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12 ABSTRACT

13 Natural colorants were extracted from renewable botanical sources, specifically waste epicarp from the 

14 blackcurrant fruit pressing industry. A process was developed which used acidified water extraction 

15 followed by a solid-phase extraction (SPE) purification stage which allowed the production of an 

16 anthocyanin-rich extract in good yields (ca. 2% w/w based on dry weight of raw material). The 

17 components in the extracts were extensively characterized by HPLC, mass spectrometry, IR, NMR and 

18 UV-Vis spectroscopy. HPLC confirmed presence of four anthocyanins: delphinidin-3-O-rutinoside 

19 (45%), cyanidin-3-O-rutinoside (31%) and the corresponding glucosides at 16% and 8%, respectively. 

20 On sequential liquid-liquid aqueous-organic partitioning of the post-SPE sample, monomeric 

21 anthocyanins (54.7%) and polymeric anthocyanins (18%) were found in the aqueous layer with 3-O-

22 rutinosides of myricetin (3.1%) and quercetin (3.2%), whilst isopropylacetate achieved selective 

23 extraction of caffeic acid (3%), p-coumaric acid (5%), and myricetin (2.5%) and quercetin (3.2%) 

24 aglycons. 3-O-Glucosides of myricetin (3.1%) and quercetin (2%), along with nigrumin-p-coumarate 

25 (1%) and nigrumin ferulate (0.5%) were selectively extracted from the remaining aqueous fraction using 

26 ethylacetate. This allowed for near total quantification of the blackcurrant extract composition.

27

28 Keywords: Anthocyanin; polyphenol; fruit waste; dyes; quantification; characterization.

29

30
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31 Introduction

32 The use of renewable materials as sources of interesting and potentially valuable specialty (or effect) 

33 chemicals represents a major opportunity on the pathway to a truly sustainable society.1 Currently, most 

34 organic chemicals can be traced back to petrochemical sources, however, the potential for renewable 

35 crop-derived products is substantial. Biomass sources of most interest are those that do not compete 

36 significantly with food production (and/or the product complements food production) and their carbon 

37 footprints are substantially reduced compared to synthetic materials. The potential of the approach is 

38 greatly enhanced if the biomass source is an unavoidable waste material, produced on scale as a 

39 consistent resource that would otherwise need to be disposed of with negligible return, or indeed, at a 

40 cost to the producer.1 A particularly good example of this is blackcurrant (Ribes nigrum L.), which is 

41 grown in the UK and used in the manufacture of blackcurrant cordial, most commonly sold under the 

42 commercial brand Ribena.2 For this, the berries are pressed and the juice is used to make the cordial, the 

43 seeds are also removed and their oils extracted. The residue is a dry pomace consisting mainly of the 

44 epicarp (the skin or outermost layer of the fruit) and some small residual twigs from the harvesting 

45 process. This represents a substantial volume of a consistent, well-defined food-grade waste material that 

46 could potentially be a sustainable source of specialty chemicals.

47 It is well known that blackcurrants and other berries (e.g. strawberries, blackberries, elderberries, black 

48 raspberries, chokeberries, blueberries, Concord grapes, black goji berries3) are rich sources of colorants 

49 and other metabolites, and there is mounting evidence of the potential health benefits of these 

50 compounds, with particular focus on anthocyanins.4-8 Anthocyanins (1; Table 1) are the largest group of 

51 polyphenolic pigments in the plant kingdom. They are non-toxic,9 water-soluble phenolic compounds 

52 responsible for the red, purple and blue coloration of fruits, vegetables and flowers. Their colors are 

53 determined by the number of hydroxyl groups (and degree of methylation) and the nature, number and 

54 position of sugar moieties including associated aliphatic or aromatic acids attached to the sugar.10-12 More 
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55 than 20 different anthocyanidins (aglycons) have been identified in nature, all based on the flavan 

56 nucleus, but the six different aglycons shown in Table 1 are the most common components found in 

57 foods, leading to many anthocyanins through diversity of glycosylation.10-12 Anthocyanins exhibit a 

58 remarkable framework of reactions with varying pH. Extensive detailed studies have determined the 

59 equilibrium forms10,13 of the core pyrylium cation, which is vitally important for understanding the 

60 physical and chemical properties of anthocyanins.14,15 In aqueous solution of pH <3, the anthocyanin 

61 flavan nucleus exists mainly as the stable flavylium cation (Table 1).10,13 Above this pH more complex 

62 equilibria operate, and stability is reduced, so extraction and storage is usually preferred at low pH. 

