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Abstract

This study introduces a cooperative game theory approach aimed at addressing the problem of 

allocating pollution responsibility across partners collaborating in supply networks. The 

proposed framework includes three different allocation rules through which companies can share 

pollution responsibility across complex supply networks. A case study in the context of a supply 

network for the manufacturing of construction materials is illustrated for demonstrating the real-

world applicability of the approach.
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Pollution responsibility allocation in supply networks: 

A game-theoretic approach and a case study

Abstract

This study introduces a cooperative game theory approach aimed at addressing the problem 

of allocating pollution responsibility across partners collaborating in supply networks. The 

proposed framework includes three different allocation rules through which companies can 

share pollution responsibility across complex supply networks. A case study in the context of 

a supply network for the manufacturing of construction materials is illustrated for 

demonstrating the real-world applicability of the approach.

Keywords: Supply Networks, Multi-Tier, Pollution Responsibility Allocation, Cooperative 

Game Theory, Shapley Value

1. Introduction

Environmental consciousness plays a pivotal role in contemporary global supply networks 

(Allaoui et al., 2018). Newly introduced regulations, especially in the European Union (EU), 

require robust sustainability certifications for companies participating in public procurement 

exercises (UN Global, 2011). Also, in the private sector, large multi-national enterprises are 

adopting tighter requirements for their suppliers, which also involve small and medium-sized 

enterprises (SMEs) (UN Global, 2011). 

Such stringent environmental performance standards also encourage the implementation of 

benchmarking approaches; for instance, Life Cycle Assessment (LCA) methods allow 

estimating environmental impacts of supply networks against a wide set of indicators. 
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While LCA methods are gaining popularity, they should be enhanced by considering the 

concept of pollution responsibility. Allocating environmental impacts (including carbon 

emissions, land use, waste generation) to actors in the supply network is a fundamental issue 

if proper mitigation, abatement and remedial actions need to be implemented. This debate is 

very relevant to policy-making; for instance, currently, the European Union and national 

governments are promoting directives and legal requirements for maximising the proportion 

of marketed products which are recovered and recycled (European Commission, 2014). Such 

directives extend the producer responsibility, forcing them to have adequate plans (and 

adequate financial commitments) for managing the materials in their products at the end of 

their life. Policies can also involve incentives for producers to design their products taking 

into account environmental considerations (European Commission, 2014; Gui et al., 

2018). Similar obligations currently cover producers of packaging, batteries, vehicles, tyres 

and electrical goods, with calls for these obligations to be extended to other consumer 

goods, with the objective of achieving a reduction in the environmental impact of products, 

throughout their lifespan, from production through end-of-life.

Scientific interest in the pollution responsibility issue started with the aim of suggesting 

pollution burden sharing mechanisms across countries (see, for instance: Leontief and Ford, 

1970; Wyckoff and Roop, 1994; Bastianoni et al., 2004; Lenzen and Murray, 2010). While an 

abundant stream of literature has been developed in order to tackle allocation problems 

within different contexts, the vast majority of the current methods analyze these problems at 

a macro-level (Zhou and Wang, 2016). The application of pollution responsibilities 

approaches to contemporary multi-tier and multi-stakeholders supply networks is often 

overlooked. 
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In order to bridge this literature gap, this study provides a normative framework (based on 

cooperative game theory) for pollution responsibility allocation across multi-tier supply 

networks. After the formal identification of literature gaps through an appropriate review 

(Section 2), the paper presents the mentioned framework from a general point of view 

(Section 3). In Section 4, such framework is adapted to a generic supply network, by 

developing appropriate pollution responsibility allocation rules. Section 5 develops a 

practical application of the introduced cost allocation rules, with the reference to a case study 

from the construction materials supply network; results, along with some managerial 

implications are also discussed. Conclusions and avenues for future research are then drawn.

 

2. Environmental Pollution Responsibility: a Literature Review 

Based on the review by Zhou and Wang (2016), pollution responsibility allocation methods 

can be classified into several categories, which are discussed in details in the following of this 

section. 

2.1 Indicator-based approaches

One of the most popular methods for determining environmental pollution targets or 

permits is the one based on the development of specific indicators (Zhou and Wang, 2016). 

