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Abstract

We compare the performance of popular covariance forecasting models in the

context of a portfolio of major European equity indices. We find that models

based on high-frequency data offer a clear advantage in terms of statistical

accuracy. They also yield more theoretically consistent predictions from

an empirical asset pricing perspective, and, lead to superior out-of-sample

portfolio performance. Overall, a parsimonious Vector Heterogeneous

Autoregressive (VHAR) model that involves lagged daily, weekly and monthly

realised covariances achieves the best performance out of the competing

models. A promising new simple hybrid covariance estimator is developed that

exploits option–implied information and high–frequency data while adjusting

for the volatility risk premium. Relative model performance does not change

during the global financial crisis, or, if a different forecast horizon, or, intraday

sampling frequency is employed. Finally, our evidence remains robust when

we consider an alternative sample of U.S. stocks.

JEL classification: C50, C58, G11, G12.

Keywords: Covariance forecasting, High-frequency data, Implied volatility, Asset

allocation, Risk-return trade-off.

∗We thank the seminar participants at Norwich Business School, University of East Anglia, and
the Econometrics Group, University of Birmingham, for helpful comments on an earlier version of
this paper. Corresponding author is Raphael Markellos: r.markellos@uea.ac.uk.

1



1 Introduction

Little has changed since Robert Engle concluded in his Nobel Prize memorial lecture

in 2003 that the best covariance forecasting method has not yet been discovered (for a

review of this literature see Alexander, 2008; Andersen et al., 2013). Standard practice

of modelling and forecasting covariance relies on multivariate GARCH models, whereas,

more recent approaches advocate the use of high-frequency data. However, a synthesis

of conclusions from different empirical studies is difficult due to the diversity in terms of

econometric methods, asset classes, sampling frequencies, time periods, market regimes,

and performance evaluation criteria. Besides that, the extant literature largely focuses

on statistical evidence neglecting the rather important concepts of economic value of

covariance forecasts for asset pricing and portfolio allocation.

We shed further light on this literature by undertaking a comprehensive empirical

comparison of several alternatives in order to discover the best covariance forecasting

model on the basis of statistical and economic criteria. Two broad families of models

are considered: multivariate GARCH models that employ daily data, and, models that

use high-frequency and options data. Our main dataset spans the period from January

2000 to April 2016, and, includes five major European equity markets (Germany, France,

Netherlands, Switzerland, UK). In line with standard practice and theoretical results

(Andersen et al., 2003; Barndorff-Nielsen and Shephard, 2004), we employ realised

covariance computed from intraday returns as a proxy for the unobserved covariance. We

consider daily, weekly and monthly forecasting horizons and compare the models during

different market phases including the 2008-2009 global financial crisis.
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Our econometric analysis demonstrates that high-frequency data are particularly

valuable for covariance forecasting. Specifically, a Vector Heterogeneous Autoregressive

(VHAR) model is shown to have the best performance from both a statistical and an

economic perspective. Although GARCH models have relatively fewer data requirements,

they have inferior predictive accuracy and entail substantial computational costs.

While option-implied information is useful for volatility modelling, employing it for

covariance forecasting is neither technically straightforward nor clearly justified. Our

paper addresses this issue by proposing a new simple approach for exploiting option implied

information for covariance forecasting. Specifically, inspired by the option-implied betas

literature (Buss and Vilkov, 2012), we apply a novel hybrid covariance estimator which

combines option and high-frequency data. In addition to the benefit of being more forward-

looking due to the use of implied volatilities, our hybrid estimator adjusts for the volatility

risk premium. The proposed approach is non-parametric and achieves better forecasting

performance relative to the multivariate GARCH models examined.

In the empirical asset pricing literature, there is contrasting evidence about the risk-

return trade-off and whether this relationship is positive or negative (see the review by

Bali and Engle 2010). We consider that the lack of consensus is partly due to the use

of different models to estimate the conditional variances and covariances involved. We

explore this possibility by comparing the covariance models studied in the context of

the intertemporal capital asset pricing model (ICAPM) of Merton (1973). We use a

system of seemingly unrelated regressions (SUR), which accounts for both time series and

cross-sectional variation in excess stock returns (see Bali, 2008; Bali and Engle, 2010).

The results show that conditional covariance estimates based on high-frequency models

for our European equity data yield a positive and statistically significant risk-return trade-
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off. The common risk aversion coefficient has an economically meaningful size between 2

and 3, which is consistent with previous studies that employ covariance estimates from

multivariate GARCH models (e.g., Bali and Engle, 2010). To the best of our knowledge,

this is the first study that uses the VHAR model in an empirical asset pricing setting.

Multivariate GARCH models provide somewhat mixed evidence on the significance of the

common risk-return coefficient with the asymmetric DCC being the only model that shows

evidence of a positive and significant risk-return trade-off across all test assets.

Finally, we evaluate the practical economic significance of the covariance forecasting

models under study in a global minimum-variance portfolio framework. Specifically, we

seek the model that achieves the best performance in terms of out-of-sample portfolio risk

and turnover. Our results again confirm the superiority of high-frequency models, which,

in the majority of scenarios we assume, yield the minimum risk along with low levels of

turnover.

We perform a battery of additional tests to assess the robustness of our findings

and discuss broader implications. First, we extend our analysis to a set of 10 liquid US

stocks and obtain consistent evidence on the superiority of the three simple models that

employ high-frequency and option-implied information. In line with the evidence from the

European equity markets, these models yield a positive and significant risk-return trade-off.

Second, we seek to address potential concerns about microstructure noise by providing

evidence from lower intraday sampling frequencies of 10 and 30 minutes, respectively.

Our conclusions are comparable with those obtained from the main analysis of 5-minute

returns. Third, to account for a setting where intraday data is not available, we repeat our

analysis estimating the high-frequency data-based models using daily data. The results

are generally in line with those from the main analysis, which extends the applicability of
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models, such as the VHAR, to situations where only daily data is available. Fourth, we

confirm the robustness of our results with respect to non-overlapping weekly and monthly

forecasts and different breakpoints for the financial crisis. The results reveal that the

relative ranking of the models changes little during turmoil periods, although forecast

errors are generally higher.

2 Methodology

Let rt be an N × 1 vector of asset returns at time t, where: t = 1, 2, ..., T . Assuming a

constant conditional mean, returns rt can be expressed as follows:

rt = µ+ et, (1)

where µ is the unconditional mean of the return series and et is a vector of innovations

satisfying:

et = H
1/2
t zt, (2)

where Ht is the N ×N positive definite conditional covariance matrix of the innovations,

i.e., Ht = Et−1(ete
′
t). zt is the vector of i.i.d. standardized innovations that follow a

multivariate standard normal distribution: zt ∼ N(0, IN ), where IN is an N ×N identity

matrix. We consider several alternative ways of modellingHt in order to obtain conditional

covariance matrix forecasts.

As the true covariance matrix is unobservable, we approximate it using the realised

covariance matrix computed from intraday returns sampled at equally-spaced intervals.

Suppose that on day t a grid of M + 1 equidistant intraday prices are observed at times
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t0, t1, ..., tM , with ptj being the logarithmic price at time tj . The corresponding asset

return, rtj , in the jth intraday interval of day t is computed as rtj = ptj − ptj−1
. We

denote the N × 1 vector of demeaned asset returns for the jth interval of day t, by rj,t.

The realised daily covariance matrix, Σt, is then given by:

Σt =
M∑

j=1

rj,t r
′
j,t (3)

The estimator of Equation (3) converges to the true unobserved covariance as the sampling

frequency goes to infinity (Andersen et al., 2003). Following standard practice, we rely

on 5-minute returns for the empirical estimation of Σt (see, for example, Andersen et al.,

2001). Then, covariance over longer horizons of k days is computed by the sum of daily

realised covariances.

We use the realised covariance computed from Equation (3) to compare the predictive

performance of several parametric and nonparametric models. The first nine models belong

to the GARCH family and are typically estimated using daily data. The remaining three

models are estimated using intraday and option price data. A brief description of each

model follows.

2.1 Diagonal BEKK (D-BEKK)

The BEKKmodel proposed by Engle and Kroner (1995) is extensively used in the empirical

finance literature. It is particularly popular for modelling volatility spillovers, as it can

allow conditional volatilities to depend on their own past values as well as past volatilities

of other markets. The BEKK model has the desirable property that the conditional

covariance matrix is ensured to be positive definite. The conditional covarince matrix, Ht,
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under the BEKK(1,1) model is parameterised as follows:

Ht = C ′C +A′et−1e
′
t−1A+B′Ht−1B, (4)

where C is a N × N positive definite upper triangular matrix of constant terms, and A

and B are N × N matrices of parameters. The full version of the model requires the

estimation of a comparatively large number of parameters and thus is less suitable for

forecasting applications. Here, similar to Laurent et al. (2012), we estimate a reduced and

more parsimonious version of the BEKK model, which assumes that the square matrices

A and B are diagonal (D-BEKK).

2.2 Asymmetric Diagonal BEKK (A-D-BEKK)

The D-BEKK model assumes no difference in the impact of positive and negative shocks of

the same magnitude on conditional covariance. However, there is evidence of asymmetric

comovement in equity markets, which suggests that covariances tend to be higher following

negative return shocks (Ang and Bekaert, 2002; Cappiello et al., 2006). To allow for

such patterns, we also estimate the asymmetric version of the diagonal BEKK model

(A-D-BEKK) specified as follows:

Ht = C ′C +A′et−1e
′
t−1A+ Γ′ut−1u

′
t−1Γ +B′Ht−1B, (5)

where ut corresponds to the N × 1 vector of negative shocks, given by ut = min(et, 0),

and Γ is an N ×N matrix of parameters.
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2.3 Constant Conditional Correlations (CCC)

The Constant Conditional Correlation model (CCC) of Bollerslev (1990) assumes that

conditional correlations are constant, while conditional covariances vary over time and are

proportional to conditional volatilities. The model is defined as follows:

Ht = DtRDt, (6)

where Dt = diag{
√

h11,t,
√

h22,t, ...,
√
hNN,t} is a diagonal matrix whose elements are the

conditional volatilities (i.e., square root of conditional variances) of the N return series.

The hii,t series are modelled through univariate GARCH(1,1) processes. R is the N ×N

unconditional correlation matrix of the standardized residuals from Equation (1), given

by zit = eit/
√

hii,t.

The CCC model offers the advantage of easier estimation compared to BEKK,

as it only requires estimation of N univariate GARCH(1,1) models. Moreover, the

inverse covariance matrix required for the optimisation of the multivariate quasi-likelihood

function is easily computed as a simple function of the univariate volatilities and of the

unconditional correlation matrix, R.

2.4 Asymmetric Constant Conditional Correlations (A-

CCC)

The asymmetric extension of the CCC model (A-CCC) results from estimating the GJR-

GARCH(1,1) process of Glosten et al. (1993) for each diagonal element of Dt as follows:

hii,t = ωi + aie
2
i,t−1 + bihii,t−1 + γiu

2
i,t−1, (7)
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where ωi, ai, bi and γi are parameters for estimation.

2.5 Dynamic Conditional Correlations (DCC)

The Dynamic Conditional Correlation (DCC) model of Engle (2002), allows for time-

varying correlations in Equation (6), i.e., Ht = DtRtDt. The DCC model characterizes

dynamic correlations through a two-stage process:

Rt = V −1
t QtV

−1
t , (8)

Qt = (1− α− β)Q̄+ αzt−1z
′
t−1 + βQt−1, (9)

where Vt = diag{√q11,t,
√
q22,t, ...,

√
qNN,t} and zt is the vector of standardized innovations

defined above. The scalar parameters α and β in Equation (9) should satisfy the restriction

α+β < 1 to ensure mean-reverting correlations. Q̄ is the unconditional covariance matrix

of the standardized residuals. The qij,t elements of matrix Qt represent quasi–correlations,

which are re-scaled to obtain conditional correlations based on Equation (8) so that ρij,t =

qij,t√
qii,tqjj,t

.

As with the CCC model, the DCC model is easily estimated through a two-step

maximum likelihood procedure involving estimation of univariate GARCH processes

followed by estimation of the correlation parameters through Equation (9). This makes

the approach feasible in large systems. A limitation of the standard DCC model is that

in order to reduce estimation complexity, parameters α and β in Equation (9) are scalars

which means that all correlations are assumed to follow the same dynamics.
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2.6 Asymmetric DCC (A-DCC)

The asymmetric extension of the standard DCC model (A–DCC) that allows for leverage

effects on dynamic conditional correlations is the following:

Qt = [(1− α− β)Q̄− γN̄ ] + αzt−1z
′
t−1 + βQt−1 + γut−1u

′
t−1, (10)

where N̄ is the unconditional covariance matrix of the negative innovations (i.e., the u′ts).

2.7 Orthogonal GARCH (O-GARCH)

The orthogonal GARCH model (O-GARCH) of Alexander and Chibumba (1997) and

Alexander (2001) provides a parsimonious way of modelling and forecasting covariance

matrices. This model belongs to the class of factor models, which assume that the observed

return series can be expressed as a linear transformation of uncorrelated factors. In the

O-GARCHmodel these factors are obtained through estimation of univariate GARCH(1,1)

models on a few principal components of the full covariance matrix.

Let zt = U−1/2et be the vector of standardized innovations at time t, where U is

the N × N diagonal matrix of the unconditional variances of the innovations (i.e., of

et). Then, the p × 1 vector of principal components (factors) of the correlation matrix

of the standardized innovations at time t is given by ft = Λ−1/2P ′zt, where Λ is the

p× p diagonal matrix of the eigenvalues of the unconditional correlation matrix of the z′ts

(ranked in decreasing order) and P is the N × p matrix of the corresponding eigenvectors.

The (diagonal) conditional covariance matrix of et can then be approximated as follows:

Ht = AtStA
′
t +Ωe, (11)
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where At = U1/2PΛ1/2 is an N × p matrix of normalized factor loadings corresponding

to the p principal components (for further details on the procedure see Alexander, 2001).

St is an p× p diagonal matrix of the conditional variances of the p principal components

obtained by estimating univariate GARCH(1,1) models (for the standard O-GARCH) or

GJR-GARCH(1,1) models (for the asymmetric O-GARCH) on each of the p factors. Ωe is

the unconditional covariance matrix of the approximation error resulting from employing p

(p < N) instead of the full number of principal components (see Alexander, 2001). Given

the small dimension of our problem, we use the full set of the five principal components,

i.e., p = N , and therefore, Ωe = 0 in Equation (11).

The main strength of the O-GARCHmodel family lies in its parsimony and estimation

simplicity as it relies on estimation of univariate GARCH models on few principal

components of the full covariance matrix. This leads to substantial advantages in modelling

large covariance matrices as the dimension of the problem and thus the computational time

are substantially reduced. The benefits from the dimension reduction are more tangible in

highly correlated systems, as few principal components can explain most of the variation in

the data. Moreover, the principal component analysis allows one to quantify the amount

of risk associated with each factor (see Alexander, 2008, pp. 171–180, for more details

about this method).

2.8 Exponentially Weigthed Moving Average (EWMA)

The Exponentially Weighted Moving Average (EWMA), widely known as the RiskMetrics

estimator, employs exponentially decaying weights for the covariance matrix. The
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covariance matrix in the EWMA model is recursively computed as follows:

Ht = (1− λ) et e
′
t + λHt−1, (12)

where the parameter λ determines the rate of decay. Following the standard approach, we

adopt λ = 0.94.

The main feature of this method is that it is very simple to implement for large

dimensions as it requires no optimisation and only the parameter λ needs to be specified.

Yet, the single decay parameter λ does not have a solid theoretical basis and governs the

dynamics of all conditional covariances.

2.9 Random Walk Estimator (RWE)

A naive covariance forecasting approach is based on the lagged realised covariance. This

model assumes that covariance is a Markov process so that the covariance of the previous

period is highly informative about the future covariances. This forecasting method is as

simple as possible as it requires no optimisation.

2.10 Vector Heterogeneous Autoregressive Model (VHAR)

Corsi (2009) proposes the Heterogeneous Autoregressive Model (HAR) as a simple way

to approximate the long-memory behaviour of volatility documented, for example, by

Andersen et al. (2001, 2003). Chiriac and Voev (2011) implement the Vector HAR

model (VHAR) as a multivariate extension in which, realised covariance is expressed as

a linear combination of past daily, weekly and monthly realised covariances. The upper

triangular elements of a factor, Yt, obtained from the Cholesky decomposition of the
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realised covariance matrix are modelled as follows:

Yt+1 = c+ βdYt + βwYt−4:t + βmYt−21:t + ut+1, (13)

If Ht is the matrix of realised covariances, its Cholesky decomposition gives a matrix

Ht = XtX
′
t and then Yt = vech(Xt). The past k-day values of Y (where k=5 or 22) are

computed as: Yt−k:t =
1
k

k−1∑
j=0

Yt−j . c is a constant term and βd, βw, βm are the parameters

of the daily, weekly and monthly components of the model, respectively.

We obtain covariance forecasts, Ht, by a reverse transformation of the Y ′
t s. As pointed

out in Chiriac and Voev (2011), modelling the Cholesky factors rather than covariances

directly is done in order to avoid unnecessary restrictions that ensure positive definite

covariance matrices. We iteratively produce k–step ahead covariance forecasts (Ht:t+k)

based on 1-day ahead forecasts obtained from Equation (13).

Similar to the univariate HAR model of Corsi (2009), the VHAR model approximates

long memory in a parsimonious way. The model involves a fixed number of parameters

regardless of the number of assets. Furthermore, it is extremely easy to estimate

through panel OLS in contrast to formal long memory models that require more complex

optimisation and lack clear economic interpretation.

The above specification of the VHAR model assumes that all covariances obey

the same dynamics. This assumption may appear restrictive as it does not allow for

richer covariance dynamics. Nevertheless, a fully generalized model allowing each unique

variance-covariance term to follow its own dynamics substantially increases the number

of estimated parameters from 4 to 4 × [N × (N + 1)/2]. As a result, such a model may

lead to worse forecasting performance, especially when the number of assets is large. To
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further illustrate this argument, we also estimate a generalized version of the VHAR model

(GVHAR). Specifically, we model the dynamics of the time series of each unique element

of the Cholesky factorization of the conditional covariance matrix through a univariate

HAR model and then estimate the system using seemingly unrelated regressions (see Čech

and Baruńık, 2017). Comparing the in-sample fitting ability of the VHAR model with

that of the GVHAR model, we find that there is very little improvement from using the

more complex alternative. Furthermore, we compare the out-of-sample performance of the

two models and find that the average loss of the GVHAR model is in many cases slightly

higher than that of the VHAR model (for results see Table A8 of the appendix). Therefore,

we decide to only include in our analysis the more parsimonious and easier-to-compute

VHAR model.

2.11 Hybrid Implied Covariance (HYBICOV)

We also propose a hybrid implied covariance specification (HYBICOV) which combines

realised correlations (from intraday returns) with model-free option implied volatilities.

Our setting does not allow us to compute fully option-implied covariances using existing

approaches. For example, the approach of Driessen et al. (2009) relies on implied

volatilities of a market index or portfolio of assets and its constituents, which is not

applicable to our case. Furthermore, the methodology of Chang et al. (2012) for estimating

option-implied betas based on risk-neutral volatility, skewness or kurtosis assumes a linear

asset pricing model consisting of an asset and the market which does not apply to our

context either.

We start by deriving an estimate of implied volatility, which is robust to volatility

risk. Simple estimates of implied volatility are biased forecasts of future realised volatility
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unless the market price of volatility risk is zero (Chernov, 2007). As this assumption is

rejected by several studies (e.g., Carr and Wu, 2009; Driessen et al., 2009) we implement

the non-parametric correction used by DeMiguel et al. (2013) to adjust the model-free

implied volatility for the volatility risk premium.

Specifically, the variance risk premium of each asset is computed as follows:

V RPt:t+k =
IV 2

t:t+k

E(RV 2
t:t+k)

, (14)

where V RPt:t+k is the variance risk premium between t and t+k. IVt:t+k is the model-free

implied volatility and E(RV 2
t,t+k) is the expected realised variance for the period between

t and t+k. We obtain realised variance forecasts using the HAR model of Corsi (2009).

Then, following DeMiguel et al. (2013) we average the variance risk premium over a period

of 252 - k days:

V RP t =
1

252− k

t−k∑

j=t−251

V RPj:j+k (15)

Then, the adjusted model-free implied volatility of each asset is computed as follows:

ĨV t =

√
IV 2

t:t+k

V RP t

(16)

Finally, k -day ahead covariance forecasts are obtained as follows:

Ht:t+k = CIVt · Corrt−k:t · CIVt, (17)

where Ht:t+h is the covariance matrix forecast for the period from day t+1 to t+k, CIVt

is an N ×N diagonal matrix containing the annualised k -day variance premium adjusted
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model-free implied volatilities (i.e., the ĨVt
′
s defined above) in its main diagonal, and

Corrt−k:t is the realised correlation from day t-k to day t. There is ample evidence that

forward-looking information from option prices help improve volatility forecasting (e.g.,

Kourtis et al., 2016) and accuracy of equity beta estimation (e.g., Buss and Vilkov, 2012).

Therefore, our analysis offers an empirical test for the hypothesis that forward-looking

information can help improve covariance forecasts.

3 Empirical Analysis

We obtain intraday data on five major European equity indices, namely: AEX (Nether-

lands), CAC 40 (France), DAX (Germany), FTSE 100 (UK), and SMI (Switzerland) from

TickData Market (www.tickdatamarket.com) for the period from January 1, 2000 to April

19, 2016. These represent some of the largest economies and markets in Europe for which

implied volatility indices and a long enough history of quality intraday data are available.

The location and operating times of these markets allow us to avoid issues related to

asynchronous trading times that would complicate the calculation of covariances using

intraday data. These markets have recently been affected by the global financial crisis

and the subsequent European sovereign debt crisis, which makes the analysis of their

covariance dynamics particularly interesting.

Since the UK is located in a different time zone compared to the other four countries

(one hour difference), we synchronize all markets using Coordinated Universal Time

(UTC). To reduce the impact of known microstructure effects (e.g., bid-ask bounce),

we create a grid of equally spaced 5-minute prices as is the standard approach in the

literature (e.g., see Andersen et al., 2001). In order to avoid potential distortions resulting
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from opening and closing jumps, we discard the first and last 15 minutes from each trading

day. We then calculate 5-minute returns for each market and match them across markets

to create a balanced panel of intraday returns. We also drop from our dataset days with

fewer than 70% of the maximum number of 5-minute intraday returns. Finally, we obtain

daily dividend-adjusted closing prices for the above five equity indices and end-of-day

values of model-free implied volatility indices from Datastream. In our sample we include

3,904 observation days.

