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Performance of Group Testing Algorithms

With Near-Constant Tests-per-Item
Oliver Johnson, Matthew Aldridge, and Jonathan Scarlett

Abstract—We consider the nonadaptive group testing with N
items, of which K = Θ(Nθ ) are defective. We study a test design in
which each item appears in nearly the same number of tests. For
each item, we independently pick L tests uniformly at random
with replacement, and place the item in those tests. We analyse
the performance of these designs with simple and practical
decoding algorithms in a range of sparsity regimes, and show
that the performance is consistently improved in comparison
with standard Bernoulli designs. We show that our new design
requires 23% fewer tests than a Bernoulli design when paired
with the simple decoding algorithms known as COMP and DD.
This gives the best known nonadaptive group testing performance
for θ > 0.43, and the best proven performance with a practical
decoding algorithm for all θ ∈ (0, 1). We also give a converse result
showing that the DD algorithm is optimal for these designs when
θ > 1/2. We complement our theoretical results with simulations
that show a notable improvement over Bernoulli designs in both
sparse and dense regimes.

I. INTRODUCTION AND DEFINTIONS

In group testing, there is a population of items, some of

which are ‘defective’ in some sense. We test subsets of items

called ‘pools’. In the standard noiseless case we consider in

this paper, a test outcome is negative if every item the the

pool is nondefective, and is positive if at least one item is

defective. Through many such pooled tests, we hope to be

able to accurately estimate which items are defective.

The group testing problem was introduced by Dorfman [2],

as described in [3, Ch. 1.1]. While a wide variety of problem

setups have been considered, they all share common features,

and can be considered in a wider class of sparse inference

problems including compressed sensing [4]. Group testing has

been applied in a wide variety of contexts, including biology

[5]–[9], anomaly detection in networks [10], [11], signal

processing and data analysis [12], [13], and communications

[14]–[16] – although this list is far from exhaustive.

In this paper, we prove rigorous performance bounds for

the nonadaptive noiseless group testing problem. ‘Nonadap-

tive’ means that the make-up of every test pool is decided

on advance, so tests can be performed in parallel. In the

common Bernoulli design, each item is placed in each test

independently with some fixed probability p. We instead
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consider an alternative test design that we call the ‘near-

constant column weight’ design. Here, independently for each

item, we choose L tests uniformly at random with replacement

and place the item in those tests. We pair our design with

practical algorithms for detecting the defective items. Using

both rigorous asymptotic results and experimental simulations,

we shall see that we can accurately detect the defective items

with considerably fewer tests than the Bernoulli design.

We proceed by formalizing the problem and fixing some

notation. We have a large number of items N , of which K are

defective. We assume that the defective items are rare, with

K = o(N) as N → ∞; moreover, for concreteness we follow

[1], [17], [18] by taking K = Θ(Nθ ) for some fixed parameter

θ ∈ (0, 1). We follow the ‘combinatorial model’ and suppose

that K, the true set of defective items, is chosen uniformly at

random from the
(N
K

)
sets of this size.

We perform a sequence of nonadaptive tests to form an

estimate K̂ of K, and study the tradeoff between maximising

the success probability P(K̂ = K) and minimising the number

of tests T . We could simply take T = N , and test each item

one by one. However, Dorfman’s key insight [2] is that since

the problem is sparse, in the sense that K ≪ N , each test has a

negative outcome with high probability, so these tests are not

optimally informative. A better procedure considers a series

of pools of items that are tested together, where the outcome

of each test is positive if and only if it contains at least one

defective item.

A group testing procedure requires two parts. First, a test

design describes which items will be placed in which testing

pools. Second, a decoding algorithm uses the results of these

tests to estimate which items are defective.

Definition 1: We represent the testing pools by a (possibly

random) binary matrix X ∈ {0, 1}T×N , where xti = 1 if test

t includes item i and xti = 0 otherwise. The rows of X

correspond to tests, and the columns correspond to items.

Definition 2: We consider the standard noiseless group

testing model. The outcomes of each test are represented by

a binary vector y = (yt ) ∈ {0, 1}T , where a positive outcome

yt = 1 occurs if xti = 1 for some i ∈ K, which is if the test

contains a defective item. A negative outcome yt = 0 occurs

otherwise.

A commonly used test design is the Bernoulli design – see,

for example, [17]–[23].

Definition 3: We define the Bernoulli testing design as hav-

ing a testing matrix X in which each entry xti is independently

set to be 1 with probability p and 0 otherwise, for some fixed

parameter p ∈ (0, 1).
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In this paper, we will demonstrate that better performance

can be achieved by using a design we call the near-constant

column weight design.

Definition 4: We define the near-constant column weight

testing design as having a testing matrix X in which L entries

of each column of are selected uniformly at random with

replacement and set to 1, with independence between columns.

The remaining entries of X are set to 0. We set L = νT/K for

some parameter ν > 0.

We now need an algorithm to produce an estimate of the

defective set. In analogy with channel coding, we can think

of the defective set K as a ‘message’ to be decoded from the

‘signal’ y, so we refer to such an algorithm as a ‘decoding

algorithm’. (For more on connections between group testing

and channel coding, see, for example, [4], [5], [17], [22], [24],

[25].)

Definition 5: We estimate the defective set by K̂ = K̂(X, y),
and define the (average) success probability

P(suc) = 1(N
K

) ∑
|K |=K

P(K̂ = K),

where the probability is over the random test design X.

We will demonstrate the superiority of our new design with

two simple decoding algorithms. We define the algorithms

here, but postpone detailed discussion to Section III. First,

the COMP (Combinatorial Orthogonal Matching Pursuit) al-

gorithm is a very simple algorithm based on the fact that every

item in a negative test is definitely nondefective.

Definition 6: The COMP algorithm is given as follows:

1) Mark each item that appears in a negative test as non-

defective, and refer to every other item as a Possible

Defective (PD) – we write PD for the set of such items.

2) Mark every item in PD as defective.

Second, the DD (Definite Defectives) algorithm builds on

COMP to find items we can be certain are defective.

Definition 7: The DD algorithm is given as follows:

1) Mark each item that appears in a negative test as non-

defective, and refer to every other item as a Possible

Defective (PD).

2) For each positive test that contains a single Possible

Defective item, mark that item as defective.

3) Mark all remaining items as non-defective.

The main results of this paper concern rigorous bounds on

the performance of the near-constant column weight design

with various decoding algorithms. We are interested in how

many tests are required for the success probability to tend to

1 as N gets large. Specifically, we show the following:

• The COMP algorithm requires 23% fewer tests with a

near-constant column weight design than with a Bernoulli

design, which for θ > 0.77 is fewer tests than required

even for optimal algorithms with Bernoulli designs. (The-

orem 2)

• The DD algorithm also requires 23% fewer tests with a

near-constant column weight design than with a Bernoulli

design, which for θ > 0.43 is fewer tests than required

even for optimal algorithms with Bernoulli designs, and

for all θ ∈ (0, 1) is fewer tests than the best proven results

for practical algorithms with Bernoulli designs. (Theorem

3)

• We give an upper bound on the performance of near-

constant column weight designs regardless of the decod-

ing algorithm, showing that DD is optimal for this design

when θ ≥ 1/2. (Theorem 4)

• We complement our rigorous theoretical results with sim-

ulations that show a notable improvement over Bernoulli

designs in both sparse and dense regimes. (Subsection

II-C)

The structure of the remainder of the paper is as follows.

In Section II, we define the rate of group testing (Subsection

II-A), formally state our main results of the paper (Subsection

II-B), provide simulation results to illustrate the improved

performance of our test design (Subsection II-C), and briefly

discuss some related work (Subsection II-D). In Section III, we

describe the main decoding algorithms used in more detail and

introduce some key quantities that control their performance.

In Section IV, we deduce the main theorems of the paper, with

proofs of some techinical results given the appendices.

II. FURTHER DEFINITIONS AND MAIN RESULTS

A. The rate of group testing

In this paper, we focus on nonadaptive designs, where the

entire matrix X is fixed in advance of the tests. In the adaptive

case (where the members of each test are chosen using the

outcomes of the previous tests), Hwang’s generalised binary

splitting algorithm [26] recovers the defective set K using

log2

(N
K

)
+ O(K) tests. This can be seen to be essentially

optimal by a standard argument based on Fano’s inequality

(see for example [23]), a strengthened version of which [25]

implies that any algorithm using T tests has success probability

bounded above by

P(suc) ≤ 2T(N
K

) . (1)

This means that any algorithm with success probability

P(suc) tending to 1 requires at least

T = log2

(
N

K

)
∼ K log2

N

K
∼ (1 − θ)K log2 N (2)

tests, where f (N) ∼ g(N) means that limN→∞ f (N)/g(N) = 1.

(See [21, Lemma 25] for details of the asymptotic behaviour

of the binomial coefficient.) This motivates the following

definition [21] of the rate of an algorithm.

Definition 8: For any algorithm using T tests, we define the

rate to be
log2

(N
K

)
T

. (3)

Given a random matrix design, we say that R is an achievable

rate if for any ǫ > 0, there exists a group testing algorithm

with rate converging to R and success probability at least

1 − ǫ for N sufficiently large. We adopt the terminology

maximum achievable rate when referring to a given design

(e.g., Bernoulli) and/or decoding rule (e.g., COMP).

Intuitively, one can think of the rate as being the number

of bits of information learned per test when the recovery is

successful.
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In this language, the result of [26] shows that, for all

θ ∈ (0, 1), adaptive group testing has an achievable rate of

R = 1 in the regime K = Θ(Nθ ) and is therefore optimal,

since by (1), no algorithm can learn more than 1 bit per

test. It is an interesting question to consider whether there

exists a matrix design and an algorithm with achievable rate

R = 1 in the nonadaptive case. It appears to be difficult even

to design a class of matrices with non-zero achievable rate

using combinatorial constructions (see [3], [24] for reviews

of the extensive literature on this subject, with key early

contributions coming from [27]–[29]). Hence, much recent

work on nonadaptive group testing has considered Bernoulli

designs (see Definition 3). The maximum achievable rate is

known exactly for such designs, as stated in the following.