63 There is a desire to replace synthetic dyes with natural renewable colorants and anthocyanins are widely 

64 permitted as natural food/beverage colorants within Europe (E163), Japan, and many other countries.11,16 

65 In the US, anthocyanin-based colorants are widely used in foods under very specific regulations. Grape 

66 extract has been used as a colorant for more than 100 years, first being applied to enhance wine colour.17 

67 The Code of Federal Regulations18 allows for the use of two different anthocyanin-based colors from 

68 grape: “Grape-color extract” and “Grape skin color extract”. These two extracts are the only anthocyanin-

69 based extracts allowed as food colorants in the US. “Grape-color extract” is obtained as a by-product in 

70 processing Concord grapes (Vitus labrusca L.), but its application is limited by the FDA to non-beverage 

71 food use. 

72 Numerous studies have reported the isolation of anthocyanins, although typically in very small quantities 

73 in a highly purified form for characterization, which would be impractical for any commercial 

74 application.10,13,19-21

75 Unrefined simple extracts or tinctures, although often colored, contain only low levels of anthocyanins 

76 and are of limited use, however approaches for the preparation of extracts containing relatively high 

77 levels of anthocyanins for large scale applications have been reported.22-24
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78 Certain co-extracted components may also affect the performance of the extract. For example, 

79 anthocyanins can undergo co-pigmentation with other components, which significantly affects their 

80 stability and light absorption.25-29 It is therefore particularly important that the full profile of the extract 

81 is available, to understand its properties and potentially optimize performance.

82 Practical sources of anthocyanins are limited by overall economic considerations and availability of 

83 suitable raw material, which would not otherwise be suitable for food use. Blackcurrant epicarp is 

84 available in substantial, consistent quantities30 as a potential commercially viable source of anthocyanins 

85 for use in areas such as hair14 and food15 coloration, depending on regulatory aspects around auxiliaries 

86 and processing methods used. This approach provides a potential biodegradable, safe alternative to 

87 current coloration methods, from a renewable waste product, using methods designed to minimize 

88 environmental impact. Although this paper focuses on blackcurrants, there are many other sources of 

89 anthocyanins, all of which have their own characteristic anthocyanin profile, and may have similar 

90 potential applications.31-38

91

92 Materials and methods

93 Materials

94 Blackcurrant pomace was obtained from GlaxoSmithKline, UK and more recently from A&R House 

95 Ltd., UK. The raw fruit grown in the UK had been pressed in production of blackcurrant cordial 

96 (Ribena).2 The crude waste is referred to as pomace, which comprises the fruit epicarp (ca. 50 wt. %), 

97 seeds (ca. 45 wt. %) and extraneous matter (e.g. berry stalks, ca. 5 wt. %). Seeds are separated from this 

98 pomace and unwanted stalks removed; the subsequent material received was predominantly dried 

99 blackcurrant fruit epicarp and used without any further modification. Amberlite XAD7HP was obtained 

100 from Rohm & Haas Ltd., Staines, UK. General purpose chemicals were obtained from Sigma-Aldrich. 

101 Delphinidin-3-O-glucoside was purchased from Polyphenol AS, Sandnes, Norway. 

Page 5 of 31

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



6

102

103 Extraction and semi-purification of polyphenols 

104 Dried blackcurrant epicarp (30 g) was immersed in 600 mL water acidified with 0.01% v/v conc. HCl 

105 and stirred gently by magnetic follower at room temperature for 2 hours. The plant material was filtered 

106 off and the resulting aqueous extract loaded onto an Amberlite XAD-7HP resin (60 g) until the eluent 

107 was almost colorless. The resin was then washed with acidified water (0.01% v/v conc. HCl, 1L) before 

108 eluting the polyphenols with acidified ethanol (0.01% v/v conc. HCl). The collected ethanol fractions 

109 were combined and concentrated under vacuum on a rotary evaporator, and then subjected to high 

110 vacuum to remove trace solvent, yielding a dark violet amorphous solid (660 mg, yield 2.2%), which 

111 could be powdered by grinding. 1H NMR (Table 2 and SI) and HPLC (Figure 1) analyses confirmed the 

112 presence of four anthocyanins and other polyphenols in the extract. The dried blackcurrant extract (500 

113 mg) was then dissolved in acidified water (50 mL, 0.1% v/v conc. HCl) and partitioned against 

114 isopropylacetate (1 × 70 mL) and ethylacetate (3 × 50 mL) in sequential manner. The organic layers were 

115 dried under reduced pressure to give isopropylacetate extract (yellow amorphous solid, 68.5 mg) and 

116 ethyl acetate extract (yellow amorphous solid, 33 mg), whereas aqueous layer was freeze-dried to afford 

117 a red amorphous solid (399 mg). 

