieved
using a method of shooting over the thickness upstream, and iterating it bisectively until
the frontal stress condition (3.2) is adequately satisfied. Unlike the solutions based on (4.2)
alone, this general method of solution describes several additional solutions involving two
disjoint regions of flotation. The additional branches of steady states are shown as red curves
in figure 17(a). The additional solutions initially appear to continue the branch of solutions
of the steady states with a fully floating ice shelf for values of S above the critical values at
which secondary grounding switches on, before abruptly turning back at a saddle-node bifur-
cation. New solutions involving a secondary contact can occur for values of S both above the
threshold at which secondary grounding is predicted and below it. The profile of such a state,
occurring at the blue circle in figure 17(a), is shown in figure 17(c). The solution exhibits a
brief ‘glancing’ contact with the bedrock, which can be interpreted as an ice rumple. Thus,
multiple additional steady states can be produced by allowing for a secondary contact. As
shown in figure 17(c), the contacts create a sharp jump in the thickness gradient of the ice
shelf between the start and end of the secondary region of contact, implying a considerable
impact on the morphology of the ice shelf. This includes a considerable thickening of the
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FIGURE 18. The relative buttressing parameter Q defined by (8.4), which measures the proportion
of the resistance to grounding-line flow stemming from ice-shelf buttressing. The ranges encompass
the variations in parameters for the ice-shelf systems listed in table 1.

Ice-shelf system  Symbol | dg(km) [ (km) w (km) Q (m*s™h | Q

Filchner ~ FIL 1.0-1.6 280 110-170 16 x 107> | 0.23-0.50
Ronne  RON 1120 590 480-530 8.5 x 103 | 0.04-0.15

Ross (main)  ROS 1.0 700 300-620 6.5 x 10% | 0.13-0.44
Ross (east) ROS* | 1.0 350 110-120 2.7 x 107% | 0.60-0.70

TABLE 1. Estimates of the thickness at the grounding line d, distance between grounding line and
calving front [, ice-shelf width w, and volumetric flux per unit width @ for five ice-shelf regions.
The given ranges for dg and w encompass variations in values for a given ice shelf. The relative
buttressing parameter ) evaluated using (8.4) is listed in the final column.

region of the ice shelf between the point of secondary contact and the grounding line. As-
suming an alternating pattern between stable and unstable states, I anticipate that a subset
of these additional states are stable and the others unstable. By contributing to a larger
interior thickness, lateral stresses can thus induce the development of an ice rise or rumple.
A dedicated analysis could be conducted to investigate the stability of these additional states
and is left for future consideration.

8. Geophysical discussion and model applicability
This section discusses the physical implications of lateral stresses within the geophysical
context, and summarises the limitations of the model.
8.1. The variation in parametric control of the grounding line

In order to inspect the new parametric dependences introduced by lateral stresses in the
general balance equation (4.2), it is insightful to express it in its dimensional form. With the
power-law results of (A 2) and (4.14) incorporated, this equation reads

1 2
(MQ)™! 2 3n-1)] ™ | 0 (M'Q\"HT 4 rzg w0 d
e g () B () =g s
Extensional resistance Ice-shelf buttressing resistance

where Hg = d(z¢) is the grounding-line thickness, M = (uo/pg)", M’ = (uo/pg’)", B is
the dimensionless form of the buttressing force given by (4.13) or (4.14), which depends
purely on the geometrical specification of the ice shelf, and A = (/\+w")1/ ("+1) is a length
formed from the channel half width w. For negligible softening and n = 3, for example,
A = 0.47w. Equation (8.1) shows that the extensional resistance and ice-shelf buttressing
forces depend individually on the grounding-line flux ). Therefore, the relationship between

Page 32 of 39



Page 33 of 39

Marine ice sheet dynamics: the impacts of ice-shelf buttressing 33

Q@ and thickness Hg depends on the solution of the implicit algebraic equation (8.1). With
Q = q(z¢) represented in terms of the grounding-line position using (2.20) and Hg = d(x¢)
equated to the bedrock flotation profile, (8.1) forms an algebraic equation that can be solved
directly for the steady-state grounding-line position zq.