Theorem 1: The maximum achievable rate for Bernoulli

nonadaptive group testing with K = Θ(Nθ ) defectives, for

θ ∈ [0, 1), is

C(θ) = max
ν>0

min

{
νe−ν

ln 2

1 − θ
θ
, h(e−ν)

}
, (4)

where h(t) = −t log2 t − (1− t) log2(1− t) is the binary entropy

function. In particular, for θ ≤ 1/3, the maximum achievable

rate of Bernoulli designs is 1.

The direct part of Theorem 1 is due to [17] and the converse

due to [19]. (The special case θ = 0 is older [30].)

The curve (4) is illustrated in Figure 1 below. For θ ≥ 1/2,

the paper [21] showed that (4) is achieved by the DD algorithm

described above. However, for θ < 1/2, the algorithms

known to achieve the bound (4) are based on maximising the

likelihood or solving other difficult combinatorial problems,

and cannot be considered as practical in a computational sense

– see Section III-D for more details. For example, we describe

the SSS algorithm in Definition 10 below, which achieves the

bound of [19], but is impractical for large values of N and K .

B. Main results

Our main results concern improving on Theorem 1 by using

a near-constant column weight design (Defintion 4). Recall

that this design has a testing matrix X in which L = νT/K

entries of each column of are selected uniformly at random

with replacement and set to 1, with independence between

columns, and the remaining entries of X are set to 0. The

tester may choose L to depend on the parameters of the group

testing problem.

Since the tests are chosen with replacement, some columns

may actually have weight slightly less than L due to the same

test being picked more than once, hence we use the term ‘near-

constant’. Since the weight of a column is the number of tests

an item is in, we also consider these designs as ‘near-constant

tests-per-item’. In a preliminary report [1], we used the less

precise terminology ‘constant column weight’ for these same

designs. Evidence from simulations and heuristic calculations

suggest that truly-constant column weight designs have the

same performance as the near-constant designs we consider

here, but the rigorous analysis of such designs seems more

difficult.1

The main results of this paper are the following three

theorems. The COMP and DD algorithms were defined in

Defintions 6 and 7 and are discussed further in Section III.

The main results are proved in Section IV. We illustrate

these results in Figure 1, with our new rates for near-constant

column weight designs marked in thick red, and corresponding

rates for Bernoulli designs marked in thin blue.

Our first result concerns the simple and practical COMP

decoding algorithm (see Defintion 6 and Subsection III-A),

based on the fact that all items in negative tests must be

negative.

Theorem 2: Consider a near-constant column weight de-

sign with an optimised parameter ν > 0. When there are

K = Θ(Nθ ) defectives for θ ∈ [0, 1), the COMP algorithm

has success probability tending to 1 if T ≥ (1+ ǫ)TCOMP, and

tending to 0 if T ≤ (1 − ǫ)TCOMP. Here

TCOMP
=

1

ln 2
K log2 N .

Hence, the COMP algorithm has maximum achievable rate

ln 2 (1 − θ) for all θ ∈ [0, 1).
This rate

ln 2 (1 − θ) ≈ 0.693(1 − θ)

is an improvement by 30.6% on the rate

1

e ln 2
(1 − θ) ≈ 0.531(1 − θ)

for COMP with a Bernoulli design [19], [23]. (An improve-

ment in rate of 30.6% corresponds to using 23.4% fewer tests.)

Further, for θ > 0.766, Theorem 2 is an improvement on (4),

meaning that in dense cases, the very simple COMP algorithm

with a near-constant column weight design beats any decoding

algorithm with a Bernoulli design (see Figure 1).

Some insight on this result can be attained by considering

the conditions under which COMP succeeds. Under the choice

ν = ln 2, Bernoulli testing with probability ν/K and a near-

constant column weight design with L = νT/K both result

in roughly half of the tests being positive (e.g., see Lemma

1 below). However, a given non-defective item is placed

in roughly Binomial
(
T
2
, ln 2

K

)
negative tests under Bernoulli

testing, and Binomial
(
T ln 2
K
, 1

2

)
negative tests under the near-

constant column weight design. While these two distributions

have the same expectation, the latter has a much smaller

probability of being zero, which is the event under which

COMP fails.

It is also interesting to note that while ν = ln 2 (which

is ’maximally informative’ in the sense of maximising the

entropy of the test outcome) optimises the rate of COMP (as

well as DD below) for the near-constant column weight design,

COMP [23] and DD [21] with Bernoulli designs are optimised

with a fraction 1 − e−1 ≈ 0.632 of positive tests.

1As pointed out by a reviewer, the COMP rate in Theorem 2 can be shown
to be achieved by a truly-constant column weight design with little extra
difficulty. However, we have not been able to rigorously verify that the same is
true for our main result, Theorem 3, or for the algorithm-independent converse,
Theorem 4.
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Maximum achievable rate

DD achievable rate

COMP achievable rate
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R
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e

Bernoulli

Near-constant

column weight

Algorithm-independent converse

DD achievable rate

COMP achievable rate

Counting bound

Fig. 1. Rates and bounds for group testing algorithms with Bernoulli designs and near-constant column weight designs. In thick red, we plot the rate bounds
for near-constant column weight designs from Theorems 2, 3 and 4. In thin blue, we plot the rate bounds for Bernoulli designs from Theorem 1 and [21].
The green horizontal line represents the universal ‘counting bound’ arising from (1).

Our second and most important result concerns the practical

DD decoding algorithm (see Definition 7 and Subsection

III-B).

Theorem 3: Consider a near-constant column weight design

with an optimized parameter ν > 0. When there are K =

Θ(Nθ ) defectives for θ ∈ (0, 1), the DD algorithm has success

probability tending to 1 if

T ≥ (1 + ǫ) 1

ln 2
max

{
K log2

N

K
,K log2 K

}
,

and hence has an achievable rate

R = ln 2 min

{
1,

1 − θ
θ

}
=




ln 2 θ ≤ 1
2

ln 2
1 − θ
θ

θ > 1
2
.

This rate

ln 2 min

{
1,

1 − θ
θ

}
≈ 0.693 min

{
1,

1 − θ
θ

}

is an improvement again by 30.6% on the rate of

1

e ln 2
min

{
1,

1 − θ
θ

}
≈ 0.531 min

{
1,

1 − θ
θ

}

proved by [21] for DD with Bernoulli designs. In fact, to our

knowledge, DD with the near-constant column weight design

gives the highest proven practically achievable rate for all

θ ∈ (0, 1). Further, for θ > 1/(1+e(ln 2)2) ≈ 0.434, Theorem 3

is an improvement on (4), meaning that in this regime, the

practical DD algorithm with a near-constant column weight

design beats any decoding algorithm (even impractical ones)

with a Bernoulli design.

Our third result is an algorithm-independent converse, show-

ing the maximum possible rate of any decoding algorithm with

a near-constant weight design.

Theorem 4: Consider a near-constant column weight design,

with K = Θ(Nθ ) defectives for θ ∈ (0, 1). Regardless of the

choice of ν > 0, no algorithm can achieve a rate greater than

min

{
1, ln 2

1 − θ
θ

}
=




1 θ ≤ θ∗

ln 2
1 − θ
θ

θ > θ∗,
(5)

where

θ∗ =
ln 2

1 + ln 2
≈ 0.409.

Comparing Theorems 3 and 4, we see that if we use a near-

constant column weight design, the DD algorithm gives the

optimal performance for θ ≥ 1/2.

C. Simulations

We complement our rigorous results on the rate, which

are asymptotic as N → ∞, with simulations that show near-

constant weight designs also improve on Bernoulli designs for

finite problem sizes. In Figure 2, we illustrate the performance

of these algorithms via simulations in an illustrative sparse

case (N = 500, K = 10) and a denser case (N = 2000,

K = 100). For the sparse case, in addition to plotting

performance of COMP and DD, we plot the performance of

the SSS algorithm (see Definition 10), which achieves the

bounds of Theorem 1 [20, Corollary 4], though is not practical

for larger problems. Because of this issue of practicality, we

do not consider SSS for the denser case; instead, we plot the

performance of a related algorithm called SCOMP, which is

described in [21], so we omit a description in this paper for

the sake of brevity. (Essentially, it amounts to performing DD

followed by greedy refinements.) Our near-constant weight

designs provide a consistent notable improvement on Bernoulli

designs, particularly in the denser example.

D. Related work

While we are not aware of previous works using our exact

near-constant column weight design, closely-related designs
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Fig. 2. Empirical performance (each point based on 1000 simulations) of various algorithms for both near-constant column weight and Bernoulli designs, in
the cases N = 500, K = 10 and N = 2000, K = 100.

have been proposed. Our key contribution is a rigorous analy-

sis of such designs in the regime K = Θ(Nθ ), requiring several

novel techniques. In particular, we prove the achievability of

rates strictly above those achieved by Bernoulli designs.

Kautz and Singleton [31] observed that a construction based

on a concatenation of constant-weight codes gives matrices

with the so-called K-disjunctness property (the union of any

K columns does not contain any other column). Such matrices

give group testing designs guaranteeing that K defectives can

be recovered with zero probability of error in noiseless group

testing (see for example [3, Chapter 7]). However, the group

testing designs resulting from the construction of [31] require

T = O(K2(log N)2) tests. This is an example of the fact that

the zero-error criterion requires considerably more tests than

the T = O(K log N) required for the ‘error probability tending

to zero’ criterion (see Definition 8) that we study here.

Similarly, other subsequent papers have proposed forms

of constant or near-constant column weight designs [32]–

[35], but to our knowledge, none of these works provide

non-trivial achievable rates for the vanishing error probability

criterion, which is the focus of the present paper. Chan et al.

[23] considered constant row weight designs, and found no

improvement over Bernoulli designs.

