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Analysis of an Aggregation-Based Algebraic Two-grid

Method for a Rotated Anisotropic Diffusion Problem

Meng-Huo Chen∗ Anne Greenbaum†

January 2, 2015

Abstract

A two-grid convergence analysis based on the paper [Algebraic analysis of

aggregation-based multigrid, by A. Napov and Y. Notay, Numer. Lin. Alg. Appl.
18 (2011), pp. 539-564] is derived for various aggregation schemes applied to a
finite element discretization of a rotated anisotropic diffusion equation. As ex-
pected, it is shown that the best aggregation scheme is one in which aggregates
are aligned with the anisotropy. In practice, however, this is not what automatic
aggregation procedures do. We suggest approaches for determining appropriate
aggregates based on eigenvectors associated with small eigenvalues of a block split-
ting matrix, or based on minimizing a quantity related to the spectral radius of
the iteration matrix.

1 Introduction

Recently aggregation-based algebraic multigrid methods with piecewise constant prolon-
gation have received considerable attention. See, for instance, [8, 11]. Although these
methods may require extra Krylov space iterations on coarse grids in order to perform
well in a multigrid setting [14, 10], their relative simplicity compared to other algebraic
multigrid methods gives them a number of advantages. They require less setup time
than standard algebraic multigrid methods and maintain better sparsity in the “coarse
grid” matrices. They also maintain other important properties of the original matrix
such as the M-matrix property [6, Theorem 3.6].

In [9] a powerful method was derived for analyzing the convergence of two-grid ag-
gregation methods based on the quality of individual aggregates. While the two-grid
convergence rates do not carry over to the multigrid V-cycle, it was shown in [14, 10]
that similar convergence rates could be obtained in a multigrid setting by replacing the
V-cycle with a K-cycle. Hence the two-grid convergence analysis is still an important
step in understanding the behavior of these methods.
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work was supportedd in part by NSF grant DMS-1210886.

†University of Washington, Dept. of Applied Mathematics, Box 352420, Seattle, WA 98195. This
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In this paper we apply the analysis techniques in [9] to a finite element discretiza-
tion of a rotated anisotropic diffusion equation with homogeneous Dirichlet boundary
conditions:

−(ǫ cos2 θ + sin2 θ)
∂2u

∂x2
− 2(1− ǫ) cos θ sin θ

∂2u

∂x∂y
− (cos2 θ + ǫ sin2 θ)

∂2u

∂y2
= f,

on [0, 1]× [0, 1], u(x, 0) = u(x, 1) = y(0, y) = u(1, y) = 0. (1)

This corresponds to a problem of the form −ǫuξξ − uηη = f in a (ξ, η) coordinate
system that can be obtained by rotating the (x, y) coordinate system through angle
θ. We will always assume that ǫ ∈ [0, 1] since for ǫ > 1, equation (1) corresponds to
−uξξ−ǫ−1uηη = ǫ−1f , where the direction of stronger coupling is just rotated by π/2. We
will deal with angles θ between −π/2 and π/2. Problems of this sort can be a challenge
for aggregation-based algebraic multigrid methods if the direction of anisotropy is not
aligned with the grid lines. Numerical experiments for the special case θ = π/4 show
that if the aggregates can be chosen to align with the direction of anisotropy, then
grid-size independent and ǫ-independent convergence rates can be obtained with a two-
grid method. In this paper we use the analysis in [9] to prove this. We suggest two
possible strategies for automatically recognizing such cases and assembling the correct
aggregates. We demonstrate that these strategies can result in smaller spectral radii for
the iteration matrix in a two-grid method and that they can also be effective in a true
multigrid K-cycle setting.