For zero buttressing, B = 0, (8.1) can be rearranged to give

R _1
1 S\" (n2+3n+1) m
Q~ 7 13 A_Hg, (unbuttressed) (8.2)

which recovers the unbuttressed relationship for grounding-line flux for a sliding ice stream
(Schoof 2007b). In the opposing limit of strong buttressing, (8.1) predicts the distinct ex-
pression

n+1

Q~ mf]@“ (strongly buttressed), (8.3)
where N = (n+1)/n and | = z¢ — ¢ is the shelf length. For the purpose of illustrating the
new parameter grouping arising for strong buttressing mathematically, I have here neglected
the contributions to B due to He (though it should be noted that this is not a good ap-
proximation in general and can be straightforwardly retained). The result of (8.3) illustrates
that the calving position x¢, as contained in the shelf length [, and the half width of the ice
shelf, w oc A become central controls. Further, he absence of A_ in (8.3) confirms that basal
conditions have no important effect on the dynamics of a sufficiently buttressed grounding
line, thus confirming the control illustrated earlier in figure 11.

The removal of a dependence of the grounding line on the basal stress clarifies that the
control of a marine ice sheet is based on two distinct physical processes: one is the control
of the grounding-line position; the other is the control of the degree of ‘pile-up’ upstream of
that position. Importantly, the physics controlling these independent processes result in two
necessary physical conditions for maintaining a large marine ice sheet: a sufficiently advanced
grounding line and a sufficient drag on flow in the grounded region, respectively. The failure
of either one of these physical constraints can form a ‘weak link’ that is sufficient for collapse
of a marine ice sheet. It might be anticipated that the maintenance of an advanced grounding
line is the weakest of these two links for maintaining ice in the WAIS. The split in necessary
physical conditions for maintaining a marine ice sheet explains why lateral stresses in an
ice shelf are so much more important than those in the grounded region. Since ice-shelf
buttressing directly provides an independent control of the grounding line, with a magnitude
of force that can readily exceed the extensional resistance to flow across a grounding line
relied upon in the absence of buttressing, it has a direct impact on the sustainment of the
first of these weak-link conditions. Lateral stresses in the grounded region, by contrast, only
significantly influence the second necessary condition representing the degree of pile-up. On
this basis, it is clear why the maintenance of a stable marine ice sheet can be dictated by
the sustainment of ice-shelf buttressing.

8.2. Assessing the significance of ice-shelf buttressing

To indicate the locations of a selection of ice shelves on the spectrum of relative buttressing
strength, I evaluate the parameter Q, defined by (4.5). Using the analytical result of (4.13)
for power-law fluid and negligible net accumulation, €2 can be evaluated as

_2_ 2
B L[ \" Q]+ N, NN 2
S TwE T K@) X] fory) ~Hel 54

The relative buttressing € is evaluated for a selection of ice-shelf systems listed in table 1.
The main central component of the Ross Ice Shelf is considered separately to its smaller,
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channelised component east of Roosevelt Island (denoted ROS*). The predicted 2 are listed
in the final column and plotted in figure 18. Significant variations in its value are apparent.
The smallest Q applies to the Ronne Ice Shelf, with <15% of its resistance stemming from
buttressing. This may be attributable to its considerable width, which reduces the transverse
shear stresses. The largest 2 applies to the confined region of the Ross Ice Shelf for which
65% of grounding-line resistance is predicted to stem from buttressing.

8.3. Applicability

On the basis of the numerical comparisons given in the supplementary document, it is likely
that the model describes a large range of marine ice sheet configurations from those chan-
nelised in fjords in addition to larger, broader ice shelves. However, a number of caveats
should be noted. Primary anticipated limitations include: the existence of islands or ice rises,
which will change the buttressing forces generated by the ice shelf; the more complex two-
dimensional flow that may be generated by strongly localised ice-stream inputs, which can be
more typical for large ice shelves; and the effects of significant transverse variations in basal
conditions. A limitation of the steady-state results, as represented by the general balance
equation (8.1), is their accuracy if the ice shelf or grounding line are sufficiently unsteady.