Mézard et al. [36] considered randomised designs with both

constant row and column weights, and with constant column

weights only. The paper used heuristics from statistical physics

to suggest that such designs may beat Bernoulli designs. In

our notation, they suggest the maximum achievable rate of

these constant weight designs may be equal to our converse

bound (5) for all θ. (Our Theorem 3 rigorously proves this for

θ ≥ 1/2 under our slightly different design.) The work of [36]

contains some non-rigorous steps; in particular, they make use
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of a ‘no short loops’ assumption that is only verified for θ > 5
6

and conjectured for θ > 2
3
, while experimentally being shown

to fail for smaller values such as θ = 1
3
.

D’yachkov et al. [37] studied list decoding with (exactly)

constant column weight designs, and setting their list size to 1

corresponds to insisting that COMP succeeds. However, they

only considered the case that K = O(1). In the limit as K gets

large, the rate ln 2 obtained [37, Claim 2] matches the rate for

COMP given here in Theorem 2 in the limit θ → 0.

A distinct line of works has sought designs that not only

require a low number of tests, but also near-optimal decoding

complexity (e.g., Kpoly(log N)) [38]–[41]. However, our focus

in this paper is on the required number of tests, for which the

existing guarantees of such algorithms contain loose constants

or extra logarithmic factors.

III. DECODING ALGORITHMS: FURTHER DETAILS

In this section we discuss the COMP and DD algorithms

in more detail, and introduce the SSS (Smallest Satisfying

Set) algorithm. We discuss the conditions under which these

algorithms succeed. These algorithms were previously studied

in [23] and [21] with Bernoulli designs. Before continuing,

we present another key definition:

Definition 9: Consider an item i and a set of items L not

including i. We say that item i is masked by L if every test

that includes i also includes at least one member of L.

A. COMP algorithm

Recall the COMP algorithm from Definition 6:

1) Mark each item that appears in a negative test as non-

defective, and refer to every other item as a Possible

Defective (PD) – we write PD for the set of such items.

2) Mark every item in PD as defective.

This is based on a simple inference: Any negative test only

contains non-defective items, so any item in a negative test can

be marked as non-defective. Given enough negative tests, we

might hope to correctly infer every member of Kc in this way.

The name COMP (Combinatorial Orthogonal Matching Pur-

suit) was coined in [23], although the method itself appeared

much earlier – see, for example, [5], [24], [31], [42].

Clearly, the first step will not make any mistakes (every

item marked as non-defective will indeed be non-defective),

so errors will only occur in the second step. As a result COMP

will always estimate K by a set K̂COMP with K ⊆ K̂COMP.

As in [21], a quantity of particular interest is G := |PD \
K| = |PD| − K , the number of non-defective items masked

by the defective set K. So G is the number of non-defective

items that do not appear in any negative test. It is clear that

COMP succeeds (recovers the defective set exactly) if and

only if G = 0, so that

P
COMP(suc) = P(G = 0). (6)

We use this in the proof of Theorem 2 in Section IV.

B. DD algorithm

Recall the DD algorithm from Definition 7, which builds

on COMP to find items that are definitely defective:

1) Mark each item that appears in a negative test as non-

defective, and refer to every other item as a Possible

Defective (PD).

2) For each positive test that contains a single Possible

Defective item, mark that item as defective.

3) Mark all remaining items as non-defective.

The performance of the DD algorithm with Bernoulli designs

was studied in detail by Aldridge, Baldassini and Johnson [21].

Again, the first step will not make any mistakes, and since

every positive test must contain at least one defective item, the

second step is also certainly correct. Hence, any errors due to

DD come from marking a true defective as non-defective in the

third step, meaning that the estimate K̂DD satisfies K̂DD ⊆ K.

The choice to mark all remaining items as non-defective is

motivated by the sparsity of the problem, since a priori an

item is much less likely to be defective than non-defective.

We analyse DD rigorously in Section IV, using the follow-

ing notation, used in [21]. For each i ∈ K, we write:

• Mi for the number of tests containing defective item i

and no other defective;

• Li for the number of tests containing defective item i

and no other possible defective item (no other member

of PD).

In the terminology of Definition 9, we see that DD succeeds

if and only if no defective item i ∈ K is masked by PD \ {i}.
Further, since item i is masked by PD \ {i} if and only if

Li = 0, we can write

P
DD(suc) = 1 − P

(⋃
i∈K

{Li = 0}
)
. (7)

For a given defective item i ∈ K, we write K (i)
= K \ {i}

for the set of defectives with i removed. For a given set M,

we write W (M) for the total number of tests containing at

least one item from M. The random variable WK\{i } (the

total number of tests containing at least one item in K (i)),
henceforth denoted by W (K\i), will be of particular interest.

To understand the distributions of these quantities, it is

helpful to think of the process by which elements of the

columns are sampled as a coupon collector problem, where

each coupon corresponds to one of the T tests. For a single

item, W ({i }) is the number of distinct coupons selected when L

coupons are chosen uniformly at random from a population of

T coupons. In general, for a set M of size M , the independence

of distinct columns means that W (M) is the number of distinct

coupons collected when choosing ML coupons uniformly at

random from a population of T coupons.

Hence, as described in more detail in Section IV, we can

first give a concentration of measure result for W (K\i) (see

Lemma 1), then characterise the distribution of Mi given

W (K\i) (see Lemma 4). Following this, we can state the distri-

bution of G conditioned on W (K)
= W (K\i)

+ Mi (see Lemma

5), and finally deduce the distribution of Li conditioned on G

and W (K) (see Lemma 6). This allows us to deduce bounds

on (7).
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C. SSS algorithm

We describe one more algorithm, which we call the SSS

(Smallest Satisfying Set) algorithm, following [21]. This algo-

rithm is not directly mentioned in the statement of our main

results, but its analysis will be important in proving Theorem

4.

Definition 10: We say that a putative defective set J is

satisfying if:

1) No negative test contains a member of J .

2) Every positive test contains at least one member of J .

The SSS algorithm simply finds the smallest satisfying set

(breaking ties arbitrarily), and takes that as the estimate K̂SSS.

Note that the true defective set K is certainly a satisfying

set, and hence SSS is guaranteed to return a set of no larger

size, so |K̂SSS | ≤ |K |. However, it may not be the case that

K̂SSS ⊆ K. We can identify a particular failure event for SSS:

If a defective item i ∈ K is masked by the other defective

items K \ {i} (in the sense of Definition 9) then K \ {i} will

be a smaller satisfying set, so SSS is certain to fail.

Hence, writing Ai for the event that item i is masked by

K\{i}, we can use the Bonferroni inequality to obtain a lower

bound on the SSS error probability PSSS(err) of the form

P
SSS(err) ≥ P

(⋃
i∈K

Ai

)
≥

∑
i∈K
P(Ai) −

1

2

∑
i,j∈K

P
(
Ai ∩ Aj

)
.

(8)

This serves as a starting point for upper bounding the rate of

the SSS algorithm, which in turn will be used to infer our

general converse (Theorem 4).

D. Note on practical feasibility

We refer to COMP and DD as ‘practical’ algorithms, since

they can be implemented with low run-time and storage.

For example, COMP simply requires us to take one pass

through the test matrix and outcomes, requiring no more than

O(N) storage beyond the matrix itself, and O(T N) runtime.

Similarly, DD builds on COMP, requiring two passes through

the test matrix and outcomes and can be performed with the

same amount of storage and runtime.

In contrast, we can interpret SSS as an integer programming

problem, meaning that it is unlikely to be practical to run for

large problems. We think of it as the ‘best possible’ algorithm

without knowing K , and use a rigorous form of this statement

[19] to obtain algorithm-independent performance bounds.

Note that although the SSS algorithm may be considered to

be infeasible in practice, the papers [43], [44] show that a

relaxation of the integer programming problem to the real

numbers can give good performance.

Furthermore, the decoding algorithms we consider here do

not require exact, or even approximate, knowledge of K . This

is in contrast to the optimal maximum likelihood decoder of

[17], which requires the exact value of K . Note, however,

that the optimal choice of the parameter ν = (ln 2)T/K in

the design stage does require knowing K .

IV. PROOFS OF MAIN RESULTS

The main goal of this section is to prove our achievable

rate for the DD algorithm (Theorem 3). Along the way,

we will also prove the COMP rate (Theorem 2) and the

algorithm-independent upper bound (Theorem 4); the former

will essentially come ‘for free’, though the latter will require

non-trivial additional effort.

A. Concentration of W (M)

Recall that W (M) corresponds to the total number of tests in

which items from M are placed. The following lemma shows

that this quantity concentrates around its mean.

Lemma 1: Let M = |M|, and fix the constants α > 0 and

ǫ ∈ (0, 1). When making LM = αT draws with replacement

from a total of T coupons, the total number of distinct coupons

W (M) satisfies

P
(��W (M) − (1 − e−α)T

�� ≥ δ) ≤ 2 exp

(
− δ

2

αT

)
(9)

for T sufficiently large.

Proof: We first characterise the expectation of W (M),
and then show concentration about that expectation. By the

linearity of expectation, we have

EW (M)
=

T∑
j=1

P(coupon j in first LM selections)

=

T∑
j=1

(
1 −

(
1 − 1

T

)LM )

=

(
1 −

(
1 − 1

T

)αT )
T .

It follows that EW (M)
= (1 − e−α)T + o(T) as T → ∞.

To establish concentration about the mean, we use Mc-

Diarmid’s inequality [45], which characterises the concentra-

tion of functions of independent random variables when the

bounded difference property is satisfied. Write Y1,Y2, . . . ,Yc for

the labels of the selected coupons, and W(c) = f (Y1,Y2, . . . ,Yc)
for the number of distinct coupons. Note that here we have

the bounded difference property, in that�� f (Y1, . . . ,Yj, . . . ,Yc) − f (Y1, . . . , Ŷj, . . . ,Yc)
�� ≤ 1

for any j, Y1, . . . ,Yc, and Ŷj , since the largest difference we

can make is swapping a distinct coupon Yj for a non-distinct

one Ŷj , or vice versa. McDiarmid’s inequality [45] gives that

P
(�� f (Y1, . . . ,Yc) − E f (Y1, . . . ,Yc)

�� ≥ δ) ≤ 2 exp

(
−2δ2

c

)
.