Methods based on single-indicator approaches employ an individual indicator for allocating 

emission permits or reduction targets among a set of actors (Rose and Stevens, 1993). Single 

indicators that have been used for this purpose include Population, GDP, Emissions and 

Energy Usage, Emission Intensity. Also, composite indicator approaches have been 

developed in order to develop multi-criteria tools incorporating multiple perspectives for 

conducting the allocation exercise (Ringius et al., 1998; Vaillancourt and Waaub, 2004). 
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Notably, the work of Gallego and Manfred (2005) and Lenzen et al. (2007) illustrated 

approaches for pollution responsibility allocation based on an Input-Output (I/O) analysis 

framework. Through a Multi-Regional I/O framework, Zhang et al. (2015) proposed 

mechanisms (based on both production and consumption perspectives) for allocating carbon 

emissions at a provincial level in China. Llop and Ponce-Alifonso (2015) proposed a 

structural path method for allocating responsibilities related to water ecosystems 

degradation. 

2.2 Optimization approaches

Optimization approaches (based on mathematical programming framework) can successfully 

be employed for dealing with pollution allocation problems. Efficiency perspectives (i.e., 

minimizing the cost of pollution abatement measures) mainly characterize these studies. 

According to Zhou and Wang (2016), Data Envelopment Analysis (DEA) is a very popular 

approach for solving this sort of problems. Färe et al. (2012) proposed a DEA model for 

evaluating pollution abatement strategies in different countries over a multi-year time 

horizon. Several authors have proposed DEA for examining emissions allocation across 

Chinese provinces (e.g. Wei et al., 2012; Wang et al., 2013; Zhou et al., 2014). Lozano et al. 

(2009) and Sun et al. (2014) provide applications to the micro-level (i.e., single firm).

2.3 Game Theoretic approaches 

Pollution allocation mechanisms often include negotiation and bargaining processes among 

multiple actors. As such, Game Theory might model these situations in a very effective way, 

with allocation results which could be seen as equilibrium solutions to games. 

Chander and Tulkens (1995) and  Filar and Gaertner (1997) provided seminal contributions 

employing Game Theory for studying the allocation emission reduction quotas among 
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countries; classical cooperative game theory concepts (including the Shapley value method) 

have been utilized for this purpose, with the aim of achieving fair and equitable distributions 

(Rose, 1990). 

Eyckmans and Tulkens (2003) developed a similar approach to the problem, while Germain 

and Steenberghe (2003) adopted a dynamic game framework. In order to solve a similar 

allocation problem, Viguier et al. (2006) deployed a two-level game. At a regional level, Shi et 

al. (2017) test multiple game-theoretic approaches (i.e., the nucleolus, Nash-Harsanyi 

allocation solution, Shapley value and Separable Cost Remaining Benefit principle) for 

evaluating collaborative and cost-effective SO2 reduction strategies in three cities of Hunan 

province in China. Similarly, Huang et al. (2018) developed a game-theoretic model based on 

the formation of fuzzy coalitions in order to deal with pollution discharge rights.

At a company unit of analysis, MacKenzie et al. (2008) utilized rank-order contests for 

allocating pollution perits; MacKenzie et al. (2009) developed a further application to the 

same problem by employing incomplete information games. Chung et al. (2013) deployed 

dynamic games to evaluate companies’ responses to environmental pollution taxes in a 

spatially distributed supply chain. Liao et al. (2015) applied a Shapley value framework for 

working out a fair allocation of emission allowances across energy producers in Shanghai. A 

Stackelberg game is constructed by Ren et al. (2015) for studying CO2 reduction targets in a 

buyer-supplier interaction. Compared to the other methods, the game theoretic approach 

might seem less straigthforward. However, such methods have the advantage of inherently 

incorporating the implicit negotiations between different stakeholders about environmental 

pollution responsibility allocation. The use of these approaches, however, is underexploited, 

especially when dealing with complex and multi-tier supply networks which can represent 

real-world production systems. 
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2.4 Hybrid Approaches

Hybrid approaches combine multiple methods from the above-mentioned categories. For 

example, Ridgley (1996) integrated composite indicators with an optimization method for 

producing suitable pollution responsibility allocations at a country level. Gomes and Lins 

(2008) combined Data Envelopment Analysis and Game Theory for solving the problem at 

the same level; Sun et al. (2017) employed a similar combination in order to deal with 

emission permits allocation across competing companies. Similar frameworks have also been 

employed by Pang et al. (2015) for permit allocation across countries.  Yu et al. (2014) 

addressed the problem from a regional perspective in China by combining a particle swarm 

optimization algorithm, fuzzy c-means clustering algorithm, and game-theory approaches 

based on Shapley decomposition. 