The examples of this study have focused on certain specialised situations. These include
the assumption of a localised input directly at the ice divide specified by (2.19), and the
assumption of a uniform basal coefficient of drag and flow width. These assumptions have
been made for the sake of illustrating the results and can all be relaxed within the steady-
state framework developed, which is more versatile than the specifications considered in these
examples. The framework can also accommodate more complex rheological specifications,
basal conditions, and calving laws. With these generalisations, the framework provides an
efficient complement to direct numerical analysis, with the numerical saving affording scope
for thorough exploration of scenarios and sensitivity analysis in case studies.

9. Conclusions

This paper has explored the effects of lateral stresses on the dynamics of marine ice
sheets. The primary result is an analytical toolkit for determining steady-state grounding-
line positions, which affords excellent agreement with the predictions of full horizontally
two-dimensional numerical simulation subject to certain caveats but with a numerical ex-
pense many orders of magnitude less. The analysis elucidates the steady-state regimes of
grounding-line control, and its relationship to ice-sheet flow and force-balance structure,
across a complete spectrum of relative buttressing strength. The possibility for dominant
control of the grounding line by the ice shelf was determined even when lateral stresses are
considerably weaker than the resistive stresses exerted upstream of the grounding line. A
distinct secondary mechanism of grounding-line control by lateral stresses via its inducement
of further basal contacts between an ice shelf and the bedrock was also demonstrated. This
effect was shown to provide a further mechanism for the stabilisation of a grounding line
that is entirely additional to the effect of the ice-shelf buttressing generated already by the
lateral stresses without basal contact. The results provide essential groundwork necessary
to understand the conditions for tipping to and recovery from marine ice sheet instability,
which forms the subject of the companion paper (Pegler 2018).

The reduced equation for steady-state grounding lines (8.1) incorporates the buttress-
ing force and extensional stresses resisting flow at the grounding line simultaneously using
universal analytical expressions of grounding-line thickness and shelf length, respectively.
Analysis of the solutions shows that lateral stresses fundamentally alter the characteris-
tics of grounding-line control from an extension-dominated balance for weak buttressing to
a buttressing dominated balance. For sufficient buttressing, the extensional dynamics that
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dominate the resistance across an unbuttressed grounding line can become negligible. There
is therefore a complete transition in dynamical control from the ice shelf playing no role in
unbuttressed dynamics to a completely dominant role for even a relatively short confined ice
shelf. The approximate position of a steady-state grounding line can lie close to the location
where the interior lateral-drag-dominated region of the ice shelf intersects the bedrock on
extrapolation, implying that the control of the grounding line is being dominated indepen-
dently by the profile of the ice shelf. There is then no relationship between the control of the
grounding line and the mechanics of the grounded region other than the flux of mass across
the grounding line. Basal lubrication can completely loses its effect on the grounding line for
sufficient buttressing, with the potential for the grounding line to be completely unchanged
even when basal stresses are entirely removed (see figure 11). From the perspective of the
ice sheet as a whole, lateral stresses on the ice shelf can thereby largely independently set
the position and ice-sheet thickness at the grounding line, with the role of basal stress, and
the lateral stresses exerted on the grounded region, being primarily to control the degree of
thickening of the ice sheet as one moves upstream of the grounding line.