Setting c = αT gives the desired result; we crudely remove

the factor of 2 from the exponent to account for the fact that

we are considering deviations from the asymptotic value of

the mean of W (M) rather than the exact value, which amounts

to the replacement of α by α(1 + o(1)).
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B. Proof of the algorithm-independent converse

The above concentration result plays an important role in

the proof of Theorem 4.

Proof of Theorem 4: We divide the proof into three steps.

First, we begin with an overview of some preliminary results

that will be used throughout the proof; second, we bound the

error probability of the SSS algorithm; and third, we bound a

key quantity that arises in the proof.

1) Preliminaries: The initial steps follow the proof of a

similar result for Bernoulli testing in [19]. As shown there, if

P
SSS(err) + PCOMP(err) > 1 + ǫ for some ǫ > 0 that remains

bounded away from zero as N → ∞, then the error probability

is also bounded away from zero for an arbitrary algorithm.

We know the condition under which PCOMP(err) → 1 from

Theorem 2 (which will be proved later), and it is easy to see

that the corresponding bound is weaker than that of Theorem

4, since

1 − θ ≤ min

{
1,

1 − θ
θ

}
.

Hence, it suffices to show that the error probability of the

SSS algorithm is bounded away from zero; we do so in the

remainder of the proof.

The upper bound of 1 on the rate is well-known for arbitrary

test designs (this follows from (1), for example), so we only

need to obtain the other term in (5). To do so, we claim that

it suffices to show that for any choice of ν > 0 (such that

L = νT/K) the error probability is bounded away from zero

for some T satisfying

T =
K ln K

−ν ln(1 − e−ν) (1 + o(1)). (10)

To see that it suffices to choose T in this way, first note that

−ν ln(1 − e−ν) attains its maximum of (ln 2)2 at ν = ln 2,

in which case the rate corresponding to (10) is ln 2 1−θ
θ

, as

required. For other choices of ν, the choice (10) corresponds

to more tests than dictated by the rate of Theorem 4, but this is

allowed for the purpose of proving a converse, since additional

tests can never hurt the SSS algorithm.

We can also assume that ν is constant, since it is straight-

forward to verify that the cases ν → 0 or ν → ∞ fail to even

yield the correct scaling T = Θ(K ln N). This is because, in

such cases, the probability of a given test being positive tends

to either 0 or 1, and hence the entropy of the test vanishes.

Finally, we note the following concentration result: Lemma

1 above shows that for both M = K − 2 and M = K − 1,

choosing α = LM/T = νM/K → ν reveals that W (M) is

exponentially concentrated around (1 − e−ν)T . In particular,

there exists a constant c0 > 0 such that

Pr
(��W (M) − (1 − e−ν)T

�� ≥ √
c0T lnT

)
≤ 1

T3
(11)

for sufficiently large T .

2) Bounding the error probability of SSS: We start with the

lower bound on the error probability given in (8), which we

repeat here for convenience:

P
SSS(err) ≥ P

(⋃
i∈K

Ai

)
≥

∑
i∈K
P(Ai) −

1

2

∑
i,j∈K

P
(
Ai ∩ Aj

)
.

(12)

We will show that for any constant ν > 0, the right-hand side

of (12) is bounded away from zero as N → ∞ under some

number of tests T satisfying (10). We begin by bounding the

two terms on the right-hand side of (12).

Lemma 2: Under the preceding definitions, and under a near-

constant column weight design with parameter ν > 0, we have

for any constants c1, c2 > 0 and ǫ1 ∈ (0, 1) that

KP(Ai) ≥ KcL1 P
(
W (K\i) ≥ Tc1

)
(13)(

K

2

)
P(Ai ∩ Aj) ≤

K2

2(1 − ǫ1)

(
c2 +

ν

K

)2L

P
(
Tc1 ≤ W (K\i, j) ≤ Tc2

)
+

(
K

2

)
P
(
W (K\i, j) < Tc1

)
+

(
K

2

)
P
(
W (K\i, j) > Tc2

)
(14)

when N is sufficiently large.

The idea of the proof is to lower bound P(Ai) by restricting

attention to the event W (K\i) ≥ Tc1 and applying counting

arguments, and to upper bound P(Ai ∩ Aj) by one when the

suitable bounds on W (K\i, j) fail to hold, while upper bounding

it using counting arguments otherwise. The details are given

in Appendix C.

From (11), if we choose

c1 = 1 − e−ν −
√

c0 lnT

T
(15)

c2 = 1 − e−ν +

√
c0 lnT

T
, (16)

then, recalling from (10) that T = Θ(K ln N), the final two

terms in (14) vanish at rate O(T−1) as N → ∞. Thus, overall,

(13) and (14) simplify to

KP(Ai) ≥ KcL1 − O
( 1

T

)
(17)(

K

2

)
P(Ai ∩ Aj) ≤

K2

2(1 − ǫ1)

(
c2 +

ν

K

)2L

+O
( 1

T

)
. (18)

Combining these, we find that (12) yields

P
SSS(err) ≥ KcL1

(
1 − K(c2 + ν/K)2L

2cL
1
(1 − ǫ1)

)
− O

( 1

T

)
(19)

= Kc
νT/K
1

(
1 − K(c2 + ν/K)2νT/K

2c
νT/K
1

(1 − ǫ1)

)
− O

( 1

T

)
, (20)

where we have used the fact that L = νT/K .

3) Bounding the right-hand side of (20): With the lower

bound (20) on the error probability in place, the completion

of the proof amounts to two simple but tedious steps:

1) Equate the large bracketed term with 1 − 1
2(1−ǫ1) ≈ 1

2
,

and show that solving for T yields an expression of the

form (10);

2) Show that under any choice of T of the form (10), the

remaining term Kc
νT/K
1

approaches 1 as N → ∞.

These steps are summarised in the following lemma, whose

proof is relegated to Appendix C.
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Lemma 3: Choosing c1 and c2 as in (15) and (16), there

exists a choice of T satisfying (10) for which (20) can be

weakened to

P
SSS(err) ≥ (1 − o(1))

(
1 − 1

2(1 − ǫ1)

)
− O

( 1

T

)
. (21)

We conclude the proof of Theorem 4 by noting that the right-

hand side can be made arbitrarily close to 1
2

for sufficiently

large K and T , since ǫ1 can be chosen arbitrarily small.

C. Conditional distributions of Mi and G

Recall that Mi denotes the number of tests containing

defective item i but no other defective items. The following

lemma gives the distribution of this quantity conditioned on

W (K\i), the number of tests covered by those other defectives.

It is written in terms of the following definition: For any

integers n, k the Stirling number of the second kind is given

by {
n

k

}
:=

1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn, (22)

and equals the number of partitions of a set of size n into k

nonempty subsets (see for example [46, eq. (8)]).

Lemma 4:

1) We can write the conditional distribution of Mi | W (K\i)

explicitly as

P
(
Mi = j | W (K\i)

= w
)

=

(T − w)(j)
TL

L−j∑
s=0

(
L

s

) {
L − s

j

}
w
s,

(23)

where (n)(j) := (n)!/(n− j)! denotes the falling factorial.

2) For fixed L and w, there exists an explicit value C =

C(L,w) := exp(L2/4w), independent of j, such that

P
(
Mi = j | W (K\i)

= w
)
≤ C

(
L

j

) (
1 − w

T

) j (
w

T

)L−j
.

That is, the probability is upper bounded by a multiple

of the Bin(L, 1 − w/T) mass function.

Proof: See Appendix A.

Next, we observe that we can write W (K)
= W (K\i)

+ Mi .

Recall that G is the number of non-defectives masked by the

defective set K. Since an item is only counted in G if each

of the tests appearing in the corresponding column are in the

set of size W (K), we have the following.

Lemma 5: Conditional on W (K)
= x, we have

G |
{
W (K)

= x
}
∼ Bin

(
N − K, (x/T)L

)
.

D. Proof of COMP maximum achievable rate

We can now prove Theorem 2 using the above results.

Proof of Theorem 2: We start with the achievability

part, for which we set ν = ln 2. We consider the regime

T = γCOMPK ln N , where γCOMP = (1 + ǫ)/(ln 2)2. As

mentioned in (7), COMP succeeds if and only if G = 0. Using

Lemma 5, we know that

P(G = 0 | W (K)
= x) =

(
1 −

( x

T

)L)N−K
, (24)

which is a decreasing function in x. Hence, given δ, for all

x ≤ (1/2 + δ)T , we have

P
(
G = 0 | W (K)

= x
)
≥ P

(
G = 0

�� W (K)
= (1/2 + δ)T

)
=

(
1 − (1/2 + δ)L

)N−K
.

Next, using the fact that

L =
T ln 2

K
= γCOMP ln 2 ln N = (1 + ǫ) 1

ln 2
ln N,

we find that for any ǫ , we can choose δ sufficiently small that

( 1
2
+ δ)L ≤ N−(1+ǫ/2), and hence

P
(
G = 0 | W (K)

= x
)
≥

(
1 − N−(1+ǫ/2))N−K

.

We deduce that the success probability PCOMP(suc) is lower

bounded as follows:

P
COMP(suc) =

∑
x

P
(
W (K)

= x
)
P
(
G = 0 | W (K)

= x
)

≥
∑

x≤(1/2+δ)T
P
(
W (K)

= x
) (

1 − N−(1+ǫ/2))N−K

=

(
1 − N−(1+ǫ/2))N−K

(
1 − P

(
W (K) ≥ (1/2 + δ)T

) )
,

which is seen to tend to 1 by taking α = ln 2 in Lemma 1

(since we collect a total of KL = T ln 2 coupons).

