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Abstract: As binaural audio continues to permeate immersive technologies, it is vital to develop a

detailed understanding of the perceptual relevance of HRTFs. Previous research has explored the

benefit of individual HRTFs with respect to localisation. However, localisation is only one metric

with which it is possible to rate spatial audio. This paper evaluates the perceived timbral and spatial

characteristics of both individual and non-individual HRTFs and compares the results to overall

preference. To that end, the measurement and evaluation of a high-resolution multi-environment

binaural Impulse Response database is presented for 20 subjects, including the KU100 and KEMAR

binaural mannequins. Post-processing techniques, including low frequency compensation and diffuse

field equalisation are discussed in relation to the 8802 unique HRTFs measured for each mannequin

and 2818/2114 HRTFs measured for each human. Listening test results indicate that particular HRTF

sets are preferred more generally by subjects over their own individual measurements.

Keywords: perception; evaluation; timbre; HRTF; binaural; spatial audio; measurement; database

1. Introduction

Spatial audio technologies are at the heart of immersive content creation for a wide range

of applications from traditional film and television production through to music production [1]

and soundscape design [2]. Within traditional linear post-production workflows, popular digital

audio workstations are ever-increasing their multi-channel capabilities to support spatial audio

formats. There is also a growing proliferation of affordable spatial microphone arrays on the market

accommodating immersive content creation at a consumer level. Similarly, in game audio, tools such as

Google Resonance (developers.google.com/resonance-audio) are facilitating the creation of immersive

and interactive audio within game design engines such as Unity (www.unity3d.com).

In the reproduction phase, the spatial audio is delivered via a multi-channel loudspeaker array or

headphones, the latter of which typically uses binaural audio rendering, the focus of this paper. To this

end, the spatial audio quality of the binaural rendering is of key importance in delivering a plausible

and immersive soundfield.

Binaural audio attempts to deliver the perceptual cues inherent in normal listening in an effort

to render 3D soundfields at the ears of the listener. The human auditory system is derived from a

pair of spaced dynamic filters whose responses are, in part, a function of the direction-of-arrival of a

sound source [3]. In binaural audio, these organic inputs are simulated by means of their equivalent

time and/or frequency domain filters, referred to throughout the literature as Head Related Impulse

Responses (HRIRs) or Head Related Transfer Functions (HRTFs), respectively. HRTFs define the
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transfer function between a localised free-field anechoic source and the signals present at a listener’s

tympanic membrane (ear drum) [4]. Typical features include a time delay, spectral colourations caused

by the shape of the pinnae and early reflections from the shoulders and torso. Alternatively, Binaural

Room Impulse Responses (BRIRs) may be considered which include environmental contributions such

as wall and floor reflections [5].

A particular transfer function, h(n), may be applied to a signal, s(n), by means of convolution [6]

such that the output, y(n), may be written

y(n) =
N−1

∑
k=0

s(k).h(n − k).

By convolving a signal with an HRTF or BRIR and presenting the result directly to a listener’s

ears (usually via headphones), a source may be simulated as if coming from the direction in which the

Impulse Response (IR) was measured. The quality with which the source is rendered depends on the

individual listener and the measurements used. Binaural IRs are a result of physiological features and

as such are unique to an individual. Although certain characteristics may be generalised, for example,

an increase in time delay as a source moves toward the contralateral hemisphere, other features such

as the high frequency spectral notches caused by the pinnae are not so easily replicated.

In this paper, we use the phrase individual HRTFs to refer to the unique HRTF measurements

of a particular person. We use this phrase in place of other commonly used terms (e.g., personal,

personalized, individualized) in an attempt to discriminate between real-world measurements and

alternative HRTF selection/optimization processes.

The use of non-individual measurements alters the way in which a person perceives a sound.

However, it is unclear as to whether this could benefit a listener [7,8]. Previous studies focus extensively

on the impact individual measurements have on source localisation [9–15] but fail to properly consider

alternative perceptual implications.

Considering the ever-growing market for binaural technology, it is necessary to consider the

impact of using different binaural IRs more generally and within the context of competing rendering

schemes [16,17]. It is proposed in this paper that a listener’s individual measurements may not be

optimal in all cases. We find that within particular measurement sets exist listening attributes that are

preferable to a wide range of subjects. As a result, the use of such sets over individual measurements

may improve a person’s listening experience. In this paper, we evaluate the performance of both

individual and non-individual HRTFs. In a blind study, participants were asked to rate a series of

mono, stereo and binaural stimuli based on four pre-defined spatial audio attributes.

To that end, we detail the measurement and post-processing of the SADIE II Database, a follow up

to the original SADIE (Spatial Audio for Domestic Interactive Entertainment) database [18]. It collates

over 60,000 binaural measurements taken of 20 subjects, 16 of whom partook in the listening test.

2. Spatial Audio Quality Assessment

The evaluation of spatial audio is a complex topic. One must be careful to define parameters that

are descriptive enough to capture the essence of any given stimuli without overwhelming a listening

test subject. It is necessary to consider many different aspects—for example, timbre, spatialization,

naturalism and fidelity as well as the impact of listener preference.

In binaural audio, the addition of HRTFs can dramatically impact a signal due to the sharp

peaks and notches found in their frequency response. Previous studies have tended toward HRTF

evaluation via localisation tests [9–11]. Findings have offered conflicting results as to the performance

of individual HRTFs compared to non-individual measurements. Some find clear benefits [12–14]

whilst others show little improvement [15]. Results often depend on the inclusion of features such as

head-tracking and the type of stimuli used.
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More recent studies have begun to explore HRTF preference through: methods of database

optimization [19]; the examination of perceptual repeatability and variability [20,21]; and the creation

of global similarity metrics [22,23]. However, in each case, perceived spatial performance was used

as a stand-alone metric for comparison. Impulsive or noisy stimuli was presented over a known

trajectory and participants were asked to rate the spatial effectiveness of each sample. Considering

a more general listening scenario, it is important to evaluate beyond just the spatial attributes of a

rendered source [24]. In this paper, we wish to examine the impact of HRTF selection by the more

general evaluation of spatial audio stimuli within a real-world context.