Hybrid approaches have generally a higher level of complexity; therefore, allocation results 

might lack transparency. Nevertheless, the combination of multiple methods can allow the 

simultaneous consideration of different fairness and efficiency criteria.

2.5 Research Gaps and Contribution of the Paper

The proposed overview of the literature, coherently with findings from the extensive review 

from Zhou and Wang (2016), allows the identification of the following gaps: 

- Most of the literature is concerned with pollution responsibility at a macro-level, 

dealing with allocation problems from a national or regional perspective. 

- Despite the existence of firm-level approaches, the supply chain perspective has 

been, so far, largely overlooked. Also, the few approaches which are available in this 

domain are characterized by very simple buyer-supplier dyadic relationships. 
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- Multi-tier perspectives and multi-stakeholder views, which are intrinsic to 

contemporary supply networks, involving multiple companies at each tier, are rarely 

incorporated.

In order to bridge these gaps, the main contribution of this paper focuses on the 

development of a pollution responsibility allocation framework for a generic multi-tier and 

multi-stakeholder supply network (characterized by the presence of multiple companies at 

each tier). A game theoretic approach, based on the recent work from Ciardiello et al. (2018), 

will be developed, given the suitability of such methods for dealing with these problems 

(Zhou and Wang, 2016; Ciardiello et al., 2018). 

3. A general game theoretic responsibility framework for supply networks

We recall the game theoretic responsibility framework, which has been introduced in 

Ciardiello et al. (2018). A supply network consists of companies ( ). A generic 𝑖 = 1…|𝑁|
process represents the production of goods by company  to be supplied to company . (𝑖, 𝑗) 𝑖 𝑗
A set of processes  (with ) is associated with each company. For a generic 𝑃𝑖 |𝑃𝑖| ≤ |𝑁|
representation of such supply network, see Figure 1. The set  is equal to . 𝑃 ⋃𝑖 = 1…𝑛𝑃𝑖
Furthermore, each process is characterized by an environmental cost (indicated as , with 𝑐𝑖𝑗
the generic  belonging to a generic set ).𝑐𝑖𝑗 𝐶
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Figure 1 – Generic supply network representation

A generic mathematical framework can be constructed as follows:

A  responsibility matrix  can be  (𝑁, 𝑃, 𝐶)                                           (1) |𝑁| ×  |𝑃| 𝐵 = (𝐵𝑖, 𝑝)

introduced, where the row index  represents companies and the column index  represents 𝑖  𝑝
processes;  if company  is responsible for process ,  otherwise. Let  be 𝑏𝑖𝑝 = 1 𝑖 𝑝 𝑏𝑖𝑝 = 0 𝐵𝑖
the set of the processes for which company  is environmentally responsible, that is 𝑖 𝐵𝑖 =

 It is remarkable to outline that  may be equal to 1 even if process {𝑝 ∈ 𝑃 | 𝑏𝑖𝑝 = 1}. 𝑏𝑖𝑝
does not involve company .  Therefore, the framework (1) can be rewritten as , 𝑖 (𝑁, 𝑃, 𝐵, 𝐶)

where  is the responsibility matrix. A coalition responsibility set can be defined as 𝐵 𝐵𝑆 =

; then, the social cost function for each coalition of companies  can be ∪ 𝑖 ∈ 𝑆𝐵𝑖 𝑆 ⊆ 𝑁
defined as follows:

𝑣(𝑆) =

 ∑𝑝 ∈ 𝐵𝑠𝑐𝑝                                                             (2)
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The last quantity is the environmental cost of all the processes for which at least one 

company, which belongs to the coalition S, is responsible. Moreover, each cost is 

enumerated only once even if more than one company may be responsible for the same 

process.