Table 1 reports average realised correlations, as well as correlations computed from

daily, weekly and monthly returns, respectively. We present correlations for the entire

sample as well as for three sub-periods, namely: January 1, 2000–July 31, 2008 (pre-

crisis), August 1, 2008–December 31, 2009 (crisis), and January 1, 2010–April 19, 2016

(post-crisis). Not surprisingly, all correlation coefficients in Panels B–D are quite high,

indicating the close integration between major European equity markets. The average

daily pairwise correlations computed from high-frequency data (Panel A) are generally

lower than the corresponding correlations from daily returns. In line with the published

literature, we observe that correlations are higher during the 2008–2009 global financial

crisis period. The finding of increased comovement between equity markets during bad

times is well-documented (see Ang and Bekaert, 2002; Aloui et al., 2011; Garcia and

Tsafack, 2011). Some suggested explanations for this phenomenon include: commonality

in liquidity during periods of market declines (Hameed et al., 2010), trade linkages between

countries (Forbes, 2002), and co-movement in risk premiums across markets during periods

of low liquidity (Vayanos, 2004).

Table 2 reports summary statistics for the time series of average daily realised

correlations across the five markets. Specifically, every day we calculate the realised
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correlations between a market and all other markets and then take an average across these

pairwise correlations. This yields a time series of daily average realised cross-correlations.

The table shows the mean, median, range, standard deviation, skewness and kurtosis

for the series of average daily cross-correlations. All average daily cross-correlations

are positive and range between 0.58 and 0.71. Furthermore, their standard deviations

indicate a substantial amount of variation, which is in line with the statistics in Panel A

of Table 1. The distribution of average correlations is negatively skewed and leptokurtic

for almost all markets. This non-normal feature of the empirical distribution of average

cross-correlations is likely the outcome of sudden downward shifts during turmoil periods,

such as the 2008–2009 global financial crisis.

Table 3 provides a summary description of the forecasting models that will be

compared. The table also reports the number of parameters per model for 5, 10 and

100 assets, respectively, as an indication of estimation complexity. In general, more

heavily parameterised models require more computational time and their estimation may

even be infeasible in systems of large dimension. It can be seen from the table that the

GARCH models are the most heavily parameterised ones, whereas HYBICOV and RWE

are model-free. Furthermore, VHAR and EWMA involve a fixed number of parameters

regardless of the dimension of the problem (four and one parameters, respectively).

3.1 Predictive Accuracy

3.1.1 Forecast Evaluation Approach

We evaluate the forecasting ability of the models based on three multivariate loss functions.

We use the Euclidean distance (e.g., Laurent et al., 2012) along with two additional loss
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functions also used in Bollerslev et al. (2018). These loss functions are computed as follows:

LE = vech(Σt −Ht)
′vech(Σt −Ht) (18)

LF = Tr[(Σt −Ht)
′(Σt −Ht)] (19)

LQ = log|Ht|+ Tr[H−1
t Σt] (20)

where vech is the operator that stacks the lower portion of the covariance matrix (including

the main diagonal) to a vector and Tr denotes the trace of a square matrix, defined as the

sum of its diagonal elements. Σt denotes the realised covariance matrix at time t, defined

in Equation (3), and Ht is the time t matrix of conditional covariance forecasts from a

specific model. LE is the Euclidean loss function computed by equally-weighting all the

unique elements of the forecast error matrix. LF is the Frobenius distance, which extends

the mean squared error loss function to the multivariate space. LQ is the multivariate

quasi-likelihood loss function, which is scale invariant. Using a wide range of simulations,

Laurent et al. (2013) show that rankings produced by the above three functions based on

covariance proxies are consistent with those based on the true latent covariance matrix.

The authors also provide theoretical conditions that ensure consistency.

Equipped with the values of the above three loss functions, we compare the forecasting

accuracy of the models, using both parametric and non-parametric statistical tests. In

particular, we employ the parametric unconditional predictive ability test (GW hereafter)

(Giacomini and White (2006); for applications see Shephard and Sheppard (2010), Patton

and Sheppard (2015)) and the non-parametric Model Confidence Set (MCS) (Hansen et al.

(2011); for applications see Laurent et al. (2012); Liu et al. (2015); Duong and Swanson

(2015)).
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The GW test allows for comparisons of nested models and accounts for parameter

uncertainty. The null hypothesis of the test is specified as follows:

H0 : ∆Lij = 0 (21)

where ∆Lij = 1
P

∑P
t=1∆Lij,t is the average loss difference between models i and j over

the out-of-sample period. The Giacomini and White (2006) unconditional test follows a

chi-squared distribution with 1 degree of freedom. To account for serial dependence in

multi step-ahead forecasts we use a Newey-West estimator for the asymptotic variance

of the out-of-sample loss differences with k lags (where k indicates the forecast horizon).

Giacomini and White (2006) also proposed a more general conditional predictive ability

test. However, as we test the average predictive accuracy across models, the unconditional

test is deemed a more appropriate choice.

The MCS identifies a set of models that are superior to all other models at a given

level of confidence. Specifically, given an initial set of models, M0, the test sequentially

discards models with inferior predictive ability until a subset of superior models, M, is

reached. The elimination is based on sequentially testing the following hypothesis:

H0 : E(∆Lij,t) = 0, for all i, j ∈ M. (22)

The above null hypothesis is tested at each step, using the following two statistics:

TSQ =
∑

i<j

(∆Lij)
2

v̂ar(∆Lij)
(23)

TR = max
i,j∈M

|∆Lij |√
v̂ar(∆Lij)

, (24)
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where TSQ is the semi-quadratic statistic, and TR is the range statistic, respectively.1

Let ∆Li = 1
m

∑m
j=1∆Lij be the average sample loss of model i relative to the average

loss across all other m models that are currently in the set, M. If the null hypothesis

of Equation (22) is rejected, then the model with the highest value of the statistic ti =

∆Li√
v̂ar(∆Li)

is eliminated and the procedure is repeated until the MCS is constructed at the

given confidence level (for more technical details refer to Hansen et al., 2011). v̂ar(∆Lij)

and v̂ar(∆Li) are estimates of the asymptotic variance of ∆Lij and ∆Li, respectively,

computed using a block bootstrap procedure with 10,000 replications and a block length

of 2 observations.2

3.1.2 In-Sample Analysis

We begin by comparing the information content of the twelve models under consideration.

In particular, we obtain in-sample estimates of the conditional covariance matrix from

each model. We then compute the average values of the three multivariate loss functions,

described in section 3.1.1, using the above covariance estimates and realised covariance as

a proxy for the latent covariance. Multivariate GARCH models are estimated via quasi

maximum likelihood (QML), the VHAR model is estimated with panel OLS, whereas

EWMA, HYBICOV and RWE require no estimation.

Table 4 reports the average in-sample predictive losses of the models at each forecast

horizon (i.e., 1, 5, and 22 trading days, respectively). To formally test for statistically

significant loss differences we employ the GW test. The results show that the VHAR

model achieves the best in-sample fit across all loss functions and forecast horizons. For

1To save space we only report results for the TSQ statistic of Equation (23) and present the
results for the TR statistic in Table A10 of the appendix.

2Experimentation with different block lengths (e.g., 4 and 12) gave very similar results.
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instance, looking at the value of the LE loss function for the monthly forecast horizon,

we observe that the average loss of VHAR is about 89% lower than the second best

model (HYBICOV) and around 96% lower than the best performing GARCH model (A-

D-BEKK). The difference in the in-sample forecast errors of VHAR relative to all other

models is statistically significant at the 5% level across all loss functions and forecast

horizons.

RWE and HYBICOV are the next best performing models. These two models in most

cases demonstrate a superior in-sample fit compared to GARCH models. For instance, the

average LF (LE) forecast loss of the HYBICOV model for the monthly forecast horizon,

is approximately 69.5% (67.8%) lower than that of the best performing GARCH model.

Finally, we cannot clearly distinguish the best among multivariate GARCH models as

ranking differs across loss functions. Focusing, for example, on the weekly forecast horizon,

the LF loss function suggests that A-D-BEKK has the best in-sample predictive ability,

whereas according to the LQ loss function the DCC and A-DCC models are superior

among the GARCH models considered. In sum, the results presented above show that less

heavily parameterised models that rely on information from high-frequency and options

data achieve a substantially better in-sample fit compared to models that employ daily

data, such as the GARCH models we consider.

3.1.3 Out-of-Sample Analysis

We now focus on the out-of-sample predictive performance of the competing models. We

produce rolling out-of-sample forecasts for each model and forecast horizon. We estimate

the parameters of each model using the most recent 1,000 observations (approximately

4 years of daily data) and obtain k–day ahead forecasts, for k = 1, 5 and 22. We then
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move one day forward and repeat this procedure until we reach the end of our sample. In

this manner, we obtain M − k + 1 out-of-sample forecasts where M is the length of the

out-of-sample period. Following Bollerslev et al. (2018), we apply an “insanity filter” to

replace negative-definite covariance forecasts with the average realised covariance over the

respective in-sample estimation period. Multi-step ahead forecasts (i.e., 5–day and 22–day)

for multivariate GARCH, EWMA and the VHAR are produced recursively from day-ahead

forecasts. For HYBICOV and RWE we obtain multi-step ahead forecasts directly, using

the estimators described in section 2.

Table 5 presents the average out-of-sample forecast losses for the 12 models under

consideration.3 The results show that the VHAR model yields the most accurate out-of-

sample forecasts across all horizons and loss functions. Specifically, at the daily (monthly)

forecast horizon and based on the LF loss function the VHAR model has about 16.7%

(24.6%) lower average forecast error compared to the second best model, which is the

RWE. The average LF loss for the VHAR model is approximately 43.1% (51.5%) lower

than that of the best performing GARCH model at the weekly (monthly) forecast horizon.

Similar conclusions are drawn from the other two loss functions.

Furthermore, the GW test indicates that the VHAR model produces significantly

more accurate out-of-sample forecasts relative to all other models at the 5% significance

level. The only exception is the RWE in some cases. The two non-parametric models based

on intraday and options data, namely the RWE and HYBICOV, are consistently ranked

either second or third in terms of their average forecast loss. Multivariate GARCH models

generally underperform the more parsimonious VHAR, HYBICOV and RWE models, with

3We do not report the tables containing the pairwise comparisons of statistical significance
between competing models in order to save space. These results are presented in Tables A11–A13
of the appendix.

22



very few exceptions mainly related to the LQ loss function. Finally, based on the LE and

LF loss functions, A-D-BEKK has the best performance among GARCH models.

Table 6 presents results for the Model Confidence Set (MCS hereafter).4 The table

reports the ranking of the models based on the semi-quadratic statistic of Equation (23).

Models that are included in the MCS are marked with an asterisk. A few observations are

in order. First, looking across forecast horizons and loss functions, we see that the MCS

only includes the VHAR model and in very few cases the RWE. Second, even though the

HYBICOV is not part of the MCS, it is consistently ranked in the top four models. Third,

the ranking of multivariate GARCH models appears to vary across loss functions with the

A-D-BEKK and A-CCC models exhibiting the lowest average forecast errors in slightly

more cases. Tables A11–A13 of the appendix, which present pairwise GW tests, show that

in many cases the latter two models yield significantly lower forecast errors relative to the

other multivariate GARCH models. In sum, the above analysis clearly suggests that more

parsimonious models that rely on intraday and option-implied information perform much

better than parametric alternatives which employ daily data.

3.2 Consistency with Asset Pricing Theory

In line with Bali and Engle (2010) we now evaluate the ability of the covariance models

considered to produce theoretically consistent results under the Intertemporal Capital

Asset Pricing (ICAPM) model of Merton (1973). The ICAPM states that the expected

return of an asset i varies linearly with its conditional covariance with the market and

with economic state variables that represent shifts to the investment opportunity set. The

4Table A14 of the appendix presents results for the 25% MCS also employed in Laurent et al.
(2012). Our results are not considerably affected by this alternative consideration.
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equilibrium risk–return relation under the ICAPM can be expressed as follows:

Et (Rj,t+1)−Rf,t = βCovt (Rj,t+1, Rm,t+1) + γCovt (Rj,t+1, Xt+1) , (25)

where Et (Rj,t+1) is the time t expected return of asset j (for j = 1, 2, ..., N + 1, i.e. N

individual assets and the market portfolio) conditional on the information set available at

time t, Rf,t is the risk-free rate at time t, Covt (Rj,t+1, Rm,t+1) and Covt (Rj,t+1, Xt+1) are

the expected conditional covariances of asset j with the market m and with the economic

state variables based on the information set available at time t. Therefore, there are two

sources of risk compensation (premia), one associated with the conditional covariance of

the asset with the market and another related to the conditional covariance of the asset

with economic state variables (shifts to the investment opportunity set).

Empirical research on the risk-return trade-off within the ICAPM has produced

conflicting results. For example, Campbell (1987), Whitelaw (1994), Harvey (2001) and

Brandt and Kang (2004) find a negative risk-return relationship. In contrast, using

daily data and GARCH-in-mean models Baillie and DeGennaro (1990), Campbell and

Hentschel (1992), and Glosten et al. (1993) identify a positive but insignificant risk–return

relationship in a time series setting. Alternatively, Harrison and Zhang (1999) find a

positive risk-return trade-off only at longer horizons of one and two years but not at shorter

horizons. Recent studies employing new methodologies provide evidence of a significant

positive risk-return relationship (e.g., Ghysels et al., 2005; Bali and Peng, 2006; Guo and

Whitelaw, 2006; Ludvigson and Ng, 2007; Lundblad, 2007; Bali, 2008; Bali and Engle,

2010).
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We shall use the alternative covariance models within the ICAPM framework to

investigate if a significantly positive risk-return trade-off exists in the five European

markets under study. In addition to adding empirical evidence to this literature, this

allows us to assess the theoretical consistency of alterative covariance estimators.

In the absence of readily available intraday data for computing economic state

variables (e.g., default spread and term spread), we rely on a reduced form model which

assumes zero intertemporal hedging demand.5 We first obtain expected covariances

between each European equity index and the European market portfolio from the lagged

realised covariance (RWE) and the VHAR models. We employ the STOXX 50 index

as a proxy for the European equity market portfolio. For the risk-free rate we employ

the Euribor (the LIBOR rate produced similar results). Then, following Bali and Engle

(2010) we estimate the following system of N +1 equations using the seemingly unrelated

regression (SUR) methodology.

XRi,t+1 = αi + βσi,m,t+1 + ei,t+1

XRm,t+1 = αm + βσm,m,t+1 + em,t+1, (26)

where XRi,t+1 = Ri,t+1−Rf,t and XRm,t+1 = Rm,t+1−Rf,t are the excess returns of asset

i (i = 1, 2, ..., N) and market index m at time t+1. σi,m,t+1 is the time t prediction of

next period’s conditional covariance between asset i and the market portfolio and σm,m,t

is the time t predicted variance of the market portfolio. We approximate σi,m,t and σm,m,t

using one-day ahead predicted covariances from the 12 covariance forecasting models,

respectively. The common slope coefficient (β) represents the average relative risk aversion

5We hope to address this limitation in the future, if we can access intraday data for relevant
economic variables.
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in the ICAPM. Similar to Bali and Engle (2010) we assume a common slope but allow

the intercept to vary across markets. For robustness purposes, we re-estimated the above

system using weighted least squares (see Table A1 of the appendix for these results) similar

to Bali and Engle (2010) and also as a panel with robust standard errors. The results

obtained were very similar.

The results from estimating the above system are reported in Table 7. Each panel

corresponds to a different intraday sampling frequency used for the estimation of the

VHAR, HYBICOV and RWE models (i.e., 5, 10 and 30 minutes, respectively). All

alphas are insignificant. In line with the theory, the common slope of the two best

performing models in our preceding statistical analysis, namely the VHAR and the RWE,

is positive and statistically significant with t-statistics ranging between 2.54 and 5.63. For

example, the VHAR model yields a common slope coefficient of 2.24 (2.83) at the 5-minute

(30-minute) frequency which is economically meaningful. In contrast, the multivariate

GARCH models provide mixed evidence regarding the sign and statistical significance of

the risk-return coefficient. In particular, among the multivariate GARCH models only the

A–BEKK and A–DCC yield a positive and statistically significant common slope estimate

at the 5% level, whereas the slope of the DCC model is significant at the 10% level.

The O-GARCH model and its asymmetric extension suggest a negative and insignificant

risk-return relation. Finally, the average relative risk aversion coefficient of the CCC and

A-CCC models is too low to be economically meaningful and is statistically insignificant.

Overall, the analysis provides additional support for the two high-frequency models,

namely the VHAR and the RWE, that are superior in terms of statistical accuracy.

Specifically, these two models provide the most theoretically consistent results in that they

yield a positive and strongly significant risk-return relation with economically plausible
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risk aversion coefficients.6 These findings also suggest that empirical asset pricing studies

in this area need to consider that conclusions may depend on the choice of the covariance

model.

3.3 Portfolio Performance

We further assess the economic value of covariance forecasts in an asset allocation context.

We assume an investor who allocates her wealth across the five European equity markets

under study based on the covariance matrix forecasts obtained from each model. We

employ daily, weekly and monthly rebalancing frequencies, respectively. In each period

the investor solves the following minimisation problem:

minw′
tHtwt s.t. w′

tι = 1, (27)

where wt is an N × 1 vector of global minimum variance (GMV) portfolio weights, Ht is

the N ×N matrix of conditional covariance forecasts from a particular model, and ι is an

N × 1 vector of ones. The optimal weights of the GMV portfolio are given by:

w̃t =
H−1

t ι

ι′H−1
t ι

(28)

From the last equation it becomes obvious that the optimal portfolio weights are only

a function of conditional variances and covariances. In our simple asset allocation

framework, we do not consider expected stock returns for two reasons. First, it is well

known that estimation errors in sample means are large and the corresponding portfolios

6Even though the common slope estimate of the HYBICOV model is insignificant in the context
of the six European equity indices, it appears strongly significant when we consider US stocks as
test assets in our subsequent analysis (see section 4.2).
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perform worse compared to the GMV portfolio (e.g., see DeMiguel et al., 2009; Kourtis

et al., 2012). Second, since our focus in the current study is to forecast the covariance

matrix, ignoring expected returns makes our results insensitive to errors in estimated

expected returns.

Using the covariance forecasts from each model, we end up with 12 different portfolio

strategies. We evaluate the out-of-sample performance of each strategy by following a

rolling estimation approach, which is standard in the portfolio choice literature (DeMiguel

et al., 2009). Specifically, we first estimate the optimal portfolio weights for each model

m, using Equation (28), and then compute the ex-post average portfolio return for model

m as r
(m)
t+1 =

(
w̃

(m)
t

)′

rt+1, where rt is an N × 1 vector of asset returns. Following

this approach, we obtain 12 time series of out-of-sample portfolio returns, one for each

covariance forecasting model.

We then use the following two metrics to evaluate the portfolio performance of each

forecasting model m:

• Out-of-sample portfolio variance:

σ̂2
m =

1

P

P∑

t=1

(
r
(m)
t − r̄

(m)
t

)
(29)

• Average Portfolio Turnover:

τ̂m =
1

P − 1

P−1∑

t=1

‖w̃(m)
t+1 − w̃

(m)
t+ ‖1, (30)

where P is the number of out-of-sample returns, r̄
(m)
t is the average return of portfolio

m over the out-of-sample period, w̃
(m)
t+ are the portfolio weights before rebalancing at the
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beginning of the period t+1 and ‖·‖1 is the 1-norm. Portfolio turnover is a measure of the

stability of a strategy. Strategies based on inaccurate estimates of the covariance matrix

tend to lead to high turnover and trading costs (see Kourtis, 2014, for more details).

We compare the variance of the strategies with the variance of the equally-weighted

portfolio (1/N). The 1/N portfolio is a typical benchmark in the portfolio choice literature

because of its superiority over many sample-based portfolios (DeMiguel et al., 2009). We

test the following hypothesis: H0 : σ̂2
m − σ̂2

1/N = 0 (where σ̂1/N is the estimated out-of-

sample variance of the 1/N benchmark). P-values are estimated using the robust non–

parametric bootstrap method of Ledoit and Wolf (2011), assuming an average block size

of 10 and 10,000 trials.

The results in Table 8 show that employing high-frequency and option price data

can lead to substantial gains in portfolio performance in comparison to using daily data.

Predictions from the VHAR and RWE models lead to significantly lower out-of-sample

portfolio variance compared to all other models for all considered forecast horizons.

For example, for the monthly rebalancing frequency, we observe that the annualised

out-of-sample variance of the VHAR, RWE and HYBICOV-based portfolios are equal

to 0.0180, 0.0184 and 0.0185, respectively, compared to 0.0238 for the 1/N benchmark

and these differences are significant at the 5% level. Furthermore, when rebalancing is

performed weekly, the portfolios based on the VHAR, RWE and HYBICOV models have

an annualised variance equal to 0.0308, 0.0304, and 0.0311 compared to 0.0405 for the 1/N

benchmark and the differences are significant at the 1% level. We also observe that in the

case of daily rebalancing, all models offer significant diversification benefits compared to

the 1/N benchmark while only the portfolios constructed using intraday and options data

are significantly less risky than the 1/N portfolio at the weekly and monthly horizons.
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With regards to portfolio stability, for the weekly and monthly rebalancing

frequencies, the portfolios constructed from models that employ high-frequency and

options data yield the lowest average turnover among all the twelve models. This means

that these portfolios are more attractive in the presence of transaction costs. One exception

is the O-GARCH-based portfolio which has lower turnover relative to the portfolios based

on the RWE and HYBICOV models when rebalancing is performed weekly. When the

horizon is daily the O-GARCH-based portfolio is the least sensitive to transaction costs

over time.

4 Robustness Tests

4.1 Stability across Market Regimes

We first investigate whether model performance varies across different market regimes.

Our central question in this section is whether the predictive accuracy and the ranking

of the various forecasting models under consideration change during periods of economic

unrest, such as the 2008–2009 global financial crisis. To this end, we perform our out-of-

sample analysis over three sub-periods of the full sample, namely: a relatively calm period

from January 1, 2000 to July 31, 2008, the period of the global financial crisis between

August 1, 2008 and December 31, 2009 and, finally, the January 1, 2010–April 19, 2016

period which includes the eurozone debt crisis.

Table 9 presents the MCS results for each forecast horizon and sub-period of the full

sample. VHAR remains the best performing model. Moreover, in line with the results

from the full sample, we observe that the VHAR, followed the HYBICOV and RWE are

the models with the lowest average forecast errors across the three sub-samples. These
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three models are superior to all other models during the global financial crisis. None of

the GARCH models is included in the MCS, and their ranking appears to be sensitive to

the specific sub-period considered.