Previous work standardised attributes for the subjective assessment of sound quality in an ITU

Recommendation in 2003 [25,26]. However, the recommendation lacks sufficient attributes for the

assessment of spatial audio [7]. Early examples of subjective binaural evaluation [24,27] lack clarity

and consider only general spatial or timbral colouration. Pulki [28] and Huopaniemi [24] introduce

perception based binaural models as a measure of binaural signal quality. Similar objective metrics have

been published since [29,30]. Whilst such models are useful for monitoring authenticity, they operate

by comparing a test signal to a given reference signal and as such do not directly assess a listener’s

Quality of Experience (QoE).

Alternative work has identified comprehensive lists of attributes tailored for the perceptual

evaluation of spatial audio. Whilst the processes with which these lists were compiled vary by author,

all result in a similar collection of holistic terms. A brief summary follows. Berg proposes a set of

spatial attributes based on the Repertory Grid method in which subjects identify differences in triads

of stimuli [31]. Koivuniemi presents a structured method for the development of any descriptive

language [32]. In an example, 12 expert listeners produce an exhaustive list of eight spatial and four

timbral attributes for evaluating different spatial sound reproduction systems. Lindau developed

the Spatial Audio Quality Inventory (SAQI) which presents a vocabulary containing all perceptual

attributes [33]. It is derived from a focus group of 21 German speaking virtual acoustics experts.

Lokki focused on the acoustics of concert halls developing a broad list of attributes from the results

of an individual vocabulary profiling experiment [34]. Pearce examined the search terms used in

online sound effect libraries and compiled a list of the most popular discriminators [35]. Simon was

a little more specific and identified eight qualities for describing the perceived differences between

non-individual HRTF sets in binaural renderings [36]. He first followed an individual vocabulary

profiling procedure, similar to Lokki, before refining his terms through a series of focus groups.

We evaluate the common elements of these lists to identify four discriminatory attributes to be

assessed within a listening test (see Table 1).

Table 1. Spatial audio attribute scales and definitions.

Attribute Anchors Definition

Brightness Dark → Bright The abundance of high (/low) frequencies.

Richness Thin → Rich A full and well balanced mix. Inclusive of all frequencies
and with no obvious boosts or cuts.

Externalisation In-Head → External The locatedness of sources to distant points in space.

Preference Unfavoured → Preferred An overall plausibility of the sound field.

Given that a small number of participants was used (those measured for the SADIE II database),

the contribution from each subject was significant and an exhaustive list of attributes would have been

an onerous task for each subject, potentially creating a detrimental effect on the results due to listening

fatigue. To avoid this, a smaller selection of attributes was used and participants were encouraged

to think more carefully about the ratings given to each stimuli. Four attributes were selected to be

compatible with the interface used by the participants to rate the stimuli, discussed in Section 4.
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Koivuniemi [32], Lindau [33], Lokki [34], Pearce [35] and Simon [36] all identify brightness

(/darkness) as the abundance of high (/low) frequencies. We use the same definition. A term to

describe a sense of fullness is also included by each author. It is described as immersion by Simon and

presence by Lindau. In this paper, we use the term richness (as in [32]). We describe it as the sense of a

full and well balanced mix inclusive of all frequencies and with no obvious boosts or cuts.

Regarding spatial attributes, externalisation is identified by Simon, Lindau, Koivuniemi and

Berg [31]. We use this term and describe it specifically as the locatedness of sources to distant points in

space. An overall feeling of realism or naturalness, is also identified by the same authors. We summarize

these sensations with the term preference, implying an overall plausibility of the sound field.

3. SADIE II Binaural Database

3.1. Data Summary

In order to assess the perceptual quality of individual and non-individual HRTFs, a database of

individual measurements was required. To benefit future work and to be compatible with popular

binaural renderers, spatially regular Ambisonic configurations were prioritised. Ambisonics has proven

to be a popular workflow for binaural rendering [37,38] and as such it is favourable to contribute data to

the field. Although not pertinent to this study, BRIRs are also presented in this paper for completeness.

Alternative human HRTF databases suffer from a lack of measurements made at low elevations

and a limited overall resolution (see Table 2).

Table 2. A comparison of the number of points and minimum elevations measured by a number of

popular human HRTF databases.

Database Number of Points Minimum Elevation

SADIE II 2818/2114 −81◦

ARI [39] 1550 −30◦

CIPIC [40] 1250 −45◦

LISTEN [41] 187 −45◦

SADIE [18] 170 −75◦

FIU DSP Lab [42] 72 −36◦

Measurements of dummy heads are more readily available [43,44], however, are of course

by nature less applicable to individual HRTF experimentation. The SADIE II Database includes

measurements down to an elevation of −81◦ and provides a minimum of 2114 measurements for each

human subject.

The following measurements were taken of 31 subjects (22 male, 5 female, 2 non-binary, 2 dummy

mannequins, ages: 20–63 (majority 20–30)) with normal hearing:

• HRTFs of a fixed latitude-longitude distribution [45],

• HRTFs of 14 key Ambisonic loudspeaker configurations (listed in Section 3.2.1),

• BRIRs of a 50 point Lebedev Grid [46],

• Headphone IR of Beyerdynamic DT990s (+ Headphone EQ filter).

In the case of the KU100 and KEMAR mannequins, recordings were made using their built

in microphones. For human subjects, a pair of Knowles FG-23329-C05 microphones (Knowles

Electronics. Itasca, IL, USA.) were used and a blocked meatus approach was taken [4]. The microphones

were mounted inside 3D printed capsules and secured in the participants’ ears with silicon putty

(see Figure 1).
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(a) (b)

Figure 1. (a) a Knowles FG-23329-C05 microphone housed inside a 3D printed capsule (scale in cm)

and (b) the position of the capsule inside a participant’s ear.