Being  a finite set,  is a function which associates a real value with each subset of 𝑁 𝜈: 2𝑁→𝑅
. Following a classical definition,  represents a cooperative game with a characteristic 𝑁 (𝑁, 𝜈)

function. In addition, the elements in  are called players;  represents the characteristic 𝑁 𝜈
function of the game. By construction, the characteristic function  is defined through  𝑣 𝑃, 𝐵
and , therefore leading to the following primitive model:𝐶𝐺 = (𝑁,𝑃,𝐵,𝐶,𝑣)                                (3)

Such cooperative games are defined in terms of a characteristic function, which specifies the 

utility that each coalition can achieve. By assuming the formation of a grand coalition, the main 

aim of such games is the definition of a solution concept, which allocates utility (or, 

alternatively, costs) among each player in .  In a supply network context, it can be assumed 𝑁
that companies form binding agreements for coordinating production activities. Cooperative 

game theory can provide solutions by allowing transferable payments among companies. 

Therefore, the cost allocation becomes a vector taking into account 𝑥 = (𝑥𝑖) ∈ 𝑅|𝑁|

+

 
 

transferable payments. Such redistribution is efficient in our settings. To be more precise, an 

allocation is efficient if the sum of all cost-allocations, that is , is equal to the sum of ∑|N|
i = 1𝑥𝑖

all costs, i.e. .∑|𝑁|𝑖 = 1
∑|𝑁|𝑗 = 1𝑐𝑖𝑗

Among efficient allocations, the Shapley value (Shapley, 1953) represents an allocation rule, 

which has gained a relevant normative reputation because of its distributive justice. 

Following this fair approach to cost allocations, we claim that allocations satisfy the 
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following property: if  is empty implies that is null. Throughout the current, paper we 𝐵𝑖 𝑥𝑖 
will always refer to allocations satisfying the responsibility-compatibility principle. 

4. Responsibility rules for Supply Networks

The set of processes  can be seen as a mathematical relation defined on the set of 𝑃
companies   We define as the section of the relation  𝑁. P(𝑖): = {𝑗 ∈ 𝑁│(𝑖, 𝑗) ∈ 𝑃} 𝑃 ⊆ 𝑁 × 𝑁
for the element  . The subset  can be interpreted as the set of companies, 𝑖 ∈ 𝑁 P(𝑖) ⊆ 𝑁  
which are supplied by company  Similarly we define the inverse relation of  that is . 𝑖. 𝑃, 𝑃 ‒ 1

We say that  if and only if , namely if the company  supplies the (𝑖, 𝑗) ∈ 𝑃 ‒ 1 (𝑗, 𝑖) ∈ 𝑃 𝑗
company . It follows that  means that the company  is supplied by the 𝑖 (𝑖, 𝑗) ∈ 𝑃 ‒ 1 𝑖
company  Similarly we define the section of  for  in the following way: 𝑗. 𝑃 ‒ 1 𝑖 𝑃 ‒ 1(𝑖) =

. {𝑗 ∈ 𝑁│𝑃 ‒ 1
 (𝑖) = 𝑗}

We also define the transitive closure of the relation , and we denote it by . By definition, P
 𝑃

 if and only if there exists a chain of firms  such that  with (i, 𝑗) ∈ 𝑃 ℎ𝑠 = 𝑗 (ℎ𝑠,ℎ𝑠 + 1
) ∈ P 𝑠

 where  and   Similarly, we define the transitive closure of the = 1…m ℎ
1

= 𝑖 ℎ𝑚 + 1
= 𝑗.

relation , denoted by . Therefore, we have that  if and only if there exists 𝑃 ‒ 1 𝑃 ‒ 1 𝑗 ∈ 𝑃 ‒ 1
(𝑖)

a chain of firms  such that  and  with .  ℎ𝑠 ℎ𝑠 + 1
∈ 𝑃 ‒ 1

(𝑠) ℎ𝑠 = 𝑗 𝑠 = 1…𝑚
We define the following set of firms on the supply network structure: 