Problems of this type have been studied elsewhere. Different coarsening strategies
were proposed, for instance, in [3, 15]. The interplay between the relaxation method and
the coarsening strategy has also been explored, for example, in [2, 7]. Most of this work
has been in the context of classical algebraic multigrid (where restriction and prolonga-
tion operators are more complicated) rather than aggregation-based multigrid. In [16],
a new “smoothed” aggregation approach was shown to yield mesh-size independent (or
nearly independent) convergence rates for problems of the form (1), without changing
the coarsening strategy. Here we work with the simplest, unsmoothed aggregation pro-
cedure and try to determine if it can find aggregates for which even simple smoothers
such as the damped Jacobi method can be effective. Another work that is closely related
to ours is [4], where a different technique was used to show that if pairs of nodes were
aggregated in or close to the direction of anisotropy, then if two of the three parameters
– ǫ, θ, and the grid size – were held fixed, the convergence rate of a two-grid method
using Richardson iteration as a smoother could be bounded independent of the third
parameter.

2 Two-grid Convergence Analysis

Let A be an N by N symmetric positive definite (SPD) matrix and suppose we wish
to solve the linear system Ax = b. Let NC << N be given and define an N by NC
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prolongation matrix P by

P =















0m0 0m0 . . . 0m0

1m1

1m2

. . .

1mNC















,

where 1mj
is a vector of 1’s whose length is the number mj of variables correspond-

ing to the jth aggregate. The top block row of 0’s corresponds to variables that are
not involved in the aggregation procedure (because, for instance, their rows might be
strongly diagonally dominant and hence they can be dealt with efficiently by a fine grid
relaxation). If there are m0 such variables then

∑NC

j=0 mj = N . Note that geometrically
P corresponds to piecewise constant interpolation from the collection of aggregates to
the collection of fine grid points. Define an NC by NC “coarse grid matrix” AC by

AC = P TAP.

Let M1 and M2 denote pre- and post-smoothing matrices. For example, with a
weighted Jacobi method M1 = M2 = ω−1diag(A); with a symmetrized Gauss-Seidel
method M1 = MT

2 = lower triangle(A). The solution procedure will be to first perform
ν1 relaxation steps with splitting M1, so that, starting with x(k) ≡ x(k,0), we obtain
new approximations x(k,j) via x(k,j) = x(k,j−1) +M−1

1 (b − Ax(k,j−1)), j = 1, . . . , ν1. The
error e(k,j) ≡ A−1b − x(k,j) then satisfies e(k,j) = (I − M−1

1 A)e(k,j−1) so that e(k,ν1) =
(I −M−1

1 A)ν1e(k,0). Next a “coarse grid correction” is performed: Restrict the residual
r(k,ν1) ≡ b−Ax(k,ν1) to the coarse grid by forming P T r(k,ν1), solve for δ in the linear system
ACδ = P T r(k,ν1), form the longer vector Pδ and add to x(k,ν1). The result is x(k,ν) =
x(k,ν1) + PA−1

C P T r(k,ν1) so that the error now satisfies e(k,ν) = (I − PA−1
C P TA)e(k,ν1) =

(I − PA−1
C P TA)(I −M−1

1 A)ν1e(k,0). Finally, perform ν2 post-smoothing steps using the
splitting M2 to obtain the new iterate x(k+1). The resulting error is

e(k+1) = ETGe
(k), ETG = (I −M−1

2 A)ν2(I − PA−1
C P TA)(I −M−1

1 A)ν1 . (2)

The matrix ETG is the two-grid iteration matrix.
The asymptotic convergence rate of the method is determined by the spectral radius

ρ(ETG). In general, this is not the relevant quantity for studying short-time behavior
of the iteration (and, hopefully, short-time behavior is all that will be observed!). In
some cases, however, the spectral radius also gives a measure of the amount by which
the A-norm of the error is reduced at each step. The A-norm of a vector v is ‖v‖A ≡
〈Av, v〉1/2 = ‖A1/2v‖, where ‖ · ‖ without a subscript denotes the 2-norm. From (2) it
follows that A1/2e(k+1) = A1/2ETGA

−1/2(A1/2e(k)) and hence

‖e(k+1)‖A ≤ ‖A1/2ETGA
−1/2‖ · ‖e(k)‖A.

The matrix A1/2ETGA
−1/2 has the same eigenvalues as ETG so that if this matrix is

symmetric then its norm is ρ(ETG). The matrix A1/2ETGA
−1/2 can be written in the

form
(I − A1/2M−1

2 A1/2)ν2(I − A1/2PA−1
C P TA1/2)(I − A1/2M−1

1 A1/2)ν1 .
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Hence if ν1 = ν2 and M1 = MT
2 , then this matrix is symmetric and the A-norm of the

error is reduced at each step by at least the factor ρ(ETG). In this paper we will study
the spectral radius ρ(ETG), whether or not these symmetry conditions hold, because
that is the quantity that is analyzed in [9].