Once inserted, the microphones were not removed or re-positioned until all audiological

measurements had been completed.

Twenty subjects were admitted to the final database (15 male, 1 female, 2 non-binary, 2 dummy

mannequins, ages: 20–63 (majority 20–30)). Inclusion was subject to the quality of their measurements

determined by observational notes and analysis of spectral, Interaural Time Difference (ITD) and

Interaural Level Difference (ILD) plots. One subject voluntarily stopped the measurement procedure

part way though. Six subjects were excluded due to excessive movement and shuffling in-between

measurements. Two subjects were excluded due to minor asymmetries in their ITD plots. Two subjects

were excluded due to unexplained discontinuities in their measurements, possibly a result of

movement. Qualifying datasets included those of the KU100 dummy head and KEMAR mannequin.

Data is available for download on the database webpage: www.york.ac.uk/sadie-project/

database.html.

3.2. Head Related Transfer Functions

3.2.1. Measurement

An acoustically treated HRTF measurement rig was designed for the anechoic chamber at the

Audio Lab, University of York, York, UK (see Figure 2a [47]).

The set-up consisted of three static, vertical semi-circular arcs, each separated by 45◦ azimuth.

Participants were sat centrally on a motor-controlled ‘saddle stool’, selected for its minimal acoustic

occlusion. Their feet were tucked underneath their body, supported by a footrest. Their inter-aural

axis was laser aligned to the precise centre of the loudspeaker array. Their head position was tracked

in real time via a multi-purpose restraint, shown in Figure 2b. The restraint could be attached to a

rigid back rest to help prevent unintentional head movement, as in Figure 2a. The restraint supported

10 reflective markers: six positioned asymmetricaly above the head and four positioned around

the head. Four Optitrack Flex-3 Infra-Red motion capture cameras (www.optitrack.com/products/

flex-3) tracked the 10 point rigid-body to within <0.1◦ via optical motion capture software, Motive

(www.optitrack.com/products/motive) (Version 1.8.0 Final 64-bit). Utilizing this data, participants

were rotated in place about the horizontal plane to a series of predetermined azimuthal positions by

means of a Yaesu G-2800DXC motor and GS-232B serial interface (Yaesu. Cypress, CA, USA.).

Twenty-three Genelec 8010 loudspeakers (www.genelec.com/8010) were installed at 23 unique

elevations at a radius of 1.2 m. In each case, the loudspeaker was aligned to its acoustic axis [48].

The 8010 was chosen for its small footprint and reliable frequency response (±2.5 dB) from 74–20 kHz.

Twelve elevations were measured at 15◦ intervals between −75◦ and 90◦. These were necessary

to measure the regular lattitude-longitude distribution [45]. Source localisation in the median plane

is reported to be significantly worse than that in the horizontal plane [3]. A localisation blur of ±9◦
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is reported for continuous familiar speech [49] whilst ±17◦ is reported for continuous unfamiliar

speech [50]. Measurement intervals of 15◦ were considered to be of fine enough resolution to give an

accurate representation of perceptual localisation cues without oversampling the subject unnecessarily.

(a) (b)

Figure 2. (a) a subject being prepared for HRTF measurements. They are sat on a motor-controlled

rotating ‘saddle stool’ and their head movement has been restricted by a motion tracked restraint;

(b) an example of the cross-axis laser guids used to align a subject’s interaural axis to the centre of the

loudspeaker array.

A further 10 elevations were determined according to the common elevations coordinates of

11 typical Ambisonic loudspeaker layouts. An additional three layouts are composed of the same

approximate elevations ±2◦. A summary of these layouts and corresponding elevation coordinates is

given in Table 3.

Table 3. Distributions considered for HRTF measurement and their corresponding elevations.

The black dots indicate the affiliation of a particular elevation angle with a particular configuration.

Approximations are indicated by the symbol ≈. Note that elevations correspond to the vertices (not

faces) of each distribution.

Lattitude-Longitude
Distribution

0◦ ±15◦ ±17.5◦ ±25◦ ±30◦ ±35.3◦ ±45◦ ±54◦ ±60◦ ±64.8◦ ±75◦ ±90◦ †

• • • • • • •

Tetrahedron •

Octahedron (×4
orientations)

• •

Cube •

Bi-Rectangle (×3
orientations)

• •

26pt Lebedev Grid • • • •

50pt Lebedev Grid • • • • • •

Icosehedron ≈ ≈ ≈ ≈

24 point Hardin and
Sloane 7-Design

≈ • •

Pentakis
Icosedodecahedron

• ≈ ≈ • ≈ •

† −90◦ modelled by the interpolation of measurements made at −81◦.

At a distance of 1.2 m, an error of 2◦ translates to a speaker displacement of 4.2 cm. This is small

with respect to the size of the loudspeaker (18.1 cm) and main driver (12 cm). Considering such a
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minor displacement in relation to the resolution of the human ear, it is proposed that this error has

little perceptual influence.

An elevation angle of −90◦ could not be measured as the area was blocked by the installation of the

chair and motor. Instead, a nearest alternative angle of −81◦ was measured. In post-processing, these

measurements were interpolated to approximate a measurement at −90◦. For each ear, measurements

were time aligned by their peak amplitude to the average delay of the subset. A linear interpolation

was then performed in the time domain by calculating the average amplitude of each sample. Due to

the nature of HRTF measurements made at such low elevations, the majority of high frequency detail

is occluded by the legs/torso/chair. It is therefore reasonable to use an interpolated measurement,

which will mainly preserve the low frequency cues.

As the subject was rotated, the relative azimuthal co-ordinate of each loudspeaker was redefined.