118

119 Analytical HPLC

120 The extracts were analyzed by HPLC at every stage of the extraction and purification. The analytical 

121 HPLC system (Agilent 1290 infinity series) was equipped with diode-array detector (DAD), binary pump 

122 system connected with online degasser and Zorbax Eclipse XDB C18, 150 x 4.6 mm, 5 µm. The flow 

123 rate was 1ml/min and the injection volume was 10 µl. The chromatograms were recorded by scanning 

124 the absorption at 190-600 nm. The anthocyanins were monitored at 520 nm, flavonoids at 350 and 

125 hydroxycinnamates at 325 nm. For aqueous extract (anthocyanin analysis), the binary solvent system 
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126 consisted of solvent A: water (0.5% TFA) and solvent B: acetonitrile (0.5% TFA). The elution profile 

127 consisted of linear gradient from 5% B to 20% B in the first 20 min, then linear increase to 100% B at 

128 20-23 min followed by isocratic elution (100% B) at 23-24 minutes, and then linear decrease to 5% B at 

129 24-25 min followed by 5% B isocratic elution at 25-30 minutes. For ethylacetate and isopropylacetate 

130 extracts: the binary solvent system consisted of solvent A: water (0.1% TFA) and solvent B: acetonitrile 

131 (0.1% TFA). The elution profile consisted of a linear gradient from 5% B to 20% B in the first 30 min, 

132 then linear increase to 100% B at 30-33 min followed by isocratic elution (100% B) at 33-34 minutes, 

133 and then linear decrease to 5% B at 34-35 min followed by 5% B isocratic elution at 35-40 minutes. 

134

135 Preparative HPLC

136 The aqueous extract after liquid-liquid partitioning experiments was dried and 20 mg was re-dissolved 

137 in H2O/EtOH (9:1, 2 ml, acidified with 0.1% v/v HCl). It was then purified on semi-preparative HPLC 

138 to give anthocyanins 2-5. The HPLC system (Agilent 1200 infinity series) was equipped with diode-

139 array detector (DAD), binary pump system connected with online degasser. For anthocyanins: the extract 

140 was loaded on to a XBridgeTM Prep C18, 10 × 50, 5 µm in 300 µl injections and eluted using gradient 

141 solvent system. The binary solvent system consisted of solvent A: water (0.5% TFA) and solvent B: 

142 acetonitrile (0.5% TFA). The elution profile consisted of linear gradient from 5% B to 20% B in the first 

143 30 min, then linear increase to 100% B at 30-33 min followed by isocratic elution (100% B) at 33-34 

144 minutes, and then linear decrease to 5% B at 34-35 min followed by 5% B isocratic elution at 35-40 

145 minutes. The flow rate was 5 ml/min and five peaks were collected at 520 nm to give dp-3-rut 4 (4.5 

146 mg), cy-3-rut 5 (4.1 mg), dp-3-glu 2 (1.6 mg) and cy-3-glu 3 (0.8mg) and polymeric anthocyanins (4.5 

147 mg). 

148 For flavonoids and hydroxycinnamates, the isopropylacetate extract (15 mg) and ethylacetate extract (10 

149 mg) were both dissolved in methanol (2 ml) and purified on a semi-preparative column. The peaks were 
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150 monitored at 325 for isopropyl acetate and 350 for ethylacetate extracts. The extracts were loaded on to 

151 XBridgeTM Prep C18, 10 × 50, 5 µm in 300 µl injections and eluted at the flow rate of 5 ml/min using 

152 binary solvent system. The binary solvent system consisted of solvent A: water (0.1 % formic acid) and 

153 solvent B: acetonitrile (0.1% formic acid). The elution profile consisted of linear gradient from 5% B to 

154 20% B in the first 30 min, then linear increase to 100% B at 30-33 min followed by isocratic elution 

155 (100% B) at 33-34 minutes, and then linear decrease to 5% B at 34-35 min followed by 5% B isocratic 

156 elution at 35-40 minutes. Caffeic acid 10 (3.3 mg) , p-coumaric acid 11 (5.5 mg), myricetin 12 (2.7 mg) 

157 and quercetin 13 (3.5 mg) were purified from the isopropylacetate extract whereas glucosides of 

158 myricetin 6 (4.7 mg) and quercetin 7 (3.0 mg) alongside nigrumin-p-coumarate 14 (1.5 mg) and nigrumin 

159 ferulate 15 (0.7 mg) were isolated from the ethylacetate extract (10 mg). Myricetin-3-β-rutinoside 8 (0.8 

160 mg) and quercetin-3-β-rutinoside 9 (0.8 mg) were isolated from the aqueous extract (20 mg, monitored 

161 at 350 nm) also using this method. The isolated compounds were characterised using NMR, IR, UV/Vis 

162 spectroscopy and accurate mass spectrometry (See SI). 

