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Visual saliency is a biological mechanism for shifting visual attention to im-
portant objects in the environment, where important objects could be hazards,
or items associated with a task [1]. This approach to analysing visual scenes
reduces the computational burden on vision systems by only focusing on a few
important stimuli rather than the whole scene. Visual saliency is therefore poten-
tially important for robots, to enable effective and safe operation in unstructured
environments [2].

Visual saliency models can contain a bottom-up and/or a top-down compo-
nent [3]. The bottom-up and top-down components have particular, respective
advantages. The bottom-up component is typically fast and does not require
training via machine learning algorithms. Bottom-up methods should also be
more robust, because they do not require object recognition to operate success-
fully. The top-down component is essential, however, for task-dependent actions
where a robot would need to recognise important objects to complete a task.

Machine learning algorithms are typically used for top-down visual saliency,
e.g. via support vector machines [4]. Recently, deep neural networks have been
applied to the task of top-down bottom-up visual saliency, exploiting the accu-
racy of deep networks in image recognition for the top-down component [5]. How-
ever, methods that combine deep neural networks for top-down visual saliency
and task-independent feature maps for bottom-up saliency have not yet been
developed. This is a gap in the literature, which this work aims to address.

In this investigation, we combined a well-known approach to bottom-up vi-
sual saliency, using task-independent feature maps, based on e.g. colour contrast,
intensity contrast and orientation contrast [6], with a deep convolutional neural
network (CNN) based on the Tiny-YOLO architecture [7]. The resulting bottom-
up and top-down saliency maps (spatially calibrated maps of salient features)
were fused using a weighted sum, which combined the output of both processing
streams into a single saliency map to drive visual attention [8].

To evaluate the visual saliency scheme we generated data from a small mo-
bile robot, a Turtlebot, in an indoor environment, and implemented the visual
saliency algorithm on an NVIDIA Jetson TX2, which is a processing board for
embedded systems with a small GPU (256 CUDA cores). The Jetson TX2 was
also used to control movements of the Turtlebot, using an installation of Robot
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Fig. 1. Scheme for top-down bottom-up visual saliency. The Turtlebot with mounted
Jetson TX2, on the right, generates and processes each map. In this example the top-
down CNN fails to detect the chair to the right of the image, which is successfully
detected by the task-independent map in the bottom-up pathway.

Operating System (ROS), so the control and visual processing was integrated
on a single board.

We found that the bottom-up and top-down components worked as expected.
However, a key early result from this pilot study was the observation that the
top-down CNN would occasionally miss objects in the environment that were
more robustly detected by the bottom-up task-independent feature maps (Fig.
1). Therefore, the fusion of bottom-up task-independent maps and top-down
deep net maps appears promising for robust visual saliency in mobile robots.
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