It is worth pointing out that asymmetric GARCH specifications (e.g., A-D-BEKK,

A-CCC, A-O-GARCH) achieve better predictive performance relative to their symmetric

counterparts during the 2008–2009 global financial crisis period. This finding highlights the

importance of accounting for leverage effects during periods of market stress, when negative

shocks are not only more frequent but also more sizeable. Moreover, this finding is in line

with Martens and Poon (2001) and Laurent et al. (2012), who find that during turmoil

periods, such as the 2001 .com bubble, GARCH models that incorporate asymmetries are

superior to their symmetric counterparts.

The results reported in Table A15 of the appendix indicate that the average losses of

most models are substantially higher during the 2008–2009 global financial crisis period.

This extends the documented findings of inferior performance of volatility forecasting

models during periods of market turmoil (Brownlees et al., 2012; Kourtis et al., 2016), to

the multivariate case.

Finally, to check if these results are sensitive to the definition of the global financial

crisis, we repeat the above analysis by defining the financial crisis to be between August

1, 2007 to December 31, 2009 as in Laurent et al. (2012). The results look qualitatively

similar (Table A18 of the appendix).

4.2 Evidence from Individual Stocks

To further assess the robustness of our findings and ascertain that they are not specific

to the equity markets under consideration, we repeat our out-of-sample analysis using ten
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highly liquid US stocks which match the ones used in Bollerslev et al. (2018). These stocks

are: American Express (AXP), Boeing (BA), Chevron (CVX), DuPont (DD), General

Electric (GE), IBM , JPMorgan Chase (JPM), Coca-Cola (KO), Microsoft (MSFT), and

Exxon Mobil (XOM). The data are obtained from PiTrading and cover the period from

January 2, 2003 to April 19, 2016. Options data for the calculation of the model-free

implied volatility (MFIV) of each stock are collected from HistoricalOptionData. MFIV

is computed using the methodology of Britten-Jones and Neuberger (2000). Details

about this methodology and its practical implementation are provided in Section A of

the appendix (see also Trolle and Schwartz, 2010; Prokopczuk et al., 2017).

Table 10 contains the average out-of-sample losses of the models and Table 11 reports

the corresponding MCS results. The parsimonious and less parameterised models that

rely on high-frequency and option-implied information, namely the RWE, VHAR and

HYBICOV, consistently produce the lowest average forecast errors. The Giacomini and

White (2006) test further suggests that, in most cases, the above three models yield equally

accurate forecasts. Moreover, Table 11 indicates that these models are almost always the

only ones included in the MCS. A potentially interesting finding is the improvement in

the predictive performance of the HYBICOV model compared to the analysis involving

the five European equity markets.

We also explore the risk-return relationship using the above 10 stocks and the S&P

500 index as a proxy for the market portfolio. We repeat the procedure illustrated in

section 3.2. The estimation results from the SUR system, presented in Table 12,7 reveal

positive and strongly significant risk-return coefficients for the three parsimonious models

that use intraday and option price data, namely the RWE, VHAR and HYBICOV with

7Table A9 of the appendix shows the corresponding results from a weighted least squares
estimation.
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t-statistics ranging between 4.52 and 6.94, depending on the intraday sampling frequency.

The size of the relative risk aversion coefficient from the above three models is found to

be between 2.07 and 5.69, which is consistent with previous research using different test

assets (Bali, 2008). Also, the significance of the positive risk-return trade-off seems to

strengthen as one moves to lower intraday sampling frequencies. This seems reasonable as

individual stocks are more likely to be affected by microstructure noise as opposed to stock

indices. Even though conditional covariances from multivariate GARCH models lead to

positive common slope estimates, these are statistically significant only for the BEKK,

A-CCC, A-DCC, and EWMA and insignificant for the rest of the models.

Finally, we compare the out-of-sample performance of the US stock global

minimum variance portfolios constructed using the covariance forecasting models under

consideration. The results presented in Table 13 are largely consistent with those for the

European equity markets. In particular, the VHAR model again produces the portfolios

with the minimum variance at the daily and weekly rebalancing frequencies. When

rebalancing is performed monthly the HYBICOV model has slightly lower out-of-sample

variance equal to 0.0152 compared to 0.0156 for the VHAR model. A slight difference

compared to the analysis for the European equity markets is that even though the turnover

of the VHAR-based portfolio is comparable to that of the other models, it is not the lowest

overall.

4.3 Alternative Sampling Frequencies

A potential concern in our analysis may be that the superior forecasting ability of the

high-frequency models could be driven to some extent by microstructure noise in intraday

data. To investigate this possibility, we re-perform our analysis using prices sampled at
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lower frequencies, specifically every 10 and 30 minutes. The results reported in Tables

A2–A5 of the appendix are largely consistent with those based on 5-minute intraday

returns. Specifically, VHAR is the best performing model across loss functions and forecast

horizons, followed by the HYBICOV and RWE models. Interestingly, the performance

of the HYBICOV model is improved compared to the 5-minute sampling frequency.

Furthermore, from Tables A3 and A5 we see that the MCS almost always includes the

VHAR model and in a few cases the two non-parametric alternatives, namely RWE and

HYBICOV. For instance, at the 10-minute sampling frequency, HYBICOV is consistently

included in the MCS. The above analysis clearly indicates that microstructure noise is not

a major driver of our findings.

Access to intraday data has become easier nowadays, but we appreciate that in some

cases intraday data may not be readily available. Motivated by this consideration, we

repeat our out-of-sample analysis by replacing the intraday data with daily data for

estimating the VHAR, RWE and HYBICOV models. Given the requirement of the VHAR

model for positive semi-definite covariances at the daily, weekly and monthly frequencies,

we propose a specification that relies on EWMA covariances in order to ensure positive

definite covariances in the model. We then run our main tests for a monthly forecast

horizon. We exclude a daily or weekly analysis here as daily and weekly realised covariance

matrices are in many cases negative semi-definite. Moreover, potential biases might occur

as a consequence of using small samples for their estimation.

Table A6 of the appendix contains the out-of-sample forecast losses of the models.

The results are generally consistent with those from our main analysis which is based on

intraday data. Specifically, RWE, VHAR and HYBICOV are overall the best performing

models. This finding is also supported by the results of the MCS tests contained in
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Table A7. Not surprisingly, the relative performance of multivariate GARCH models

improves when intraday data are not considered. However, their performance is still

inferior to that of the three parsimonious and less parameterised models. The above

findings have important and more general implications as they clearly suggest that the

superior forecasting performance of the nonparametric models, such as VHAR and RWE,

is valid in the absence of intraday data, extending the applicability of these models.

4.4 Alternative Forecasting Considerations

In line with Bollerslev et al. (2018), our main analysis is based on rolling samples of

1,000 observations. Using rolling forecasts from 1,250 observations does not significantly

alter our results (Tables A16–A17 of the appendix). Finally, repeating our out-of-sample

analysis employing non-overlapping weekly and monthly forecasts leads to very similar

conclusions (Table A19 of the appendix).

5 Conclusions

We compare the ability of several popular models to predict the covariance matrix of equity

returns. The models considered employ daily, intraday and, option-implied information

and range from fully parametric to model-free. A comprehensive evaluation is performed

across various forecast horizons, market regimes, intraday sampling frequencies and assets.

In addition to the statistical significance, we explore the economic value of covariance

forecasts based on their ability to generate theoretically consistent results and produce

superior portfolio allocations.

Our analysis suggests that a Vector Heterogeneous Autoregressive model is the best
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performing model, both in statistical and economic terms. Lagged realised covariances

and a novel hybrid estimator combining realised correlations with variance risk premium

adjusted option-implied volatilities are good alternatives. Multivariate GARCH models

are inferior both in statistical and economic terms in almost all cases. The ranking of

the best performing models remains roughly the same, although forecast errors increase

during periods of turmoil, such as global financial crisis. We further show that forecasts

from models employing high-frequency data yield a positive and significant risk-return

trade-off with economically meaningful relative risk aversion estimates. These models

also lead to portfolios with lower risk relative to all GARCH-based models and the 1/N

benchmark. Overall, our conclusions hold for a sample of ten liquid US stocks and are

robust to a battery of additional robustness checks.
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Table 1 Realised and Historical Correlations

This table shows average daily realised correlations from 5-minute returns (Panel A) as well as pairwise correlations using daily, weekly and monthly returns (Panels B–D). The
left panel contains correlations for the full sample (1/1/2000–19/4/2016), while the remaining panels show the same statistics for three sub-periods of the full sample, namely:
1/1/2000–31/7/2008 (pre-crisis sub-sample), 1/8/2008–31/12/2009 (crisis sub-sample), and 1/1/2010–19/4/2016 (post-crisis sub-sample).

Full Sample: Pre-Crisis Sub-Sample: Crisis Sub-Sample: Post-Crisis Sub-Sample:

1/1/2000-19/4/2016 1/1/2000-31/7/2008 1/8/2008-31/12/2009 1/1/2010-19/4/2016

AEX CAC DAX FTSE AEX CAC DAX FTSE AEX CAC DAX FTSE AEX CAC DAX FTSE

Panel A: 5-minute Returns

CAC 0.8457 0.7777 0.8986 0.8969
DAX 0.7960 0.8238 0.7651 0.7797 0.8330 0.8785 0.8234 0.8582
FTSE 0.6886 0.6892 0.6605 0.5091 0.5146 0.4708 0.8525 0.8678 0.8095 0.8091 0.8021 0.7974
SMI 0.6334 0.6466 0.6530 0.5559 0.5644 0.5739 0.5893 0.3835 0.7286 0.7543 0.7591 0.7279 0.6906 0.7035 0.7011 0.6927

Panel B: Daily Returns

CAC 0.9282 0.9152 0.9570 0.9421
DAX 0.8652 0.8984 0.8396 0.8741 0.8825 0.9173 0.9129 0.9335
FTSE 0.8804 0.8922 0.8226 0.8442 0.8694 0.7830 0.9357 0.9537 0.8867 0.8987 0.8878 0.8559
SMI 0.8339 0.8339 0.7908 0.8218 0.8353 0.8312 0.7797 0.8076 0.8755 0.9075 0.8363 0.9071 0.7970 0.7910 0.7800 0.7786

Panel C: Weekly Returns

CAC 0.9272 0.9052 0.9593 0.9428
DAX 0.8821 0.9138 0.8581 0.8907 0.9125 0.9596 0.9003 0.9163
FTSE 0.8781 0.8917 0.8449 0.8282 0.8421 0.7963 0.9397 0.9735 0.9510 0.8969 0.8863 0.8321
SMI 0.8075 0.8111 0.7899 0.8193 0.8132 0.7999 0.7854 0.7855 0.8419 0.8901 0.8752 0.9040 0.7609 0.7591 0.7223 0.7793

Panel D: Monthly Returns

AEX
CAC 0.9121 0.9276 0.9141 0.9087
DAX 0.8641 0.9075 0.8938 0.9174 0.8778 0.9680 0.8226 0.8623
FTSE 0.8522 0.8668 0.7969 0.8244 0.8512 0.7893 0.9459 0.9448 0.9337 0.8242 0.8493 0.7339
SMI 0.8007 0.8156 0.7915 0.7992 0.8340 0.8429 0.8388 0.8250 0.9073 0.9413 0.9381 0.9156 0.6705 0.7032 0.6259 0.6834

4
4



Table 2 Summary Statistics for Daily Realised Cross-Correlations

This table reports summary statistics for the average daily realised cross-correlations of the five
equity markets under consideration. Each day we calculate the realised correlation matrix of
stock returns and then take an average across all pairwise correlations. This yields a time series
of average cross-correlations. The table shows the mean, median, range, standard deviation,
skewness and kurtosis statistics. The sample period is from January 1, 2000 to April 19, 2016.

Mean Median Range St.Dev Skewness Kurtosis

AEX 0.6999 0.7567 1.1856 0.2052 -1.5987 6.0950
CAC 0.7106 0.7665 0.9654 0.2025 -1.5868 6.1215
DAX 0.6980 0.7494 0.9566 0.1944 -1.5476 6.1583
FTSE 0.5796 0.6936 0.9591 0.3071 -1.1508 3.0938
SMI 0.5881 0.6321 0.9394 0.2067 -0.9020 3.5392
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Table 3 Description of Models

This table provides a description of the covariance forecasting models. Column 1 shows model names, while column
2 contains the number of estimated parameters for N assets. Columns 3 to 5 present the number of parameters for
5, 10, and 100 assets, respectively.

Model N N = 5 N = 10 N = 100

Diagonal BEKK (D-BEKK) 2N +N(N + 1)/2 25 75 5,250
Asymmetric Diagonal BEKK (A-D-BEKK) 3N +N(N + 1)/2 30 85 5,230
Constant Conditional Correlation (CCC) N(N + 5)/2 25 75 5,250
Asymmetric Constant Conditional Correlation (A-CCC) N(N + 5)/2 +N 30 85 5,350
Dynamic Conditional Correlation (DCC) N(N + 5)/2 + 2 27 77 5,252
Asymmetric Dynamic Conditional Correlation (A-DCC) N(N + 5)/2 + 3N + 3 43 108 5,553
Exponentially Weighted Moving Average (EWMA) 1 1 1 1
Orthogonal GARCH (O-GARCH) 3N 15 30 300
Asymmetric Orthogonal GARCH (A-O-GARCH) 4N 20 40 400
Random Walk Estimator (RWE) 0 0 0 0
Vector Heterogeneous Autoregressive (VHAR) 4 4 4 4
Hybrid Implied Covariance (HYBICOV) 0 0 0 0
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Table 4 In-Sample Model Fit

This table reports the average in-sample losses of the twelve models under consideration for the 1–, 5–, and 22–
day forecast horizons, respectively. LE is the Euclidean distance, LF is the Frobenius distance, and LQ is the
multivariate quasi-likelihood loss function. The LE and LF values are multiplied by 104 to facilitate readability.
The model with the best in-sample fit is marked with an asterisk (*).

1–Day Horizon 5–Day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

D-BEKK 0.0473 0.0759 −47.3343 0.8746 1.4206 −39.3607 13.7819 22.5365 −31.9993
A-D-BEKK 0.0453 0.0730 −47.4693 0.8368 1.3656 −39.4851 13.4676 22.1214 −32.0889
CCC 0.0508 0.0798 −47.5971 0.9234 1.4579 −39.6003 13.9322 22.0597 −32.1441
A-CCC 0.0516 0.0803 −47.5883 0.9688 1.5124 −39.5948 15.3321 24.0135 −32.1111
DCC 0.0554 0.0889 −47.6315 1.0326 1.6766 −39.6493 15.7994 25.7996 −32.2162
A-DCC 0.0554 0.0889 −47.6315 1.0326 1.6766 −39.6493 15.7994 25.7996 −32.2162
EWMA 0.0554 0.0895 −46.8565 1.0737 1.7513 −38.9640 17.3593 28.4840 −31.7412
O-GARCH 0.0543 0.0876 −47.4545 1.0105 1.6458 −39.4561 15.4867 25.3375 −32.0403
A-O-GARCH 0.0613 0.0995 −47.4917 1.2053 1.9752 −39.4906 19.3896 31.8236 −32.0609
RWE 0.0236 0.0366 −47.9031 0.2939 0.4574 −39.9811 5.2074 8.1023 −32.1768
VHAR 0.0084∗ 0.0130∗ −48.8868∗ 0.0695∗ 0.1077∗ −40.5407∗ 0.4824∗ 0.7422∗ −32.9133∗

HYBICOV 0.0257 0.0399 −47.2979 0.3276 0.5076 −39.4018 4.3368 6.7232 −31.9224
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Table 5 Out-of-Sample Forecast Losses

This table reports the average out-of-sample forecast losses for the 1–, 5–, and 22–day horizons, respectively.
We employ a rolling window of 1,000 observations to produce forecasts from parametric models. LE denotes the
Euclidean distance, LF is the Frobenius distance, and LQ is the multivariate quasi-likelihood loss function. The
model with the lowest average out-of-sample loss is marked with an asterisk (*). A dagger (†) indicates models that
yield as accurate forecasts as the best model at the 5% significance level based on the Giacomini-White test.

1–Day Horizon 5–Day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

D-BEKK 0.0279 0.0447 −19.5926 0.0221 0.0357 −19.4935 0.0215 0.0347 −19.1854

A-D-BEKK 0.0206 0.0329 −19.6601 0.0144 0.0232 −19.5400 0.0123 0.0196 −19.2106

CCC 0.0346 0.0550 −19.9575 0.0295 0.0470 −19.8107 0.0302 0.0481 −19.3823

A-CCC 0.0327 0.0514 −19.9266 0.0281 0.0444 −19.7770 0.0263 0.0414 −19.3651

DCC 0.0362 0.0581 −19.9827 0.0310 0.0501 −19.8392 0.0314 0.0505 −19.3962

A-DCC 0.0362 0.0581 −19.9815 0.0310 0.0501 −19.8390 0.0314 0.0506 −19.3973

EWMA 0.0357 0.0576 −19.2043 0.0309 0.0503 −19.0575 0.0342 0.0556 −18.5729

O-GARCH 0.0365 0.0592 −19.6562 0.0314 0.0515 −19.5511 0.0324 0.0530 −19.2155

A-O-GARCH 0.0516 0.0848 −19.6626 0.0454 0.0750 −19.5608 0.0386 0.0635 −19.2194

RWE 0.0152† 0.0236† −20.2782 0.0076† 0.0118† −20.3814† 0.0073 0.0114 −19.9184†

VHAR 0.0114∗ 0.0178∗ −20.6043∗ 0.0064∗ 0.0100∗ −20.4024∗ 0.0061∗ 0.0095∗ −19.9277∗

HYBICOV 0.0165 0.0256 −19.6659 0.0116 0.0182 −19.6377 0.0144 0.0225 −19.1767
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Table 6 Model Confidence Set Results

This table shows the results of the 5% Model Confidence Set (MCS). We employ three statistical loss functions and 1–, 5–, and 22–day forecast horizons, respectively. LE

denotes the Euclidean distance, LF is the Frobenius distance, and LQ is the multivariate quasi-likelihood loss function. The column labelled rank reports the relative ranking of
a model in the MCS based on a specific loss function while the p-val column shows the associated p-value of the test. The semi-quadratic statistic of Equation (23) is used to
test the null hypothesis of the MCS. An asterisk (*) indicates models that are part of the 5% MCS.

1–Day Horizon 5–Day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val

D-BEKK 6 0.00 6 0.00 7 0.00 6 0.00 6 0.00 9 0.00 6 0.00 6 0.00 9 0.00

A-D-BEKK 4 0.00 4 0.00 8 0.00 4 0.00 4 0.00 7 0.00 3 0.00 3 0.00 3 0.00

CCC 8 0.00 8 0.00 4 0.00 8 0.00 8 0.00 6 0.00 11 0.00 11 0.00 5 0.00

A-CCC 5 0.00 5 0.00 6 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 6 0.00

DCC 11 0.00 10 0.00 5 0.00 11 0.00 9 0.00 4 0.00 10 0.00 10 0.00 8 0.00

A-DCC 12 0.00 11 0.00 3 0.00 12 0.00 11 0.00 3 0.00 9 0.00 9 0.00 7 0.00

EWMA 9 0.00 9 0.00 12 0.00 9 0.00 10 0.00 12 0.00 12 0.00 12 0.00 12 0.00

O-GARCH 10 0.00 12 0.00 10 0.00 10 0.00 12 0.00 10 0.00 8 0.00 8 0.00 11 0.00

A-O-GARCH 7 0.00 7 0.00 11 0.00 7 0.00 7 0.00 11 0.00 7 0.00 7 0.00 10 0.00

RWE 2 0.05 2∗ 0.06 2 0.00 2 0.03 2 0.04 2∗ 0.06 2 0.00 2 0.00 2∗ 0.55

VHAR 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00

HYBICOV 3 0.00 3 0.00 9 0.00 3 0.00 3 0.00 8 0.00 4 0.00 4 0.00 4 0.00
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Table 7 Risk–Return Trade-off

This table reports the intercepts and the common slope estimates along with their t-statistics (in parentheses) from the SUR system estimation of Equation (26). The dependent
variables correspond to the daily excess returns on the five European equity markets and the STOXX 50 index which serves as a proxy for the market portfolio. Each column
contains results from using a different model to obtain conditional covariance estimates between the returns of each equity index and the STOXX 50 index. Three alternative
intraday sampling frequencies are considered for the estimation of RWE, VHAR and HYBICOV (Panels A–C, respectively).