163

164 Quantitative HPLC of extracts

165 The anthocyanins in the post-SPE blackcurrant extract were quantified using calibration graphs (obtained 

166 using Agilent Chem Software) for delphinidin-3-O-glucoside (Dp3glc) from samples purified in this 

167 work and obtained commercially. Delphinidin-3-O-glucoside was purchased from Polyphenol AS. The 

168 isolated as well as commercial samples of Dp3glc were dissolved in buffer pH 1.0 to give 1 mg/ mL 

169 stock solutions and then several dilutions were prepared. UV/Vis absorption spectra were recorded on-

170 line during HPLC analysis using a photodiode array detector and the external calibration graphs were 

171 obtained. Using these calibration graphs and Agilent Chem Software the absolute amount of delphinidin-

172 3-O-glucoside and the relative amounts of rest of the anthocyanins were calculated. The relative ratios 

173 of the anthocyanins given by HPLC chromatograms and 1H NMR were in good agreement. The amounts 
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174 of neutral polyphenols is based on their isolated yield. The amounts of individual polyphenols were 

175 consistent with the relative peak area of each compound in the 1H NMR of the post-SPE extract (S2). 

176

177 Other methods

178 High resolution mass spectra (HRMS) were recorded on a Dionex Ultimate 3000 spectrometer using 

179 electron spray ionization (ESI). All masses quoted are correct to four decimal places. Agilent Carry Series 

180 UV/Vis spectrophotometer was used for uv/vis measurements. Infrared (IR) spectra were recorded using 

181 a Perkin Elmer Spectrum One FT-IR spectrophotometer or Bruker Alpha Platinum AR FTIR. Vibrational 

182 frequencies are reported in wavenumbers (cm-1).

183 The NMR experiments were done at 500 and 125 MHz for 1H and 13C respectively on Bruker DRX 500 

184 spectrometer equipped with a multinuclear inverse probe for one-dimensional 1H and two-dimensional 

185 heteronuclear single quantum coherence (1H-13C HSQC), heteronuclear multiple bond correlation (1H-

186 13C HMBC), and double quantum filtered correlation (1H-1H COSY). The samples were either dissolved 

187 in CD3OD or CD3OD-CF3COOD (95:5) depending on nature of the compound. Chemical shifts (δ) are 

188 quoted in ppm downfield of tetramethylsilane or residual solvent peaks (3.31 and 49.0 ppm for CD3OD 

189 in 1H and 13C respectively; 110 and 160 ppm for CF3COOD). The coupling constants (J) are quoted in 

190 Hz.

191

192 Results and discussion

193 Extraction and purification of anthocyanins

194 The main goal of this work was to develop a potentially scalable extraction procedure that gave 

195 anthocyanins in a reasonably concentrated form and in the absence of any co-extractants (e.g. free sugars) 

196 that may have a deleterious effect on coloration performance. The polar character of anthocyanins affords 

197 solubility in polar solvents such as methanol, ethanol, acetone and water.39 The use of water as an 
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198 extraction solvent was of particular interest to us, as we wished to keep methods as simple and scalable 

199 as possible, and to ensure the extract (as well as the residual material) was free from potentially hazardous 

200 solvent residues which may otherwise limit potential commercial applications.40 

201 It was necessary to carry out initial small scale studies for reference and optimization. Dried blackcurrant 

202 epicarp was investigated for extraction efficiency and anthocyanin profile, using an acidic aqueous 

203 system. Acidification during extraction was necessary for two main reasons. The primary function was 

204 to maintain a low pH (<3.0) in order to ensure stability and structural consistency (hence, consistent 

205 chemical and physical properties) of the anthocyanins (Table 1). The secondary functions are to disrupt 

206 the cell walls and increase accessibility of polyphenolic compounds, and solvent transport, and to inhibit 

207 enzymes that may catalyze polyphenol decomposition (e.g. polyphenol oxidase).

