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In this work, we performed magnetoresistance measurement in a hybrid system consisting of an
arc-shaped quantum point contact (QPC) and a flat, rectangular QPC, both of which together form
an electronic cavity between them. The results highlight a transition between collimation-induced
resistance dip to a magnetoresistance peak as the strength of coupling between the QPC and the
electronic cavity was increased. The initial results show the promise of hybrid quantum system for
future quantum technologies. © 2018 Author(s). All article content, except where otherwise noted,
is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/

licenses/by/4.0/). https://doi.org/10.1063/1.5049936

Recent development in quantum technologies has stimu-
lated research activities in integrating different quantum
components in order to realize complex functionality.'? It is
therefore of fundamental interest to investigate coupling
between discrete quantum devices. Coupling between the
electronic cavity and other quantum devices, such as quan-
tum point contact®™’ (QPC) and quantum dot®1° (QD), has
attracted considerable attention. A hybrid device consisting
of a QPC and an electronic cavity, as an example, provides a
unique platform to investigate electronic equivalent of opti-
cal phenomena. This may be understood from the fact that
electrons in such a system transport ballistically and accumu-
late phase along the quasi-classical trajectories, which is a
close analogue of an optical cavity. Previous studies based
on QPC-cavity hybrid devices reported results based on
classical trajectories of electrons®*!'"!? as well as quantum
effects manifested as conductance fluctuations™* and
Ahronov-Bohm phase shift as a function of cavity size.*

In the present work, we studied magnetoresistance in a
hybrid system in a controlled manner with the assistance of
two QPCs which form an electronic cavity between them.
We show that the strength of coupling between the QPC and
cavity states can be monitored by oscillation in the magni-
tude of central peak/dip in magnetoresistance.

The devices studied in the work were fabricated from a
high mobility two-dimensional electron gas (2DEG) formed
at the interface of GaAs/Alj33Gag g7As heterostructure. The
measured electron density (mobility) was 1.80 x 10" cm ™2
(2.17 x 10° ecm? V! s71) at 1.5K, which ensured that both
the calculated mean free path and phase coherence
lengthl3’14 were over 10 um, which were larger than the elec-
tron propagation length. The experiments were performed in
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a cryofree dilution refrigerator with a lattice temperature of
20 mK using the standard lockin technique.

The hybrid device consists of a pair of arc-shaped gates
with a QPC (referred as arc-QPC) forming in the center of
arc-gates and another pair of rectangular QPC (named as flat-
QPC) as depicted in Fig. 1. The QPCs are assembled in such a
way that the geometrical center of the arc (shaped gates) aligns
with the saddle point of the flat-QPC. An electronic cavity is
formed when QPCs are activated by depleting the 2D electrons
underneath the gates.S’6 Both the arc-QPC and flat-QPC
showed well defined one-dimensional conductance quantiza-
tion when they were characterised individually (Fig. 1).

In the presence of a small transverse magnetic field, the
magnetoresistance of flat-QPC or arc-QPC exhibited a weak-
localization peak similar to reported previously.'>'® However,
the non-trivial features started appearing when the hybrid

V)

VSg1

FIG. 1. The experiment setup and device characteristics. The blue trace
shows the characteristic of arc-QPC as a function of gate voltage V,,; the
red trace illustrates the behaviour of flat-QPC against gate voltage V,,>. The
series resistance was not removed. Inset depicts an illustration of the experi-
ment setup, the yellow blocks represent electron-beam lithographically
defined metallic gates, while the red squares highlight the Ohmic contact.
The length (width) of the flat-QPC is 700 nm (500 nm). The radius of the arc
is 2 um with an opening angle of 45°. Both the length and width of the QPC
formed in the center of the arc, i.e., arc-QPC, are 200 nm.

© Author(s) 2018. @ '


https://doi.org/10.1063/1.5049936
https://doi.org/10.1063/1.5049936
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5049936
mailto:uceeya3@ucl.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5049936&domain=pdf&date_stamp=2018-09-10

112101-2 Yan et al.
device was formed, i.e., both flat-QPC and arc-QPC were
activated.

In the first experiment, the flat-QPC served as an emitter
while the arc-QPC was used as a collector (see the inset of
Fig. 1). The voltage applied to the flat-QPC was incremented
slowly corresponding to a conductance of Gy (Go = %) up
to 1D channel fully open while the arc-QPC was fixed at G,
The magnetoresistance was investigated in three different
regimes according to flat-QPC conductance.