The converse proceeds similarly, except that we need to

consider a general choice of the parameter ν. By a similar

argument to the one above, we deduce that the success

probability PCOMP(suc) is given by∑
x

P
(
W (K)

= x
)
P
(
G = 0 | W (K)

= x
)

≤ P
(
W (K) ≤ (1 − e−ν − δ)T

)
+

∑
x≥(1−e−ν−δ)T

P
(
W (K)

= x
)
P
(
G = 0 | W (K)

= x
)

≤ δ + P
(
G = 0 | W (K)

= (1 − e−ν − δ)T
)

for N sufficiently large, where we have used Lemma 1.

Using (24) again, but with L = νT/K , we have

P
(
G = 0 | W (K)

= (1−e−ν −δ)T
)
=

(
1−(1−e−ν −δ)νT/K

)N−K

(25)

Since (1−e−ν)ν is minimised at ν = ln 2, the same is true of the

right-hand side when δ = 0. More generally, we can choose

some δ′ (as a function of δ) such that δ′ → 0 as δ → 0, and

continue as follows:

P
(
G = 0 | W (K)

= (1 − e−ν − δ)T
)

≤
(
1 −

(
1
2
− δ′

) (ln 2+δ′)T/K
)N−K

.

Since

lim
N→∞

(
1 − c

N − K

)N−K
= e−c
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for any c > 0, we find that the error probability is upper

bounded by e−c(1+o(1)) when (N −K)
(

1
2
−δ′

) (ln 2+δ′)T/K ≥ c.

Taking the logarithm and noting that c and δ′ can be arbitrarily

small, we find that the success probability vanishes when

ln 2
(ln 2)T
K ln N

≤ 1 − ǫ,

which is precisely when T ≤ (1 − ǫ)TCOMP.

E. Conditional distribution of Li

Recalling that Li denotes the number of tests containing

defective item i and no other “possible defective” (item from

PD), we have the following.

Lemma 6: For any g, w, j, we have

P
(
Li = 0

�� G = g,W (K\i)
= w,Mi = j

)
= φ j

(
1

w + j
, gL

)
,

where

φ j(s,V) =
j∑

ℓ=0

(−1)ℓ
(
j

ℓ

)
(1 − ℓs)V . (26)

Proof: See Appendix A.

Note that the function φ j(s,V) also appeared in [21]; how-

ever, our analysis here requires using it very differently. We

make use of the following properties, the proofs of which are

deferred to Appendix B.

Lemma 7: For all values of j, s and V , the function φ j(s,V)
introduced in (26) has the properties that:

• φ j(s,V) is increasing in s,

• φ j(s,V) is increasing in V ,

• φ j(s,V) is decreasing in j.

Lemma 8: If sV j ≤ 2, then

φ j(s,V) ≤ V!s j

(V − j)! ≤ exp ( j ln(Vs)) .

F. Proof of the DD achievable rate

We put the above results together to prove Theorem 3, giv-

ing a lower bound on the achievable rate of the DD algorithm.

The key is to express the success probability PDD(suc) in

terms of an expectation of the function φ, and to show that

this expectation is concentrated in a regime where φ takes

favourable values.

Proof of Theorem 3: We consider the regime where T =

γDDmK ln N , with γDD = (1+ǫ)/(ln 2)2 and m = max{θ, 1−θ}.
In addition, we choose the parameter ν = ln 2. As a result,

L = νT/K satisfies the following:

L ln 2 =
T(ln 2)2

K
= m(1 + ǫ) ln N .

As in [21], writing PDD(suc) for the success probability of

DD and applying the union bound to (7) we know that

P
DD(suc) = 1 − P

(⋃
i∈K

{Li = 0}
)
≥ 1 −

∑
i∈K
P(Li = 0), (27)

so that PDD(suc) will tend to 1 (as required) if, for a particular

defective item i ∈ K,

KP(Li = 0) → 0, (28)

since symmetry means that P(Li = 0) is equal for each i ∈ K.

The stated value for the rate then follows upon substituting

the choice T = γDDmK ln N and (2) into (3).

In order to characterise P(Li = 0), we define A = {w− ≤
W (K\i) ≤ w+} and B = {G ≤ g

∗}, for some w−, w+ and g
∗ to

be chosen shortly. Using Lemma 6, we have the terms at in

the large displayed equations at the top of the following page,

where:

• (29) follows because, by Lemma 7, on the event {A ∩
B} the bound φ j(1/w, gL) ≤ φ j(1/w−, g∗L) holds, and

everywhere else φ ≤ 1 (since φ represents a probability);

• (30) follows since P(A∩Bc) = P(Bc | A)P(A) ≤ P(Bc | A).
We consider the terms of (30) separately, taking w− = T(1−
δ)/2, w+ = T(1 + δ)/2, and g

∗
= N(1/2 + δ)L , where δ =

(ǫ ln 2)/4(1 + ǫ).
The first term of (30) can be bounded as follows. Combining

L = (ln 2)T/K and w− = T(1−δ)/2 gives L/w− = 2 ln 2/(K(1−
δ)), and recalling that g∗ = N(1/2+δ)L and m = max(θ, 1−θ),
it follows that

β := ln

(
g
∗L

w−

)

= (1 − θ) ln N + L ln(1/2 + δ) + ln

(
2 ln 2

1 − δ

)

≤ m

(
1 + (1 + ǫ)

(
− 1 +

2δ

ln 2

))
ln N + ln

(
2 ln 2

1 − δ

)

≤ m
(
− ǫ

2

)
ln N + ln

(
2 ln 2

1 − δ

)
, (31)

where the second line follows by combining L = m(1 +
ǫ) ln N/ln 2 and ln(1/2 + δ) ≤ − ln 2 + 2δ, and the third line

follows since 1 + (1 + ǫ) (−1 + 2δ/ln 2) ≤ −ǫ/2 under the

above choice δ = (ǫ ln 2)/4(1+ ǫ). We claim that (31) implies

jg∗L/w− ≤ 2 for all j ≤ L. Indeed, we have T = Θ(K log N)
and L = Θ(T/K), so that L = Θ(log N), whereas (31) implies

that g∗L/w− decays to zero strictly faster than 1/log N . This

implies that

φ j(1/w−, g
∗L) ≤ exp

(
j ln

(
g
∗L

w−

))
= ejβ, (32)

since the conditions of Lemma 8 are satisfied under these

arguments. Writing φ( j) = φ j(1/w−, g∗L) (which is decreasing

in j by the third part f Lemma 7), we can bound K times the

inner sum of (30) as follows:

K

L∑
j=0

P
(
Mk = j

�� W (K\i)
= w

)
φ( j)

≤ KC(L,w)
L∑
j=0

P
(
Bin(L, 1 − w/T) = j

)
φ( j) (33)

= KC(L,w)
L∑
j=0

P
(
Bin(L, 1 − w+/T) = j

)

×
(
P(Bin(L, 1 − w/T) = j)
P(Bin(L, 1 − w+/T) = j)

)
φ( j)

(34)

≤ KC(L,w)
L∑
j=0

P
(
Bin(L, 1 − w+/T) = j

)
φ( j) (35)
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P(Li = 0) =
∑
w, j,g

P
(
W (K\i)

= w,Mi = j,G = g
)
×

(
I[A ∩ B] + I

[
(A ∩ B)c

] )
φ j

(
1

w + j
, gL

)

≤
∑

w∈[w−,w+]
P
(
W (K\i)

= w
) L∑
j=0

P
(
Mi = j

�� W (K\i)
= w

)
φ j(1/w−, g

∗L) + P
(
(A ∩ B)c

)
(29)

=

∑
w∈[w−,w+]

P
(
W (K\i)

= w
) L∑
j=0

P
(
Mi = j

�� W (K\i)
= w

)
φ j(1/w−, g

∗L) + P(Ac) + P(A ∩ Bc)

≤
∑

w∈[w−,w+]
P
(
W (K\i)

= w
) L∑
j=0

P
(
Mi = j

�� W (K\i)
= w

)
φ j(1/w−, g

∗L)

+ P
(
W (K\i)

< [w−,w+]
)
+ P

(
G > g

∗ �� W (K\i) ∈ [w−,w+]
)
,

(30)

≤ KC(L,w−)
(
w+

T
+

T − w+

T
e β

)L
(36)

Here:

• (33) follows from the second part of Lemma 4.

• We deduce (35) using the following argument: The brack-

eted term in (34) is easily verified to be increasing in j

by substituting the Binomial mass function and noting

1−w/T ≥ 1−w+/T , and we already know from Lemma

7 that φ( j) is decreasing. Hence, (34) is the expectation

of the product of an increasing and decreasing function,

and so by ‘Chebyshev’s other inequality’ [47, eq. (1.7)],

it is bounded above by the product of the expectations of

those functions.2

• (36) follows by upper bounding C(L,w) ≤ C(L,w−) and

φ( j) ≤ ejβ from (32), and then evaluating the sum exactly.

We can simplify (36) using the following:

KC(L,w−)
(
w+

T
+

T − w+

T
e β

)L

=

KC(L,w−)
2L

(
1 + δ + e β(1 − δ)

)L
(37)

≤ C(L,w−) · c exp (−mǫ ln N) exp
(
L(δ + e β(1 − δ))

)
(38)

≤ C(L,w−) · c exp

((
− mǫ +

m(1 + ǫ)
ln 2

(
δ + e β(1 − δ)

) )
ln N

)
.

(39)

Here:

• (37) follows by substituting w+ = T(1 + δ)/2.

• (38) follows from 1 + ζ ≤ eζ , along with the fact that

K

2L
≤ c exp

( (
m − m(1 + ǫ)

)
ln N

)
≤ c exp(−mǫ ln N)

by L = m(1 + ǫ) ln N/ln 2 and by K = Θ(Nθ ) giving

K ≤ cNθ ≤ cNm for some c = Θ(1).
• (39) follows by again using L = m(1 + ǫ) ln N/ln 2.