A sequence of rotations was programmed such that these coordinates satisfied the intended

configurations. At each azimuthal potion, the subject was stopped and a 2 s pause allowed any

mechanical noise to settle. An overlapped exponential swept sine wave technique [51] was used to

quickly and efficiently measure the IRs from all 23 loudspeakers, regardless of their direct affiliation to

a configuration.

The use of a sinusoidal sweep is an effective technique to measure a source-receiver transfer

function over a range of frequencies [52]. The recorded signal is convolved with an inverse (time-reverse

and amplitude compensated) copy of the sweep to remove the time-smeared element of the input

signal and re-align and normalize the various frequency components in the time domain. This is

known as de-convolution and results in the IR of the source being located at the moment the input

sweep finishes. To save time, the sweeps’ output from the loudspeakers may be overlapped provided

that there is no interference between the IRs once the signals are deconvolved [51].

Twenty-four second sweeps separated by 0.15 s were performed with 0.1 s fade in/out

half-Hanning windows over the frequency range 200–24 kHz. The entire process was automated

with control software written in Max MSP (www.cycling74.com/products/max) and operated by

technicians in an isolated control room via a dedicated Local Area Network.

Sixty-four stoppages were required for the measurement of the Ambisonic configurations.

In addition, a regular set of measurements were required for the fixed lattitude-longitude

distribution. A 1◦ resolution was chosen for the dummy subjects. This required a total of 399 stoppages.

It generated 8802 unique measurements and took over 3 h to complete.

This was too long for a human to sit still, especially given the seat and head restraint.

The horizontal resolution of the latitude-longitude configuration was therefore chosen on a subject

by subject basis from two spatial distributions. In the first case, 11 subjects (seven admitted to

database) were measured with 5◦ resolution. This required 127 stoppages, generated 2818 unique

measurements and took approximately 1.25 h. In the second case, 18 subjects (11 admitted to database)

were measured with 10◦ resolution. This required 95 stoppages, generated 2114 unique measurements

and took approximately 1 h.

Recordings were made via a Fireface 400 interface (www.rme-audio.de/en/products/fireface_

400.php) at 96 kHz sample rate and 24 bit resolution. Raw measurements were deconvolved using an

unwindowed inverse sweep and the individual IRs were separated ensuring no overlap of the linear

or harmonic distortion products of neighbouring sweeps in the deconvolution. IRs were trimmed to

approximately 15 ms before and 10 ms after their peak amplitude to remove minor spurious reflections

(assumed to come from the door frame of the anechoic chamber). An approximate signal-to-noise

ratio of 65 dB was measured from the noise floor to the peak value of an IR measured from a frontal

loudspeaker via a flat omnidirectional Gras 46AE measurement microphone (www.gras.dk/products/

measurement-microphone-sets/product/140-46ae) positioned at the centre of the loudspeaker array.
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3.2.2. Low Frequency Compensation

Due to the size of the loudspeakers’ diaphragms and the low-frequency limit of the anechoic

chamber, frequencies below 200 Hz could not be reliably measured and were modelled instead. It is

well established that the effects of a listener’s ear and pinnae are only influential at mid to high

frequencies (>4000 Hz) [53]. At low frequencies (<400 Hz), analytical simulations such as those in [44]

show that even a listener’s head barely effects (<1 dB) the frequency content of a signal either. It is

therefore reasonable to adopt a low frequency model, similar to that in [54], which extends a flat

frequency response and linear phase response below approximately 400 Hz.

Low frequency compensation was performed independently for each channel of each HRTF.

A crossover frequency of 275 Hz was chosen. This balanced the preservation of natural

higher-frequency content with the need to accommodate the crossover filter’s low frequency roll

off when applied to the HRTF signals which only included data down to 200 Hz.

A Dirac pulse was generated with an amplitude and delay equal to the average amplitude and

group delay of the signal to be extended between 250–300 Hz. This would typically position the Dirac

after the peak of a HRTF. A phase response calculation was made at the crossover frequency and the

Dirac shifted forward in time until the signals’ phases aligned precisely at 275 Hz. A forward shift

ensured that the low frequency model remained well within any future amplitude windows applied to

the HRTF around its peak. A pair of 4096 tap Finite Impulse Response (FIR) low/high pass filters were

utilized to crossover the low-frequency model with the valid portion of the input signal. High order

filters ensured that neighbouring frequencies were sufficiently attenuated to avoid de-constructive

interference caused by slight phase misalignments in these regions. An example of the crossover

between a measured HRTF and a corresponding low frequency model is shown in Figure 3.

100 200 300 400 500

Frequency (Hz)

-5

-4.5

-4

-3.5

-3

-2.5

A
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p
lit

u
d
e
 (

d
B

)

Meas. HRTF

HP HRTF

LF Model

Output

Figure 3. The 275 Hz crossover of a measured HRTF and individually generated low frequency model.

A smooth transition between the High-Pass filtered HRTF and Low-Pass filtered low frequency

model is shown in the output signal. Note the small amplitude variation (<1 dB) below 400 Hz in the

measured signal.

3.2.3. Equalisation and Windowing

Correctly processed HRTFs require either diffuse-field or free-field equalisation. Both measures

give a directionally independent common transfer function. Whilst diffuse field equalisation attempts

to remove all commonality between a set of measurements, free field equalisation removes only the

direct impact of the measurement system.