As lateral stresses are incorporated, the ice-shelf structure transitions from the classical
extension-dominated concave solution (Van der Veen 1983) towards the regime involving a
wedge-shaped lateral-drag dominated solution connected to the grounding line through an
inlet boundary layer involving significant extension (Pegler 2016). The characteristics of this
structure arise even when ice-shelf buttressing is present but not necessarily the dominant
resistance to flow across the grounding line. A parameter €2 was formulated to measure
the relative significance of ice-shelf buttressing as a proportion of the total resistance to
grounding-line flow (with the rest provided by the extensional viscous stress). The value
of the relative buttressing was determined to be related in a simple way to features of the
ice-shelf structure via an expression (5.4b) involving the grounding-line thickness, the calving-
front thickness and the thickness just downstream of the input boundary layer.

The second main result was to determine a distinct effect of lateral stresses of inducing an
ice shelf to make further basal contacts downstream of the grounding line. This phenomenon
of ‘secondary grounding’ invalidates the steady-state grounding-line positions that are oth-
erwise consistent with the grounding-line balance equation applicable for an ice shelf with a
single region of continuous flotation (8.1), and there is therefore a sharp switch-on of differing
stability properties subject to the satisfaction of a critical condition. Despite it not necessarily
requiring strong buttressing to arise, the controlling influence of secondary grounding is, like
the lateral-stress dominated regime, determined independently by the dynamics of the ice
shelf. The implications of this mechanism for suppressing the unstable retreat of grounding
lines will form an aspect explored in the companion paper.

By combining the predictions of the grounding-line balance equation with conditions for
secondary grounding, the positions of consistent steady states for a generic one-dimensional
topography are determined. For an example nonlinear bedrock, it was shown that steady-state
branches of the stability diagram progressively disappear as lateral stresses are incorporated.
The steady states can disappear either at saddle-node bifurcations or at the ‘switch-on’
of secondary grounding. The possibility of secondary grounding downstream was found to
produce multiple additional steady states involving a brief ‘glancing’ contact with the bedrock
in the manner of an ice rise. Under this effect, a rich variety of additional steady-state regimes
are revealed. For sufficiently large lateral stresses, only one steady state survives. In this
case, the ice sheet can be expected to approach this steady state unconditionally, with the
possibility of irreparable hysteresis effects, of the kind identified previously in the context of
unbuttressed grounding-line dynamics, being eliminated. The critical loss of a steady state
dependent on buttressing following parametric variation is generally more likely to result in
the crossing of a globally unique tipping point, indicating that an abrupt and permanent
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switch to large-scale collapse may be more likely for a buttressing-controlled tipping point
than an unbuttressed tipping point where restabilisation upstream is more likely.

By considering the relative buttressing €2 in the context of a selection of ice-shelf systems, it
was found that they generally lie intermediate to the end members of the spectrum of relative
buttressing strength. A majority contribution from buttressing arises for the channelised
section of the Ross Ice Shelf, but considerably weaker relative buttressing is predicted for the
Ronne Ice Shelf. These estimates indicate that the controls provided by ice-shelf buttressing
are likely to be of broad importance to the geophysical context.

By considering the stability of a marine ice sheet in terms of two physically distinct nec-
essary conditions — one based on grounding-line control, the other based on the degree of
‘pile-up’ upstream of that position — it can be explained why even slight lateral contact of an
ice shelf introduces a leading control of large-scale ice-sheet stability. From the perspective
of the entire ice sheet, the drag stresses owing to lateral stresses on the ice shelf are generally
much smaller in magnitude compared to those exerted by basal drag along the grounded
interior of the ice sheet and, moreover, are likely to constitute a tiny contribution to the
total drag exerted through the length of the ice sheet. However, by virtue of its exertion
at the grounding line and direct resistance to flow across it, it is readily possible, despite
their small magnitude overall, for lateral stresses on an ice shelf to impact the large-scale
stability of the ice sheet. The reason for this is that the resistive force provided by ice-shelf
buttressing can readily exceed the relatively weak extensional stress that would provide the
only resistance to flow across the grounding line in its absence. The simple structural link
between the drag-dominated profile of the ice shelf and the grounding line clarifies this emer-
gent control. Variations in external parameters associated with ice-shelf preservation, such
as the control of its calving position, basal melting, and lateral conditions are thus likely
to constitute leading-order processes governing large-scale marine ice sheet dynamics and
stability. Understanding the details of these processes and resolving them accurately within
models is thus vital if we are to predict future sea levels and the potential for collapse of the
West Antarctic Ice Sheet with confidence.