208 The optimized procedure required stirring the dried blackcurrant fruit epicarp for 2 h in acidified water 

209 (0.01% conc. HCl v/v) at ambient temperature (ca. 22 °C). HPLC analysis (520 nm) of the fresh extracts 

210 confirmed the presence of four anthocyanins, in agreement with literature,30,41-44 with Dp3rut (4; 48%) 

211 and Cy3rut (5; 33%) being the predominant anthocyanins in the extract. Dp3glc (2) and Cy3glc (3) 

212 constituted about 13% and 6%, respectively, of the total anthocyanins present. The crude aqueous extract 

213 was subsequently purified by solid-phase extraction (SPE) in order to remove free sugars and other 

214 particularly polar molecules.45

215 Initial SPE trials on a small lab scale were conducted using a C-18 reverse phase silica SPE column 

216 (Phenomenex Strata-E), as is common in literature.36,37 However, C-18 reverse phase silica is relatively 

217 expensive for practical purification on a large industrial scale, and has very low particle size (50 μm), 

218 which would require much higher pressure of flow for loading than potential replacements of larger 

219 particle size. Several alternative resins were trialled with consideration of key bulk properties (cost, 

220 performance, particle size), resulting in Amberlite XAD-7HP, an aliphatic non-ionic acrylic ester 

221 polymer of moderate polarity, being chosen for further extraction studies as it was cost effective and 
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222 showed excellent purification performance and high net yield of anthocyanins, compared to other resins 

223 trialled. Extraction of anthocyanins from Aronia melanocarpa L. using acidified water, followed by 

224 purification by solid-phase extraction was reported to remove undesired water-soluble organic and 

225 inorganic compounds with minimal reported loss of color (≤5%), a feature which was a priority for us.45 

226 Hence this was our initial method of choice, although other extraction procedures are also reported.31-

227 38,41-49

228 The SPE step involved loading the aqueous extract onto the polymeric resin (XAD-7HP) and washing it 

229 with acidified water (0.01% conc. HCl v/v) to remove unwanted sugars, followed by acidified ethanol 

230 (0.01% conc. HCl v/v) which provided an ethanolic solution rich in phenolics, readily concentrated in 

231 vacuo to give the blackcurrant extract as a purple amorphous powder (ca. 2% yield w/w). HPLC analysis 

232 (Figure 1A) of the fresh post-SPE ethanolic extract showed an anthocyanin profile almost identical to 

233 the crude extract. This simple method has been scaled up to >50 kg blackcurrant epicarp, using a 

234 conceptually similar procedure.

235 Quantitative HPLC (Q-HPLC) is the most reliable method for quantification of compounds in a sample.50 

236 In this case, we used it to determine the quantity of anthocyanins in the extract as a whole, rather than 

237 focusing simply on the anthocyanin content alone. Dp3glc isolated in a pure form from our blackcurrant 

238 extract (vide infra) was used as standard for quantitative HPLC analysis of all anthocyanins, and 

239 compared with a commercial sample. This method allows estimation of the other anthocyanins without 

240 requiring data on all the anthocyanins present, however it does not take into account the potentially 

241 different extinction coefficients for all the anthocyanins in a sample. As seen in Table 2, we found that 

242 there was a very good agreement between relative ratios of Dp3glc and individual anthocyanin peaks in 

243 the HPLC chromatogram and 1H NMR (characteristic peaks at 8.8-9.2 ppm); for example, the relative 

244 ratio of Dp3rut and Dp3glc given by HPLC and 1H NMR was 2.8 and 2.7, respectively. The amount of 

245 Dp3glc (7.7%) in the extract was calculated using external calibration graphs and Agilent Chem software 
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246 (from our isolate as well as a commercial sample) and then the relative ratio of the other anthocyanins 

247 used to calculate the amount of Dp3rut (22.6%), Cy3glc (4.0%) and Cy3rut (20.4%). On this basis the 

248 total anthocyanin content of the post-SPE blackcurrant extract was estimated to be ca. 55%.

249

250 Isolation of other polyphenols from the blackcurrant extract.

251 The presence and ratio of anthocyanins within an extract is often the limit of analysis for many 

252 publications. Analysis by HPLC at 520 nm gives deceptively simple chromatograms, typically showing 

253 anthocyanin peaks and relatively little else. Initial HPLC (Figure 1A) and 1H NMR (Table 2 and SI) 

254 analysis of the post-SPE blackcurrant extract indicated the presence of the four main anthocyanins. 