Let an N by N matrix X be defined by

I −X−1A = (I −M−1
1 A)ν1(I −M−1

2 A)ν2 . (3)

For example, if one post-smoothing only is done so that ν1 = 0 and ν2 = 1, thenX = M2.
If one step of pre-smoothing and one of post-smoothing is done then ν1 = ν2 = 1 and

I −X−1A = I −M−1
1 A−M−1

2 A+M−1
1 AM−1

2 A,

so that X−1 = M−1
1 + M−1

2 − M−1
1 AM−1

2 = M−1
1 (M2 + M1 − A)M−1

2 . We always
assume that this matrix is invertible and, in fact, SPD. For example, if M1 is the lower
triangular part of the SPD matrix A and M2 is the upper triangular part (MT

1 ), then
X = M2(diag(A))

−1M1.
Just as equation (2) involves the “coarse grid” approximation of the matrix A−1A = I

through the term PA−1
C P TA, where AC = P TAP , there will be other matrices for which

this sort of term is relevant. For any N by N matrix Y , define

πY ≡ P (P TY P )−1P TY ≡ PY −1
C P TY. (4)

The following theorem is proved in [9] and is a slight generalization of [5, Theorem
4.2]:

Theorem 3.1 (Napov and Notay [9]). Let A be an N by N SPD matrix and let P
be an N by NC matrix of rank NC < N . Let M1, ν1, M2, ν2 be such that X, defined in
(3), is SPD and let ETG be the two-grid iteration matrix defined in (2). Then

ρ(ETG) ≤ max

{

λmax(X
−1A)− 1, 1−

1

µX

}

, (5)

where λmax(·) denotes the (algebraically) largest eigenvalue, and

µX = λmax(A
−1X(I − πX)).

Moreover, for any N by N SPD matrix D,

µX ≤ λmax(D
−1X) · µD, µD ≡ λmax(A

−1D(I − πD)). (6)

In particular, if M1 = M2 = ω−1D with ω−1 ≥ λmax(D
−1A), then

ρ(ETG) = 1−
1

µX

, (7)

and µX ≤ ω−1µD, with equality if ν1 + ν2 = 1.

In this paper, we will apply this theorem in the case where M1 = M2 = ω−1D and
D = diag(A). In that case, if ν1 + ν2 = 1, then X = ω−1D and the first factor in the
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bound (6) on µX is just ω−1. The second, µD = λmax(A
−1D(I − πD)) gives a measure

of how effectively eigenvectors associated with the large eigenvalues of A−1 are damped
by the coarse grid correction. If ν1 = ν2 = 1, then X = ω−1D(2D − ωA)−1D and
λmax(D

−1X) = ω−1λmax((2D − ωA)−1D). Typically, the matrix 2D − ωA is strongly
diagonally dominant so that it is easy to estimate λmax(D

−1X). For example, if A has 2’s
on its main diagonal and −1’s on the first sub- and super-diagonal, as in a 1D problem
for the Laplacian, then D = 2I, λmax(D

−1A) < 2, so ω−1 = 2 is a reasonable choice, and
then the matrix 2D − ωA has 3’s on its main diagonal and 1/2’s on the first sub- and
super-diagonal. Hence by Gerschgorin’s theorem the smallest eigenvalue of this matrix
is greater than or equal to 2; that is the largest eigenvalue of the inverse matrix is less
than or equal to 1/2, and the bound on λmax(D

−1X) is ω−1 = 2.
In general, it seems difficult to determine the quantity µD on the right-hand side of

(6), so it is not clear that this theorem has helped much in the goal of estimating the
spectral radius ρ(ETG). However, the next theorem in [9] explains how to estimate the
quantity µD by studying the individual aggregates.

Assume that A can be written in the form A = Ab + Ar, where Ab and Ar are both
symmetric and nonnegative definite and Ab is block diagonal, with blocksizes equal to
the corresponding aggregate size:

Ab =











A(0)

A(1)

. . .