This is demonstrated in Figure 4, where the diffuse field response of each ear of each subject is

shown after free field equalisation of both the average loudspeaker and respective binaural microphone

responses. For the free-field equalisation, loudspeaker responses were measured using a flat response

GRAS 46AE measurement microphone (www.gras.dk/products/measurement-microphone-sets/

product/140-46ae) placed at the centre of the loudspeaker array. Microphone responses were calculated

as follows: a 20–24 KHz sine sweep was output from a Genelec 8040 loudspeaker (www.genelec.com/
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support-technology/previous-models/8040a-studio-monitor) in the anechoic chamber. The sweep

was simultaneously recorded by a flat-response GRAS 46AE measurement microphone and each of the

individual binaural microphones one at a time. In every case, the binaural microphone was placed as

close as possible to the measurement microphone. A Fast Fourier Transform (FFT) was taken of each

recording and the spectral response of the measurement microphone was subtracted from that of each

binaural microphone. This resulted in the spectral responses of each binaural microphone. Inverse

linear-phase FIR filters were computed using Kirkeby and Nelson regularization [55], which could be

applied by means of convolution.

10
3

10
4

Frequency (Hz)

-10

0

10

20

A
m

p
lit

u
d
e
 (

d
B

)

KU100

KEMAR

All Human

Figure 4. The diffuse field response of each ear of each subject (total 40 responses) after free field

equalisation of both the average loudspeaker and respective binaural microphone responses. The

responses of the KEMAR and KU100 dummy heads are distinguished from the other human

responses. The plot shows a common broad peak at approximately 4KHz which may be explained by

ear canal resonance.

Despite the free-field equalisation, the diffuse field responses of the KEMAR mannequin and

human subjects all follow a similar trend, peaking at around 4 kHz. The KEMAR response peaks

highest at about 17 dB. It is suspected that this peak is a result of ear canal resonance. This would

explain both the similarity and slight variation between subjects as the microphones could not always

be placed at exactly the same depth within each participant’s ears. It would also explain the amplitude

of the KEMAR response whose microphones are housed internally further within the ear canal mould.

In contrast, the response of the KU100 is relatively flat. This is to be expected as the dummy head is

pre-calibrated with a diffuse field equalisation filter [56].

Consequently, within the SADIE II database, all measurements are diffuse field equalised.

This choice was made for a number of reasons:

• a large enough set of data points was being captured to make diffuse field equalisation viable;

• it would take into account the free field response on the system in situ i.e., influences due to the

placement of the microphone capsule within the ear canal;

• it would compensate for any generic response of the post-processing (e.g., windowing);

• it would equate the average frequency response of each dataset to provide a timbral consistency

across the database (recall the KU100 is pre-calibrated with a diffuse field equalisation filter [56]);

• it provides a compatible set of measurements for both loudspeaker and headphone reproduction

by avoiding the over-reproduction of the transfer function of the external ear [57,58];

• it helps to ensure the reproduction of accurate tone colour considering the random directions

from which many reverberant reflections could emanate from [3].

The equalisation was performed in two stages: before and after a windowing operation imposed

to reduce the tap length of the filters. For each stage, the power average response of the dataset

was calculated in the frequency domain for each ear of each subject. A weighting was applied to the

contribution of each measurement based on a solid angle calculation of neighbouring measurements.

This ensured that clustered measurements did not over-represent a particular direction in the average.
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Inverse linear-phase FIR filters were calculated from the diffuse field response using Kirkeby and

Nelson regularization [55] to perform each equalisation.

Stage one was designed to compensate for the response of the measurement system. Input data

was left unwindowed to preserve as much of the original signal content as possible. In addition, 1/3rd

octave band smoothing was used to prevent overly-sharp peaks or notches appearing in the frequency

response of the inverse filter and exacerbating the time-domain aliasing.

IRs were then windowed to 500 samples (approximately their final length) by means of a 20 sample

half Hanning window and 130 sample pad before each peak and a 150 sample pad and 200 sample

half Hanning window after (see Figure 5).
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Figure 5. Windowing of HRTFs to 500 samples by means of a 20 sample half Hanning window and

130 sample pad before each peak and a 150 sample pad and 200 sample half Hanning window after.

Note that the plot has zoomed in on the IR to illustrate the region of windowing.

The proportions and relative position of this window affected both the preservation of the filter’s

frequency response and the final diffuse field response of the dataset. By biasing the length of the

fade out over the post-peak pad and shifting the window to preserve more of the pre-peak signal,

the diffuse field variance can be reduced. However, accurate preservation of the frequency response

generally required as much of the post-peak signal to remain as intact as possible.

Systematic frequency domain errors introduced by the windowing operation were compensated

for by a second stage of diffuse field equalisation. This equalisation was performed on the windowed

IRs with 1/5th octave band smoothing. As the first stage of equalisation had already considerably

smoothed out the diffuse field response, a less smooth filter was required.

The IRs were time aligned and trimmed to 512 samples (256 samples at 48/44.1 KHz) inclusive

of 10 sample fade in/out half Hanning windows. It was ensured that at least 180 samples remained

before each peak and at least 230 samples remained after. This left approximately 100 samples to

account for the variances in peak onset time due to ITDs.

Figure 6 shows the final normalised diffuse field response of each ear of each subject calculated

after all post-processing: deconvolution and separation of original recordings, low frequency

compensation, stage 1 diffuse field equalisation, windowing, stage 2 diffuse field equalisation, and trim

to 512 samples.
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Figure 6. The final normalised diffuse field response of each ear of each subject (total 40 responses)

after all post-processing.

Comparing the magnitudes of the frequency bins of each response, 95% fall within a 0.33 dB range

(approximately −0.35 dB and −0.65 dB). The pattern followed by each response below approximately

7 KHz can be attributed to the windowing parameters.

3.3. Binaural Room Impulse Responses

Although not relevant to this particular study, there is a lack of comparative HRTF/BRIR

measurements taken of the same subjects within the same time frame utilizing the same post-processing

procedures. We therefore include details of such measurements in the hope that they may be of use in

future work.

Participants were led directly from the anechoic chamber to a treated listening room where BRIRs

were measured from an acoustically calibrated 50 point Lebedev grid loudspeaker array (see Figure 7).