255 However, the sample also clearly showed other polyphenolic compounds as evidenced by peaks in the 

256 HPLC chromatogram at 350 nm (Figure 1B) and additional aromatic peaks at 6-8 ppm in the 1H NMR 

257 spectra. It is clear that whilst anthocyanins are present, many other UV active molecules are also present 

258 in substantial amounts. Given that our potential applications required a full understanding of the 

259 components present, we embarked on an extensive analysis of this partially refined extract. 

260 In order to identify all components and isolate individual samples, further separation was carried out. An 

261 acidified aqueous solution of the post-SPE sample was prepared, and partitioned against 

262 isopropylacetate, then ethylacetate in a sequential manner to afford three fractions. These fractions were 

263 distinct in the composition of their polyphenols, which was expected based on their polarity and solubility 

264 in the respective solvents. The highly polar, water soluble anthocyanins (2-5) were found in the aqueous 

265 layer (Figure 2A at 520 nm), alongside My3rut (8) and Qu3rut (9) (Figure 2B at 350 nm). Polymeric 

266 anthocyanins (PA) were also present in this layer. Isopropylacetate achieved selective extraction of CA 

267 (10), pCA (11), My (12) and Qu (13) (Figure 2C). My3glc (6), Qu3glc (7), NCA (14) and NF (15) were 

268 extracted from the remaining aqueous fraction using ethylacetate (Figure 2D). 
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269 Hence, these solubility differences allowed the preparation of three distinctly different polyphenol 

270 fractions. The first is a highly colored aqueous fraction dominated by anthocyanins alongside rutinoside 

271 of neutral polyphenols. The combination of a cationic anthocyanin and a monosaccharide, would appear 

272 to confer a similar degree of aqueous solubility to the presence of the rutinoside disaccharide on a neutral 

273 polyphenol. The isopropylacetate extract was a relatively non-polar fraction containing neutral 

274 polyphenols and phenolic acids as their aglycons, whereas the ethylacetate extract gave an intermediate 

275 polarity fraction containing various monosaccharides of neutral polyphenols. Hence, from the single SPE 

276 refined extract, three distinct potentially useful fractions can be readily obtained which have significantly 

277 different well defined chemical constituents and properties and hence potential applications (e.g. as 

278 colorants or anti-oxidants).  

279

280 Characterization of isolated polyphenolic components.

281 From the extracts prepared, fourteen compounds were isolated using preparative HPLC and characterized 

282 using 1H NMR, 1H–1H COSY, HRMS, UV/Vis, IR and 13C, DEPT135, 1H–13C HMBC, and 1H–13C 

283 HSQC spectroscopy where possible. Compound 4 was isolated from the aqueous layer and identified to 

284 be Dp3rut (Figure 1) using 1H NMR spectra best obtained in CD3OD containing 5% deuterated 

285 trifluoroacetic acid.51 Under such conditions, anthocyanins are in the cationic flavylium form, and the 

286 proton in position 4 (see Figure 1 for numbering) has a particularly diagnostic chemical shift (8.7–9.2 

287 ppm) for each anthocyanin. NMR data is summarized in Tables 2 and 3, and full assignments of all the 

288 anthocyanins and flavonoid glucosides are provided (see SI material). NMR data for flavonoids My3glc 

289 (6), My3rut (8), Qu3glc (7) and Qu3rut (9; rutin) alongside their aglycons, My (12) and Qu (13) is given 

290 in Table 3, and in the SI material. Hydroxycinnamic acids (10-11) and esters (14-15) were also 

291 characterized and compared with the literature52 when possible (see SI material). NCA (14) and NF (15) 
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292 have been previously identified in blackcurrant seeds,53 and pressed juice,53,54 but not specifically in 

293 epicarp extracts. However the possibility of some carry over during the processing cannot be excluded.

294

295 Total quantification of blackcurrant extract composition.

296 Anthocyanins were quantified using HPLC, whereas the flavonoids and hydroxycinnamic acids were 

297 based on their isolated yields which was also reflective of their 1H NMR quantification (relative to 

298 anthocyanins) in the extract. The chemical composition of the blackcurrant extract is summarized in 

299 detail in Figure 3 and by chemical class in Figure 4. Anthocyanins constituted the largest class of 

300 polyphenols in the extract (54.7%) followed by neutral flavonoids (17.1%) and hydroxycinnamates 

301 (9.5%). The percentage of individual anthocyanins in this blackcurrant extract was found to be: Dp3rut 

302 (22.6%) ˃ Cy3rut (20.4%) ˃ Dp3glc (7.7%) ˃ Cy3glc (4%). Also isolated were polymeric anthocyanins 

303 (PA, 18%) which gave broad 1H NMR spectra consistent with the general structure. pCA (11) was the 

304 predominant (5%) neutral polyphenol, and CA (10) was also found (3%), whereas the diglycoside, 

305 glycosidic and aglycon forms of myricetin and quercetin were found in similar amounts (2-3% each). 