A(NC)











, (8)

where A(k), k = 0, 1, . . . , NC , is of size mk by mk.
If the matrix A is diagonally dominant, then one way to create this splitting is to

take the diagonal blocks of Ab to be the corresponding diagonal blocks of A, with the
sum of absolute values of the remaining entries in each row or column of A subtracted
from the corresponding diagonal entry of Ab. For example, if

A =

















2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2

















(9)

and successive pairwise aggregation is used, then a possible choice for Ab and Ar is

Ab =

























2 −1 | |
−1 1 | |
− − | − − | − −

| 1 −1 |
| −1 1 |

− − | − − | − −
| | 1 −1
| | −1 2

























, Ar =

























| |
1 | −1 |

− − | − − | − −
−1 | 1 |

| 1 | −1
− − | − − | − −

| −1 | 1
| |

























.

(10)
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In this way, both Ab and Ar are weakly diagonally dominant, hence nonnegative definite.
If we choose to omit the first and last variables from the aggregation procedure and

reorder rows and columns so that these two variables are first, followed by variables 2
and 3 and then 4 and 5, the matrix A takes the form

A =

















2 0 −1 0 0 0
0 2 0 0 0 −1

−1 0 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 −1 0 0 −1 2

















.

and we can split this as

Ab =

























1 | |
1 | |

− − | − − | − −
| 1 −1 |
| −1 1 |

− − | − − | − −
| | 1 −1
| | −1 1

























, Ar =

























1 | −1 |
1 | | −1

− − | − − | − −
−1 | 1 |

| 1 | −1
− − | − − | − −

| −1 | 1
−1 | | 1

























.

Other such splittings are possible as well. In Section 4 we describe a splitting that
is appropriate for finite element discretizations, even when the matrix is not diagonally
dominant. Once the splitting is set, the following theorem from [9] enables one to

estimate the ‘global’ parameter µD in (6) by ‘local’ quantities µ
(k)
D associated with each

aggregate k.

Theorem 3.2 (Napov and Notay [9]). Using the notation of Theorem 3.1, let
A = Ab+Ar be a splitting of the SPD matrix A such that Ab and Ar are both nonnegative
definite and Ab has the form (8). Assume that D in Theorem 3.1 also has the block
diagonal form:

D =











D(0)

D(1)

. . .

D(NC)











,

where each block D(k) is mk by mk, k = 0, . . . , NC . Define

µ
(0)
D =

{

0 if m0 = 0

supv∈Rm0\N (A(0))
vTD(0)v
vTA(0)v

if m0 > 0
,

and for k = 1, . . . , NC ,

µ
(k)
D =

{

0 if mk = 1

supv∈Rmk\N (A(k))
vTD(k)(I−π

(k)
D

)v

vTA(k)v
if mk > 1

, (11)
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where
π
(k)
D = p(k)(p(k)

T
D(k)p(k))−1p(k)

T
D(k),

and p(k) is the vector of 1’s in column k of P . Then

µD ≤ max
k=0,...,NC

µ
(k)
D .

Note that ifmk > 1 thenN (A(k)) must be a subset ofN (D(k)(I−π
(k)
D )) = span{p(k)},

in order for this theorem to give useful information. Otherwise µ
(k)
D = ∞ in (11). If

N (A(k)) is a subset of span{p(k)}, then expression (11) can be replaced by

µ
(k)
D =

{

0 if mk = 1

supv∈R(A(k))\{0}
vTD(k)(I−π

(k)
D

)v

vTA(k)v
if mk > 1

, (12)

In example (9-10), taking D = 2I and each p(k) = (1, 1)T , we find

π
(k)
D =

1

2

(

1 1
1 1

)

, k = 1, 2, 3,

so that

D(k)(I − π
(k)
D ) =

(

1 −1
−1 1

)

, k = 1, 2, 3.

For k = 1, A(1) is nonsingular, so µ
(1)
D is the largest eigenvalue of A(1)−1

(D(1)(I − π
(1)
D )),

which is easily seen to be

λmax

[

(

2 −1
−1 1

)−1 (
1 −1

−1 1

)

]

= 1.