Figure 7. BRIRs of a 50 point Lebedev loudspeaker configuration being measured inside a treated

listening environment.

Measurements of this configuration are particularly useful as nested within it are the 6- and

26-point Lebedev grids [59]. This particular array utilizes two types of loudspeaker. In addition,

40 Genelec 8030 s are supported by 10 Genelec 8040 s, for low frequency reconstruction. The rig

is enclosed by a thick curtain. Measurements of the KU100 and KEMAR mannequins demonstrate

reverberation times of around 50–65 ms for a drop of 60 dB, dependent on speaker location.

Participants were sat on a stool and their interaural axis was laser aligned to the centre of the

array. A rigid, acoustically dampened chin rest was used to ensure the participant kept their head still

throughout the measurement procedure. Three-second exponential swept sine waves were played

out of each loudspeaker one at a time over the range 20–24 kHz. Recordings were made via a MOTU

UltraLite-Mk3 Hybrid audio interface (www.motu.com/products/motuaudio/ultralite-mk3) at a

96 kHz sample rate and 24 bit resolution.
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After deconvolution, free field equalisation of each of the microphone’s frequency responses

was performed using linear-phase FIR filters. Microphone responses were calculated as discussed

in Section 3.2.3. By only equalising for the microphone responses (not loudspeakers), it ensured that

the measurements most accurately represented the real-world listening conditions of the loudspeaker

array. The BRIRs were trimmed to 0.3 s inclusive of 10 sample fade in/out half Hanning windows.

3.4. Headphone Equalization

Headphone Impulse Responses (HpIRs) are IR measurements taken from the left and right

transducers of a pair of headphones. Measurements of this type do not include any interaural crosstalk

(i.e., the response of the left transducer in the right ear). Headphone Equalisation (HpEQ) may be

performed by implementing a filter with the inverse response of a HpIR. This compensates for the

transfer function of a pair of headphones coupled to a person’s outer ear and is crucial for ensuring

the accurate reception of binaural signals [60,61].

Without removing the binaural microphones, participants were asked to put on a pair of open-back

Beyerdynamic DT990 Pro headphones (europe.beyerdynamic.com/dt-990-pro.html). A 3 s exponential

swept sine wave was output from each transducer (one at a time) and recorded through the MOTU

interface. This was repeated 10 times. In between each pair of measurements, the participant was

asked to remove the headphones completely and place them back on their head.

After deconvolution, the IRs for each ear were power averaged together in the frequency domain.

An inverse FFT followed by a circular shift of half the FFT size brought the data back into a stable

format in the time domain (i.e., a continuous central peak). The binaural microphone frequency

responses were equalised out of the signals. The HpIRs were trimmed to 2048 samples and a full

length Hanning window was applied.

Linear Phase HpEQ filters were generated by inverting the frequency responses of the HpIR

filters. This was done over the range 120–24 kHz with 1/5th octave band smoothing. Responses were

trimmed to 2048 samples and amplitude weighted by a full length Hanning window.

4. Listening Test: HRTF Preference

A listening test was conducted to investigate the existence of quantifiable timbral and/or spatial

attributes within individual and non-individual HRTF measurements. Sixteen participants (13 male,

1 female, 2 non-binary, ages: 20–63 (majority 20–30)) all of whom were admitted to the SADIE II

database were re-recruited for the test. All subjects gave their informed consent for inclusion before

they participated in the study. The protocol was approved by the University of York Physical Sciences

Ethics Committee. Participants were presented with a set of auditory stimuli over headphones and

were asked to rate each one based on four attributes as defined in Section 2: brightness, richness,

externalisation and preference.

The terms brightness and richness were described to each participant along with example audio

files containing filtered exerts of music. Three examples were filtered according to frequency response

plots shown in Figure 8.
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dB
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7000
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Figure 8. Frequency responses of the filters used to generate stereo anchor stimuli. (a) bright; (b) dark;

(c) thin.

A high boost simulated a bright signal, a high cut simulated a dark signal and a low and high cut

simulated a thin signal. One further example was left unfiltered to simulate a rich signal.
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The term externalisation is not so easy to conceptualise. To verify the effectiveness of any example

file would have required the verification of the spatial filters used to create such a file. This was in

part the purpose of this study. Participants were instead provided with a graphical depiction of the

soundfield and were advised that effective externalisation would be as if they were hearing the sources

in real life. Preference required not only a sense on externalisation, but also a pleasant timbre and

overall feeling of realism. Participants were given the opportunity to ask any questions relating to the

definitions of each term.

During the test, participants were able to freely switch between the set of stimuli over a continuous

looped playback. Ratings were performed using the graphical interface shown in Figure 9.

Participants were required to drag a marker corresponding to a stimuli to a point on a graph.

Two graphs were used to represent the four attributes on continuous scales. Brightness and richness

were represented by the x- and y-axes of one graph and preference and externalisation the axes of the

other. The interface allowed participants to easily compare and adjust the ratings they were giving to

each stimuli. They were instructed to make use of the entire range.

Noise bursts and other broadband signals are common stimuli used throughout listening tests;

however, such unfamiliar and unnatural audio is inappropriate for this type of study. A common

alternative is to use speech [13,15,62]. Whilst this is a more ecological than noise, it is relatively band

limited and lacks low frequencies especially. The stimuli used should represent examples of everyday

bianural audio and as such should elicit the same or at least similar perceptual characteristics [36].

For example, whilst it would be quite unusual to discuss the brightness of radio static, a similar

discussion about the sound of a piano would be relatively common.

Figure 9. The graphical interface used by participants to rate audio stimuli. Selection of stimuli

was made using the radio buttons at the bottom of the interface. A corresponding marker would

be highlighted on each graph and participants were required to click and drag the markers using a

computer mouse to where they felt was appropriate.