We conclude that (39) acts as an upper bound on K times the

first term of (30). Overall (39) tends to zero for δ sufficiently

small, since C(L,w−) = exp(L2/4w−) tends to 1 in this regime.

2In fact, [47, eq. (1.7)] concerns E[ f (X)g(X)] for two increasing functions,
but we can transform this to E[ f (X)h(X)] for decreasing h by simply defining
h(x) = L − g(x).

The second term of (30) decays to zero exponentially fast

in T by Lemma 1. More precisely, we make (K − 1)L draws

with replacement, so that α = (K − 1) ln 2/K → ln 2, meaning

that we can take ǫ = δ/3 in Lemma 1 to obtain

lim sup
N→∞

K P
(
W (K\i)

< (w−,w+)
)

≤ lim sup
N→∞

K P
( ��W (K\i) − (1 − e−α)T

�� ≥ ǫT )

≤ 2 lim sup
N→∞

K exp

(
− ǫ

2T

α

)

= 2c lim sup
N→∞

exp

(
ln N

(
θ − ǫ

2γDDmK

α

))
,

since T = γDDmK ln N and K = Θ(Nθ ) (and hence K ≤ cNθ

for some c = Θ(1)). We conclude that this term tends to zero,

since the exponent behaves as −K ln N .

To control the third term in (30), observe that if W (K\i) ≤
w+, then

W (K)

T
≤ 1 + δ

2
+

L

T
=

1 + δ

2
+

ln 2

K
≤ 1

2
+

3δ

4
,

where the first inequality holds since W (K) ≤ W (K\i)
+ L and

w+ = T(1 + δ)/2, the equality holds since L = ln 2T/K , and

the final inequality holds for K sufficiently large. Hence, and

defining p = (1/2 + 3δ/4)L , Lemma 5 gives

P
(
G > g

∗ | W (K\i) ∈ (w−,w+)
)

≤ P
(
Bin(N, p) > g

∗)
≤ exp

(
− (g∗)2

2(Np + g∗/3)

)
(40)

= exp

(
−N

(1/2 + δ)2L

2
(
(1/2 + 3δ/4)L + (1/2 + δ)L/3

) ) (41)

= exp

(
−N

(1/2 + δ)L
2(1/3 + o(1))

)
, (42)

where (40) follows from Bernstein’s inequality [48, eq. (2.10)],

(41) follows from p = (1/2+3δ/4)L and g
∗
= N(1/2+δ)L , and

(42) follows since the ratio of (1/2+3δ/4)L to (1/2+δ)L tends

to zero as N → ∞ (and hence L → ∞, since L = Θ(log N)).
Finally, since L = m(1 + ǫ) log N/log 2, we find that

(1/2 + δ)L behaves as N−c for some c that can be made
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arbitrarily close to m = max{θ, 1 − θ} by choosing δ and ǫ

sufficiently small. By definition, m < 1, and the bound in (42)

is exponential in N1−c , meaning that it vanishes even when

multiplied by K .

V. CONCLUSIONS AND OPEN QUESTIONS

We have studied nonadaptive group testing with near-

constant column weight designs. We have seen that:

• The very simple COMP algorithms requires 23.4% fewer

tests with a near-constant column weight design than with

a Bernoulli design, performing even better than optimal

algorithms with Bernoulli designs for θ > 0.766.

• Using a near-constant column weight design, the practical

DD algorithm again uses 23.4% fewer tests than with

Bernoulli designs, outperforms any possible algorithm for

Bernoulli designs for θ > 0.434, and beats the best-known

theoretical guarantees of existing practical algorithms for

all θ ∈ (0, 1).
• An upper bound on performance of near-constant column

weight designs shows that DD is optimal for this design

when θ ≥ 1/2.

• Numerical experiments demonstrated a notable improve-

ment over Bernoulli designs in both sparse and dense

regimes.

We briefly mention some interesting open problems con-

nected with this paper, which we hope to address in future

work:

1) It remains open to determine the maximum achievable

rate of constant or near-constant column weight designs

for θ ≤ 1/2, in the spirit of Theorem 1. We conjecture

that the value is (5) (i.e., Theorem 4 is sharp), and is

achievable by the maximum likelihood algorithm (as

well as the SSS algorithm of [21]). This is the value

suggested by a non-rigorous result of Mézard, Tarzia

and Toninelli [36].

2) It is an important open problem to determine whether

‘practical’ algorithms can improve on the performance

of DD. For example, the SCOMP algorithm of [21] and

approaches based on linear programming both have a

rate at least as large as DD [44]. However, we do not

know the best possible rate of DD for θ < 1/2, nor how

to determine whether these algorithms or others can have

a higher rate than DD.

3) It remains of great interest to determine whether a

rate of 1 can be achieved for values of θ beyond 1/3
using constant or near-constant column weights or some

other design. The conjecture above would imply that

near-constant column-weight designs achieve rate 1 for

θ < 0.409. More generally, it is an open problem as to

whether there exists an ‘adaptivity gap’, i.e., a choice of

θ < 1 such that any nonadaptive design must have rate

less than 1, despite the rate of 1 being achievable with

adaptive testing.

APPENDIX A

PROPERTIES OF THE DISTRIBUTION OF Mi

A. Proof of Lemma 4

Proof of Lemma 4: We prove the first part of the lemma

directly. Suppose that we pick L coupons from a population of

T coupons, w of which were previously chosen. Clearly, the

probability of the event that exactly s of the coupons picked

were previously chosen is P(Bin(L,w/T) = s).
Conditioning on this event, we calculate the probability that

we pick L − s coupons out of a population of T − w coupons

and obtain exactly j distinct new coupons. Clearly we require

L − s ≥ j, or s ≤ L − j. By a standard counting argument, we

can choose these j coupons
(T−w

j

)
ways, then

{
L−s
j

}
ways of

placing the L−s coupons into j unlabelled bins such that none

of them are empty (see [46, p. 204]), and finally j! different

labellings of the bins. Moreover, overall there are (T − w)L−s
assignments of the coupons.

Putting this all together and recalling the definition

(T − w)(j) =
(T − w)!

(T − w − j)! =
(
T − w

j

)
j!,

we have

P
(
Mi = j

�� W (K\i)
= w

)
=

L−j∑
s=0

(
L

s

) (
w

T

)s (
1 − w

T

)L−s (
T − w

j

) {
L − s

j

}
j!

1

(T − w)L−s

=

L−j∑
s=0

(
L

s

)
w
s

TL
(T − w)(j)

{
L − s

j

}
,

as required.

We now prove the second part of the lemma. Relabelling

t = L − j − s ≥ 0 and using the fact that
{
t+j
j

}
≤

(t+j
j

)
j t (see

[49]), we obtain that the inner sum of (23) is:

L−j∑
t=0

(
L

L − j − t

) {
t + j

j

}
w

L−j−t

≤ w
L−j

L−j∑
t=0

(
L

L − j − t

) (
t + j

j

) ( j

w

) t

= w
L−j

(
L

j

) L−j∑
t=0

(
L − j

t

) ( j

w

) t

= w
L−j

(
L

j

) (
1 +

j

w

)L−j
≤ w

L−j
(
L

j

)
C,

where the third line follows by explicitly evaluating the

summation, and the final line holds with C = exp(L2/4w)
since

(
1 +

j

w

)L−j
≤ exp

(
j(L − j)

w

)
≤ exp

(
L2

4w

)
.
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This allows us to deduce that the whole of (23) satisfies

P
(
Mi = j

�� W (K\i)
= w

)
≤ C

(T − w)(j)
TL

w
L−j

(
L

j

)

≤ C
(T − w)j

TL
w

L−j
(
L

j

)
,

as required.

B. Proof of Lemma 6

Proof of Lemma 6: The case j = 0 is trivial, so we

assume here that j ≥ 1.

We have conditioned on three events: on W (K\i)
= w,

meaning there are w tests containing one or more item from

K \ i; on event Mi = j, meaning there are j tests that contain

item i and no member of K \ i; and on G = g, meaning there

are g items labelled as possibly defective but not in K.

By relabelling, without loss of generality, we can assume

that tests 1, . . . , j are the ones that contain defective item i and

no other defective item. We write As for the event that test s

does not have any element of PD \ K in it.

If an item is in PD \ K, then the tests that it appears in

are chosen uniformly among those which already contain a

defective. Hence, for any set S ⊆ {1, . . . , j} of size ℓ, we have

P(⋂r ∈S Ar ) = (1 − ℓ/(w + j))gL . This is because we require

that the L coupons of each of g items in PD \K take values

in the set of positive tests (W (K\i)
+ Mi = w + j in total), but

avoid the specified ℓ tests. Thus,

P
(
Li = 0

�� G = g,W (K\i)
= w,Mi = j

)
= P

(
j⋂

s=1

Ac
s

)

= 1 − P
(

j⋃
s=1

As

)

=

j∑
ℓ=0

(−1)ℓ
∑

S⊆{1,..., j }
|S |=ℓ

P
©«
⋂
j∈S

Aj
ª®¬

=

j∑
ℓ=0

(−1)ℓ
(

j

ℓ

) (
1 − ℓ

w + j

)gL
, (43)

and the result follows.

APPENDIX B

PROPERTIES OF THE φ FUNCTION

A. Proof of Lemma 7

Proof of Lemma 7: We deduce the results using the

expression

φ j(s,V) =
j∑

ℓ=0

(−1)ℓ
(
j

ℓ

)
(1 − ℓs)V

from (26).