306 Nigrumin-p-coumarate (1%) and nigrumin ferulate (0.5%) were also present in small amounts.

307
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453 Figure Captions

454

455 Figure 1. HPLC chromatograms of post-SPE blackcurrant extract: (A) post-SPE blackcurrant extract 

456 monitored at 520 nm; (B) post SPE-blackcurrant extract monitored at 350 nm. Structures of predominant 

457 anthocyanins (2-5) isolated from blackcurrant epicarp are shown below and correspond to peak numbers 

458 in HPLC chromatograms above.

459

460 Figure 2. HPLC chromatograms of all the fractions after sequential solvent-solvent extractions: (A) 

461 aqueous fraction at 520 nm; (B) aqueous fraction at 350 nm; (C) isopropylacetate fraction at 325 nm; 

462 (D) ethylacetate fraction at 350 nm. Structures of neutral polyphenols (6-15) isolated from blackcurrant 

463 epicarp are shown below and correspond to peak numbers in HPLC chromatograms. For structures of 

464 anthocyanins (2-5) see Figure 1. PA denotes polymeric anthocyanins.

465

466 Figure 3. Summary of the chemical composition of the blackcurrant epicarp SPE extract. Abbreviations 

467 are as follows: Dp3rut, delphinidin-3-O-rutinoside; Dp3glc, delphinidin-3-O-glucoside; Cy3rut, 

468 cyanidin-3-O-rutinoside; Cy3glc, cyanidin-3-O-glucoside; PA, polymeric anthocyanins; My3rut, 

469 myricetin-3-O-rutinoside; My3glc, myricetin-3-O-glucoside; My, myricetin; Qu3rut, quercetin-3-O-

470 rutinoside; Qu3glc, quercetin-3-O-glucoside; Qu, quercetin; p-CA, p-coumaric acid; CA, caffeic acid; 

471 NCA, nigrumin-p-coumarate; NF, nigrumin ferulate.

472

473 Figure 4. Chemical composition of blackcurrant epicarp extract by compound class.

474
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476 Tables

477

478 Table 1. Structures and absorption maxima for common anthocyanins.10.11

Anthocyanin R1 R2 λmax-vis*

pelargonidin H H 503

cyanidin OH H 517

peonidin OCH3 H 517

delphinidin OH OH 526

petunidin OCH3 OH 526

O

R1

OH

OGly

HO

OH

1 ; R1, R2 = H, OH, OCH3

R2

malvidin OCH3 OCH3 529

479 *λmax-vis values shown are for corresponding 3-O-glucoside in water at pH 3. 
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480 Table 2. 1H (500 MHz) and 13C (125 MHz) NMR data for delphinidin-3-O-glucopyranoside (2), 

481 cyanidin-3-O-glucopyranoside (3), delphinidin-3-O-rutinoside (4), and cyanidin-3-O-rutinoside (5).

2 4 3 5No.

δH (ppm), J 

(Hz)

δc 

(ppm)

δH (ppm), J 

(Hz)

δc 

(ppm)

δH (ppm), J 

(Hz)

δH (ppm), J 

(Hz)

δc 

(ppm)

2 160.2 164.2 163.0

3 145.9 145.8 144.3

4 8.98 s 136.3 8.90 s 135.4 9.04 s 8.85 s 134.9

4a 115.8 112.8 111.9

5 159.2 159.1 162.0

6 6.66 d (1.5) 103.3 6.68 d (2.0) 103.4 6.69 d (2.0) 6.69 d (1.50) 102.8

7 177.5 170.7 169.1

8 6.88 d (1.5) 95.0 6.88 d (2.0) 95.1 6.91 d (2.0) 6.91 d (1.5) 93.9

8a 158.6 157.6 154.5

1ʹ 117.6 120.0 119.9

2ʹ 7.79 s 116.2 7.78 s 112.7 8.06 d (2.5) 8.05 d (2.5) 117.1

3ʹ 147.6 147.6 146.1

4ʹ 148.8 147.8 148.8

5ʹ 147.6 147.6 7.02 d (8.5) 7.04 d (8.5) 116.1

6ʹ 7.79 s 116.2 7.78 s 112.7 8.27 dd (8.5, 

2.5)

8.27 dd (8.5, 

2.5)