In regime 1, the flat-QPC was incremented from G to
4G, [Fig. 2(a)]. A dip in resistance (marked by the magenta
dashed line) was observed around OT when the flat-QPC
conductance G <2G, which is due to the fact that the
injected electrons had a relatively small angular spread
owing to strong collimation in low conductance regime.'”"'®
The electrons tend to propagate from the flat-QPC through
the arc-QPC directly without backscattering; however, the
applied magnetic field guides the injected electrons to the
arc-shaped boundary wall of the arc-QPC, thus results in
backscattering, which in turn triggers a rise in resistance. In
this respect, our hybrid system is similar to a long quantum
wire where scattering at the boundary was suggested to intro-
duce a central dip in magnetoresistance.'® An offset in cen-
tral dip in magnetoresistance of 3mT could be due to
magnetic hysteresis of the superconducting magnet. On
increasing G to 4Gy, a central magnetoresistance peak started
forming. The zero-field magnetoresistance peak in electronic
billiards is a result of geometry induced closed loop®® (in
other words, an analogue to weak localization). A large
angular spread at higher G makes injected electrons to be
reflected at the boundary wall of the arc-shaped QPCs, thus
forming a close loop even at zero magnetic field; on the other
hand, a relatively small angular spread at low conductance
makes such reflection unlikely to happen without the assis-
tance of a magnetic field. The backscattered electrons will be
refocused to the saddle point of flat-QPC.

In regime 2 [Fig. 2(b)], the flat-QPC was set from 4G,
to 6Gy, the magnitude of the central peak fluctuated in the
sense that the central peak gradually smeared out when the
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FIG. 2. Magnetoresistance of the hybrid system with flat-QPC as an emitter.
The flat-QPC conductance was incremented while arc-QPC was fixed at G
(Go = 2/#12) (a) Result in regime 1 (Gg to 4Go), the central dip gradually
evolved into a peak with increasing flat-QPC conductance. (b) Result in
regime 2 (4G to 6Gy), the central peak is present in this regime. The black
arrows highlight the satellite peaks. (c) Result in regime 3 (6Gy to channel
fully open), the central peak split into two peaks in the 1D-2D transition
regime and eventually all features are smeared out. The strength of the cen-
tral feature is defined as AR = Ry, — (R; +Rg)/2, where Ry, R;, and Rp
refer to the resistance measured at a given magnetic field marked by the
vertical dashed lines.
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flat-QPC conductance was close to 5G, and then reappeared
on further increasing the conductance of flat-QPC. The fluc-
tuation will be discussed in detail in Fig. 5. Meanwhile, it
was also noticed that multiple weak-satellite peaks, marked
by black arrows in Fig. 2(b), occurred in this regime. It was
suggested” in a previous work that the appearance of these
satellite peaks was an indication of Aharonov-Bohm effect
and each peak was associated with a particular classical
orbit. We suggest that although the satellite peaks might be
relevant with classical orbits, however, Aharonov-Bohm
effect did not occur in our experiment considering the fact
that the satellites peaks were almost absent in regime 1 or
regime 3.

In regime 3 (6Gy to fully open emitter) [Fig. 2(c)], the
central peak gradually splits into two peaks around the 1D-
2D transition regime of the flat-QPC, and eventually all the
features smeared out and only a smooth background was
observed with the flat-QPC entering into the 2D regime. The
smooth background agrees well the weak-localization signal
when the arc-QPC was characterised individually.

To be noted that Shubnikov-de Haas oscillation started
appearing in all the three regimes when the magnetic field
exceeded *+0.13 T (data not shown).