With this in mind, approximately a minute and a half of music was composed in a jazz style

using a range of non-reverberant VST MIDI samplers. These included a stereo drum set, stereo piano,

flute, trumpet, trombone and double bass for a well balanced mix covering a large range of frequencies.

The ensemble was binaurally spatialised by convolving individual audio stems with HRTFs spaced at

45◦ increments around the horizontal plane, starting at 0◦, and summing the results. Stereo sources

were convolved with adjacent HRTFs to mimic phantom source phenomena in real world listening [63].

20 binaural signals were produced using each of the Twenty HRTF measurement sets admitted to the

SADIE II binaural database, discussed in Section 3.1.



Appl. Sci. 2018, 8, 2029 14 of 21

In addition, five anchor stimuli were presented: four stereo mixes and one mono mix. The stereo

mixes were rendered by amplitude weighting the audio stems based on a constant power panning law.

The mono mix was rendered by the equal summation of all sources. Of the four stereo mixes, three

were degraded by the same filters as the example stimuli and as depicted in Figure 8. One stereo mix

was left unfiltered to simulate a rich signal. The mono mix simulated a non-spatial signal.

All 25 stimuli, normalised to an RMS level, were presented to each participant in a random order

over Beyerdynamic DT-990 Pro open-back headphones (europe.beyerdynamic.com/dt-990-pro.html)

via a Fireface UCX interface (www.rme-audio.de/en/products/fireface_ucx.php). Participants were

asked to adjust the volume of playback to a comfortable listening level i.e., a level at which they would

normally listen. Personalised headphone equalisation was used in each case. Equalization filters

previously measured as part of the SADIE II database, presented in Section 3.4, were used. The same

pair of headphones were used for this test as were measured for the database.

5. Results

Each subject’s ratings were normalized with respect to mean value (0) and standard deviation as

recommended by ITU-R BS.1284-1 [25]. The combined ratings for each attribute were then normalized

to a maximum absolute value of ±1. The responses to each stimuli are presented as box plots in

Figure 10 in order of mean preference.

Stimuli are identified by either the anchor they represent, or by the subject whose HRTFs were

used to render the signals. To preserve anonymity, human subjects are referred to as H[3–20]. Included

on the plots are the ratings given to each stimuli by the owner of the respective HRTFs. This is referred

to as the Personal Rating.

The average values and narrow ranges of the thin, dark and bright anchors (stereo tracks) validate

the participants understanding of the attributes. The results of the mono anchor are surprisingly

optimistic. Despite averaging amongst the lowest scores in both externalisation and preference,

the confidence intervals and error bars extend to well within the ranges of higher scoring HRTF

sets. This indicates the significance of timbre in rendering systems.

The responses to each stimuli were tested for normality with a Lilliefors test which failed to

reject the null-hypothesis of normality at the 5% significance level. The significance of the ratings

given to each stimuli for each attribute were explored by one-way repeated measure ANOVA

with post hoc analysis. Violations of the assumption of sphericity were identified by Mauchly’s

tests and Greenhouse–Geiser corrections were applied in the calculations of p-values. Results are

presented in Table 4.

Table 4. A Greenhouse–Geiser estimation of ǫ and the results of a corrected one-way repeated measure

ANOVA applied to the ratings given to each stimuli with respect to attribute. A p-value below 5% was

considered significant.

Attribute Greenhouse-Geiser Estimation of ǫ p-Value (with Greenhouse-Geiser Correction) (%)

Brightness 0.418 1.1
Richness 0.435 0.78

Externalisation 0.448 9.1
Preference 0.461 0.065

A p-value of below 5% indicates that we may say with 95% confidence that the average results

do truly vary. Greatest significance is seen with respect to preference, followed by timbral attributes:

brightness and richness. A significant difference is not seen with respect to externalisation. Together

with Figure 10, these results reinforce that timbre must play a considerable role in HRTF selection.
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Figure 10. Subject ratings of stimuli in order of mean preference. A personal rating reflects a subject’s

rating of their own measurements.

A post hoc pairwise comparison of the mean ratings given to each stimuli was undertaken using

Tukey’s Honestly Significant Difference test procedure. This revealed seven significant differences

between stimuli with respect to preference, two with respect to richness and five with respect to

brightness. Zero significant results were seen with respect to externalisation. A summary is given in

Table 5.
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Table 5. Significant differences found between individual stimuli with respect to preference, richness

and brightness attributes. The values shown are the p-values (%) from a post hoc pairwise mean

comparison test using Tukey’s Honestly Significant Difference procedure. A value below 5% was

considered significant. The stimuli shown vertically received a higher rating in each case.

Preference Richness Brightness

H19 H8 H17 H19 H18 H14 H16

KU100 0.20 4.2 4.7
H20 1.0
H7 1.4

KEMAR 1.8 4.3
H9 3.5
H11 2.2 0.64 1.8 2.1
H15 4.4
H10 0.95

By virtue of the fact that diffuse field equalised HRTFs were used throughout the test,

these differences in timbral and spatial features must be attributed to the individual spectral notches

of the HRTFs and not to any general frequency response of the individual.

The correlation of brightness, richness and externalisation with respect to preference is plotted in

Figure 11. The graph directly compares the attribute ratings given by each participant to each stimuli.

Anchors and anomalies identified in Figure 10 are excluded from this plot. Second order polynomial

lines of best fit indicate a positive correlation between richness, externalisation and preference. A slight

preference for neutral brightness can be seen.
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Figure 11. A comparison of the ratings given to each stimulus by each subject. Brightness, Richness and

Externalisation ratings are plotted against Preference ratings to show correlation. Both Richness and

Externalisation show a positive correlation whilst an overall preference for a more natural Brightness is

indicated. Note that outliers have been excluded from this plot.
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Analyzing the correlation of such a mapping of brightness to preference is challenging due to its

non-linearity. We therefore define a new parameter brightness* that is the deviation of the brightness

rating from an optimal value of 0.2 (read from Figure 11).

brightness* = −|brightness − 0.2|

By doing this, we may consider the correlation of brightness* such that a higher rating is indicative

of preference. A summary of the Pearson’s correlation coefficient values for each pair of attributes is

given in Table 6.