- . Such a subset contains all the firms, which are located 𝜎(𝑖) = {𝑖} ∪ 𝑃 ‒ 1
(𝑖)

downstream with respect to ; for each  in  there exists a path composed of 𝑖 𝑠 𝜎(𝑖)
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processes which start form the product supplied by the company  and, at the end, 𝑖
becomes a product which is supplied to the company . 𝑠

- . Similarly, this represents the set of firms located upstream in the 𝛼(𝑖) = {𝑖} ∪ 𝑃(𝑖)

supply network with respect to . 𝑖
In this section, we assume that each company can act as a supplier for a single company 

within the supply network of a given product. By assuming this, the supply network assumes 

a tree-structure (see Figure 2). As such, since  is a singleton, there is one and only one P(𝑖)

process starting from ; the cost attached to this process can be identified as  i 𝑐𝑖.
Let us call . In this context, we can assume that existence of a final company|𝑁| = 𝑛 + 1

; such a company is characterized by the following assumption:  We   𝑛 + 1 𝑃𝑛 + 1
= ∅.

further assume that the final company has no environmental responsibility, which is 

characterized by the assumption  If straightforwardly follows that the 𝐵𝑛 + 1
= ∅.

responsibility matrix is a  matrix, where  the number of firms and (𝑛 + 1) ×  𝑛 (𝑛 + 1) 𝑖𝑠 𝑛 
is the number of processes. From the company , a single process starts, and it supplies the 𝑛
final company . Because we focus on responsible-compatible allocation, we can say 𝑛 + 1

that . Therefore, we disregard the final company because of its always null 𝑥𝑛 + 1
= 0 𝑛 + 1 

 

cost allocation. Therefore the number of significant firms becomes equal to the number of 

processes . 𝑛
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Figure 2 – Tree-type supply network representation

The responsibility matrix  can be defined according to three different responsibility 𝐵
 

allocation principles, introduced as follows: 

- A Local Responsibility principle (LR), according to which each company  is strictly 𝑖
responsible for the pollution costs, related to the production activities strictly 

happening at its premises. Then we may formalize  where  is the only 𝐵𝑖 = (𝑖, 𝑗) 𝑗
company supplied by firm  𝑖.

- An Upstream Responsibility principle (UR), stating that upstream suppliers (dealing 

with raw material extraction, sub-component manufacturing and other energy 

intensive activities) are responsible not only for pollution happening at their 

premises, but can also influence the environmental performance of downstream 
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partners. This can be formalized, for a generic company i, as: 𝐵𝑖 =

{(ℎ,𝑘) ∈ 𝑃 | ℎ ∈  𝜎(𝑖), k ∈  𝑁}.  

- A Downstream Responsibility principle (DR), stating that downstream partners in 

the supply network are responsible of the polluting activities happening at upstream 

suppliers’ premises. This can be formalized, for a generic company i, as: 𝐵𝑖 =

 {(ℎ,𝑘) ∈ 𝑃 | ℎ ∈  𝛼(𝑖), k ∈  𝑁}.

In the previous Section 3, we introduced the model  where the 𝐺 = (𝑁,𝑃,𝐵,𝐶,𝑣)

responsibility matrix was generic. Here we adopt the three above responsibility matrices and, 

then, we obtain three different cooperative models. We say that  becomes:𝐺
- A stand-alone game if the LR principle is adopted.

- An upstream-oriented game if UR principle is adopted. 

- A downstream-oriented game if DR principle is adopted. 

It can be noted that the mathematical formulation of our model in (3), when LR or UR or 

DR responsibility principles are adopted, becomes equivalent to the river network problem 

introduced by Dong et al. (2012). In this problem, a river network is polluted by agents 

agents (e.g., firms, villages, municipalities, or countries) which are located upstream and 

downstream. Agents must deal with pollution by implementing some mitigation actions, 

whose costs must be distributed among the agents themselves. Dong et al. (2012) model 

this problem as a cost sharing problem on a tree network. Interestingly, (Dong et al., 2012) 

find a solution to the river network problem by using LR, UR and DR principles. They 
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allocate cleaning costs to the different municipalities and the government by using the 

Shapley value allocation method (which provides a responsible-compatible cost allocation)1.