To ensure the observation did not simply arise from the
superposition of the magneto-spectrum of two individual
QPCs, we reversed the role of emitter and collector. In setup
II, the arc-QPC was utilized as an emitter and incremented
while the flat-QPC functioned as a collector and was fixed at
Gy. In addition, the ac signal is fed to the left Ohmic [Fig.
1(a)] whereas the right Ohmic is grounded in setup II. The
results are summarized in Fig. 3. Results in regime 1 [Fig.
3(a)] was similar to that observed with setup I. However, the
central dip dominated in regime 2 [Fig. 3(b)] and regime 3
[Fig. 3(c)], which was considerably different from its coun-
terpart in Fig. 2 where more features were resolved. The
behaviour in setup II was similar to the magnetoresistance in
two regular QPC in series.'® It is interesting to mention that
satellite peaks observed in Fig. 2(b) did not occur in setup II.
A comparison between setup I and II also suggests that the
complicated evolution of magnetoresistance observed in Fig.
2 did not directly arise from the form of wavefunction at dif-
ferent emitter conductance; otherwise, setup II should exhibit
a similar behaviour.
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FIG. 3. Magnetoresistance of the hybrid system with arc-QPC as an emitter.
The arc-QPC conductance was incremented while flat-QPC was fixed at Go.
(a)—(c) Results in all the three regimes, regime 1 (G to 4Gy), regime 2 (4G
to 7Gy), and regime 3 (7Gy-channel fully open), respectively. It was seen
that the central dip dominated the spectrum.
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The difference between the results from two setups
could be understood with a semi-classical picture as shown
in Fig. 4. Electrons injected from the flat-QPC, which aligns
with the geometrical centre of the arc (i.e., arc-QPC), experi-
ence an arc-shaped reflector which traps the electrons in an
electronic cavity defined by these QPCs. The injected elec-
trons after reflection at the boundary wall of the arc would
be directed towards the flat-QPC. Owing to the geometry of
cavity defined between the arc- and flat-QPCs, electrons
would be trapped in a closed loop such as events 1 —4 as
shown in Fig. 4(a) until the total propagation length
exceeded the mean free path; phase associated with such a
close loop is unlikely to be averaged out; therefore, correc-
tions to the resistance, i.e., the central magnetoresistance
peak, due to the accumulated phase was observable. On the
other hand, the trajectory of electrons injected from the arc-
QPC, i.e., setup II, did not necessarily form a closed loop, so
that it was relatively easy for the injected electrons to get
through the hybrid system via a series of scattering events,
for instance, events 1 — 3 as depicted in Fig. 4(b). Electron
trajectory in the second scenario is more arbitrary, and the
trajectory-determined phase tends to be averaged out, which
leads to no obvious corrections in the resistance.

After addressing the difference between the two setups,
we discuss a possible mechanism behind the observed fluctu-
ation of the central features with flat-QPC serving as an emit-
ter. To quantify the fluctuation, we defined the strength of
the central feature (could be dip or peak) as such AR = Ry,
— (R; 4+ Rp)/2, where Ry, Ry, and Ry refer to the resistance
measured at given magnetic field marked in Fig. 2 (although
there was not a noticeable feature at L or R in the dip domi-
nant regime, we still use the resistance at the same field for
the systematic investigation). It was seen that AR followed a
quasi-periodic oscillation®®?' when the flat-QPC was tuned
into the 1D regime (V;, < —0.25 V); the fluctuation smeared
out when the flat-QPC entered the 2D regime as shown in
Fig. 5. The fact that the peak of oscillation does not necessar-
ily occur at each conductance plateau suggesting that it is not
simply associated with occupation of 1D subband or electron
collimation, which would otherwise produce peaks corre-
sponding to each conductance plateau. Instead, the oscillation
was an indication of the coupling between the cavity and
QPC sates. Each peak in Fig. 5 is a result of removing a cav-
ity mode; therefore, peaks in AR should occur when the
change in radius r of cavity matched a condition,” Ar = N
X Jp/2, where N is an integer and Ap is the Fermi
wavelength.

(a) (b)

1 , [
1 N
z\\= N |
%._@ my
é}? 3 |:Y‘E>
1 I

FIG. 4. Representative electron trajectories with flat-QPC and arc-QPC act-
ing as emitter, respectively. The solid traces represent the trajectory of inci-
dent electrons whereas the dashed traces illustrate the reflected electrons. In
plot (a), the solid and dashed traces are offset intentionally for clarity, which
otherwise should overlap together. The thick black arrows indicate current
injection direction.

Appl. Phys. Lett. 113, 112101 (2018)

AR (kQ)

FIG. 5. Fluctuation of the central feature as a function of flat-QPC conduc-
tance. The relative strength of the central feature, AR = Ry, — (R, + Rg)/2,
shows quasi-periodic oscillation, where Ry, R;, and Ry refer to resistance at
the given magnetic field marked in Fig. 2.

In conclusion, we have shown magnetoresistance in a
hybrid system consisting of QPCs coupled via an electronic
cavity. It was found that the central magneto-feature around
0T underwent a transition from dip into peak when the cav-
ity was present whereas resistance dip dominated when the
cavity was effectively absent. An oscillation of the strength
of the central magneto-feature was observed as a conse-
quence of coupling between the QPC and cavity sates. The
results provide insight of coupling between discrete quantum
devices which is valuable for further development of inte-
grated quantum systems.

The work was funded by the Engineering and Physical
Sciences Research Council (EPSRC), United Kingdom.
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