Table 6. Pearson’s correlation coefficient values calculated between attributes (excluding anchors and

anomalies).

Brightness Brightness* Richness Externalisation Preference

Brightness 1 0.86 0.15 0.17 0.23
Brightness* (0.86) 1 0.19 0.21 0.27

Richness (0.15) (0.19) 1 0.37 0.40
Externalisation (0.17) (0.21) (0.37) 1 0.46

Preference (0.23) (0.27) (0.40) (0.46) 1

6. Discussion

From these results, we present three key findings. The first is that there are significant differences

in the attribute ratings given to particular HRTF sets by a general audience. The second is that there

exists some correlation between these attributes, for example that of externalisation, richness and

preference, but that this correlation is not high. The third is that individual measurements were not

perceived by subjects to be of optimal performance.

Overall, it is the HRTFs of the dummy mannequins that are most preferred. Surprisingly, it is

the HRTFs of the head without shoulders (the KU100) that received the highest rating for preference.

This is despite averaging similar or less favourable ratings than the measurements of KEMAR, H11,

H20 and H7 with respect to all other attributes, according to general correlations shown in Figure 11.

It is likely, therefore, that there exist other factors not identified in this study that have a stronger

influence on overall preference.

There are two major differences between the measurements of the dummy heads and the

human participants: movement and microphones. Despite best efforts, some movement is inevitable

with human subjects, the binaural heads on the other hand remain perfectly still. Larger in-built

microphones were also utilised for the dummy heads. Significant differences between the preference

ratings of human measurements (H20, H7, H9) and (H19), however, indicate that microphone selection

alone cannot be the sole cause of preference. It is therefore proposed that the stillness with which a

participant sits could impact the quality of measurement and hence the performance of the HRTFs.

We see strongest relevant correlation between the attributes externalisation and preference with

a Pearson’s correlation coefficient value of 0.46. However, we note that this does not indicate

a particularly strong correlation. A similar result is seen between richness and preference whilst

brightness* appears to correlate relatively poorly with all other attributes. A slight preference for

brighter timbres over darker timbres may be interpreted from Figure 11. This is confirmed by the

positive correlation coefficient (ρ = 0.23, see Table 6) calculated between brightness and preference.

These values indicate a slight correlation between the attributes tested in this study. However,

it is in fact of more interest to note the lack of strong correlation. Such results show that HRTFs may be

rated as highly preferable regardless of their timbral or spatial characteristics. Therefore, selection of

an optimal HRTF remains a complex task and likely depends on the application.

A key result is the randomness with which a participant rated their own measurements.

Andreopoulou [20] comments on the repeatability and hence reliability (or lack thereof) of HRTF

ratings. They conclude that although, in general, HRTF rating is a difficult task, repeatability of
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results is significantly higher at the extreme ends of the response scales. This indicates that had

individual measurements significantly out-performed non-individual measurements, as one might

expect, we should have seen consistent results. However, this was not the case.

We find that individual measurements may not necessarily be the optimal tool for binaural

rendering, especially when considering the more general requirements of good spatial audio

reproduction beyond localisation. Such claims are echoed throughout the literature [7,8]. In our

case, only one participant (H9) rated their individual measurements as sounding the most external.

No participants rated their individual measurements as the most preferred and 81% of participants

preferred the KU100 HRTFs to their own. Despite almost certainly improving source localisation

in binaural reproduction [12–14], this finding calls into question the usefulness of individual HRTF

measurements when one considers a more open quality of experience evaluation.

These findings have direct implications within the design on spatial audio rendering systems.

The purpose of the system must be identified before an HRTF set is selected for spatial reproduction.

For example, in gaming environments, it is understandable that accurate source localisation may be

prioritized. However, within the audio and film industries, one may argue that it is the quality of

sound that must be preserved. As such, designers may utilize individual measurements for games,

but opt for more generally preferred HRTF sets (for example, that of the KU100) for entertainment.

It is important to consider that timbral and spatial preferences will vary between listener and that

this will have contributed to the spread of results in this study. However, such problems have existed

within non-spatial audio applications for decades and as such we must consider a generally accepted

average. It is unlikely that a single HRTF set will ever be able to perform optimally for every person

across every imaginable attribute. However, this study finds that a single HRTF set may be able to

perform highly within key attributes for a wide range of subjects.

7. Conclusions

This paper has presented a perceptual listening test in which participants were asked to evaluate

both individual and non-individual binaural renderings of a jazz ensemble on four scales: brightness,

richness, externalisation and preference. Results show significant differences in the ratings given

to particular HRTF sets at the 95% confidence interval. An overall preference for the measurement

set of the KU100 dummy head is seen, followed closely by the the measurement set of the KEMAR

mannequin. A slight preference is shown for rich and external stimuli of a neutral/slightly bright

timbre. Very little correlation is seen with respect to the responses given to stimuli generated with

individual HRTFs.

Details of the measurement and post processing of the SADIE II Database were also presented.

Diffuse field equalised HRTFs, BRIRs and HpIRs data of 20 subjects (2 dummy, 18 human) are now

available online for use in similar tests. The database represents the largest measured HRTF datasets

for both human subjects and the KEMAR mannequin currently available. Furthermore, it is the only

database which provides comparative echoic and anechoic measurements.

The results of this paper lead to questions regarding the future of HRTF measurement and binaural

rendering. Source localisation, shown to improve with individual measurements, must be carefully

balanced against timbral and spatial qualities of competing measurement sets. For now, this paper

serves to promote the significance of non-localisation based HRTF attributes and the compelling

performance of the KU100 measurement set.
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