Panel A: 5-Minute Frequency

RWE VHAR HYBICOV D-BEKK A-D-BEKK CCC A-CCC DCC A-DCC O-GARCH A-O-GARCH EWMA
αAEX -0.0619 (-0.95) -0.0717 (-1.02) -0.0263 (-0.36) -0.0598 (-0.79) -0.0940 (-1.26) -0.0055 (-0.08) -0.0350 (-0.50) -0.0524 (-0.73) -0.0922 (-1.32) 0.0693 (0.91) 0.0388 (0.53) -0.0389 (-0.54)
αCAC -0.0786 (-1.13) -0.0892 (-1.18) -0.0385 (-0.49) -0.0733 (-0.90) -0.1126 (-1.40) -0.0145 (-0.18) -0.0471 (-0.63) -0.0667 (-0.86) -0.1101 (-1.47) 0.0654 (0.81) 0.0332 (0.43) -0.0515 (-0.67)
αDAX -0.0088 (-0.13) -0.0187 (-0.25) 0.0291 (0.38) -0.0067 (-0.08) -0.0442 (-0.56) 0.0518 (0.67) 0.0203 (0.27) 0.0009 (0.01) -0.0409 (-0.55) 0.1320 (1.63) 0.0994 (1.28) 0.0159 (0.21)
αSMI -0.0386 (-0.70) -0.0460 (-0.79) -0.0112 (-0.19) -0.0371 (-0.60) -0.0646 (-1.05) 0.0034 (0.06) -0.0179 (-0.31) -0.0328 (-0.55) -0.0627 (-1.07) 0.0583 (0.94) 0.0360 (0.60) -0.0225 (-0.38)
αFTSE -0.0439 (-0.78) -0.0524 (-0.87) -0.0141 (-0.23) -0.0411 (-0.64) -0.0706 (-1.10) 0.0032 (0.05) -0.0193 (-0.32) -0.0355 (-0.58) -0.0665 (-1.11) 0.0601 (0.94) 0.0371 (0.60) -0.0253 (-0.41)
αMarket -0.0892 (-1.27) -0.1000 (-1.31) -0.0484 (-0.60) -0.0847 (-1.02) -0.1245 (-1.52) -0.0231 (-0.29) -0.0573 (-0.75) -0.0770 (-0.98) -0.1226 (-1.61) 0.0600 (0.73) 0.0265 (0.33) -0.0610 (-0.78)
βPooled 1.6923 (3.80) 2.2436 (2.54) 0.9654 (0.97) 1.5297 (1.60) 2.5167 (2.51) 0.3252 (0.40) 0.9650 (1.38) 1.3493 (1.70) 2.1907 (3.17) -1.2590 (-1.35) -0.6116 (-0.76) 1.0725 (1.35)

Panel B: 10-Minute Frequency

RWE VHAR HYBICOV D-BEKK A-D-BEKK CCC A-CCC DCC A-DCC O-GARCH A-O-GARCH EWMA
αAEX -0.0748 (-1.15) -0.0810 (-1.15) -0.0335 (-0.46) -0.0598 (-0.79) -0.0940 (-1.26) -0.0055 (-0.08) -0.0350 (-0.50) -0.0524 (-0.73) -0.0922 (-1.32) 0.0693 (0.91) 0.0388 (0.53) -0.0389 (-0.54)
αCAC -0.0928 (-1.34) -0.0993 (-1.32) -0.0464 (-0.59) -0.0733 (-0.90) -0.1126 (-1.40) -0.0145 (-0.18) -0.0471 (-0.63) -0.0667 (-0.86) -0.1101 (-1.47) 0.0654 (0.81) 0.0332 (0.43) -0.0515 (-0.67)
αDAX -0.0225 (-0.33) -0.0285 (-0.38) 0.0213 (0.27) -0.0067 (-0.08) -0.0442 (-0.56) 0.0518 (0.67) 0.0203 (0.27) 0.0009 (0.01) -0.0409 (-0.55) 0.1320 (1.63) 0.0994 (1.28) 0.0159 (0.21)
αSMI -0.0483 (-0.88) -0.0531 (-0.91) -0.0165 (-0.28) -0.0371 (-0.60) -0.0646 (-1.05) 0.0034 (0.06) -0.0179 (-0.31) -0.0328 (-0.55) -0.0627 (-1.07) 0.0583 (0.94) 0.0360 (0.60) -0.0225 (-0.38)
αFTSE -0.0550 (-0.98) -0.0608 (-1.01) -0.0201 (-0.32) -0.0411 (-0.64) -0.0706 (-1.10) 0.0032 (0.05) -0.0193 (-0.32) -0.0355 (-0.58) -0.0665 (-1.11) 0.0601 (0.94) 0.0371 (0.60) -0.0253 (-0.41)
αMarket -0.1034 (-1.47) -0.1097 (-1.44) -0.0563 (-0.70) -0.0847 (-1.02) -0.1245 (-1.52) -0.0231 (-0.29) -0.0573 (-0.75) -0.0770 (-0.98) -0.1226 (-1.61) 0.0600 (0.73) 0.0265 (0.33) -0.0610 (-0.78)
βPooled 1.9817 (4.50) 2.4923 (2.83) 1.1411 (1.14) 1.5297 (1.60) 2.5167 (2.51) 0.3252 (0.40) 0.9650 (1.38) 1.3493 (1.70) 2.1907 (3.17) -1.2590 (-1.35) -0.6116 (-0.76) 1.0725 (1.35)

Panel C: 30-Minute Frequency

RWE VHAR HYBICOV D-BEKK A-D-BEKK CCC A-CCC DCC A-DCC O-GARCH A-O-GARCH EWMA
αAEX -0.0899 (-1.39) -0.0922 (-1.33) -0.0326 (-0.45) -0.0598 (-0.79) -0.0940 (-1.26) -0.0055 (-0.08) -0.0350 (-0.50) -0.0524 (-0.73) -0.0922 (-1.32) 0.0693 (0.91) 0.0388 (0.53) -0.0389 (-0.54)
αCAC -0.1094 (-1.59) -0.1109 (-1.49) -0.0454 (-0.58) -0.0733 (-0.90) -0.1126 (-1.40) -0.0145 (-0.18) -0.0471 (-0.63) -0.0667 (-0.86) -0.1101 (-1.47) 0.0654 (0.81) 0.0332 (0.43) -0.0515 (-0.67)
αDAX -0.0392 (-0.58) -0.0404 (-0.55) 0.0219 (0.28) -0.0067 (-0.08) -0.0442 (-0.56) 0.0518 (0.67) 0.0203 (0.27) 0.0009 (0.01) -0.0409 (-0.55) 0.1320 (1.63) 0.0994 (1.28) 0.0159 (0.21)
αSMI -0.0609 (-1.12) -0.0627 (-1.08) -0.0166 (-0.28) -0.0371 (-0.60) -0.0646 (-1.05) 0.0034 (0.06) -0.0179 (-0.31) -0.0328 (-0.55) -0.0627 (-1.07) 0.0583 (0.94) 0.0360 (0.60) -0.0225 (-0.38)
αFTSE -0.0686 (-1.23) -0.0710 (-1.19) -0.0198 (-0.32) -0.0411 (-0.64) -0.0706 (-1.10) 0.0032 (0.05) -0.0193 (-0.32) -0.0355 (-0.58) -0.0665 (-1.11) 0.0601 (0.94) 0.0371 (0.60) -0.0253 (-0.41)
αMarket -0.1198 (-1.72) -0.1206 (-1.60) -0.0550 (-0.69) -0.0847 (-1.02) -0.1245 (-1.52) -0.0231 (-0.29) -0.0573 (-0.75) -0.0770 (-0.98) -0.1226 (-1.61) 0.0600 (0.73) 0.0265 (0.33) -0.0610 (-0.78)
βPooled 2.3297 (5.63) 2.8345 (3.34) 1.1254 (1.13) 1.5297 (1.60) 2.5167 (2.51) 0.3252 (0.40) 0.9650 (1.38) 1.3493 (1.70) 2.1907 (3.17) -1.2590 (-1.35) -0.6116 (-0.76) 1.0725 (1.35)
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Table 8 Out-of-Sample Portfolio Performance

This table summarizes the performance of the global minimum variance portfolios constructed using the
covariance forecasts from the 12 models under consideration. The portfolios are compared on the basis
of their annualised out-of-sample variance (σ̂2

m) and average out-of-sample turnover (τ̂m), respectively.
Results for three different rebalancing frequencies are presented. Each portfolio is compared with the
1/N benchmark (last row). *, and ** indicate rejections of the hypothesis of equal out-of-sample
variances of a given portfolio and the 1/N benchmark at the 10% and 5% levels, respectively. The
non-parametric methodology of Ledoit and Wolf (2011) is adopted for the above test in order to calculate
the corresponding p-values.

Daily Rebalancing Weekly Rebalancing Monthly Rebalancing

σ̂2
m

τ̂m σ̂2
m

τ̂m σ̂2
m

τ̂m

D-BEKK 0.0299∗∗ 0.3351 0.0475 0.7435 0.0195 1.1482

A-D-BEKK 0.0296∗∗ 0.5052 0.0436 0.8635 0.0207 1.2014

CCC 0.0311∗∗ 0.3875 0.0349 0.8466 0.0201 1.2592

A-CCC 0.0299∗∗ 0.3379 0.0337∗ 0.9109 0.0204 1.4296

DCC 0.0307∗∗ 0.4111 0.0367 0.9106 0.0203 1.3501

A-DCC 0.0307∗∗ 0.4117 0.0368 0.9122 0.0203 1.3494

EWMA 0.0304∗∗ 0.4024 0.0477 1.0240 0.0263 1.9513

O-GARCH 0.0309∗∗ 0.2690 0.0426 0.6016 0.0187 0.8627

A-O-GARCH 0.0319∗∗ 0.4031 0.0454 0.7518 0.0193 0.9998

RWE 0.0297∗∗ 1.2313 0.0304∗∗ 0.7364 0.0184∗ 0.6838

VHAR 0.0282∗∗ 0.5524 0.0308∗∗ 0.5490 0.0180∗ 0.7535

HYBICOV 0.0293∗∗ 0.7951 0.0311∗∗ 0.6462 0.0185∗ 0.6919

1/N 0.0397 0.0033 0.0405 0.0085 0.0238 0.0208
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Table 9 MCS Results for Different Market Regimes

This table shows the results of the 5% Model Confidence Set (MCS) for three sub-periods of the full sample. We employ three statistical loss functions and 1–, 5–, and 22–day
forecast horizons, respectively. Each panel shows the results for a different sub-period of the full sample (i.e. pre-crisis, crisis and post-crisis). LE is the Euclidean distance,
LF is the Frobenius distance, and LQ is the multivariate quasi-likelihood loss function. The column labelled rank reports the relative ranking of a model in the MCS based on
a specific loss function while the p-val column shows the associated p-value of the test. The semi-quadratic statistic of Equation (23) is used to test the null hypothesis of the
MCS. An asterisk (*) indicates models that are part of the 5% MCS.

1–Day Horizon 5–Day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val

Panel A: 1/1/2000 - 31/7/2008 (pre-crisis sub-sample)

D-BEKK 5 0.03 5 0.03 7 0.00 5 0.00 5 0.00 11 0.00 5 0.00 5 0.00 9 0.00
A-D-BEKK 6 0.03 6 0.03 10 0.00 4 0.00 4 0.00 9 0.00 3 0.00 4 0.00 4 0.00
CCC 8 0.03 8 0.03 6 0.00 7 0.00 7 0.00 8 0.00 8 0.00 8 0.00 11 0.00
A-CCC 4* 0.15 4* 0.17 5 0.00 6 0.00 6 0.00 3 0.00 6 0.00 6 0.00 3 0.00
DCC 11 0.03 11 0.03 3 0.00 8 0.00 8 0.00 5 0.00 10 0.00 10 0.00 8 0.00
A-DCC 10 0.03 10 0.03 4 0.00 9 0.00 9 0.00 4 0.00 11 0.00 11 0.00 6 0.00
EWMA 12 0.02 12 0.02 12 0.00 11 0.00 11 0.00 12 0.00 7 0.00 7 0.00 12 0.00
O-GARCH 9 0.03 9 0.03 8 0.00 12 0.00 12 0.00 10 0.00 12 0.00 12 0.00 7 0.00
A-O-GARCH 7 0.03 7 0.03 9 0.00 10 0.00 10 0.00 7 0.00 9 0.00 9 0.00 5 0.00
RWE 2∗ 0.89 2∗ 0.89 2 0.00 3 0.02 3 0.03 2∗ 0.36 2∗ 0.32 2∗ 0.32 1∗ 1.00
VHAR 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 2 0.02
HYBICOV 3∗ 0.15 3∗ 0.18 11 0.00 2 0.02 2 0.03 6 0.00 4 0.00 3 0.00 10 0.00

Panel B: 1/8/2008- 31/12/2009 (crisis sub-sample)

D-BEKK 6 0.00 6 0.00 8 0.00 6 0.00 6 0.00 8 0.00 6 0.00 6 0.00 8 0.00
A-D-BEKK 4 0.01 4 0.01 9 0.00 4 0.00 4 0.00 9 0.00 4 0.00 4 0.00 9 0.00
CCC 9 0.00 8 0.00 5 0.00 9 0.00 8 0.00 6 0.00 11 0.00 11 0.00 6 0.00
A-CCC 5 0.01 5 0.01 3 0.00 5 0.00 5 0.00 4 0.00 5 0.00 5 0.00 4 0.00
DCC 12 0.00 12 0.00 6 0.00 12 0.00 12 0.00 5 0.00 10 0.00 10 0.00 5 0.00
A-DCC 11 0.00 11 0.00 4 0.00 11 0.00 11 0.00 7 0.00 9 0.00 9 0.00 7 0.00
EWMA 8 0.00 9 0.00 10 0.00 10 0.00 10 0.00 11 0.00 12 0.00 12 0.00 12 0.00
O-GARCH 10 0.00 10 0.00 11 0.00 8 0.00 9 0.00 10 0.00 8 0.00 8 0.00 11 0.00
A-O-GARCH 7 0.00 7 0.00 12 0.00 7 0.00 7 0.00 12 0.00 7 0.00 7 0.00 10 0.00
RWE 2∗ 0.11 2∗ 0.12 2 0.00 2∗ 0.61 2∗ 0.67 1∗ 1.00 2 0.00 2 0.01 2∗ 0.08
VHAR 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 2∗ 0.50 1∗ 1.00 1∗ 1.00 1∗ 1.00
HYBICOV 3 0.02 3 0.02 7 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.03

Panel C: 1/1/2010- 19/4/2016 (post-crisis sub-sample)

D-BEKK 5 0.00 6 0.00 8 0.00 5 0.00 5 0.00 8 0.00 5 0.00 5 0.00 4 0.00
A-D-BEKK 4 0.00 4 0.00 9 0.00 4 0.00 4 0.00 9 0.00 3 0.00 3 0.00 3 0.00
CCC 10 0.00 10 0.00 4 0.00 10 0.00 10 0.00 4 0.00 10 0.00 10 0.00 5 0.00
A-CCC 6 0.00 5 0.00 7 0.00 6 0.00 6 0.00 7 0.00 7 0.00 7 0.00 9 0.00
DCC 8 0.00 8 0.00 5 0.00 8 0.00 8 0.00 5 0.00 9 0.00 9 0.00 7 0.00
A-DCC 9 0.00 9 0.00 3 0.00 9 0.00 9 0.00 3 0.00 8 0.00 8 0.00 6 0.00
EWMA 7 0.00 7 0.00 10 0.00 7 0.00 7 0.00 10 0.00 6 0.00 6 0.00 10 0.00
O-GARCH 11 0.00 11 0.00 11 0.00 12 0.00 12 0.00 11 0.00 12 0.00 12 0.00 11 0.00
A-O-GARCH 12 0.00 12 0.00 12 0.00 11 0.00 11 0.00 12 0.00 11 0.00 11 0.00 12 0.00
RWE 2 0.05 2∗ 0.05 2 0.00 2 0.01 2 0.02 2 0.02 2 0.00 2 0.00 2∗ 0.14
VHAR 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00
HYBICOV 3 0.00 3 0.00 6 0.00 3 0.00 3 0.00 6 0.00 4 0.00 4 0.00 8 0.00
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Table 10 Out–of–Sample Forecast Losses (US Stocks)

This table reports the average out-of-sample forecast losses for the 1–, 5–, and 22–day horizons, respectively.
The sample consists of ten US stocks (details presented in section 4.2). We employ a rolling window of 1,000
observations to produce forecasts from parametric models. LE denotes the Euclidean distance, LF is the Frobenius
distance, and LQ is the multivariate quasi-likelihood loss function. The model with the lowest average out-of-sample
loss is marked with an asterisk (*). A dagger (†) indicates models that yield as accurate forecasts as the best model
at the 5% significance level based on the Giacomini-White test.

1–Day Horizon 5–Day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

D-BEKK 0.5722 0.9014 −26.3993 0.3887 0.6102 −26.2553 0.3380 0.5326 −25.8502
A-D-BEKK 0.5745 0.9094 −26.4812 0.3932 0.6217 −26.3236 0.3455 0.5490 −25.8857
CCC 0.5342 0.7950 −27.0146 0.3725 0.5330 −26.7738 0.3540 0.4963 −26.1790
A-CCC 0.4776 0.7134 −26.9941 0.3282 0.4688 −26.7493 0.3157 0.4413 −26.1594
DCC 0.5444 0.8154 −27.0667 0.3843 0.5566 −26.8177 0.3666 0.5214 −26.2055
A-DCC 0.5442 0.8151 −27.0508 0.3844 0.5567 −26.7952 0.3660 0.5203 −26.1536
EWMA 0.6420 1.0150 −25.5509 0.4857 0.7665 −25.2413 0.4898 0.7774 −24.5879
O-GARCH 0.6061 0.9738 −26.6555 0.4452 0.7188 −26.4499 0.4423 0.7202 −25.9722
A-O-GARCH 0.6464 1.0493 −26.6282 0.5152 0.8438 −26.4333 0.4934 0.8120 −25.9609
RWE 0.4443† 0.7081† −26.7815 0.1967† 0.3072† −27.9492∗ 0.1538† 0.2417† −27.3109∗

VHAR 0.3054† 0.4820† −28.3505∗ 0.1569∗ 0.2441∗ −27.8470 0.1345∗ 0.2103∗ −26.8206
HYBICOV 0.2983∗ 0.4714∗ −26.9947 0.1582† 0.2474† −27.8507† 0.1559† 0.2431† −27.1039†
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Table 11 Model Confidence Set Results (US Stocks)

This table shows the results of the 5% Model Confidence Set (MCS). The sample consists of ten US stocks (details presented in section 4.2). We employ three statistical
loss functions and forecast horizons of 1, 5 and 22 trading days, respectively. LE denotes the Euclidean distance, LF is the Frobenius distance, and LQ is the multivariate
quasi-likelihood loss function. The column labelled rank reports the relative ranking of a model in the MCS based on a specific loss function while the p-val column shows the
associated p-value of the test. The semi-quadratic statistic of Equation (23) is used to test the null hypothesis of the MCS. An asterisk (*) indicates models that are part of the
5% MCS.

1–Day Horizon 5–Day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val

D-BEKK 10 0.028 10 0.017 9 0.000 6 0.024 8 0.013 9 0.000 5 0.027 7 0.025 9 0.000

A-D-BEKK 11 0.028 11 0.017 8 0.000 9 0.024 10 0.013 6 0.000 6 0.027 9 0.025 8 0.000

CCC 7 0.028 6 0.020 6 0.000 8 0.024 7 0.013 5 0.000 8 0.027 6 0.025 5 0.000

A-CCC 4 0.028 4 0.023 5 0.000 5 0.024 4 0.013 7 0.000 4 0.027 5 0.025 7 0.000

DCC 8 0.028 8 0.020 2 0.000 10 0.024 6 0.013 4 0.000 10 0.027 8 0.025 4 0.000

A-DCC 6 0.028 5 0.020 4 0.000 7 0.024 5 0.013 8 0.000 11 0.027 4 0.025 6 0.000

EWMA 12 0.028 12 0.017 12 0.000 12 0.024 12 0.013 12 0.000 12 0.027 12 0.025 12 0.000

O-GARCH 9 0.028 9 0.020 10 0.000 4 0.024 11 0.013 10 0.000 9 0.027 11 0.025 10 0.000

A-O-GARCH 5 0.028 7 0.020 11 0.000 11 0.024 9 0.013 11 0.000 7 0.027 10 0.025 11 0.000

RWE 3* 0.093 3* 0.103 7 0.000 3* 0.156 3* 0.141 1* 1.000 2* 0.170 2* 0.180 1* 1.000

VHAR 2* 0.456 2* 0.428 1* 1.000 1* 1.000 1* 1.000 3* 0.166 1* 1.000 1* 1.000 3 0.000

HYBICOV 1* 1.000 1* 1.000 3 0.000 2* 0.846 2* 0.765 2* 0.295 3* 0.170 3* 0.180 2* 0.197

5
4



Table 12 Risk–Return Trade-off (US Stocks)

This table reports the intercepts and the common slope coefficient estimates along with their t-statistics (in parentheses) from the SUR system estimation of Equation (26). The
dependent variables correspond to daily excess returns on the ten US stocks presented in section 4.2 and the S&P 500 index, which serves as a proxy for the market portfolio.
Each column contains the results from using a different model to obtain estimates of the expected conditional covariance between the returns of each stock and the return on
S&P 500 index. Three alternative intraday sampling frequencies are considered for the estimation of RWE, VHAR and HYBICOV (Panels A–C).