I am grateful to Grae Worster for helpful comments and discussions on this work. I would
also like to thank Brent Minchew for many helpful comments. I am grateful for the work
of three anonymous referees whose comments led to significant improvement of the paper.
I am also grateful to Hilmar Gudmundsson for developing and providing his finite-element
solver Ua which I used to benchmark the predictions of the theory, as presented in the
supplementary document.

Appendix A. Analytical descriptions of steady grounding-line forces

This appendix develops generalisations of the analytical forms of the ‘database functions’
E(d) and B(zq,zc), defined by (4.3) and (4.10), respectively. The results yield the general
equation (8.1).

A.1. The generalised extensional-resistance function

To extend the approach of §4.1 to n # 1, I first determine the universal shape profile of the
grounded region by numerically integrating (3.1) forwards subject to an arbitrary upstream
thickness. The resulting profile is used to construct the gradient function ¢(H) and, in turn,
the extensional-resistance function E(d) using (4.3). With E(d) in hand for n = 3, the spe-
cial unbuttressed dimensionless grounding-line thickness dy =~ 7.96 is determined by solving
E(d) = (§/2)d? using a numerical root finder.

To develop an almost exact analytical approximation for E(d), I follow §4.1.2 and approx-
imate the flow in the grounded region using a drag-dominated balance to obtain D(u) =

Page 36 of 39



Page 37 of 39

Marine ice sheet dynamics: the impacts of ice-shelf buttressing 37

Tp(u) + Hrs(u) = —H(H' + 1), where D(u) is used to represent the combined drag on the
flow in the grounded region owing to both basal and lateral drag. Using this expression to
substitute for H’ in (4.3), with g = (—H2H')/™~1 T obtain

1/n
E ~ 4d=2/n (b’ + #) (A1)

~ 4d(n2—3n—1)/n27 (AQ)

where u = 1/d and the second result is the reduced form of (A 1) applicable for sufficiently
small o’ (for which the expression is reduced to a pure function of grounding-line thickness
E(d)) and for negligible contributions to the total drag in the grounded region owing to
lateral stresses, D(u) =~ 7,(u) = d~'/™. By comparing the result of (A 2) with my numerically
determined version of F(d), I obtain excellent agreement for all d > dy. The largest error
occurs for the unbuttressed balancing thickness dy, namely, d = dy ~ (8/6)", where r =
n(n+1)/(n?+3n+1). This ‘worst-case’ error is within just 0.1% of the numerically determined
value, indicating that the analytical prediction given by (A 1) can be treated as a practically
exact general approximation.

A.2. The generalised buttressing force with melting

The analytical approximation for the buttressing force is obtained by substituting an analyt-
ical solution for the prevailing region of the ice shelf downstream of the inlet boundary layer
(Pegler 2016) into the buttressing integral (4.10). First recall the lateral-drag-dominated flow
approximation (5.3), which for power-law fluid reads

7o(u) = Slq(z)/H]"™ = 5H'. (A3)

Here T have allowed for a spatially varying flux ¢(z) = f;OD F(2') d2’ in order to incorporate
the effect of distributed melting along the underside of the ice shelf. Integration of (A 3) sub-
ject to the frontal stress condition (3.2b) yields the general solution describing the prevailing
region of the ice shelf downstream of the inlet boundary layer,

1
N [ N
Hy = (? / Sq(a")M™) da’ + Hg) , (A4)

where N = (n+ 1)/n and He = [8q(3:c)]1/N2. Using (A 4) to evaluate H(z) and u(x) =
q(z)/H(x) in (4.10), one obtains the result of (4.14). As a shorthand for this calculation, one
can use the expression (5.4) with (A 4) used to evaluate Hy (z¢).
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