Similarly, µ
(3)
D = 1. For k = 2, A(2) is singular but its null space is the span of p(2) and

its range is the span of (1,−1)T . In fact A(2) = D(2)(I − π
(2)
D ), so it is clear that the

quantity in (12) is again 1. Thus in this example the bound from Theorem 3.2 is µD ≤ 1.
Combining this with the bound on λmax(D

−1X) when ν1 + ν2 = 1 or ν1 = ν2 = 1, we
obtain the estimate µX ≤ 2. Hence from Theorem 3.1,

ρ(ETG) ≤
1

2
.

In (9-10), we took A to be a 6 by 6 matrix, but if we made it much larger, the blocks
not connected to the two end points would be identical to A(2), so the theorems would
still give the bound ρ(ETG) ≤ 1/2. In fact, this is the limit as N → ∞ of the spectral
radius of the two-grid iteration matrix when A is an N by N matrix with 2’s on its
main diagonal and −1’s on the first sub- and super-diagonals. In this case, the estimate
is perfect! The optimality of the upper bound also could have been determined from a
lower bound on µD derived in [9, Theorem 4.1], which will be discussed further later on.
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3 Finite Element Discretization

Problem (1) can be solved using a piecewise bilinear finite element approximation on a
square grid with uniform spacing h in each direction. Letting

a = ǫ cos2 θ + sin2 θ

b = (1− ǫ) cos θ sin θ

c = cos2 θ + ǫ sin2 θ,

equation (1) can be written in the form

−∇ ·

(

a b
b c

)

∇u = f.

Letting φj(x, y) denote the standard bilinear basis function with value 1 at node j and

0 at all other nodes, and writing the approximate solution u(x, y) as
∑N

j=1 ujφj(x, y),
the coefficients uj can be determined by solving the equations

−
N
∑

j=1

uj

∫ 1

0

∫ 1

0

(∇φi) ·

[(

a b
b c

)

∇φj

]

dx dy =

∫ 1

0

∫ 1

0

fφi dx dy, i = 1, . . . , N.

The global stiffness matrix can be assembled from individual element matrices, which
have the form

1

6









2a+ 3b+ 2c −2a+ c a− 2c −a− 3b− c
−2a+ c 2a− 3b+ 2c −a+ 3b− c a− 2c
a− 2c −a+ 3b− c 2a− 3b+ 2c −2a+ c

−a− 3b− c a− 2c −2a+ c 2a+ 3b+ 2c









.

When these are assembled into a global stiffness matrix (and multiplied by 6), the stencil
of the finite element discretization becomes





−a+ 3b− c 2(a− 2c) −a− 3b− c
2(−2a+ c) 8(a+ c) 2(−2a+ c)
−a− 3b− c 2(a− 2c) −a+ 3b− c



 . (13)

For θ = π/4, for example, the stencil is





1
2
− 5

2
ǫ −1− ǫ −5

2
+ 1

2
ǫ

−1− ǫ 8 + 8ǫ −1− ǫ
−5

2
+ 1

2
ǫ −1− ǫ 1

2
− 5

2
ǫ



 . (14)

4 The Matrix Splitting

To form the matrix splitting A = Ab + Ar, we will use a method suggested to us by
Y. Notay [12]. We will form “potential aggregates” from 4 by 4 squares of nodes, as
pictured in Figure 1.

8



Figure 1: Potential aggregates on a grid of 22× 22 interior nodes.

The nodes that are not included in a potential aggregate are ones whose rows are strongly
diagonally dominant because they couple to Dirichlet boundary points; these make up
the block A(0). The other blocks in Ab are then 16×16. Element matrices corresponding
to each of the nine elements in the potential aggregate will be assembled to form a
block of Ab, and the remaining element matrices will be assembled to form Ar. Since
each of the element matrices is nonnegative definite, the matrices Ab and Ar will be
as well. Note that each block of Ab (except A

(0)) is the finite element discretization of
a Neumann problem on the potential aggregate, hence has null space consisting of the
constant vectors (assuming 0 < ǫ ≤ 1 in (1)). Note also that if ǫ = 0 in (1) then this
actually corresponds to a 1D problem: uηη = f . A vector that represents a function u
that satisfies uηη = 0 and is constant in the ξ direction will also lie in the null space of
A(k), and when ǫ > 0 is small, this will be a near null vector for A(k).