.Given the fact that the mathematical formulation of the model presented in (3) is equivalent 

to the one from Dong et al. (2012), it can be deduced that Shapley value allocations for such 

a model are equivalent to the ones provided by Dong et al. (2012) for the river network 

problem (by taking into account that the company  has always a null cost allocation). (𝑛 + 1)

As such, the following allocation rules from Dong et al. (2012) can be adapted to our case 

(refer to the original paper for the proof of the related theorems).

Allocation Rule 1 - LRS 

Local Responsibility Sharing cost allocation rules can be defined as:

(4) 𝑥LRS𝑖 = c
i

Furthermore, as shown by Dong et al. (2012), is the Shapley value of the stand-alone 𝑥LRS𝑖  

game (𝑁,𝑃,𝐵,𝐶,𝑣).

Allocation Rule 2 - DES

The Downstream Equal Sharing cost allocation rule can be defined as:

(5)𝑥DES𝑖 = ∑
j ∈ 𝛼(i)

c
j

|σ(j)|

1 The compatible-responsible nature of the Shapley value allocation can be shown with the 
following simple proof. Let us assume that a firm  is endowed with an empty subset . 𝑖 B

i

Given the coalition responsibility set and the mathematical formulation of (2), it is 
straightforward to see that firm  does not increase pollution costs of any group of 𝑖
companies. The latter means that company , according to a classical property of the Shapley 𝑖
value, can be regarded as a dummy player; as such, the Shapley value of firm  is null. 𝑖 
Therefore, the Shapley value is a responsible-compatible cost allocation.
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Furthermore, as shown by Dong et al. (2012),    is the Shapley value of the upstream x
DES

i

oriented game (𝑁,𝑃,𝐵,𝐶,𝑣).

Allocation Rule 3 - UES

The Upstream Equal Sharing cost allocation rule can be defined as: 

(6)𝑥UES

i
= ∑

j ∈ σ(i) c
j

|𝛼(j)|
     

Furthermore, as shown by Dong et al. (2012), is the Shapley value of the downstream 𝑥UES

i
 

oriented game .(𝑁,𝑃,𝐵,𝐶,𝑣)

5. A Case Study

The developed approach has been tested on a real-world case study related to the supply 

network for the manufacturing of thermal and insulation materials. Insulation materials (for 

thermal and acoustic purposes) represent one of the crucial components in the construction 

of new buildings and in renovation projects. In the United Kingdom (UK), insulation 

products contribute largely to construction materials markets. Also, with the growing 

emphasis placed on the energy performance of buildings, such materials play a pivotal role in 

improving environmental credential of construction projects, through prevention of heat 

loss in buildings.

Stone wool (a furnace product of molten rock) represents one of the main insulation 

materials based in the construction industry (Väntsi and Kärki, 2013). 

This case study focuses on the supply network associated with the production of stone wool. 

Primary data from one of the leading producer for this material (which is here anonymised 

for confidentiality purposes), along with Ecoinvent (2018) database were utilized to extract 
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data related to the “cradle-to-grave” part of the supply network of the product. This includes 

raw material inputs, energy inputs (assuming medium voltage electricity for industrial use in 

the UK), production process, distribution processes up to the retail store; emissions 

associated with the installation of product, its usage and disposal are not included. 

In a typical supply network, carbon equivalent emissions (expressed in Kg CO2-eq per Kg) 

can be utilized as a proxy indicator for a wide range of environmental impacts (Genovese et 

al., 2017). Based on multiple sources (Nasir et al., 2017; Ecoinvent et al., 2018), CO2-eq 

emissions (per kilogram of product) happening at each stage of the supply network can be 

reported as shown in Figure 3. Pollution abatement costs can be assumed proportional to 

such environmental impacts.

The results of the three allocation principles shown in Section 4 (LRS, UES, DES) to the 

considered supply network are shown in the following Figures 4, 5 and 6; calculations were 

performed in the Mathematica 10 computing environment through the code provided in the 

Appendix. 