Panel A: 5-Minute Frequency
RWE VHAR HYBICOV D-BEKK A-D-BEKK CCC A-CCC DCC A-DCC O-GARCH A-O-GARCH EWMA

αAXP -0.1085 (-0.79) -0.1906 (-1.35) -0.2550 (-1.77) -0.1565 (-1.01) -0.1123 (-0.76) -0.0280 (-0.20) -0.0670 (-0.48) -0.0440 (-0.31) -0.1062 (-0.75) -0.0139 (-0.09) -0.0559 (-0.38) -0.1117 (-0.78)
αBA -0.0470 (-0.48) -0.1068 (-1.05) -0.1430 (-1.39) -0.0718 (-0.65) -0.0474 (-0.44) 0.0188 (0.19) -0.0049 (-0.05) 0.0086 (0.09) -0.0291 (-0.29) 0.0269 (0.25) -0.0021 (-0.02) -0.0370 (-0.36)
αCVX -0.0577 (-0.61) -0.1189 (-1.21) -0.1575 (-1.57) -0.0840 (-0.78) -0.0431 (-0.43) 0.0116 (0.12) -0.0128 (-0.13) 0.0008 (0.01) -0.0388 (-0.40) 0.0202 (0.19) -0.0098 (-0.10) -0.0492 (-0.49)
αDD -0.0575 (-0.57) -0.1204 (-1.16) -0.1660 (-1.57) -0.0920 (-0.80) -0.0693 (-0.62) 0.0127 (0.13) -0.0137 (-0.14) 0.0013 (0.01) -0.0409 (-0.40) 0.0220 (0.20) -0.0100 (-0.09) -0.0507 (-0.48)
αGE -0.1226 (-1.12) -0.1902 (-1.69) -0.2527 (-2.18) -0.1553 (-1.26) -0.1217 (-1.03) -0.0501 (-0.45) -0.0809 (-0.73) -0.0623 (-0.56) -0.1100 (-0.99) -0.0380 (-0.32) -0.0712 (-0.61) -0.1132 (-1.00)
αIBM -0.0329 (-0.42) -0.0801 (-1.01) -0.1061 (-1.32) -0.0487 (-0.57) -0.0291 (-0.35) 0.0201 (0.26) 0.0022 (0.03) 0.0124 (0.16) -0.0161 (-0.21) 0.0265 (0.32) 0.0041 (0.05) -0.0234 (-0.29)
αJPM -0.0836 (-0.55) -0.1636 (-1.06) -0.2280 (-1.46) -0.1499 (-0.88) -0.0934 (-0.58) -0.0095 (-0.06) -0.0527 (-0.34) -0.0262 (-0.17) -0.0927 (-0.60) 0.0083 (0.05) -0.0372 (-0.23) -0.0961 (-0.61)
αKO 0.0171 (0.28) -0.0166 (-0.26) -0.0334 (-0.52) -0.0002 (0.00) 0.0127 (0.19) 0.0539 (0.87) 0.0412 (0.67) 0.0486 (0.78) 0.0286 (0.46) 0.0587 (0.90) 0.0434 (0.67) 0.0233 (0.37)
αMSFT -0.0158 (-0.17) -0.0708 (-0.73) -0.1019 (-1.03) -0.0435 (-0.41) -0.0044 (-0.04) 0.0457 (0.48) 0.0250 (0.26) 0.0364 (0.38) 0.0032 (0.03) 0.0526 (0.51) 0.0249 (0.25) -0.0077 (-0.08)
αXOM -0.0706 (-0.81) -0.1259 (-1.41) -0.1609 (-1.77) -0.0946 (-0.96) -0.0717 (-0.75) -0.0057 (-0.06) -0.0282 (-0.32) -0.0153 (-0.17) -0.0510 (-0.58) 0.0026 (0.03) -0.0249 (-0.27) -0.0598 (-0.66)
αMarket -0.0460 (-0.63) -0.1027 (-1.34) -0.1430 (-1.82) -0.0746 (-0.85) -0.0519 (-0.61) 0.0149 (0.20) -0.0151 (-0.20) 0.0046 (0.06) -0.0398 (-0.53) 0.0266 (0.32) -0.0021 (-0.03) -0.0390 (-0.50)
βPooled 2.0695 (4.52) 4.0231 (4.88) 5.1888 (5.25) 3.6290 (2.11) 2.6009 (1.89) 0.4918 (0.82) 1.1416 (2.24) 0.7312 (1.11) 1.6922 (2.93) 0.2139 (0.22) 0.8372 (0.96) 1.6161 (2.38)

Panel B: 10-Minute Frequency
RWE VHAR HYBICOV D-BEKK A-D-BEKK CCC A-CCC DCC A-DCC O-GARCH A-O-GARCH EWMA

αAXP -0.1761 (-1.28) -0.2148 (-1.51) -0.2839 (-1.97) -0.1565 (-1.01) -0.1123 (-0.76) -0.0280 (-0.20) -0.0670 (-0.48) -0.0440 (-0.31) -0.1062 (-0.75) -0.0139 (-0.09) -0.0559 (-0.38) -0.1117 (-0.78)
αBA -0.0946 (-0.96) -0.1206 (-1.18) -0.1577 (-1.54) -0.0718 (-0.65) -0.0474 (-0.44) 0.0188 (0.19) -0.0049 (-0.05) 0.0086 (0.09) -0.0291 (-0.29) 0.0269 (0.25) -0.0021 (-0.02) -0.0370 (-0.36)
αCVX -0.1080 (-1.13) -0.1310 (-1.33) -0.1734 (-1.74) -0.0840 (-0.78) -0.0431 (-0.43) 0.0116 (0.12) -0.0128 (-0.13) 0.0008 (0.01) -0.0388 (-0.40) 0.0202 (0.19) -0.0098 (-0.10) -0.0492 (-0.49)
αDD -0.1096 (-1.09) -0.1350 (-1.30) -0.1831 (-1.74) -0.0920 (-0.80) -0.0693 (-0.62) 0.0127 (0.13) -0.0137 (-0.14) 0.0013 (0.01) -0.0409 (-0.40) 0.0220 (0.20) -0.0100 (-0.09) -0.0507 (-0.48)
αGE -0.1767 (-1.61) -0.2034 (-1.80) -0.2646 (-2.31) -0.1553 (-1.26) -0.1217 (-1.03) -0.0501 (-0.45) -0.0809 (-0.73) -0.0623 (-0.56) -0.1100 (-0.99) -0.0380 (-0.32) -0.0712 (-0.61) -0.1132 (-1.00)
αIBM -0.0712 (-0.92) -0.0899 (-1.13) -0.1173 (-1.46) -0.0487 (-0.57) -0.0291 (-0.35) 0.0201 (0.26) 0.0022 (0.03) 0.0124 (0.16) -0.0161 (-0.21) 0.0265 (0.32) 0.0041 (0.05) -0.0234 (-0.29)
αJPM -0.1492 (-0.99) -0.1801 (-1.16) -0.2517 (-1.61) -0.1499 (-0.88) -0.0934 (-0.58) -0.0095 (-0.06) -0.0527 (-0.34) -0.0262 (-0.17) -0.0927 (-0.60) 0.0083 (0.05) -0.0372 (-0.23) -0.0961 (-0.61)
αKO -0.0107 (-0.17) -0.0238 (-0.37) -0.0416 (-0.65) -0.0002 (0.00) 0.0127 (0.19) 0.0539 (0.87) 0.0412 (0.67) 0.0486 (0.78) 0.0286 (0.46) 0.0587 (0.90) 0.0434 (0.67) 0.0233 (0.37)
αMSFT -0.0597 (-0.63) -0.0799 (-0.82) -0.1139 (-1.16) -0.0435 (-0.41) -0.0044 (-0.04) 0.0457 (0.48) 0.0250 (0.26) 0.0364 (0.38) 0.0032 (0.03) 0.0526 (0.51) 0.0249 (0.25) -0.0077 (-0.08)
αXOM -0.1152 (-1.33) -0.1357 (-1.51) -0.1751 (-1.93) -0.0946 (-0.96) -0.0717 (-0.75) -0.0057 (-0.06) -0.0282 (-0.32) -0.0153 (-0.17) -0.0510 (-0.58) 0.0026 (0.03) -0.0249 (-0.27) -0.0598 (-0.66)
αMarket -0.0917 (-1.25) -0.1116 (-1.45) -0.1556 (-1.99) -0.0746 (-0.85) -0.0519 (-0.61) 0.0149 (0.20) -0.0151 (-0.20) 0.0046 (0.06) -0.0398 (-0.53) 0.0266 (0.32) -0.0021 (-0.03) -0.0390 (-0.50)
βPooled 3.3028 (6.80) 4.5272 (5.05) 5.6885 (5.90) 3.6290 (2.11) 2.6009 (1.89) 0.4918 (0.82) 1.1416 (2.24) 0.7312 (1.11) 1.6922 (2.93) 0.2139 (0.22) 0.8372 (0.96) 1.6161 (2.38)

Panel C: 30-Minute Frequency
RWE VHAR HYBICOV D-BEKK A-D-BEKK CCC A-CCC DCC A-DCC O-GARCH A-O-GARCH EWMA

αAXP -0.1300 (-0.95) -0.1302 (-0.92) -0.2004 (-1.41) -0.1565 (-1.01) -0.1123 (-0.76) -0.0280 (-0.20) -0.0670 (-0.48) -0.0440 (-0.31) -0.1062 (-0.75) -0.0139 (-0.09) -0.0559 (-0.38) -0.1117 (-0.78)
αBA -0.0620 (-0.63) -0.0580 (-0.57) -0.1033 (-1.02) -0.0718 (-0.65) -0.0474 (-0.44) 0.0188 (0.19) -0.0049 (-0.05) 0.0086 (0.09) -0.0291 (-0.29) 0.0269 (0.25) -0.0021 (-0.02) -0.0370 (-0.36)
αCVX -0.0739 (-0.79) -0.0590 (-0.60) -0.1165 (-1.19) -0.0840 (-0.78) -0.0431 (-0.43) 0.0116 (0.12) -0.0128 (-0.13) 0.0008 (0.01) -0.0388 (-0.40) 0.0202 (0.19) -0.0098 (-0.10) -0.0492 (-0.49)
αDD -0.0746 (-0.75) -0.0682 (-0.66) -0.1230 (-1.19) -0.0920 (-0.80) -0.0693 (-0.62) 0.0127 (0.13) -0.0137 (-0.14) 0.0013 (0.01) -0.0409 (-0.40) 0.0220 (0.20) -0.0100 (-0.09) -0.0507 (-0.48)
αGE -0.1408 (-1.30) -0.1328 (-1.18) -0.2007 (-1.77) -0.1553 (-1.26) -0.1217 (-1.03) -0.0501 (-0.45) -0.0809 (-0.73) -0.0623 (-0.56) -0.1100 (-0.99) -0.0380 (-0.32) -0.0712 (-0.61) -0.1132 (-1.00)
αIBM -0.0442 (-0.58) -0.0412 (-0.52) -0.0756 (-0.95) -0.0487 (-0.57) -0.0291 (-0.35) 0.0201 (0.26) 0.0022 (0.03) 0.0124 (0.16) -0.0161 (-0.21) 0.0265 (0.32) 0.0041 (0.05) -0.0234 (-0.29)
αJPM -0.1062 (-0.71) -0.0973 (-0.63) -0.1755 (-1.13) -0.1499 (-0.88) -0.0934 (-0.58) -0.0095 (-0.06) -0.0527 (-0.34) -0.0262 (-0.17) -0.0927 (-0.60) 0.0083 (0.05) -0.0372 (-0.23) -0.0961 (-0.61)
αKO 0.0074 (0.12) 0.0168 (0.27) -0.0110 (-0.18) -0.0002 (0.00) 0.0127 (0.19) 0.0539 (0.87) 0.0412 (0.67) 0.0486 (0.78) 0.0286 (0.46) 0.0587 (0.90) 0.0434 (0.67) 0.0233 (0.37)
αMSFT -0.0291 (-0.31) -0.0242 (-0.25) -0.0660 (-0.68) -0.0435 (-0.41) -0.0044 (-0.04) 0.0457 (0.48) 0.0250 (0.26) 0.0364 (0.38) 0.0032 (0.03) 0.0526 (0.51) 0.0249 (0.25) -0.0077 (-0.08)
αXOM -0.0831 (-0.97) -0.0656 (-0.74) -0.1234 (-1.38) -0.0946 (-0.96) -0.0717 (-0.75) -0.0057 (-0.06) -0.0282 (-0.32) -0.0153 (-0.17) -0.0510 (-0.58) 0.0026 (0.03) -0.0249 (-0.27) -0.0598 (-0.66)
αMarket -0.0587 (-0.81) -0.0501 (-0.66) -0.1039 (-1.35) -0.0746 (-0.85) -0.0519 (-0.61) 0.0149 (0.20) -0.0151 (-0.20) 0.0046 (0.06) -0.0398 (-0.53) 0.0266 (0.32) -0.0021 (-0.03) -0.0390 (-0.50)
βPooled 2.4526 (6.94) 3.8922 (3.22) 4.0646 (4.80) 3.6290 (2.11) 2.6009 (1.89) 0.4918 (0.82) 1.1416 (2.24) 0.7312 (1.11) 1.6922 (2.93) 0.2139 (0.22) 0.8372 (0.96) 1.6161 (2.38)
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Table 13 Out-of-Sample Portfolio Performance (US Stocks)

This table summarizes the performance of the global minimum variance portfolios of the 10 US stocks
constructed using the covariance forecasts from the 12 models under consideration. The portfolios
are compared on the basis of their annualised out-of-sample variance (σ̂2

m) and average out-of-sample
turnover (τ̂m), respectively. Results for three different rebalancing frequencies are presented. Each
portfolio is compared with the 1/N benchmark (last row). *, and ** indicate rejections of the hypothesis
of equal out-of-sample variances of a given portfolio and the 1/N benchmark at the 10% and 5% levels,
respectively. The non-parametric methodology of Ledoit and Wolf (2011) is adopted for the above test
in order to calculate the corresponding p-values.

Daily Rebalancing Weekly Rebalancing Monthly Rebalancing

σ̂2
m

τ̂m σ̂2
m

τ̂m σ̂2
m

τ̂m

D-BEKK 0.0281∗∗ 0.0877 0.0249∗∗ 0.2363 0.0198∗∗ 0.5474

A-D-BEKK 0.0279∗∗ 0.0833 0.0245∗∗ 0.2449 0.0195∗∗ 0.5696

CCC 0.0307∗∗ 0.2647 0.0273∗∗ 0.6312 0.0182∗ 1.0016

A-CCC 0.0307∗∗ 0.2376 0.0267∗∗ 0.6035 0.0169∗∗ 1.0029

DCC 0.0301∗∗ 0.2613 0.0268∗∗ 0.6198 0.0181∗ 0.9832

A-DCC 0.0300∗∗ 0.2622 0.0266∗∗ 0.6206 0.0181∗ 0.9832

EWMA 0.0342∗∗ 0.3320 0.0329∗ 0.8882 0.0241 1.6505

O-GARCH 0.0287∗∗ 0.1433 0.0270∗∗ 0.3215 0.0206∗ 0.5921

A-O-GARCH 0.0287∗∗ 0.1916 0.0262∗∗ 0.3894 0.0215∗ 0.6518

RWE 0.0293∗∗ 1.4539 0.0308∗∗ 1.5577 0.0187∗ 1.5677

VHAR 0.0261∗∗ 0.4953 0.0239∗∗ 0.6777 0.0156∗∗ 0.8348

HYBICOV 0.0286∗∗ 1.0916 0.0253∗∗ 1.1814 0.0152∗∗ 1.2369

1/N 0.0543 0.0087 0.0525 0.0210 0.0306 0.0531
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Appendix to:

“Covariance Forecasting in Equity

Markets”

Not intended for publication
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A. Calculation of the Model-Free Implied Volatility of US

Stocks

The calculation of the model-free implied volatility (MFIV) for each stock is based on the

formula of Britten-Jones and Neuberger (2000):

MFIVt,t+τ =

√√√√√2eRf,tτ

τ




St∫

0

P (K, τ)

K2
dK +

∞∫

St

C(K, τ)

K2
dK


, (31)

where MFIVt,t+τ is the τ -day ahead MFIV, Rf,t is the risk-free rate at time t with an

horizon of τ days, St is the underlying spot price at time t, and C(K, τ) and P (K, τ)

are the prices of the out-of-the money call and put options with strike K and maturity

τ . To obtain the τ -day risk-free rate we interpolate between the LIBOR rates of all

available maturities. The options on individual stocks are American. However, the above

MFIV formula relies on European options. To this end, we convert the American option

prices to European using the Barone-Adesi and Whaley (1987) approach. Specifically, we

first calculate the Barone-Adesi-Whaley implied volatility and we then use this implied

volatility in order to compute the price of the European option using the Black and Scholes

(1973) formula (see Trolle and Schwartz, 2010, for a similar task).

To empirically evaluate the above formula and obtain daily MFIV estimates we

closely follow the approach of Carr and Wu (2009) and Prokopczuk et al. (2017).

Specifically, every day we sort all out-of-the money call and put options based on their time

to maturity. We only retain maturities with more than three out-of-the money options,

since the integral of the MFIV formula of Equation (31) requires a continuum of strike

prices for a good approximation. Nevertheless, in practice there is only a limited number
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of strikes per maturity. To overcome this problem, similar to Jiang and Tian (2005), we

average the Black and Scholes (1973) implied volatilities of the cross-section of out-of-the

money options of each specific maturity and then define a lower and an upper bound for

the strikes as follows (see also Prokopczuk et al., 2017):

Ku,t = Ste
8·σt

Kl,t = Ste
−8·σt , (32)

where Ku,t and Kl,t are the upper and lower bounds of the range of strikes as described

above, and σt is the average Black-Scholes implied volatility on day t of all out-of-the

money options with the same maturity.

We then interpolate between the Black and Scholes (1973) implied volatilities of the

2,000 equidistant strikes. To deal with truncation errors, for any observed strike price

greater (lower) than Ku,t (Kl,t) we assume that its implied volatility is equal to the upper

(lower) bound. Finally, we map the 2,000 equidistant implied volatilities to call (C(K, τ))

and put (P (K, τ)) option prices and evaluate the integral of Equation (31) using the

trapezoidal rule (see Jiang and Tian, 2005, for details). We repeat this procedure for each

maturity and finally interpolate between implied volatilities of the closest maturities in

order to obtain MFIVt,t+τ (in the case of the VIX index, τ=30 calendar days).
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Table A1 Risk–Return Trade-off (Weighted Least Squares Estimation)

This table reports the intercepts and the common slope coefficient estimates along with their t-statistics (in parentheses) from the SUR system estimation of Equation (26). The
system is estimated using weighted least squares (WLS) similar to Bali and Engle (2010). The dependent variables correspond to daily excess returns on the five European equity
markets and the STOXX 50 index which serves as a proxy for the European market portfolio. Each column presents results from using a different model to obtain conditional
covariance estimates between the returns of each equity index and the STOXX 50 index. Three alternative intraday sampling frequencies are considered for the estimation of
the RWE, VHAR and HYBICOV (Panels A–C).

Panel A: 5-Minute Frequency
RWE VHAR HYBICOV D-BEKK A-D-BEKK CCC A-CCC DCC A-DCC O-GARCH A-O-GARCH EWMA

αAEX -0.0617 (-0.95) -0.0719 (-1.02) -0.0253 (-0.35) -0.0604 (-0.80) -0.0950 (-1.27) -0.0057 (-0.08) -0.0353 (-0.50) -0.0531 (-0.74) -0.0934 (-1.33) 0.0694 (0.91) 0.0392 (0.53) -0.0393 (-0.55)
αCAC -0.0784 (-1.13) -0.0894 (-1.19) -0.0373 (-0.48) -0.0740 (-0.91) -0.1136 (-1.41) -0.0147 (-0.19) -0.0474 (-0.63) -0.0675 (-0.87) -0.1115 (-1.49) 0.0655 (0.81) 0.0336 (0.43) -0.0519 (-0.67)
αDAX -0.0087 (-0.13) -0.0189 (-0.26) 0.0302 (0.39) -0.0074 (-0.09) -0.0452 (-0.57) 0.0515 (0.67) 0.0200 (0.27) 0.0001 (0.00) -0.0422 (-0.57) 0.1321 (1.63) 0.0998 (1.28) 0.0156 (0.20)
αSMI -0.0385 (-0.70) -0.0462 (-0.79) -0.0105 (-0.18) -0.0376 (-0.60) -0.0654 (-1.06) 0.0032 (0.05) -0.0182 (-0.31) -0.0333 (-0.56) -0.0636 (-1.09) 0.0584 (0.94) 0.0362 (0.60) -0.0228 (-0.38)
αFTSE -0.0438 (-0.78) -0.0526 (-0.87) -0.0132 (-0.21) -0.0416 (-0.65) -0.0713 (-1.12) 0.0030 (0.05) -0.0195 (-0.33) -0.0360 (-0.58) -0.0674 (-1.13) 0.0602 (0.95) 0.0373 (0.61) -0.0256 (-0.41)
αMarket -0.0890 (-1.27) -0.1003 (-1.31) -0.0472 (-0.59) -0.0854 (-1.03) -0.1256 (-1.53) -0.0234 (-0.29) -0.0577 (-0.76) -0.0778 (-0.99) -0.1239 (-1.62) 0.0601 (0.73) 0.0269 (0.34) -0.0614 (-0.78)
βPooled 1.6892 (3.79) 2.2493 (2.55) 0.9383 (0.94) 1.5437 (1.61) 2.5400 (2.53) 0.3310 (0.40) 0.9721 (1.39) 1.3643 (1.72) 2.2166 (3.21) -1.2612 (-1.36) -0.6189 (-0.77) 1.0804 (1.36)

Panel B: 10-Minute Frequency
RWE VHAR HYBICOV D-BEKK A-D-BEKK CCC A-CCC DCC A-DCC O-GARCH A-O-GARCH EWMA

αAEX -0.0748 (-1.15) -0.0812 (-1.16) -0.0325 (-0.44) -0.0604 (-0.80) -0.0950 (-1.27) -0.0057 (-0.08) -0.0353 (-0.50) -0.0531 (-0.74) -0.0934 (-1.33) 0.0694 (0.91) 0.0392 (0.53) -0.0393 (-0.55)
αCAC -0.0928 (-1.34) -0.0996 (-1.32) -0.0454 (-0.57) -0.0740 (-0.91) -0.1136 (-1.41) -0.0147 (-0.19) -0.0474 (-0.63) -0.0675 (-0.87) -0.1115 (-1.49) 0.0655 (0.81) 0.0336 (0.43) -0.0519 (-0.67)
αDAX -0.0224 (-0.33) -0.0287 (-0.39) 0.0223 (0.29) -0.0074 (-0.09) -0.0452 (-0.57) 0.0515 (0.67) 0.0200 (0.27) 0.0001 (0.00) -0.0422 (-0.57) 0.1321 (1.63) 0.0998 (1.28) 0.0156 (0.20)
αSMI -0.0483 (-0.88) -0.0533 (-0.91) -0.0159 (-0.26) -0.0376 (-0.60) -0.0654 (-1.06) 0.0032 (0.05) -0.0182 (-0.31) -0.0333 (-0.56) -0.0636 (-1.09) 0.0584 (0.94) 0.0362 (0.60) -0.0228 (-0.38)
αFTSE -0.0550 (-0.98) -0.0610 (-1.01) -0.0194 (-0.31) -0.0416 (-0.65) -0.0713 (-1.12) 0.0030 (0.05) -0.0195 (-0.33) -0.0360 (-0.58) -0.0674 (-1.13) 0.0602 (0.95) 0.0373 (0.61) -0.0256 (-0.41)
αMarket -0.1034 (-1.47) -0.1100 (-1.44) -0.0552 (-0.69) -0.0854 (-1.03) -0.1256 (-1.53) -0.0234 (-0.29) -0.0577 (-0.76) -0.0778 (-0.99) -0.1239 (-1.62) 0.0601 (0.73) 0.0269 (0.34) -0.0614 (-0.78)
βPooled 1.9815 (4.50) 2.4989 (2.84) 1.1173 (1.11) 1.5437 (1.61) 2.5400 (2.53) 0.3310 (0.40) 0.9721 (1.39) 1.3643 (1.72) 2.2166 (3.21) -1.2612 (-1.36) -0.6189 (-0.77) 1.0804 (1.36)

Panel C: 30-Minute Frequency
RWE VHAR HYBICOV D-BEKK A-D-BEKK CCC A-CCC DCC A-DCC O-GARCH A-O-GARCH EWMA

αAEX -0.0898 (-1.39) -0.0925 (-1.33) -0.0317 (-0.43) -0.0604 (-0.80) -0.0950 (-1.27) -0.0057 (-0.08) -0.0353 (-0.50) -0.0531 (-0.74) -0.0934 (-1.33) 0.0694 (0.91) 0.0392 (0.53) -0.0393 (-0.55)
αCAC -0.1092 (-1.59) -0.1113 (-1.50) -0.0444 (-0.56) -0.0740 (-0.91) -0.1136 (-1.41) -0.0147 (-0.19) -0.0474 (-0.63) -0.0675 (-0.87) -0.1115 (-1.49) 0.0655 (0.81) 0.0336 (0.43) -0.0519 (-0.67)
αDAX -0.0391 (-0.57) -0.0407 (-0.55) 0.0229 (0.29) -0.0074 (-0.09) -0.0452 (-0.57) 0.0515 (0.67) 0.0200 (0.27) 0.0001 (0.00) -0.0422 (-0.57) 0.1321 (1.63) 0.0998 (1.28) 0.0156 (0.20)
αSMI -0.0608 (-1.11) -0.0630 (-1.09) -0.0160 (-0.27) -0.0376 (-0.60) -0.0654 (-1.06) 0.0032 (0.05) -0.0182 (-0.31) -0.0333 (-0.56) -0.0636 (-1.09) 0.0584 (0.94) 0.0362 (0.60) -0.0228 (-0.38)
αFTSE -0.0685 (-1.23) -0.0713 (-1.19) -0.0190 (-0.31) -0.0416 (-0.65) -0.0713 (-1.12) 0.0030 (0.05) -0.0195 (-0.33) -0.0360 (-0.58) -0.0674 (-1.13) 0.0602 (0.95) 0.0373 (0.61) -0.0256 (-0.41)
αMarket -0.1196 (-1.72) -0.1209 (-1.61) -0.0539 (-0.67) -0.0854 (-1.03) -0.1256 (-1.53) -0.0234 (-0.29) -0.0577 (-0.76) -0.0778 (-0.99) -0.1239 (-1.62) 0.0601 (0.73) 0.0269 (0.34) -0.0614 (-0.78)
βPooled 2.3267 (5.62) 2.8426 (3.34) 1.1017 (1.11) 1.5437 (1.61) 2.5400 (2.53) 0.3310 (0.40) 0.9721 (1.39) 1.3643 (1.72) 2.2166 (3.21) -1.2612 (-1.36) -0.6189 (-0.77) 1.0804 (1.36)
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Table A2 Out-of-Sample Forecast Losses (10-min. Sampling Frequency)

This table reports the average out-of-sample forecast losses for the 1–, 5–, and 22–day horizons, respectively. We
employ a rolling window of 1,000 observations to produce forecasts from parametric models. VHAR, RWE and
HYBICOV model forecasts are based on intraday data sampled at the 10-minute frequency. LE is the Euclidean
distance, LF is the Frobenius distance, and LQ is the multivariate quasi-likelihood loss function. The model with
the lowest average out-of-sample loss is marked with an asterisk (*). A dagger (†) indicates models that yield as
accurate forecasts as the best model at the 5% significance level based on the Giacomini-White test.