First we show that φ j(s,V) is increasing in s. As in [21,

Lemma 32], a direct calculation using the fact that ℓ
( j
ℓ

)
=

j
( j−1
ℓ−1

)
gives

∂

∂s
φ j(s,V)

= V j

j∑
ℓ=1

(−1)ℓ−1

(
j − 1

ℓ − 1

)
(1 − ℓs)V−1 (44)

= (1 − s)V−1V j

j∑
ℓ=1

(−1)ℓ−1

(
j − 1

ℓ − 1

) (
1 − (ℓ − 1)s

1 − s

)V−1

= (1 − s)V−1V j φ j−1

( s

1 − s
,V − 1

)
(45)

≥ 0,

where the second line uses the fact that

(1 − ℓs) = (1 − s)
(
1 − (ℓ − 1)s

1 − s

)
,

and the third line above follows by relabelling ℓ′ = ℓ − 1.

Second, we show that φ j(s,V) is increasing in V . Again

using ℓ
( j
ℓ

)
= j

( j−1
ℓ−1

)
, we can write

φ j(s,V) − φ j(s,V − 1)

=

j∑
ℓ=0

(−1)ℓ
(
j

l

)
(1 − ℓs)V−1

(
(1 − ℓs) − 1

)

= s j

j∑
ℓ=1

(−1)ℓ−1

(
j − 1

ℓ − 1

)
(1 − ℓs)V−1

=

s

V

∂

∂s
φ j(s,V)

≥ 0,

where the third line follows from (44).

Third, we show that φ j(s,V) is decreasing in j. By expand-

ing
( j
ℓ

)
=

( j−1
ℓ

)
+

( j−1
ℓ−1

)
, we can write

φ j(s,V) =
j∑

ℓ=0

(−1)ℓ
((

j − 1

ℓ

)
+

(
j − 1

ℓ − 1

))
(1 − ℓs)V

= φ j−1(s,V) − 1

(V + 1) j

∂

∂s
φ j(s,V + 1)

≤ φ j−1(s,V),

again using (44).

B. Proof of Lemma 8

We now prove Lemma 8, first giving two preliminary

lemmas.

Lemma 9: We can expand φ j(s,V) (as defined in (26)) as a

polynomial in s of degree V as follows:

φ j(s,V) = V!s j

(V − j)!

V−j∑
u=0

(−1)usu
j!(V − j)!

(u + j)!(V − u − j)!

{
j + u

j

}
,

(46)

where we again write
{
j+u
j

}
for the Stirling number of the

second kind.
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Proof: We can expand

φ j(s,V) =
j∑

ℓ=0

(−1)ℓ
(

j

ℓ

)
(1 − ℓs)V

=

j∑
ℓ=0

(−1)ℓ
(

j

ℓ

) V∑
t=0

(
V

t

)
(−s)tℓt

=

V∑
t=0

(
V

t

)
(−s)t

j∑
ℓ=0

(−1)ℓ
(

j

ℓ

)
ℓt (47)

=

V∑
t=0

(
V

t

)
(−s)t

{
t

j

}
j! (−1)j

=

V−j∑
u=0

(
V

j + u

)
(−s)j+u

{
j + u

j

}
j! (−1)j,

where the second line can be seen by directly evaluating the

summation, the fourth line follows by recognising the inner

sum in (47) as a multiple of the Stirling number using (22),

and the last line follows since by relabelling t = j + u and

noting that
{
t
j

}
is non-zero only when t ≥ j. The result now

follows by writing(
V

j + u

)
=

V!

(V − u − j)! (u + j)!
(V − j)!
(V − j)!

and (−s)j+u(−1)j = (−1)us j su .

We also use the following result from [50, Theorem 4.4].

Lemma 10: The Stirling numbers of the second kind are

log-concave in their first argument, that is for any j, u ∈ Z+:{
j + u + 1

j

}2

≥
{

j + u

j

} {
j + u + 2

j

}
.

We are now in a position to prove Lemma 8.

Proof of Lemma 8: Using Lemma 9, we consider φ j(s,V)
as a sum of the form

φ j(s,V) = s jV!

(V − j)!

V−j∑
u=0

(−1)uau,

where

au = su
j! (V − j)!

(u + j)! (V − u − j)!

{
j + u

j

}
.

By the alternating series test, if au is a monotonically decreas-

ing sequence, we can bound
∑V−j

u=0
(−1)uau ≤ a0 = 1, and the

result follows. We can verify that au is indeed monotonically

decreasing by considering the ratio

au+1

au
= s

V − j − u

j + u + 1

{
j+u+1

j

}
{
j+u
j

} . (48)

The first fraction in (48) is trivially decreasing in u, and the

second fraction in (48) is decreasing in u by Lemma 10.

Hence, since the ratio (48) is decreasing in u, it is sufficient

to verify that a1/a0 ≤ 1. Since
{
j
j

}
= 1 and

{
j+1
j

}
= j( j +1)/2,

direct substitution in (48) gives that a1/a0 = s(V − j) j/2, so

it is sufficient to assume that s(V − j) j/2 ≤ 1.

APPENDIX C

AUXILIARY RESULTS FOR THE ALGORITHM-INDEPENDENT

CONVERSE

A. Proof of Lemma 2

Fixing the index i of some defective item, we note that

conditioned on W (K\i)
= w, the event Ai occurs if each test

that item i occurs in is contained in the w ‘already hit’ tests.

Hence, for any c1 > 0, we can write

P(Ai) =
∑
w

P
(
Ai

�� W (K\i)
= w

)
P
(
W (K\i)

= w
)

=

∑
w

(
w

T

)L
P
(
W (K\i)

= w
)

≥
∑
w

(
w

T

)L
P
(
W (K\i)

= w
)
I[w ≥ Tc1]

≥ cL1 P
(
W (K\i) ≥ Tc1

)
,

which proves (13).

The analysis of the event Ai ∩ Aj for i , j is more

challenging; we show in Section C-B below that if w ≥ Tc1

with the same c1 > 0 as above, then for arbitrarily small ǫ1 > 0

it holds for sufficiently large N that

P
(
Ai ∩ Aj | W (K\i, j)

= w
)
≤

(
w + L

T

)2L
1

1 − ǫ1
. (49)

Hence, for any c1, c2 > 0, we have(
K

2

)
P(Ai ∩ Aj)

=

(
K

2

) ∑
w

P
(
Ai ∩ Aj

�� W (K\i, j)
= w

)
P
(
W (K\i, j)

= w
)

≤ 1

1 − ǫ1

(
K

2

) ∑
Tc1≤w≤Tc2

(
w + L

T

)2L

P
(
W (K\i, j)

= w
)

+

(
K

2

)
P
(
W (K\i, j)

< [Tc1,Tc2]
)

≤ K2

2(1 − ǫ1)

(
c2 +

ν

K

)2L

P
(
Tc1 ≤ W (K\i, j) ≤ Tc2

)
+

(
K

2

)
P
(
W (K\i, j) < Tc1

)
+

(
K

2

)
P
(
W (K\i, j) > Tc2

)
,

where we have used the fact that L/T = ν/K . This proves

(14).

B. Proof of (49)

Recall that we condition on W (K\i, j)
= w, and seek to bound

the probability of Ai ∩ Aj for two defective items i, j. Here Ai

is the event that item i is masked by the remaining defective

items K \ {i} (one of which is j), and analogously for Aj .

In contrast to the rest of the paper, in this section, we repre-

sent the columns of the test matrix X corresponding to items

i and j by lists Ti = (ti,1, . . . ti,L) and Tj = (tj,1, . . . tj,L). Each

list entry is obtained by choosing t ∈ {1, . . . ,T} uniformly at

random with replacement, so duplicates may occur. Any given

list occurs with probability 1/TL .

Without loss of generality, we assume that the w tests

containing items from K\{i, j} are those indexed by 1, . . . ,w.
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Letting Ai be the set of list pairs (Ti,Tj) under which the event

Ai occurs, and similarly for A j , we have

Pr(Ai ∩ Aj |W (K\i, j)
= w) =

Ni j

T2L
, (50)

where

Ni j =

∑
Ti

∑
Tj
I
{
(Ti,Tj) ∈ Ai ∩ A j

}
(51)

is the number of pairs of lists in Ai ∩ A j . Here the sets Ai

and A j implicitly depend on w.

To bound Ni j , we separately consider the number of ‘new

positive tests’ caused by items i and j; that is, those not among

the first w. Specifically, letting Ni j(ℓ) be defined as in (51) with

the summation limited to the case that there are ℓ such new

positive tests, we have

Ni j =

L∑
ℓ=0

Ni j(ℓ).

The summation only goes up to L due to the fact that any new

positive test containing i must also contain j and vice versa,

otherwise the masking under consideration would not occur.

To bound Ni j(ℓ), we consider the following procedure for

choosing the lists:

• From T−w tests, choose ℓ of them to be the new defective

tests. This is one of
(T−w

ℓ

)
options.

• For both i and j, assign one list index from {1, . . . , L}
to each of the ℓ new defective tests. This is at most Lℓ

options each, for L2ℓ in total.

• For both i and j, the remaining L−ℓ list entries are chosen

arbitrarily from the w+ℓ positive tests. This is (w+ℓ)L−ℓ
options each, for (w + ℓ)2(L−ℓ) in total.

Combining these terms gives

Ni j(ℓ) ≤
(
T − w

ℓ

)
· L2ℓ · (w + ℓ)2(L−ℓ)

≤ (T − w)ℓ · L2ℓ · (w + L)2(L−ℓ)

= (w + L)2L ·
(

L2(T − w)
(w + L)2

)ℓ
.

Now, since w ≥ c1T by assumption, and recalling that T =

Θ(K log N), that K = Θ(Nθ ) with θ ∈ (0, 1), and that L =

νT/K = Θ(log N), we find that the bracketed term is less than

any fixed ǫ1 > 0 for sufficiently large N . Hence, summing

over ℓ gives

Ni j ≤
L∑

ℓ=0

(w + L)2L ·
(

L2(T − w)
(w + L)2

)ℓ

≤ (w + L)2L
∞∑
ℓ=0

ǫℓ1

= (w + L)2L 1

1 − ǫ1
.

Substituting into (50), we conclude that

Pr(Ai ∩ Aj |W (K\i, j)
= w) ≤

(
w + L

T

)2L

· 1

1 − ǫ1
,

as desired.