As expected, the three proposed allocation principles provide very different results, 

allocating different shares of the total environmental impacts to different supply network 

partners. By employing the LRS rule, the highest proportion of environmental impacts (and, 

therefore, of associated mitigation costs) is assigned to the actual stone wool producer, 

respecting a simple proportionality mechanism. UES and DES rules produce more complex 

allocations. Interestingly, the DES rule strongly penalizes the Retailer (who is seen as 

responsible for demanding the activation of the whole supply network for the manufacturing 

of the products that are going to be sold at its premises), while the UES one penalizes the 

raw material suppliers (which are seen as responsible for extracting and employing virgin 
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resources). It must be highlighted that such rules reproduce respectively the concepts of 

consumer and producer responsibility (as defined by Rodrigues and Domingos, 2008). 

The three allocation rules must not be seen as mutually exclusive; indeed, convex 

combinations of these rules might be developed. Table 1, as an example, illustrates the 

results deriving from a combination of the LRS and DES rules. This could be done for 

introducing, within a prevailing LRS framework, elements of downstream responsibility. 

Figure 3 – Environmental Impacts (in Kg CO2-eq/Kg
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Figure 4 – Local Responsibility Sharing Allocation Results

Figure 5 – Downstream Equal Sharing allocation results
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Figure 6 – Upstream Equal Sharing allocation results

# Supply Network Stage Emissions Share
LRS + DES 
(50-50)

LRS + DES 
(80-20)

1 Potato Starch 0.00% 0.00% 0.00%

2 Biocides 0.00% 0.00% 0.00%

3 Paper 0.08% 0.05% 0.07%

4 Binder 17.07% 10.67% 14.51%

5 Bauxite Mining 0.07% 0.05% 0.06%

6 Basalt, Limestone and Dolomite Mining 1.33% 0.83% 1.13%

7 Chemical Supplies 29.63% 18.52% 25.19%

8 Pallet 0.67% 0.45% 0.58%

9 Board 0.00% 0.01% 0.00%

10 Acrylic Paint 1.10% 0.74% 0.95%

11 Rockwool Production 47.29% 37.54% 43.39%

12 Packaging Film Production 1.55% 1.04% 1.34%

13 Packed Rockwool 1.21% 15.37% 6.87%

14 Rockwool at Retailer 0.00% 14.76% 5.90%

Table 1 - Hybrid Allocation Rules
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6.1 Implications and Remarks

The illustrated model, together with the described allocation rules, could be utilized by 

governmental and environmental agencies in order to allocate pollution responsibilities (and 

associated costs), especially in centrally planned economic systems. 

In free-market scenarios, focal firms still need to co-operate with partners from their supply 

networks in order to measure and manage environmental impacts, according to self-

regulatory mechanisms (Sundarakani et al., 2010). Within these contexts, the mentioned 

responsibility rules could be seen as representative of different supply chain leadership styles 

(Gosling et al., 2016) adopted by the focal firm. In particular, the Local Responsibility 

principle (stating that each company is just responsible for activities strictly happening at its 

premises) can be related to a lasseiz-faire leadership style. According to this style, the focal 

company of the supply chain is not taking much action in terms of mitigation of 

environmental impacts, letting individual companies dealing with the problem.

The Downstream Responsibility principle (stating that downstream actors in the supply 

chain – such as retailers- will take the burden of some of the pollution costs incurred by 

upstream suppliers) can be seen as related to a transformational leadership style, in which the 

focal firm takes responsibility for enhancing the performance of the whole supply chain; 

indeed, downstream actors (that, in many cases, constitute the most powerful entities of the 

supply chain) have all the interest to improve the environmental performance of their 

suppliers, as this will result in lower environmental impacts (and related costs) being 

allocated to themselves as well. 

The Upstream Responsibility principle, stating that upstream suppliers (typically involved in 

energy intensive activities, such as raw material extraction) are responsible not only for 

pollution happening at their premises, but will be also allocated shares of the environmental 
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performance of downstream partners (who will be purchasing and utilizing these goods) can 

be seen as related to a transactional leadership style, in which the focal firm (usually involved 

in the final stages of the supply chain) will have a great amount of power towards upstream 

suppliers. 

6. Conclusions 

This study has provided a normative framework based on a cooperative game theory 

responsibility model for pollution allocation; the paper has detailed the generic model in the 

case of a complex real-world supply network, by selecting three different responsibility 

principles (namely: Upstream, Downstream and Local Responsibility) and developing some 

associated pollution responsibility allocation rules; results, along with some managerial 

implications have been discussed. 