1–Day Horizon 5–Day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

D-BEKK 0.0288 0.0463 −20.2210 0.0229 0.0368 −20.0576 0.0220 0.0354 −19.7743
A-D-BEKK 0.0215 0.0344 −20.2909 0.0152 0.0244 −20.0908 0.0128 0.0203 −19.7861
CCC 0.0355 0.0564 −20.4750 0.0304 0.0482 −20.3188 0.0308 0.0489 −19.9065
A-CCC 0.0334 0.0527 −20.4556 0.0289 0.0454 −20.3095 0.0268 0.0421 −19.9062
DCC 0.0370 0.0595 −20.5266 0.0319 0.0513 −20.3586 0.0320 0.0514 −19.9304
A-DCC 0.0370 0.0595 −20.5254 0.0319 0.0513 −20.3581 0.0321 0.0514 −19.9308
EWMA 0.0366 0.0592 −19.9778 0.0317 0.0514 −19.7713 0.0347 0.0563 −19.3458
O-GARCH 0.0370 0.0601 −20.2589 0.0321 0.0523 −20.0811 0.0327 0.0534 −19.7484
A-O-GARCH 0.0518 0.0850 −20.2688 0.0458 0.0753 −20.0932 0.0389 0.0639 −19.7560
RWE 0.0173† 0.0272† −20.7172 0.0080 0.0124† −21.0406† 0.0074 0.0115 −20.6030∗

VHAR 0.0122∗ 0.0195∗ −21.3501∗ 0.0067∗ 0.0105∗ −21.0632∗ 0.0062∗ 0.0097∗ −20.5594†

HYBICOV 0.0135† 0.0214† −20.5585 0.0073† 0.0114† −20.7984 0.0066† 0.0103† −19.6591
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Table A3 Model Confidence Set Results (10-minute Sampling Frequency)

This table shows the results of the 5% Model Confidence Set (MCS). We employ three statistical loss functions and forecast horizons of 1, 5 and 22 trading days, respectively.
VHAR, RWE and HYBICOV model forecasts are based on intraday data sampled at the 10-minute frequency. LE denotes the Euclidean distance, LF is the Frobenius distance,
and LQ is the multivariate quasi-likelihood loss function. The column labelled rank reports the relative ranking of a model in the MCS based on a specific loss function while
the p-val column shows the associated p-value of the test. The semi-quadratic statistic of Equation (23) is used to test the null hypothesis of the MCS. An asterisk (*) indicates
models that are part of the 5% MCS.

1–Day Horizon 5–Day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val

D-BEKK 6 0.001 6 0.001 9 0.000 6 0.001 6 0.001 9 0.000 6 0.000 6 0.001 9 0.000
A-D-BEKK 4 0.005 4 0.005 8 0.000 4 0.001 4 0.001 8 0.000 4 0.000 4 0.001 8 0.000
CCC 10 0.001 8 0.001 7 0.000 12 0.001 9 0.001 5 0.000 11 0.000 11 0.001 7 0.000
A-CCC 5 0.002 5 0.002 5 0.000 5 0.001 5 0.001 4 0.000 5 0.000 5 0.001 5 0.000
DCC 11 0.001 11 0.001 4 0.000 10 0.001 11 0.001 6 0.000 10 0.000 10 0.001 6 0.000
A-DCC 12 0.001 12 0.001 6 0.000 11 0.001 12 0.001 7 0.000 9 0.000 9 0.001 3 0.000
EWMA 8 0.001 9 0.001 10 0.000 9 0.001 10 0.001 11 0.000 12 0.000 12 0.001 12 0.000
O-GARCH 9 0.001 10 0.001 11 0.000 8 0.001 8 0.001 12 0.000 8 0.000 8 0.001 11 0.000
A-O-GARCH 7 0.001 7 0.001 12 0.000 7 0.001 7 0.001 10 0.000 7 0.000 7 0.001 10 0.000
RWE 3* 0.085 3* 0.098 2 0.000 3* 0.078 3* 0.097 2* 0.068 3 0.004 3 0.004 1* 1.000
VHAR 1* 1.000 1* 1.000 1* 1.000 1* 1.000 1* 1.000 1* 1.000 1* 1.000 1* 1.000 2 0.014
HYBICOV 2* 0.115 2* 0.138 3 0.000 2* 0.158 2* 0.184 3 0.000 2* 0.153 2* 0.180 4 0.000
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Table A4 Out-of-Sample Forecast Losses (30-minute Sampling Frequency)

This table reports average out-of-sample forecast losses for the 1–, 5–, and 22–day horizons, respectively. We
employ a rolling window of 1,000 observations to produce forecasts from parametric models. VHAR, RWE and
HYBICOV model forecasts are based on intraday data sampled at the 30-minute frequency. LE is the Euclidean
distance, LF is the Frobenius distance, and LQ is the multivariate quasi-likelihood loss function. The model with
the lowest average out-of-sample loss is marked with an asterisk (*). A dagger (†) indicates models that yield as
accurate forecasts as the best model at the 5% significance level based on the Giacomini-White test.

1–Day Horizon 5–Day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

D-BEKK 0.0340 0.0548 −21.0445 0.0248 0.0398 −20.8445 0.0231 0.0372 −20.5353
A-D-BEKK 0.0267 0.0430 −21.1184 0.0169 0.0270 −20.8747 0.0135 0.0215 −20.5351
CCC 0.0408 0.0651 −21.1736 0.0326 0.0516 −21.0063 0.0321 0.0509 −20.5696
A-CCC 0.0387 0.0612 −21.1725 0.0314 0.0492 −21.0124 0.0281 0.0440 −20.5871
DCC 0.0424 0.0682 −21.2591 0.0341 0.0547 −21.0697 0.0334 0.0534 −20.6096
A-DCC 0.0424 0.0682 −21.2590 0.0341 0.0547 −21.0700 0.0334 0.0534 −20.6100
EWMA 0.0420 0.0680 −21.0208 0.0339 0.0547 −20.7898 0.0362 0.0585 −20.3922
O-GARCH 0.0424 0.0689 −21.0166 0.0343 0.0558 −20.8067 0.0341 0.0555 −20.4625
A-O-GARCH 0.0575 0.0942 −21.0272 0.0488 0.0798 −20.8185 0.0405 0.0662 −20.4678
RWE 0.0258† 0.0409† −18.5153 0.0098 0.0155 −21.5565∗ 0.0072 0.0114 −21.3128∗

VHAR 0.0171∗ 0.0276∗ −21.7544∗ 0.0079∗ 0.0125∗ −21.3997 0.0060∗ 0.0096∗ −20.7592
HYBICOV 0.0179† 0.0289† −19.2128 0.0083† 0.0132† −16.3704† 0.0066† 0.0105† −21.0811
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Table A5 Model Confidence Set Results (30-minute Sampling Frequency)

This table shows the results of the 5% Model Confidence Set (MCS). We employ three statistical loss functions and forecast horizons of 1, 5 and 22 trading days, respectively.
VHAR, RWE and HYBICOV model forecasts are based on intraday data sampled at the 30-minute frequency. LE denotes the Euclidean distance, LF is the Frobenius distance,
and LQ is the multivariate quasi-likelihood loss function. The column labelled rank reports the relative ranking of a model in the MCS based on a specific loss function while
the p-val column shows the associated p-value of the test. The semi-quadratic statistic of Equation (23) is used to test the null hypothesis of the MCS. An asterisk (*) indicates
models that are part of the 5% MCS.

1–Day Horizon 5–Day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val

D-BEKK 6 0.002 6 0.001 8 0.000 6 0.000 6 0.000 9 0.000 6 0.000 6 0.000 9 0.000
A-D-BEKK 4 0.008 4 0.008 5 0.000 4 0.000 4 0.000 7 0.000 4 0.000 4 0.000 8 0.000
CCC 8 0.002 8 0.001 6 0.000 12 0.000 10 0.000 6 0.000 11 0.000 11 0.000 7 0.000
A-CCC 5 0.003 5 0.004 4 0.000 5 0.000 5 0.000 5 0.000 5 0.000 5 0.000 4 0.000
DCC 11 0.002 11 0.001 2 0.000 10 0.000 11 0.000 4 0.000 10 0.000 10 0.000 6 0.000
A-DCC 12 0.002 12 0.001 3 0.000 11 0.000 12 0.000 3 0.000 9 0.000 9 0.000 5 0.000
EWMA 9 0.002 9 0.001 7 0.000 9 0.000 9 0.000 8 0.000 12 0.000 12 0.000 10 0.000
O-GARCH 10 0.002 10 0.001 10 0.000 8 0.000 8 0.000 11 0.000 8 0.000 8 0.000 12 0.000
A-O-GARCH 7 0.002 7 0.001 9 0.000 7 0.000 7 0.000 10 0.000 7 0.000 7 0.000 11 0.000
RWE 3* 0.099 3* 0.113 12 0.000 3 0.030 3 0.031 1* 1.000 3 0.003 3 0.005 1* 1.000
VHAR 1* 1.000 1* 1.000 1* 1.000 1* 1.000 1* 1.000 2 0.001 1* 1.000 1* 1.000 3 0.000
HYBICOV 2* 0.260 2* 0.279 11 0.000 2* 0.255 2* 0.278 12 0.000 2 0.034 2 0.037 2 0.000
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Table A6 Out-of-Sample Forecast Losses (Daily Sampling Frequency)

This table reports average out-of-sample forecast losses for the forecast horizon of 22 trading days
based on the 12 models under consideration. Daily data are employed for the VHAR, RWE and
HYBICOV estimation as well as for the latent covariance proxy. We employ a rolling window
of 1,000 observations to produce forecasts from parametric models. LE is the Euclidean distance,
LF is the Frobenius distance, and LQ is the multivariate quasi-likelihood loss function. The model
with the lowest average out-of-sample loss is marked with an asterisk (*). A dagger (†) indicates
models that yield as accurate forecasts as the best model at the 5% significance level based on the
Giacomini-White test.

22-Day Horizon
LE LF LQ

D-BEKK 0.0488 0.0784 -24.2213
A-D-BEKK 0.0310 0.0493 -24.2387
CCC 0.0659 0.1045 -23.8267
A-CCC 0.0585 0.0922 -23.9117
DCC 0.0678 0.1083 -23.9326
A-DCC 0.0678 0.1083 -23.9315
EWMA 0.0720 0.1161 -25.3788
O-GARCH 0.0692 0.1120 -24.0905
A-O-GARCH 0.0773 0.1255 -24.0868
RWE 0.0001* 0.0002* -32.1800*
VHAR 0.0384† 0.0619† -25.7395†

HYBICOV 0.0423 0.0682 -26.6651
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Table A7 Model Confidence Set Results (Daily Sampling Frequency)

This table shows the results of the 5% Model Confidence Set (MCS) using daily data for all the 12 models
under consideration and employing three statistical loss functions at 22-day horizon. LE denotes the Euclidean
distance, LF is the Frobenius distance, and LQ is the multivariate quasi-likelihood loss function. The column
labelled rank reports the relative ranking of a model in the MCS based on a specific loss function while the p-val
column shows the associated p-value of the test. The semi-quadratic statistic of Equation (23) is used to test
the null hypothesis of the MCS. An asterisk (*) indicates models that are part of the 5% MCS.

22-Day Horizon
LE LF LQ

Rank p-val Rank p-val Rank p-val

D-BEKK 4 0.000 4 0.000 7 0.000
A-D-BEKK 3 0.000 3 0.000 5 0.000
CCC 9 0.000 9 0.000 8 0.000
A-CCC 6 0.000 6 0.000 6 0.000
DCC 12 0.000 12 0.000 11 0.000
A-DCC 11 0.000 11 0.000 12 0.000
EWMA 8 0.000 8 0.000 4 0.000
O-GARCH 10 0.000 10 0.000 9 0.000
A-O-GARCH 7 0.000 7 0.000 10 0.000
RWE 1* 1.000 1* 1.000 1* 1.000
VHAR 5 0.000 5 0.000 3 0.000
HYBICOV 2 0.000 2 0.000 2 0.000
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Table A8 Out-of-Sample Forecast Comparison of VHAR vs. GVHAR

This table shows the average out-of-sample losses of the VHAR model and a fully generalized alternative (GVHAR).
Three forecast horizons are considered, namely: 1, 5, and 22 trading days, respectively. Panels A–C display the
results for three alternative intraday sampling frequencies. The VHAR model assumes that all pairwise conditional
covariances are determined by the same parameters. The GVHAR model relaxes the previous assumption by
allowing the time series of each unique conditional covariance element to follow its own HAR dynamics and
their system is estimated through seemingly unrelated regressions (SUR). We employ a rolling window of 1,000
observations to produce out-of-sample forecasts. LE is the Euclidean distance, LF is the Frobenius distance, and
LQ is the multivariate quasi-likelihood loss function. The model with the lowest average out-of-sample loss is
marked with an asterisk (*). A dagger (†) indicates models that yield as accurate forecasts as the best model at the
5% significance level based on the Giacomini-White test.

1-Day Horizon 5-Day Horizon 22-Day Horizon

LE LF LQ LE LF LQ LE LF LQ

Panel A: 5-Minute Returns

VHAR 0.0114* 0.0178* -20.6043* 0.0064* 0.0100* -20.4024* 0.0061* 0.0095* -19.9277*

GVHAR 0.0127† 0.0198† -19.8945 0.0072† 0.0112† -19.7218 0.0062† 0.0097† -19.3322

Panel B: 10-Minute Returns

VHAR 0.0131* 0.0205* -20.8973 0.0069* 0.0109* -20.7175 0.0063† 0.0099† -20.2994†

GVHAR 0.0139† 0.0217† -20.9985* 0.0074† 0.0116† -20.8147* 0.0062* 0.0097* -20.3987*

Panel C: 30-Minute Returns

VHAR 0.0188* 0.0295* -21.661* 0.0079* 0.0125* -21.4832* 0.0064† 0.0101† -21.1034*

GVHAR 0.0191† 0.0301† -21.5954† 0.0081† 0.0128† -21.4150 0.0061* 0.0096* -21.0135†
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Table A9 Risk–Return Trade-off for US Stocks (Weighted Least Squares Estimation)

This table reports the intercepts and the common slope coefficient estimates along with their t-statistics (in parentheses) from the SUR system estimation of Equation (26).
The system is estimated using weighted least squares (WLS) similar to Bali and Engle (2010). The dependent variables correspond to daily excess returns on the ten US stocks
presented in section 4.2 and the S&P 500 index, which serves as a proxy for the market portfolio. Each column presents results from using a different model to obtain estimates
of the expected conditional covariance between the excess returns of each stock and the excess return on S&P 500 index. Three alternative intraday sampling frequencies are
considered for the estimation of RWE, VHAR and HYBICOV models (Panels A–C).

Panel A: 5-Minute Frequency
RWE VHAR HYBICOV D-BEKK A-D-BEKK CCC A-CCC DCC A-DCC O-GARCH A-O-GARCH EWMA

αAXP -0.1089 (-0.79) -0.1926 (-1.36) -0.2561 (-1.77) -0.1584 (-1.02) -0.1138 (-0.77) -0.0283 (-0.20) -0.0671 (-0.48) -0.0446 (-0.31) -0.1071 (-0.76) -0.0139 (-0.09) -0.0559 (-0.38) -0.1130 (-0.79)
αBA -0.0472 (-0.48) -0.1082 (-1.07) -0.1438 (-1.40) -0.0731 (-0.67) -0.0485 (-0.45) 0.0186 (0.19) -0.0050 (-0.05) 0.0083 (0.08) -0.0296 (-0.30) 0.0269 (0.25) -0.0021 (-0.02) -0.0378 (-0.37)
αCVX -0.0580 (-0.61) -0.1204 (-1.23) -0.1584 (-1.58) -0.0854 (-0.79) -0.0441 (-0.43) 0.0114 (0.12) -0.0129 (-0.13) 0.0004 (0.00) -0.0394 (-0.41) 0.0202 (0.19) -0.0098 (-0.10) -0.0500 (-0.50)
αDD -0.0578 (-0.57) -0.1220 (-1.18) -0.1669 (-1.58) -0.0935 (-0.81) -0.0706 (-0.63) 0.0125 (0.12) -0.0138 (-0.14) 0.0009 (0.01) -0.0415 (-0.41) 0.0220 (0.20) -0.0100 (-0.09) -0.0516 (-0.49)
αGE -0.1229 (-1.12) -0.1919 (-1.70) -0.2537 (-2.19) -0.1568 (-1.27) -0.1230 (-1.04) -0.0504 (-0.45) -0.0810 (-0.74) -0.0627 (-0.56) -0.1107 (-1.00) -0.0380 (-0.32) -0.0713 (-0.61) -0.1142 (-1.01)
αIBM -0.0331 (-0.43) -0.0812 (-1.02) -0.1067 (-1.33) -0.0497 (-0.58) -0.0300 (-0.36) 0.0200 (0.26) 0.0021 (0.03) 0.0121 (0.15) -0.0165 (-0.21) 0.0265 (0.32) 0.0041 (0.05) -0.0241 (-0.30)
αJPM -0.0840 (-0.56) -0.1656 (-1.07) -0.2291 (-1.46) -0.1519 (-0.89) -0.0950 (-0.59) -0.0099 (-0.06) -0.0529 (-0.35) -0.0269 (-0.17) -0.0937 (-0.61) 0.0083 (0.05) -0.0372 (-0.23) -0.0974 (-0.62)
αKO 0.0169 (0.27) -0.0175 (-0.28) -0.0338 (-0.53) -0.0010 (-0.01) 0.0120 (0.18) 0.0538 (0.87) 0.0412 (0.67) 0.0484 (0.77) 0.0283 (0.45) 0.0587 (0.90) 0.0434 (0.67) 0.0227 (0.36)
αMSFT -0.0160 (-0.17) -0.0722 (-0.74) -0.1026 (-1.04) -0.0448 (-0.42) -0.0053 (-0.05) 0.0455 (0.48) 0.0249 (0.26) 0.0361 (0.37) 0.0027 (0.03) 0.0526 (0.51) 0.0249 (0.25) -0.0085 (-0.09)
αXOM -0.0708 (-0.82) -0.1274 (-1.42) -0.1617 (-1.78) -0.0959 (-0.97) -0.0728 (-0.76) -0.0059 (-0.07) -0.0283 (-0.33) -0.0157 (-0.18) -0.0515 (-0.59) 0.0026 (0.03) -0.0250 (-0.27) -0.0606 (-0.67)
αMarket -0.0462 (-0.63) -0.1042 (-1.36) -0.1438 (-1.83) -0.0760 (-0.86) -0.0530 (-0.62) 0.0147 (0.19) -0.0152 (-0.20) 0.0042 (0.05) -0.0404 (-0.53) 0.0266 (0.32) -0.0021 (-0.03) -0.0399 (-0.51)
βPooled 2.0761 (4.54) 4.0647 (4.93) 5.2124 (5.28) 3.6729 (2.14) 2.6360 (1.91) 0.4974 (0.82) 1.1440 (2.24) 0.7405 (1.12) 1.7068 (2.95) 0.2138 (0.22) 0.8374 (0.96) 1.6337 (2.40)

Panel B: 10-Minute Frequency
RWE VHAR HYBICOV D-BEKK A-D-BEKK CCC A-CCC DCC A-DCC O-GARCH A-O-GARCH EWMA