Actual aggregates will be formed from subsets of the nodes in the potential aggre-
gates. For example, when θ = π/4, it is reasonable to aggregate points along diagonal
lines, as pictured in Figure 2.

Figure 2: Diagonal aggregates.

This means that the structure is slightly different from that described in [9], where it
was assumed that the aggregate size was the same as the block size in Ab.

For example, with the diagonal aggregates pictured in Figure 2, if points within a
potential aggregate are numbered first along the main diagonal consisting of 4 nodes,
then along the diagonal just below and the one just above, each consisting of 3 nodes,

9



then along the diagonals two spaces below and above the main one, etc., then the
transpose of the block of P corresponding to the kth potential aggregate is

P (k)T =





















1 1 1 1
1 1 1

1 1 1
1 1

1 1
1

1





















(15)

Thus each P (k) is a 16 by 7 matrix and π
(k)
D is a 16 by 16 matrix. The block size in Ab

is 16 by 16, but the individual aggregate sizes range from 1 to 4. This requires a minor
change in the statement of Theorem 3.2.

Theorem 3.2’. Using the notation of Theorem 3.1, let A = Ab + Ar be a splitting of
the SPD matrix A such that Ab and Ar are both nonnegative definite and Ab has the
form

Ab =











A(0)

A(1)

. . .

A(Nb)











,

where each block A(k) is sk by sk, k = 0, . . . , Nb. Assume that D in Theorem 3.1 also
has the block diagonal form

D =











D(0)

D(1)

. . .

D(Nb)











,

where each block is sk by sk. Define

µ
(0)
D =

{

0 if s0 = 0

supv∈Rs0\N (A(0))
vTD(0)v
vTA(0)v

if s0 > 0
, (16)

and for k = 1, . . . , Nb,

µ
(k)
D =

{

0 if sk = 1

supv∈Rsk\N (A(k))
vTD(k)(I−π

(k)
D

)v

vTA(k)v
if sk > 1

, (17)

where
π
(k)
D = P (k)(P (k)TD(k)P (k))−1P (k)TD(k),

and P (k) represents the block of P corresponding to the kth potential aggregate. Then

µD ≤ max
k=0,...,Nb

µ
(k)
D . (18)

10



In order for this theorem to give useful information when some sk > 1, k = 1, . . . , Nb,
the null space of A(k) must be a subset of the null space of D(k)(I − π

(k)
D ); otherwise

µ
(k)
D = ∞ in (17). The proof of this slightly generalized theorem is almost identical

to the one in [9]. We include it here because it shows where an overestimate of µD

can occur when a block A(k) has a near null vector that is not a near null vector of
D(k)(I − π

(k)
D ), which is often the case when the anisotropy in problem (1) is large

and aggregates cannot be perfectly aligned with the direction of anisotropy. For such
problems, aligning aggregates close to the direction of anisotropy may yield better results
than the theorem predicts.

Proof of theorem: Assume wlog that each µ
(k)
D < ∞, k = 0, 1, . . . , Nb; otherwise the

result is trivial. If s0 > 0 then this implies that A(0) is positive definite so the expression
for µ

(0)
D becomes

µ
(0)
D =

{

0 if s0 = 0

supv 6=0
vTD(0)v
vTA(0)v

if s0 > 0
.

To establish (18), first note that

D(I − πD) =











D(0)

D(1)(I − π
(1)
D )

. . .

D(Nb)(I − π
(Nb)
D )











.

Hence expression (6) for µD can be written as

µD = λmax(A
−1D(I − πD)) = max

v∈RN

v 6=0

vTD(I − πD)v

vTAv

= max
v 6=0

vTD(I − πD)v

vTAbv + vTArv

= max
v 6=0

v(0)
T
D(0)v(0) +

∑Nb

k=1 v
(k)TD(k)(I − π

(k)
D )v(k)

∑Nb

k=0 v
(k)TA(k)v(k) + vTArv

, (19)

where we have written v in the block form v = (v(0)
T
, v(1)

T
, . . . , v(Nb)

T
)T .