C. Proof of Lemma 3

We consider the procedure of selecting T such that the

fraction in the bracketed term in (20) equates to 1 − 1
2(1−ǫ1) :

1 − K(c2 + ν/K)2νT/K

2c
νT/K
1

(1 − ǫ1)
= 1 − 1

2(1 − ǫ1)
, (52)

or equivalently

K ·
(
(c2 + ν/K)2

c1

)νT/K
= 1. (53)

Substituting c1 = 1− e−ν −
√

c0 lnT
T

and c2 = 1− e−ν +
√

c0 lnT
T

and performing some simple rearrangements, we obtain

νT

K
=

ln K

ln
1−e−ν−

√
(c0 lnT )/T(

1−e−ν+ν/K+
√
(c0 lnT )/T

)2

=

ln K

ln

(
1 − e−ν −

√
c0 lnT
T

)
− 2 ln

(
1 − e−ν + ν

K
+

√
c0 lnT
T

) .

Applying Taylor expansions and noting that the terms

√
c0 lnT
T

and ν/K both decay as O
(√

lnT
T

)
= O

(
1/
√

K
)
, we obtain

νT

K
=

ln K

− ln(1 − e−ν)

(
1 +O

( 1
√

K

))
. (54)

This choice is consistent with the assumed condition on T in

(10).

Having established (54), we characterise the term c
νT/K
1

appearing in (19), with c1 = 1 − e−ν −
√

c0 lnT
T

as above:

ln(cνT/K
1

)
=

ln K · ln

(
1 − e−ν −

√
c0 lnT
T

)
− ln(1 − e−ν)

(
1 +O

( 1
√

K

))

=

(
− ln K

) (
1 +O

( 1
√

K

))
,

where we have again applied standard Taylor expansions. Tak-

ing the exponential of both sides gives c
νT/K
1

= 1/K1+O(1/
√
K),

which yields Kc
νT/K
1

= 1 − o(1) since K1/Kc → 1 as K → ∞
for any c > 0. Substituting into (20) and recalling (52), we

obtain the desired bound (21).

REFERENCES

[1] M. Aldridge, O. Johnson, and J. Scarlett, “Improved group testing
rates with constant column weight designs,” in 2016 IEEE International

Symposium on Information Theory (ISIT), July 2016, pp. 1381–1385.

[2] R. Dorfman, “The detection of defective members of large populations,”
Ann. Math. Statist., vol. 14, no. 4, pp. 436–440, 12 1943.

[3] D. Du and F. Hwang., Combinatorial Group Testing and Its Applications,
ser. Series on Applied Mathematics. World Scientific, 1993.

[4] C. Aksoylar, G. Atia, and V. Saligrama, “Sparse signal processing
with linear and non-linear observations: A unified shannon theoretic
approach,” in 2013 IEEE Information Theory Workshop (ITW), Sept
2013, pp. 1–5.

[5] H.-B. Chen and F. K. Hwang, “A survey on nonadaptive group testing
algorithms through the angle of decoding,” Journal of Combinatorial

Optimization, vol. 15, no. 1, pp. 49–59, Jan 2008.



16

[6] J. L. Gastwirth and P. A. Hammick, “Estimation of the prevalence of a
rare disease, preserving the anonymity of the subjects by group testing:
application to estimating the prevalence of AIDS antibodies in blood
donors,” Journal of Statistical Planning and Inference, vol. 22, no. 1,
pp. 15–27, 1989.

[7] R. Mourad, Z. Dawy, and F. Morcos, “Designing pooling systems
for noisy high-throughput protein-protein interaction experiments using
Boolean compressed sensing,” IEEE/ACM Transactions on Computa-

tional Biology and Bioinformatics, vol. 10, no. 6, pp. 1478–1490, 2013.

[8] K. H. Thompson, “Estimation of the proportion of vectors in a natural
population of insects,” Biometrics, vol. 18, no. 4, pp. 568–578, 1962.

[9] S. D. Walter, S. W. Hildreth, and B. J. Beaty, “Estimation of infection
rates in populations of organisms using pools of variable size,” American

Journal of Epidemiology, vol. 112, no. 1, pp. 124–128, 1980.

[10] M. T. Goodrich and D. S. Hirschberg, “Improved adaptive group testing
algorithms with applications to multiple access channels and dead sensor
diagnosis,” Journal of Combinatorial Optimization, vol. 15, no. 1, pp.
95–121, 2008.

[11] C. Lo, M. Liu, J. P. Lynch, and A. C. Gilbert, “Efficient sensor fault
detection using combinatorial group testing,” in 2013 IEEE International

Conference on Distributed Computing in Sensor Systems, May 2013, pp.
199–206.

[12] A. Emad and O. Milenkovic, “Poisson group testing: A probabilistic
model for nonadaptive streaming boolean compressed sensing,” in
2014 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), May 2014, pp. 3335–3339.

[13] A. C. Gilbert, M. A. Iwen, and M. J. Strauss, “Group testing and sparse
signal recovery,” in 2008 42nd Asilomar Conference on Signals, Systems

and Computers, 2008, pp. 1059–1063.

[14] M. K. Varanasi, “Group detection for synchronous Gaussian code-
division multiple-access channels,” IEEE Transactions on Information

Theory, vol. 41, no. 4, pp. 1083–1096, 1995.

[15] J. K. Wolf, “Born again group testing: multiaccess communications,”
IEEE Transactions on Information Theory, vol. 31, no. 2, pp. 185–191,
1985.

[16] S. Wu, S. Wei, Y. Wang, R. Vaidyanathan, and J. Yuan, “Achievable
partition information rate over noisy multi-access boolean channel,” in
2014 IEEE International Symposium on Information Theory, June 2014,
pp. 1206–1210.

[17] J. Scarlett and V. Cevher, “Limits on support recovery with probabilistic
models: an information-theoretic framework,” IEEE Transactions on

Information Theory, vol. 63, no. 1, pp. 593–620, Jan 2017.

[18] ——, “Phase transitions in group testing,” in Proceedings of the Twenty-

Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 2016,
pp. 40–53.

[19] M. Aldridge, “The capacity of Bernoulli nonadaptive group testing,”
IEEE Transactions on Information Theory, vol. 63, no. 11, pp. 7142–
7148, Nov 2017.

[20] M. Aldridge, L. Baldassini, and K. Gunderson, “Almost separable
matrices,” Journal of Combinatorial Optimization, vol. 33, no. 1, pp.
215–236, Jan 2017.

[21] M. Aldridge, L. Baldassini, and O. Johnson, “Group testing algorithms:
Bounds and simulations,” IEEE Transactions on Information Theory,
vol. 60, no. 6, pp. 3671–3687, June 2014.

[22] G. K. Atia and V. Saligrama, “Boolean compressed sensing and noisy
group testing,” IEEE Transactions on Information Theory, vol. 58, no. 3,
pp. 1880–1901, March 2012.

[23] C. L. Chan, P. H. Che, S. Jaggi, and V. Saligrama, “Non-adaptive prob-
abilistic group testing with noisy measurements: Near-optimal bounds
with efficient algorithms,” in 2011 49th Annual Allerton Conference

on Communication, Control, and Computing (Allerton), Sept 2011, pp.
1832–1839.

[24] M. Malyutov, “Search for sparse active inputs: a review,” in Information

Theory, Combinatorics, and Search Theory: In Memory of Rudolf

Ahlswede, H. Aydinian, F. Cicalese, and C. Deppe, Eds. Springer,
2013, pp. 609–647.

[25] L. Baldassini, O. Johnson, and M. Aldridge, “The capacity of adaptive
group testing,” in 2013 IEEE International Symposium on Information

Theory, July 2013, pp. 2676–2680.

[26] F. K. Hwang, “A method for detecting all defective members in a popu-
lation by group testing,” Journal of the American Statistical Association,
vol. 67, no. 339, pp. 605–608, 1972.

[27] A. G. D’yachkov and V. V. Rykov, “Bounds on the length of disjunctive
codes,” Problemy Peredachi Informatsii, vol. 18, no. 3, pp. 7–13, 1982,
translation: Problems of Information Transmission. 18(3): 166–171.

[28] A. G. D’yachkov, V. V. Rykov, and A. M. Rashad, “Superimposed
distance codes,” Problems of Control and Information Theory, vol. 18,
no. 4, pp. 237–250, 1989.

[29] M. B. Malyutov, “The separating property of random matrices,” Matem-

aticheskie Zametki, vol. 23, no. 1, pp. 155–167, 1978, translation:
Mathematical Notes of the Academy of Sciences of the USSR. 23(1):
84–91.

[30] V. L. Freidlina, “On a design problem for screening experiments,”
Teoriya Veroyatnostei i ee Primeneniya, vol. 20, no. 1, pp. 100–114,
1975, translation: Theory of Probability & Its Applications, vol. 20, no.
1, pp. 102–115, 1975.

[31] W. H. Kautz and R. C. Singleton, “Nonrandom binary superimposed
codes,” IEEE Transactions on Information Theory, vol. 10, no. 4, pp.
363–377, 1964.

[32] D. J. Balding, W. J. Bruno, D. Torney, and E. Knill, A comparative

survey of non-adaptive pooling designs. Springer, 1996, pp. 133–154.
[33] W. Bruno, E. Knill, D. Balding, D. Bruce, N. Doggett, W. Sawhill,

R. Stallings, C. Whittaker, and D. Torney, “Efficient pooling designs for
library screening,” Genomics, vol. 26, no. 1, pp. 21 – 30, 1995.

[34] F. K. Hwang, “Random k-set pool designs with distinct columns,”
Probability in the Engineering and Informational Sciences, vol. 14,
no. 1, p. 4956, 2000.

[35] A. J. Macula, “Probabilistic nonadaptive and two-stage group testing
with relatively small pools and DNA library screening,” Journal of

Combinatorial Optimization, vol. 2, no. 4, pp. 385–397, Dec 1998.
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