αAXP -0.1780 (-1.29) -0.2172 (-1.52) -0.2855 (-1.98) -0.1584 (-1.02) -0.1138 (-0.77) -0.0283 (-0.20) -0.0671 (-0.48) -0.0446 (-0.31) -0.1071 (-0.76) -0.0139 (-0.09) -0.0559 (-0.38) -0.1130 (-0.79)
αBA -0.0960 (-0.97) -0.1224 (-1.20) -0.1588 (-1.55) -0.0731 (-0.67) -0.0485 (-0.45) 0.0186 (0.19) -0.0050 (-0.05) 0.0083 (0.08) -0.0296 (-0.30) 0.0269 (0.25) -0.0021 (-0.02) -0.0378 (-0.37)
αCVX -0.1094 (-1.15) -0.1329 (-1.35) -0.1745 (-1.75) -0.0854 (-0.79) -0.0441 (-0.43) 0.0114 (0.12) -0.0129 (-0.13) 0.0004 (0.00) -0.0394 (-0.41) 0.0202 (0.19) -0.0098 (-0.10) -0.0500 (-0.50)
αDD -0.1111 (-1.10) -0.1369 (-1.31) -0.1843 (-1.75) -0.0935 (-0.81) -0.0706 (-0.63) 0.0125 (0.12) -0.0138 (-0.14) 0.0009 (0.01) -0.0415 (-0.41) 0.0220 (0.20) -0.0100 (-0.09) -0.0516 (-0.49)
αGE -0.1783 (-1.62) -0.2055 (-1.81) -0.2660 (-2.32) -0.1568 (-1.27) -0.1230 (-1.04) -0.0504 (-0.45) -0.0810 (-0.74) -0.0627 (-0.56) -0.1107 (-1.00) -0.0380 (-0.32) -0.0713 (-0.61) -0.1142 (-1.01)
αIBM -0.0723 (-0.93) -0.0914 (-1.14) -0.1181 (-1.47) -0.0497 (-0.58) -0.0300 (-0.36) 0.0200 (0.26) 0.0021 (0.03) 0.0121 (0.15) -0.0165 (-0.21) 0.0265 (0.32) 0.0041 (0.05) -0.0241 (-0.30)
αJPM -0.1511 (-1.00) -0.1825 (-1.18) -0.2532 (-1.62) -0.1519 (-0.89) -0.0950 (-0.59) -0.0099 (-0.06) -0.0529 (-0.35) -0.0269 (-0.17) -0.0937 (-0.61) 0.0083 (0.05) -0.0372 (-0.23) -0.0974 (-0.62)
αKO -0.0115 (-0.19) -0.0248 (-0.39) -0.0422 (-0.66) -0.0010 (-0.01) 0.0120 (0.18) 0.0538 (0.87) 0.0412 (0.67) 0.0484 (0.77) 0.0283 (0.45) 0.0587 (0.90) 0.0434 (0.67) 0.0227 (0.36)
αMSFT -0.0609 (-0.64) -0.0815 (-0.83) -0.1149 (-1.17) -0.0448 (-0.42) -0.0053 (-0.05) 0.0455 (0.48) 0.0249 (0.26) 0.0361 (0.37) 0.0027 (0.03) 0.0526 (0.51) 0.0249 (0.25) -0.0085 (-0.09)
αXOM -0.1165 (-1.35) -0.1374 (-1.53) -0.1761 (-1.95) -0.0959 (-0.97) -0.0728 (-0.76) -0.0059 (-0.07) -0.0283 (-0.33) -0.0157 (-0.18) -0.0515 (-0.59) 0.0026 (0.03) -0.0250 (-0.27) -0.0606 (-0.67)
αMarket -0.0930 (-1.27) -0.1133 (-1.47) -0.1567 (-2.01) -0.0760 (-0.86) -0.0530 (-0.62) 0.0147 (0.19) -0.0152 (-0.20) 0.0042 (0.05) -0.0404 (-0.53) 0.0266 (0.32) -0.0021 (-0.03) -0.0399 (-0.51)
βPooled 3.3372 (6.87) 4.5790 (5.10) 5.7201 (5.93) 3.6729 (2.14) 2.6360 (1.91) 0.4974 (0.82) 1.1440 (2.24) 0.7405 (1.12) 1.7068 (2.95) 0.2138 (0.22) 0.8374 (0.96) 1.6337 (2.40)

Panel C: 30-Minute Frequency
RWE VHAR HYBICOV D-BEKK A-D-BEKK CCC A-CCC DCC A-DCC O-GARCH A-O-GARCH EWMA

αAXP -0.1303 (-0.95) -0.1305 (-0.92) -0.2006 (-1.41) -0.1584 (-1.02) -0.1138 (-0.77) -0.0283 (-0.20) -0.0671 (-0.48) -0.0446 (-0.31) -0.1071 (-0.76) -0.0139 (-0.09) -0.0559 (-0.38) -0.1130 (-0.79)
αBA -0.0623 (-0.63) -0.0583 (-0.57) -0.1035 (-1.02) -0.0731 (-0.67) -0.0485 (-0.45) 0.0186 (0.19) -0.0050 (-0.05) 0.0083 (0.08) -0.0296 (-0.30) 0.0269 (0.25) -0.0021 (-0.02) -0.0378 (-0.37)
αCVX -0.0741 (-0.79) -0.0592 (-0.61) -0.1167 (-1.19) -0.0854 (-0.79) -0.0441 (-0.43) 0.0114 (0.12) -0.0129 (-0.13) 0.0004 (0.00) -0.0394 (-0.41) 0.0202 (0.19) -0.0098 (-0.10) -0.0500 (-0.50)
αDD -0.0749 (-0.75) -0.0685 (-0.66) -0.1232 (-1.19) -0.0935 (-0.81) -0.0706 (-0.63) 0.0125 (0.12) -0.0138 (-0.14) 0.0009 (0.01) -0.0415 (-0.41) 0.0220 (0.20) -0.0100 (-0.09) -0.0516 (-0.49)
αGE -0.1411 (-1.30) -0.1331 (-1.18) -0.2009 (-1.77) -0.1568 (-1.27) -0.1230 (-1.04) -0.0504 (-0.45) -0.0810 (-0.74) -0.0627 (-0.56) -0.1107 (-1.00) -0.0380 (-0.32) -0.0713 (-0.61) -0.1142 (-1.01)
αIBM -0.0445 (-0.58) -0.0414 (-0.52) -0.0757 (-0.96) -0.0497 (-0.58) -0.0300 (-0.36) 0.0200 (0.26) 0.0021 (0.03) 0.0121 (0.15) -0.0165 (-0.21) 0.0265 (0.32) 0.0041 (0.05) -0.0241 (-0.30)
αJPM -0.1065 (-0.71) -0.0977 (-0.63) -0.1757 (-1.14) -0.1519 (-0.89) -0.0950 (-0.59) -0.0099 (-0.06) -0.0529 (-0.35) -0.0269 (-0.17) -0.0937 (-0.61) 0.0083 (0.05) -0.0372 (-0.23) -0.0974 (-0.62)
αKO 0.0073 (0.12) 0.0167 (0.27) -0.0111 (-0.18) -0.0010 (-0.01) 0.0120 (0.18) 0.0538 (0.87) 0.0412 (0.67) 0.0484 (0.77) 0.0283 (0.45) 0.0587 (0.90) 0.0434 (0.67) 0.0227 (0.36)
αMSFT -0.0294 (-0.31) -0.0244 (-0.25) -0.0662 (-0.68) -0.0448 (-0.42) -0.0053 (-0.05) 0.0455 (0.48) 0.0249 (0.26) 0.0361 (0.37) 0.0027 (0.03) 0.0526 (0.51) 0.0249 (0.25) -0.0085 (-0.09)
αXOM -0.0834 (-0.98) -0.0658 (-0.75) -0.1236 (-1.38) -0.0959 (-0.97) -0.0728 (-0.76) -0.0059 (-0.07) -0.0283 (-0.33) -0.0157 (-0.18) -0.0515 (-0.59) 0.0026 (0.03) -0.0250 (-0.27) -0.0606 (-0.67)
αMarket -0.0590 (-0.82) -0.0503 (-0.66) -0.1041 (-1.36) -0.0760 (-0.86) -0.0530 (-0.62) 0.0147 (0.19) -0.0152 (-0.20) 0.0042 (0.05) -0.0404 (-0.53) 0.0266 (0.32) -0.0021 (-0.03) -0.0399 (-0.51)
βPooled 2.4593 (6.96) 3.9032 (3.23) 4.0692 (4.81) 3.6729 (2.14) 2.6360 (1.91) 0.4974 (0.82) 1.1440 (2.24) 0.7405 (1.12) 1.7068 (2.95) 0.2138 (0.22) 0.8374 (0.96) 1.6337 (2.40)
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Table A10 MCS Results using the Range Statistic

This table shows the results of the 5% Model Confidence Set (MCS). We employ three statistical loss functions and forecast horizons of 1, 5 and 22 trading days, respectively.
LE denotes the Euclidean distance, LF is the Frobenius distance, and LQ is the multivariate quasi-likelihood loss function. The column labelled rank reports the relative ranking
of a model in the MCS based on a specific loss function while the p-val column shows the associated p-value of the test. The range statistic of Equation (24) is used to test the
null hypothesis of the MCS. An asterisk (*) indicates models that are part of the 5% MCS.

1–Day Horizon 5–Day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val

D-BEKK 6 0.00 6 0.00 7 0.00 6 0.00 6 0.00 9 0.00 6 0.00 6 0.00 9 0.00

A-D-BEKK 4 0.00 4 0.00 8 0.00 4 0.00 4 0.00 7 0.00 3 0.00 3 0.00 3 0.00

CCC 8 0.00 8 0.00 4 0.00 8 0.00 8 0.00 6 0.00 11 0.00 11 0.00 5 0.00

A-CCC 5 0.00 5 0.00 6 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 6 0.00

DCC 11 0.00 10 0.00 5 0.00 11 0.00 9 0.00 4 0.00 10 0.00 10 0.00 8 0.00

A-DCC 12 0.00 11 0.00 3 0.00 12 0.00 11 0.00 3 0.00 9 0.00 9 0.00 7 0.00

EWMA 9 0.00 9 0.00 12 0.00 9 0.00 10 0.00 12 0.00 12 0.00 12 0.00 12 0.00

O-GARCH 10 0.00 12 0.00 10 0.00 10 0.00 12 0.00 10 0.00 8 0.00 8 0.00 11 0.00

A-O-GARCH 7 0.00 7 0.00 11 0.00 7 0.00 7 0.00 11 0.00 7 0.00 7 0.00 10 0.00

RWE 2 0.05 2∗ 0.06 2 0.00 2 0.03 2 0.04 2∗ 0.06 2 0.00 2 0.00 2∗ 0.55

VHAR 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00

HYBICOV 3 0.00 3 0.00 9 0.00 3 0.00 3 0.00 8 0.00 4 0.00 4 0.00 4 0.00
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Table A11 Pairwise Comparisons of Forecasts (LE Loss Function)

This table reports the signed value of the χ2 statistic of the Giacomini-White test related to the null hypothesis that the difference in the average LE loss of the model in the
column and that of the row model is equal to zero. Negative (positive) values indicate superiority of the column (row) model over the row (column) model. LE is the Euclidean
loss function. Each panel (A–C) shows results for a different forecast horizon. We use a rolling window of 1,000 observations to obtain forecasts from parametric models. ∗

and ∗∗ indicate significance at 5% and 1% levels, respectively.

A-D-BEKK CCC A-CCC DCC A-DCC EWMA O-GARCH A-O-GARCH RWE HYBICOV VHAR

Panel A: 1–Day Horizon

D-BEKK −59.79∗∗ 8.06∗∗ 1.72 9.47∗∗ 9.49∗∗ 64.69∗∗ 9.33∗∗ 10.43∗∗ −16.35∗∗ −41.21∗∗ −57.20∗∗

A-D-BEKK 31.82∗∗ 12.57∗∗ 30.97∗∗ 30.99∗∗ 82.98∗∗ 30.18∗∗ 18.16∗∗ −3.86∗ −10.53∗∗ −31.85∗∗

CCC −0.75 20.05∗∗ 20.16∗∗ 0.32 13.04∗∗ 10.03∗∗ −22.51∗∗ −26.37∗∗ −37.61∗∗

A-CCC 2.57 2.58 0.83 3.01 16.58∗∗ −18.93∗∗ −14.59∗∗ −24.28∗∗

DCC 1.66 −0.06 1.28 9.11∗∗ −23.59∗∗ −26.50∗∗ −37.04∗∗

A-DCC −0.06 1.22 9.10∗∗ −23.60∗∗ −26.51∗∗ −37.05∗∗

EWMA 0.11 5.38∗ −32.12∗∗ −53.89∗∗ −65.56∗∗

O-GARCH 9.09∗∗ −23.53∗∗ −26.23∗∗ −36.57∗∗

A-O-GARCH −22.13∗∗ −19.14∗∗ −24.57∗∗

RWE 0.23 −3.17

HYBICOV −40.32∗∗

Panel B: 5–Day Horizon

D-BEKK −15.07∗∗ 3.24 1.16 3.57 3.57 18.81∗∗ 3.59 4.65∗ −17.23∗∗ −11.80∗∗ −18.48∗∗

A-D-BEKK 10.12∗∗ 6.16∗ 9.72∗∗ 9.72∗∗ 19.04∗∗ 9.59∗∗ 7.80∗∗ −14.72∗∗ −3.94∗ −17.58∗∗

CCC −0.29 5.64∗ 5.66∗ 0.17 4.26∗ 5.02∗ −12.51∗∗ −9.07∗∗ −13.07∗∗

A-CCC 1.46 1.47 0.28 1.95 8.60∗∗ −9.51∗∗ −6.50∗ −10.22∗∗

DCC 2.04 0.00 1.00 4.81∗ −12.05∗∗ −8.92∗∗ −12.61∗∗

A-DCC 0.00 0.95 4.81∗ −12.05∗∗ −8.92∗∗ −12.61∗∗

EWMA 0.02 2.13 −18.96∗∗ −15.57∗∗ −19.66∗∗

O-GARCH 4.76∗ −11.95∗∗ −8.92∗∗ −12.51∗∗

A-O-GARCH −9.68∗∗ −7.92∗∗ −10.02∗∗

RWE 15.44∗∗ −3.32

HYBICOV −29.71∗∗

Panel C: 22–Day Horizon

D-BEKK −4.01∗ 1.94 0.53 2.01 2.01 4.56∗ 2.21 2.16 −5.44∗ −1.58 −5.69∗

A-D-BEKK 3.76 3.15 3.67 3.67 4.45∗ 3.75 3.63 −9.02∗∗ 1.31 −9.75∗∗

CCC −1.37 2.46 2.45 0.63 3.13 2.13 −4.59∗ −2.32 −4.79∗

A-CCC 1.96 1.97 1.04 2.30 4.12∗ −4.34∗ −1.77 −4.63∗

DCC 1.58 0.27 2.72 1.96 −4.46∗ −2.35 −4.66∗

A-DCC 0.27 2.69 1.96 −4.46∗ −2.34 −4.66∗

EWMA −0.12 0.21 −5.13∗ −3.03 −5.27∗

O-GARCH 1.58 −4.50∗ −2.45 −4.70∗

A-O-GARCH −4.33∗ −2.67 −4.5∗

RWE 12.56∗∗ −6.41∗

HYBICOV −14.80∗∗
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Table A12 Pairwise Comparisons of Forecasts (LF Loss Function)

This table reports the signed value of the χ2 statistic of the Giacomini-White test related to the null hypothesis that the difference in the average LF loss of the model in the
column and that of the row model is equal to zero. Negative (positive) values indicate superiority of the column (row) model over the row (column) model. LF denotes the
Frobenius distance. Each panel (A–C) contains results for a different forecast horizon. We use a rolling window of 1,000 observations to obtain forecasts from parametric
models. ∗ and ∗∗ indicate significance at 5% and 1% levels, respectively.

A-D-BEKK CCC A-CCC DCC A-DCC EWMA O-GARCH A-O-GARCH RWE HYBICOV VHAR

Panel A: 1–Day Horizon

D-BEKK −60.85∗∗ 7.48∗∗ 1.37 9.26∗∗ 9.28∗∗ 65.57∗∗ 9.62∗∗ 10.61∗∗ −17.48∗∗ −42.36∗∗ −56.90∗∗

A-D-BEKK 31.41∗∗ 11.97∗∗ 30.40∗∗ 30.43∗∗ 84.14∗∗ 29.98∗∗ 18.11∗∗ −4.42∗ −11.57∗∗ −31.35∗∗

CCC −0.96 20.05∗∗ 20.16∗∗ 0.80 15.45∗∗ 10.59∗∗ −22.63∗∗ −26.35∗∗ −37.02∗∗

A-CCC 3.62 3.63 1.40 5.02∗ 17.29∗∗ −18.63∗∗ −14.46∗∗ −23.72∗∗

DCC 1.66 −0.02 5.23∗ 9.52∗∗ −23.92∗∗ −26.49∗∗ −36.36∗∗

A-DCC −0.02 5.11∗ 9.51∗∗ −23.93∗∗ −26.51∗∗ −36.37∗∗

EWMA 0.17 5.57∗ −33.72∗∗ −54.80∗∗ −65.46∗∗

O-GARCH 9.22∗∗ −24.40∗∗ −26.62∗∗ −36.27∗∗

A-O-GARCH −22.18∗∗ −19.26∗∗ −24.28∗∗

RWE 0.25 −2.90

HYBICOV −37.56∗∗

Panel B: 5–Day Horizon

D-BEKK −15.38∗∗ 3.02 0.97 3.45 3.46 18.81∗∗ 3.63 4.66∗ −17.22∗∗ −12.29∗∗ −18.56∗∗

A-D-BEKK 10.01∗∗ 5.97∗ 9.52∗∗ 9.53∗∗ 19.22∗∗ 9.47∗∗ 7.71∗∗ −14.58∗∗ −4.55∗ −17.43∗∗

CCC −0.41 5.64∗ 5.66∗ 0.38 4.85∗ 5.16∗ −12.41∗∗ −9.11∗∗ −12.99∗∗

A-CCC 2.21 2.23 0.50 3.49 8.58∗∗ −9.44∗∗ −6.49∗ −10.12∗∗

DCC 2.04 0.00 2.42 4.93∗ −11.87∗∗ −8.92∗∗ −12.42∗∗

A-DCC 0.00 2.36 4.93∗ −11.87∗∗ −8.92∗∗ −12.42∗∗

EWMA 0.03 2.19 −18.95∗∗ −15.87∗∗ −19.71∗∗

O-GARCH 4.76∗ −11.82∗∗ −9.01∗∗ −12.38∗∗

A-O-GARCH −9.57∗∗ −7.93∗∗ −9.89∗∗

RWE 15.00∗∗ −3.20

HYBICOV −28.67∗∗

Panel C: 22–Day Horizon

D-BEKK −4.06∗ 1.84 0.42 1.94 1.94 4.57∗ 2.21 2.16 −5.44∗ −1.75 −5.69∗

A-D-BEKK 3.73 3.11 3.63 3.63 4.48∗ 3.73 3.59 −8.88∗∗ 0.97 −9.68∗∗

CCC −1.54 2.46 2.45 0.85 3.21 2.26 −4.58∗ −2.37 −4.78∗

A-CCC 2.22 2.22 1.28 2.70 4.01∗ −4.35∗ −1.81 −4.65∗

DCC 1.58 0.34 3.45 2.10 −4.42∗ −2.40 −4.62∗

A-DCC 0.34 3.44 2.10 −4.42∗ −2.40 −4.61∗

EWMA −0.08 0.24 −5.14∗ −3.14 −5.28∗

O-GARCH 1.59 −4.47∗ −2.54 −4.65∗

A-O-GARCH −4.27∗ −2.73 −4.44∗

RWE 12.31∗∗ −6.66∗∗

HYBICOV −14.48∗∗
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Table A13 Pairwise Comparisons of Forecasts (LQ Loss Function)

This table reports the signed value of the χ2 statistic of the Giacomini-White test related to the null hypothesis that the difference in the average LQ loss of the model in the
column and that of the row model is equal to zero. Negative (positive) values indicate superiority of the column (row) model over the row (column) model. LQ denotes the
multivariate quasi-likelihood loss function. Each panel (A–C) shows the results for a different forecast horizon. We use a rolling window of 1,000 observations to obtain forecasts
from parametric models. ∗ and ∗∗ indicate significance at 5% and 1% levels, respectively.

A-D-BEKK CCC A-CCC DCC A-DCC EWMA O-GARCH A-O-GARCH RWE HYBICOV VHAR

Panel A: 1–Day Horizon

D-BEKK −26.23∗∗ −67.77∗∗ −40.86∗∗ −107.94∗∗ −107.92∗∗ 178.82∗∗ −8.21∗∗ −9.20∗∗ −135.71∗∗ −1.72 −336.10∗∗

A-D-BEKK −56.26∗∗ −35.52∗∗ −97.50∗∗ −97.65∗∗ 210.98∗∗ 0.03 −0.02 −140.76∗∗ −0.01 −383.75∗∗

CCC 1.62 −6.12∗ −5.41∗ 168.24∗∗ 103.16∗∗ 107.62∗∗ −57.91∗∗ 38.47∗∗ −247.14∗∗

A-CCC −4.52∗ −4.28∗ 130.90∗∗ 49.13∗∗ 52.49∗∗ −134.23∗∗ 55.84∗∗ −556.44∗∗

DCC 4.07∗ 235.29∗∗ 175.03∗∗ 186.76∗∗ −51.20∗∗ 48.14∗∗ −251.04∗∗

A-DCC 235.36∗∗ 175.12∗∗ 186.39∗∗ −51.33∗∗ 47.64∗∗ −251.06∗∗

EWMA −112.98∗∗ −116.76∗∗ −274.97∗∗ −48.26∗∗ −505.72∗∗

O-GARCH −1.60 −162.18∗∗ −0.04 −423.06∗∗

A-O-GARCH −171.01∗∗ 0.00 −447.77∗∗

RWE 212.54∗∗ −351.08∗∗

HYBICOV −620.01∗∗

Panel B: 5–Day Horizon

D-BEKK −6.37∗ −20.5∗∗ −12.15∗∗ −34.53∗∗ −34.63∗∗ 97.46∗∗ −2.13 −2.54 −134.41∗∗ −2.76 −153.15∗∗

A-D-BEKK −15.43∗∗ −9.39∗∗ −26.44∗∗ −26.60∗∗ 88.66∗∗ −0.08 −0.26 −127.42∗∗ −1.32 −144.91∗∗

CCC 1.17 −3.23 −3.13 74.39∗∗ 38.34∗∗ 38.96∗∗ −206.99∗∗ 16.94∗∗ −176.51∗∗

A-CCC −2.87 −2.83 55.47∗∗ 18.35∗∗ 19.44∗∗ −333.91∗∗ 9.21∗∗ −261.65∗∗

DCC 0.04 103.60∗∗ 78.13∗∗ 79.00∗∗ −194.58∗∗ 19.69∗∗ −181.12∗∗

A-DCC 103.59∗∗ 78.90∗∗ 79.54∗∗ −193.87∗∗ 19.63∗∗ −180.73∗∗

EWMA −56.84∗∗ −57.08∗∗ −236.49∗∗ −28.74∗∗ −272.35∗∗

O-GARCH −1.29 −259.53∗∗ −2.07 −271.14∗∗

A-O-GARCH −276.02∗∗ −1.75 −284.07∗∗

RWE 179.83∗∗ −2.63

HYBICOV −155.58∗∗

Panel C: 22–Day Horizon

D-BEKK −1.29 −2.01 −1.84 −3.49 −3.52 22.26∗∗ −0.15 −0.20 −22.32∗∗ 0.00 −22.59∗∗

A-D-BEKK −1.53 −1.37 −2.65 −2.68 22.49∗∗ 0.00 −0.01 −20.68∗∗ 0.03 −20.78∗∗

CCC 0.45 −0.21 −0.25 18.46∗∗ 5.54∗ 4.90∗ −47.11∗∗ 3.81 −50.23∗∗

A-CCC −0.96 −1.02 18.19∗∗ 4.94∗ 4.62∗ −52.40∗∗ 3.09 −54.46∗∗

DCC −0.73 24.01∗∗ 14.88∗∗ 13.32∗∗ −46.26∗∗ 3.43 −48.78∗∗

A-DCC 24.01∗∗ 14.95∗∗ 13.40∗∗ −46.04∗∗ 3.47 −48.47∗∗

EWMA −18.61∗∗ −19.23∗∗ −63.27∗∗ −5.09∗ −63.71∗∗

O-GARCH −0.10 −54.37∗∗ 0.07 −53.73∗∗

A-O-GARCH −53.50∗∗ 0.09 −52.80∗∗

RWE 24.15∗∗ −0.14

HYBICOV −24.71∗∗
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Table A14 MCS Results for the 25% Confidence Level1

This table shows the results of the 25% Model Confidence Set (MCS). We employ three statistical loss functions and forecast horizons of 1, 5 and 22 days, respectively. LE

denotes the Euclidean distance, LF is the Frobenius distance, and LQ is the multivariate quasi-likelihood loss function. The column labelled rank reports the relative ranking of
a model in the MCS based on a specific loss function while the p-val column shows the associated p-value of the test. The range statistic of Equation (24) is used to test the
null hypothesis of the MCS. An asterisk (*) indicates models that are part of the 25% MCS.