127.1

Glc

1ʹʹ 5.32 d (7.5) 103.7 5.30 d (7.5) 103.3 5.31 d (8.0) 5.29 d (7.5) 102.1

2ʹʹ 3.72 dd (9.0, 

7.5)

74.8 3.71 dd (9.0, 

7.5)

74.7 3.71 dd (9.0, 

7.0)

3.67 dd (9.0, 

7.5)

73.4

3ʹʹ 3.56 t (9.1) 78.1 3.55 t (9.0) 77.5 3.56 t (9.0) 3.54 t (9.0) 76.7

4ʹʹ 3.47 dd (9.0, 

9.1) 

71.1 3.43 t (9.0) 71.2 3.44 t (9.0) 3.42 t (9.0) 69.9

5ʹʹ 3.54 dd (9.0, 

6.0)

78.8 3.73 dd (9.0, 

7.2)

78.0 3.55 m 3.72 dd (9.0, 

7.0)

76.1

6aʹʹ 3.93 dd (12.3, 

2.1)

62.3 4.06 dd (11.3, 

1.8)

67.8 3.91 dd (12.0, 

2.0)

4.06 dd (11.1, 

1.5)

6bʹʹ 3.73 dd (12.3, 

6.0)

62.3 3.59 dd (11.3, 

7.2)

67.8 3.72 dd (12.0, 

5.9)

3.59 dd (11.1, 

7.0)
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Rha

1ʹʹʹ 4.65 d (1.5) 102.2 4.65 d (1.5) 100.8

2ʹʹʹ 3.80 dd (3.5, 

1.5)

71.9 3.80 dd (3.5, 

1.5)

70.5

3ʹʹʹ 3.63 dd (9.5, 

3.5)

72.5 3.63 dd (9.3, 

3.0)

71.1

4ʹʹʹ 3.33 t (9.0) 73.9 3.33 m 72.6

5ʹʹʹ 3.57 m 69.8 3.57 m 68.4

6ʹʹʹ 1.15 d (6.0) 17.9 1.13 d (6.0) 16.5

482
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483 Table 3. 1H (500 MHz) NMR data for myricetin-3-O-glucoside (6), myricetin-3-O-rutinoside (8), 

484 quercetin-3-O-glucoside (7) and quercetin-3-O-rutinoside (9).

6 8 7 9No.

δH (ppm), J (Hz) δH (ppm), J (Hz) δH (ppm), J (Hz) δH (ppm), J (Hz)

6 6.22 d (2.0) 6.22 d (2.5) 6.22 d (2.0) 6.23 d (2.0)

8 6.40 d (2.0) 6.41 d (2.5) 6.41 d (2.0) 6.43 d (2.0)

2ʹ 7.31 s 7.30 s 7.72 d (2.0) 7.68 d (2.2)

5ʹ 6.88 d (8.5) 6.89 d (8.5)

6ʹ 7.31 s 7.30 s 7.59 dd (8.5, 2.0) 7.64 dd (8.5, 2.2)

Glc

1ʹʹ 5.23 d (8.0) 5.08 d (8.0) 5.24 d (8.0) 5.11 d (8.0)

2ʹʹ 3.51 dd (8.9, 8.0) 3.43 m 3.49 dd (9.1, 8.0) 3.46 dd (9.5, 8.0)

3ʹʹ 3.44 t (8.9) 3.40 t (9.0) 3.43 t (9.1) 3.41 t (9.5)

4ʹʹ 3.39 t (9.3) 3.29 t (9.1) 3.35 t (9.5) 3.26 d (9.5)

5ʹʹ 3.24 dd (9.3, 5.0) 3.45 m 3.22 m 3.32 m 

6aʹʹ 3.73 dd (12.0, 2.3) 3.80 dd (11.5, 1.5) 3.71 dd (12.0, 2.5) 3.80 dd (11.0, 1.5)

6bʹʹ 3.62 dd (12.0, 5.0) 3.42 dd (11.5, 5.0) 3.56 dd (12.0, 5.2) 3.39 dd (11.0, 5.5)

Rha

1ʹʹʹ 4.53 d (1.3) 4.53 d (1.5)

2ʹʹʹ 3.63 dd (3.5, 1.5) 3.63 dd (3.5, 1.5)

3ʹʹʹ 3.55 dd (9.5, 3.5) 3.54 dd (9.5, 3.5)

4ʹʹʹ 3.30 t 9.0 3.28 t (9.5)

5ʹʹʹ 3.50 3.43 m 

6ʹʹʹ 1.12 1.13 d (6.5)

485
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486 Figures

487
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