Let w = (w(0)T , w(1)T , . . . , w(Nb)
T
)T be a vector that attains the maximum in (19).

First note that if each term w(k)TA(k)w(k), k = 0, 1, . . . , Nb in the sum in the denominator
of (19) were 0, then the numerator of (19) would also be 0 since each µ

(k)
D is finite. If

this were the case, then since A is SPD, the other term in the denominator, wTArw,
would have to be positive and then µD = 0. In this case, the result (18) holds trivially.

Therefore we can assume that at least one of the terms w(k)TA(k)w(k) is nonzero and,
since each A(k) is nonnegative definite, this implies that the sum in the denominator of
(19) is positive. Since Ar is nonnegative definite we can write

µD ≤
w(0)TD(0)w(0) +

∑Nb

k=1 w
(k)TD(k)(I − π

(k)
D )w(k)

∑Nb

k=0 w
(k)TA(k)w(k)

. (20)

11



Since the numerator and denominator each consist of a sum of nonnegative terms (or
positive terms if we eliminate any zeros), the ratio of these sums is less than or equal to
the largest ratio of the terms. [To see this, note that if a1, . . . , an, b1, . . . , bn > 0, then
(
∑n

i=1 ai)/(
∑n

i=1 bi) =
∑n

i=1(ai/bi) · (bi/
∑n

j=1 bj), which is a convex combination of the
ratios ai/bi, hence less than or equal to the maximum of these ratios.] Thus we can write

µD ≤ max
k=0,...,Nb

w(k)TD(k)(I − π
(k)
D )w(k)

w(k)TA(k)w(k)
(where π

(0)
D ≡ 0) (21)

≤ max
k=0,...,Nb

sup
v∈Rsk\N (A(k))

vTD(k)(I − π
(k)
D )v

vTA(k)v
(22)

= max
k=0,...,Nb

µ
(k)
D . �

Note that in going from equality (19) to inequality (20), the term wTArw was
dropped; since Ar is small compared to Ab, this will not change the ratio much un-

less w is a near null vector of Ab. In addition to the upper bound (18), a lower bound
on µD was derived in [9, Theorem 4.1]. Based on (19), one can give a lower bound
on µD by inserting any nonzero vector into the expression on the right-hand side. The

vector suggested in [9] was ṽ = (α0v
(0)
∗

T
, α1v

(1)
∗

T
, . . . , αNb

v
(Nb)
∗

T
)T , where each v

(k)
∗ is a

unit vector that achieves the supremum in (22), and

αk = γk(v
(k)
∗

T
A(k)v(k)∗ )−1/2, k = 0, 1, . . . , Nb, (23)

where the γk’s are parameters on the order of 1. Substituting ṽ into the right-hand side
of (19), gives the lower bound

µD ≥
α2
0(v

(0)
∗

T
D(0)v

(0)
∗ ) +

∑Nb

k=1 α
2
k(v

(k)
∗

T
D(k)(I − π

(k)
D )v

(k)
∗ )

∑Nb

k=0 α
2
k(v

(k)
∗

T
A(k)v

(k)
∗ ) + ṽTArṽ

=

∑Nb

k=0 γ
2
kµ

(k)
D

∑Nb

k=0 γ
2
k + ṽTArṽ

. (24)

Unfortunately, this lower bound is not very useful in some of the numerical examples
presented later because ṽTArṽ is large compared to the other term in the denominator.