1–Day Horizon 5–day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val

D-BEKK 6 0.00 6 0.00 7 0.00 6 0.00 6 0.00 9 0.00 6 0.00 6 0.00 9 0.00

A-D-BEKK 4 0.00 4 0.00 8 0.00 4 0.00 4 0.00 7 0.00 3 0.00 3 0.00 3 0.00

CCC 8 0.00 8 0.00 4 0.00 8 0.00 8 0.00 6 0.00 11 0.00 11 0.00 5 0.00

A-CCC 5 0.00 5 0.00 6 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 6 0.00

DCC 11 0.00 10 0.00 5 0.00 11 0.00 9 0.00 4 0.00 10 0.00 10 0.00 8 0.00

A-DCC 12 0.00 11 0.00 3 0.00 12 0.00 11 0.00 3 0.00 9 0.00 9 0.00 7 0.00

EWMA 9 0.00 9 0.00 12 0.00 9 0.00 10 0.00 12 0.00 12 0.00 12 0.00 12 0.00

O-GARCH 10 0.00 12 0.00 10 0.00 10 0.00 12 0.00 10 0.00 8 0.00 8 0.00 11 0.00

A-O-GARCH 7 0.00 7 0.00 11 0.00 7 0.00 7 0.00 11 0.00 7 0.00 7 0.00 10 0.00

RWE 2 0.05 2 0.06 2 0.00 2 0.03 2 0.04 2 0.06 2 0.00 2 0.00 2∗ 0.55

VHAR 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00

HYBICOV 3 0.00 3 0.00 9 0.00 3 0.00 3 0.00 8 0.00 4 0.00 4 0.00 4 0.00
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Table A15 Out-of-Sample Forecast Losses for Different Market Regimes

This table reports average out-of-sample losses for the 1–, 5–, and 22–day forecast horizons, respectively. We
employ a rolling window of 1,000 observations to produce forecasts from parametric models. Each panel reports
results for a different sub-period of the full sample (i.e. pre-crisis, crisis and post-crisis). LE is the Euclidean
distance, LF is the Frobenius distance, and LQ is the multivariate quasi-likelihood loss function. The column
labelled rank reports the relative ranking of a model in the 5% MCS based on a particular loss function. The model
with the lowest average out-of-sample loss is marked with an asterisk (*). Also, a dagger (†) indicates models that
yield as accurate forecasts as the best model at the 5% significance level based on the Giacomini-White test.

1–Day Horizon 5–Day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

Panel A: 1/1/2000 - 31/7/2008

D-BEKK 0.0077 0.0124 −20.5252 0.0054 0.0088 −20.4627 0.0041 0.0067 −20.3359

A-D-BEKK 0.0074 0.0119 −20.6422 0.0054 0.0087 −20.5638 0.0042 0.0067 −20.4047

CCC 0.0078 0.0125 −20.9554 0.0065 0.0104 −20.7614 0.0053 0.0085 −20.3640

A-CCC 0.0071† 0.0114† −20.9759 0.0066 0.0106 −20.8094 0.0053 0.0084 −20.4240

DCC 0.0081 0.0130 −21.0029 0.0068 0.0109 −20.8255 0.0056 0.0090 −20.4438

A-DCC 0.0081 0.0130 −21.0004 0.0068 0.0109 −20.8247 0.0056 0.0090 −20.4472

EWMA 0.0096 0.0157 −19.9905 0.0079 0.0129 −19.8680 0.0070 0.0115 −19.6659

O-GARCH 0.0082 0.0133 −20.6944 0.0070 0.0114 −20.6136 0.0059 0.0096 −20.4242

A-O-GARCH 0.0097† 0.0158 −20.7097 0.0095 0.0155 −20.6358 0.0074 0.0120 −20.4470

RWE 0.0050† 0.0080† −21.3877 0.0051† 0.0082† −21.4681† 0.0024† 0.0039† −21.2394∗

VHAR 0.0048∗ 0.0077∗ −21.6891∗ 0.0035∗ 0.0057∗ −21.4837∗ 0.0021∗ 0.0034∗ −21.1843†

HYBICOV 0.0065 0.0104 −20.5342 0.0044 0.0069 −20.4490 0.0041 0.0062 −19.9704

Panel B: 1/8/2008- 31/12/2009

D-BEKK 0.1560 0.2518 −14.2032 0.1268 0.2058 −13.8043 0.1253† 0.2027† −12.6199

A-D-BEKK 0.1050 0.1687 −14.1417 0.0712 0.1149 −13.7008 0.0593† 0.0939† −12.5108

CCC 0.2034 0.3245 −15.2557 0.1747 0.2791 −15.0773 0.1771† 0.2821† −14.1743

A-CCC 0.1865 0.2953 −15.3165 0.1562 0.2472 −15.1067 0.1403† 0.2204† −14.1437

DCC 0.2153 0.3482 −15.1931 0.1860 0.3018 −14.9710 0.1863† 0.3006† −13.9702

A-DCC 0.2153 0.3482 −15.1845 0.1861 0.3019 −14.9638 0.1864† 0.3008† −13.9642

EWMA 0.2092 0.3397 −13.8235 0.1860 0.3037 −13.4248 0.2123† 0.3459† −12.2009

O-GARCH 0.2157 0.3536 −14.5248 0.1874 0.3095 −14.2690 0.1913† 0.3159† −13.4279

A-O-GARCH 0.3138 0.5190 −14.5430 0.2692 0.4471 −14.2907 0.2171† 0.3594† −13.4092

RWE 0.0780† 0.1221† −15.6721 0.0304† 0.0469† −15.6910∗ 0.0393† 0.0607† −14.7210†

VHAR 0.0563∗ 0.0884∗ −15.9351∗ 0.0289∗ 0.0451∗ −15.6645† 0.0326∗ 0.0508∗ −14.8127∗

HYBICOV 0.0830 0.1299 −15.1376 0.0540 0.0843 −15.1175 0.0524 0.0816 −14.5050†

Panel C: 1/1/2010- 19/4/2016

D-BEKK 0.0125 0.0195 −20.1858 0.0095 0.0152 −20.1325 0.0094 0.0151 −19.9143

A-D-BEKK 0.0104 0.0162 −20.2494 0.0076 0.0121 −20.1766 0.0070 0.0112 −19.9414

CCC 0.0145 0.0225 −20.3522 0.0120 0.0190 −20.2466 0.0133 0.0211 −19.9155

A-CCC 0.0150 0.0232 −20.2664 0.0135 0.0211 −20.1444 0.0143 0.0225 −19.8508

DCC 0.0146 0.0228 −20.3824 0.0122 0.0193 −20.2818 0.0134 0.0213 −19.9355

A-DCC 0.0146 0.0228 −20.3838 0.0122 0.0193 −20.2836 0.0134 0.0213 −19.9366

EWMA 0.0140 0.0220 −19.8933 0.0112 0.0180 −19.7892 0.0117 0.0189 −19.2957

O-GARCH 0.0149 0.0234 −20.1210 0.0125 0.0200 −20.0363 0.0138 0.0221 −19.7310

A-O-GARCH 0.0205 0.0329 −20.1188 0.0188 0.0305 −20.0350 0.0188 0.0305 −19.7277

RWE 0.0079† 0.0118† −20.5771 0.0041 0.0063 −20.7172 0.0033 0.0052 −20.2276†

VHAR 0.0057∗ 0.0086∗ −20.9339∗ 0.0032∗ 0.0049∗ −20.7526∗ 0.0027∗ 0.0042∗ −20.2604∗

HYBICOV 0.0081 0.0123 −20.1080 0.0069 0.0108 −20.1180 0.0126 0.0198 −19.7116
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Table A16 Out-of-Sample Forecast Losses (Rolling Window of 1,250 Obs.)

This table reports average out-of-sample losses for the daily, weekly, and monthly forecast horizons, respectively.
We employ a rolling window of 1,250 observations to produce forecasts from parametric models. LE denotes the
Euclidean distance, LF is the Frobenius distance, and LQ is the multivariate quasi-likelihood loss function. The
model with the lowest average out-of-sample loss is marked with an asterisk (*). Also, a dagger (†) indicates models
that yield as accurate forecasts as the best model at the 5% significance level based on the Giacomini-White test.

1–Day Horizon 5–Day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

D-BEKK 0.0278 0.0445 −19.3332 0.0210 0.0340 −19.2226 0.0193 0.0312 −18.8920

A-D-BEKK 0.0221 0.0352 −19.4388 0.0154 0.0248 −19.3048 0.0131 0.0210 −18.9686

CCC 0.0352 0.0557 −19.7275 0.0291 0.0462 −19.5844 0.0282 0.0449 −19.1732

A-CCC 0.0327 0.0514 −19.6941 0.0274 0.0431 −19.5433 0.0247 0.0389 −19.1603

DCC 0.0368 0.0590 −19.7366 0.0307 0.0494 −19.5930 0.0295 0.0474 −19.1602

A-DCC 0.0368 0.0590 −19.7356 0.0307 0.0494 −19.5924 0.0295 0.0474 −19.1601

EWMA 0.0390 0.0629 −18.9449 0.0337 0.0548 −18.7815 0.0373 0.0607 −18.2442

O-GARCH 0.0366 0.0593 −19.4115 0.0304 0.0497 −19.3033 0.0292 0.0478 −18.9683

A-O-GARCH 0.0500 0.0820 −19.4051 0.0430 0.0709 −19.2978 0.0354 0.0582 −18.9572

RWE 0.0167† 0.0258† −20.0219 0.0083† 0.0129† −20.1105† 0.0080 0.0124 −19.5932†

VHAR 0.0124∗ 0.0194∗ −20.3502∗ 0.0069∗ 0.0108∗ −20.1324∗ 0.0066∗ 0.0103∗ −19.6097∗

HYBICOV 0.0179 0.0278 −19.4934 0.0125 0.0195 −19.4963 0.0153 0.0239 −19.0733
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Table A17 MCS Results (Rolling Window of 1,250 Obs.)

This table shows the results of the 5% Model Confidence Set (MCS). We employ three statistical loss functions and forecast horizons of 1, 5 and 22 trading days, respectively. A
rolling window of 1,250 observations is used to produce forecasts from parametric models. LE is the Euclidean distance, LF is the Frobenius distance, and LQ is the multivariate
quasi-likelihood loss function. The column labelled rank reports the relative ranking of a model in the MCS based on a specific loss function while the p-val column shows the
associated p-value of the test. The semi-quadratic statistic of Equation (24) is used to test the null hypothesis of the MCS. An asterisk (*) indicates models that are part of the
5% MCS.

1–Day Horizon 5–Day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val

D-BEKK 6 0.00 6 0.00 9 0.00 6 0.00 6 0.00 9 0.00 6 0.00 6 0.00 9 0.00

A-D-BEKK 4 0.00 4 0.00 7 0.00 4 0.00 4 0.00 8 0.00 3 0.00 3 0.00 6 0.00

CCC 8 0.00 8 0.00 3 0.00 9 0.00 8 0.00 7 0.00 11 0.00 11 0.00 5 0.00

A-CCC 5 0.00 5 0.00 6 0.00 5 0.00 5 0.00 6 0.00 5 0.00 5 0.00 4 0.00

DCC 12 0.00 11 0.00 4 0.00 11 0.00 11 0.00 4 0.00 10 0.00 10 0.00 7 0.00

A-DCC 10 0.00 10 0.00 5 0.00 10 0.00 10 0.00 5 0.00 8 0.00 8 0.00 8 0.00

EWMA 11 0.00 12 0.00 12 0.00 12 0.00 12 0.00 11 0.00 12 0.00 12 0.00 12 0.00

O-GARCH 9 0.00 9 0.00 10 0.00 8 0.00 9 0.00 10 0.00 7 0.00 7 0.00 10 0.00

A-O-GARCH 7 0.00 7 0.00 11 0.00 7 0.00 7 0.00 12 0.00 9 0.00 9 0.00 11 0.00

RWE 2 0.05 2∗ 0.05 2 0.00 2 0.03 2 0.03 2∗ 0.06 2 0.00 2 0.00 2∗ 0.34

VHAR 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00

HYBICOV 3 0.00 3 0.00 8 0.00 3 0.00 3 0.00 3 0.00 4 0.00 4 0.00 3 0.00
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Table A18 MCS Results for Alternative Sub-samples

This table shows the results of the 5% Model Confidence Set (MCS). Each panel shows results for a different sub-period of the full sample (i.e. pre-crisis, crisis and post-crisis).
The crisis period is defined to be from 1 August, 2007 to 31 December, 2009. We employ three statistical loss functions and forecast horizons of 1, 5 and 22 days, respectively.
LE denotes the Euclidean distance, LF is the Frobenius distance, and LQ is the multivariate quasi-likelihood loss function. The column labelled rank reports the relative ranking
of a model in the MCS based on a specific loss function, while the p-val column contains the p-value of the test. The semi-quadratic statistic of Equation (23) is used to test
the null hypothesis of the MCS. * indicates models that are part of the 5% MCS.

1–Day Horizon 5–Day Horizon 22–Day Horizon

LE LF LQ LE LF LQ LE LF LQ

rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val

Panel A: 1/1/2000-31/7/2007 (pre-crisis sub-sample)

D-BEKK 7 0.00 7 0.00 10 0.00 7 0.00 7 0.00 10 0.00 7 0.00 7 0.00 8 0.00

A-D-BEKK 10 0.00 10 0.00 9 0.00 8 0.00 8 0.00 9 0.00 6 0.00 6 0.00 4 0.00

CCC 9 0.00 8 0.00 5 0.00 10 0.00 9 0.00 8 0.00 12 0.00 12 0.00 10 0.00

A-CCC 5 0.00 4 0.00 7 0.00 5 0.00 5 0.00 5 0.00 4 0.00 5 0.00 9 0.00

DCC 11 0.00 11 0.00 4 0.00 11 0.00 11 0.00 4 0.00 10 0.00 10 0.00 6 0.00

A-DCC 12 0.00 12 0.00 3 0.00 12 0.00 12 0.00 3 0.00 11 0.00 11 0.00 3 0.00

EWMA 4 0.00 5 0.00 12 0.00 3 0.00 3 0.00 12 0.00 3 0.00 3 0.00 11 0.00

O-GARCH 8 0.00 9 0.00 8 0.00 9 0.00 10 0.00 7 0.00 9 0.00 9 0.00 7 0.00

A-O-GARCH 6 0.00 6 0.00 6 0.00 6 0.00 6 0.00 6 0.00 8 0.00 8 0.00 5 0.00

RWE 2∗ 0.11 2∗ 0.11 2 0.00 2 0.02 2 0.02 2 0.00 2 0.01 2 0.01 1∗ 1.00

VHAR 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 2 0.02

HYBICOV 3 0.00 3 0.00 11 0.00 4 0.00 4 0.00 11 0.00 5 0.00 4 0.00 12 0.00

Panel B: 1/8/2007 - 31/12/2009 (crisis sub-sample)

D-BEKK 6 0.00 6 0.00 8 0.00 6 0.00 6 0.00 9 0.00 6 0.01 6 0.01 6 0.00

A-D-BEKK 4 0.01 4 0.01 9 0.00 4 0.00 4 0.00 6 0.00 4 0.01 4 0.01 9 0.00

CCC 8 0.00 8 0.00 5 0.00 9 0.00 8 0.00 5 0.00 11 0.01 11 0.01 5 0.00

A-CCC 5 0.01 5 0.01 4 0.00 5 0.00 5 0.00 4 0.00 5 0.01 5 0.01 4 0.00

DCC 12 0.00 12 0.00 7 0.00 12 0.00 12 0.00 7 0.00 10 0.01 10 0.01 7 0.00

A-DCC 11 0.00 11 0.00 6 0.00 11 0.00 10 0.00 8 0.00 9 0.01 9 0.01 8 0.00

EWMA 9 0.00 9 0.00 11 0.00 10 0.00 11 0.00 10 0.00 12 0.00 12 0.00 12 0.00

O-GARCH 10 0.00 10 0.00 10 0.00 8 0.00 9 0.00 12 0.00 8 0.01 8 0.01 11 0.00

A-O-GARCH 7 0.00 7 0.00 12 0.00 7 0.00 7 0.00 11 0.00 7 0.01 7 0.01 10 0.00

RWE 2∗ 0.13 2∗ 0.14 2 0.00 2∗ 0.18 2∗ 0.19 1∗ 1.00 2 0.01 2 0.01 3∗ 0.80

VHAR 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 2∗ 0.16 1∗ 1.00 1∗ 1.00 2∗ 0.80

HYBICOV 3 0.01 3 0.02 3 0.00 3 0.00 3 0.00 3 0.00 3 0.01 3 0.01 1∗ 1.00

Panel C: 1/1/2010- 19/4/2016 (post-crisis sub-sample)

D-BEKK 5 0.00 6 0.00 8 0.00 5 0.00 5 0.00 8 0.00 5 0.00 5 0.00 4 0.00

A-D-BEKK 4 0.00 4 0.00 9 0.00 4 0.00 4 0.00 9 0.00 3 0.00 3 0.00 3 0.00

CCC 10 0.00 10 0.00 4 0.00 10 0.00 10 0.00 4 0.00 10 0.00 10 0.00 5 0.00

A-CCC 6 0.00 5 0.00 7 0.00 6 0.00 6 0.00 7 0.00 7 0.00 7 0.00 9 0.00

DCC 8 0.00 8 0.00 5 0.00 8 0.00 8 0.00 5 0.00 9 0.00 9 0.00 7 0.00

A-DCC 9 0.00 9 0.00 3 0.00 9 0.00 9 0.00 3 0.00 8 0.00 8 0.00 6 0.00

EWMA 7 0.00 7 0.00 10 0.00 7 0.00 7 0.00 10 0.00 6 0.00 6 0.00 10 0.00

O-GARCH 11 0.00 11 0.00 11 0.00 12 0.00 12 0.00 11 0.00 12 0.00 12 0.00 11 0.00

A-O-GARCH 12 0.00 12 0.00 12 0.00 11 0.00 11 0.00 12 0.00 11 0.00 11 0.00 12 0.00

RWE 2 0.05 2∗ 0.05 2 0.00 2 0.01 2 0.02 2 0.02 2 0.00 2 0.00 2∗ 0.14

VHAR 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00

HYBICOV 3 0.00 3 0.00 6 0.00 3 0.00 3 0.00 6 0.00 4 0.00 4 0.00 8 0.00

7
7



Table A19 MCS Results: Non-Overlapping Forecasts

This table shows the results of the Model Confidence Set (MCS) using non-overlapping forecasts (for weekly and monthly forecasts). We employ three statistical loss functions
and forecast horizons of 1, 5 and 22 trading days, respectively. LE denotes the Euclidean distance, LF is the Frobenius distance, and LQ is the multivariate quasi-likelihood
loss function. The column labelled rank reports the relative ranking of a model in the MCS based on a specific loss function, while the p-val column contains the p-value of the
test. The semi-quadratic statistic of Equation (23) is used to test the null hypothesis of the MCS. * indicates models that are part of the 5% MCS.

Daily Horizon Weekly Horizon Monthly Horizon

LE LF LQ LE LF LQ LE LF LQ

rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val rank p-val

D-BEKK 6 0.00 6 0.00 7 0.00 5 0.04 5 0.04 9 0.00 9∗ 0.09 9∗ 0.09 5 0.00

A-D-BEKK 4 0.00 4 0.00 8 0.00 4 0.04 4 0.04 8 0.00 3∗ 0.09 3∗ 0.09 3 0.00

CCC 8 0.00 8 0.00 4 0.00 9 0.04 7 0.04 7 0.00 5∗ 0.09 5∗ 0.09 6 0.00

A-CCC 5 0.00 5 0.00 6 0.00 6 0.04 6 0.04 6 0.00 6∗ 0.09 6∗ 0.09 7 0.00

DCC 11 0.00 10 0.00 5 0.00 10 0.04 10 0.04 5 0.00 7∗ 0.09 7∗ 0.09 9 0.00

A-DCC 12 0.00 11 0.00 3 0.00 11 0.04 11 0.04 4 0.00 8∗ 0.09 8∗ 0.09 8 0.00

EWMA 9 0.00 9 0.00 12 0.00 7 0.04 8 0.04 12 0.00 12∗ 0.09 12∗ 0.08 12 0.00

O-GARCH 10 0.00 12 0.00 10 0.00 12 0.04 12 0.04 10 0.00 11∗ 0.09 11∗ 0.09 10 0.00

A-O-GARCH 7 0.00 7 0.00 11 0.00 8 0.04 9 0.04 11 0.00 10∗ 0.09 10∗ 0.09 11 0.00

RWE 2 0.05 2∗ 0.06 2 0.00 2∗ 0.12 2∗ 0.14 2∗ 0.25 2∗ 0.09 2∗ 0.09 2∗ 0.58

VHAR 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00 1∗ 1.00

HYBICOV 3 0.00 3 0.00 9 0.00 3 0.04 3 0.04 3 0.00 4∗ 0.09 4∗ 0.09 4 0.00
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