The presented work could be extended in future researches, in order to address some of the 

limitations that characterize the current approaches. First of all, different supply network 

structures, including, for instance, reverse and circular elements could be studied (see, for 

instance: Choudhary et al., 2015; Battini et al., 2017). Also, different pollution responsibility 

schemes might incorporated in the model (similarly to the work proposed by Jacobs and 

Subramanian, 2012). Furthermore, a new set of normative properties could be defined, 

aimed at specifically addressing the stability of transnational supply networks operating 

across different environments characterized by different environmental legislations. Finally, 

further industrial case studies could be developed, in order to investigate the suitability of 

game-theoretic approaches to real-world pollution responsibility allocation problems.
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Appendix
The aim of this section is to provide a heuristic algorithm to compute allocations for a 
generic supply network. In the following, the algorithm and its implementation (by utilising 
the syntax provided by the modelling environment Wolfram Mathematica 10) will be shown. 

Input data
A graph g=(N,P) can be built for describing the supply network by employing the dedicated 
Mathematica 10 function. The attribute EdgeWeight defines the costs associated with each c

j
 

edge. 

Basic functions
The two following fundamental functions can be defined for the development of the 
algorithm. 
We consider the list of companies, which are part of at least one directed path starting from 
company x_, including company x_. The previous list is composed by the companies which 
are downstream to company ,  i.e.   The function f[x_], defined as follows,  finds the 𝑖 𝜎(𝐱_).
length of such a list. 

                           f[x_] := Length[Sort[VertexOutComponent[g, {x}]]]

Similarly, we consider the list of companies, which are part of at least one directed path 
ending at company x_, including company x_. The previous list is composed by the 
companies which are upstream to company , i.e.   The function t[x_], defined as 𝑖 𝛼(𝐱_).
follows, finds the length of such a list of companies. 

t[x_] := Length[Sort[VertexInComponent[g, {x}]]]

In general these two lists are different because g is a directed graph.

Allocation Rule 2 – DES
We compute the DES allocation for a generic company  (with  ranging between 1 and  𝑚 𝑚 𝑛
-1).  The list of costs related to companies which are upstream to company m including ,  𝑚
i.e. companies in , can be defined through the following code:𝛼 (𝑚)

Total [PropertyValue 
[{g,#},EdgeWeight]&/@Sort[EdgeList[g,DirectedEdge[Alternatives@@VertexInC
omponent[g,{m}],_]      

The selection VertexInComponent[g,{m}] selects the list of companies which are 
upstream to company  including . For each of these companies, let’s say  we compute 𝑚 𝑚 s,
the length of the list of companies which are downstream to each company . In doing this s
we utilize the function f[x_].  The length of the previous list is:

Map[f,Sort[VertexInComponent[g,{m}]]]]] 

The two above-mentioned lists (which have the same dimension) can be employed to 
compute the ratios contained in the allocation formula (5). All these contributions are 
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summed up (as per Equation (4)) thanks to the function Total. Similarly, company  has the 𝑛
following allocation:

Total[Append[PropertyValue[{g,#},EdgeWeight]&/@Sort[EdgeList[g,DirectedEdg
e[Alternatives@@VertexInComponent[g,{VertexCount[g]}],_]]],0]/  
Map[f,Sort[VertexInComponent[g,{VertexCount[g]}]]]]

Allocation Rule 3 –UES
For UES allocations, the nature of the algorithm is the same with some modifications. The 
role of VertexInComponent[g,{m}] is replaced by VertexOutComponent[g, {m}]. The 
role of function f[x_] is replaced by the function t[x_]. VertexOutComponent[g, {m}] 
finds the list of companies, which belong to any path starting from the node , i.e. the 𝑚
companies which belong to .  The UES allocation formula (6) can be computed as:𝜎(𝑚)

Do[  
Print[
Total[    
Append[PropertyValue[{g, #}, EdgeWeight] & /@        
Sort[EdgeList[g,          
DirectedEdge[Alternatives @@ VertexOutComponent[g, {m}], _]]],       0]
/
Map[t, Sort[VertexOutComponent[g, {m}]]]]], 
{m, 1,    VertexCount[g]}]