5 Convergence Rates for Various Aggregates

In this section we consider the rotated anisotropic diffusion equation (1) with θ = π/4

and ǫ ∈ [0, 1]. Values of µ
(k)
D , k = 0, 1, . . . , Nb, are computed for various aggregation

strategies and these are used to obtain a bound on µD via (18). This is then used along
with an estimate of λmax(D

−1X) to obtain a bound on µX via (6), and finally these
values are used in (7) to bound the spectral radius ρ(ETG) of the two-grid iteration
matrix. The bounds are then compared with actual computed values to determine if
they are realistic. The bounds hold when one pre-smoothing and one post-smoothing
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step is performed at each iteration and also when just one pre- or one post-smoothing is
performed. We consider both possibilities, using a damped Jacobi method with damping
factor ω−1 satisfying the assumption needed for (7) in Theorem 3.1. By Gerschgorin’s
theorem, using the stencil in (14), the eigenvalues of D−1A are at most (9+3ǫ)/(4+4ǫ)
if ǫ ≤ 1/5 or 2 if ǫ > 1/5, so these will be the values used for ω−1. Thus D = diag(A)
and D(k), k = 1, . . . , Nb, is the 16 by 16 block of D corresponding to potential aggregate
k: D(k) = 8(1 + ǫ)I16×16. We start with the diagonal aggregates pictured in Figure 2
and P (k) defined by (15).

For problems with a fixed stencil such as that in (14) (i.e., the values in the stencil do
not depend on the location within the domain) and potential aggregates as pictured in
Figure 1 (where the number of interior nodes in each direction is 4m+2 for some integer
m so that each potential aggregate is 4 by 4), the blocks A(k) and D(k), k = 1, . . . , Nb,

in Theorem 3.2’ are all identical. Thus, except for the computation of µ
(0)
D which is

easily estimated with Gerschgorin’s theorem, the problem of bounding µD reduces to
the problem of finding the largest (determined) generalized eigenvalue of a single pair
of 16 by 16 matrices. [The fact that the expression on the right-hand side of (17) is
a generalized eigenvalue follows from a generalization of the Courant-Fischer minimax
theorem [1].]

For the problem with stencil (14) and P (k) defined by (15), one can look at the matri-

ces A(k) and D(k)(I−π
(k)
D ) symbolically and see that for ǫ > 0 the null space of A(k) con-

sists of the constant vectors, while when ǫ = 0 the null space ofA(k) consists of linear com-
binations of the constant vector and the vector (0, 0, 0, 0, 1, 1, 1,−1,−1,−1, 2, 2,−2,−2, 3,−3)T

(ordering nodes along the main diagonal of the potential aggregate first, then along the

first upper and first lower diagonal, etc.). The null space of D(k)(I − π
(k)
D ) consists of all

vectors that are constant along diagonals and so contains each of these vectors.
Numerically computing generalized eigenvalues of a pair of singular matrices can be

hazardous, but knowing the null spaces of the matrices involved makes this computation
easy; it can be converted to a problem involving a positive definite matrix Z∗A(k)Z and
the semidefinite matrix Z∗D(k)(I−π

(k)
D )Z where Z has dimensions sk by rank(A(k)) and

the columns of Z span the range of A(k) [1]. Figure 3 (a) shows a plot of µ
(k)
D vs ǫ.

Using Gerschgorin’s theorem one can bound µ
(0)
D based on the stencil (14). Since

each node in A(0) couples to at least three boundary nodes, the smallest eigenvalue of
A(0) is at least

8 + 8ǫ−

[

3 + 3ǫ+
5

2
−

1

2
ǫ+

∣

∣

∣

∣

1

2
−

5

2
ǫ

∣

∣

∣

∣

]

=

{

2 + 8ǫ if ǫ ≤ 1/5
3 + 3ǫ if ǫ > 1/5

.

Since D(0) = 8(1+ ǫ)I, the right-hand side of (16) is 8(1+ ǫ) over the smallest eigenvalue
of A(0); hence

µ
(0)
D ≤

{

(4 + 4ǫ)/(1 + 4ǫ) if ǫ ≤ 1/5
8/3 if ǫ > 1/5

.

Figure 3 (b) shows the bounds on ρ(ETG) obtained from Theorems 3.1 and 3.2’. Also
plotted is the actual value of ρ(ETG) for a grid with 42 by 42 interior nodes, using one
pre- and one post-smoothing step per iteration (curve marked with o’s) or using only one
pre- or one post-smoothing step (curve marked with ∗’s). In either case, this establishes
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a mesh size independent convergence rate for the 2-grid method with the aggregates
shown in Figure 2.
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Figure 3: (a) µ
(k)
D for aggregates in Figure 2. (b) Bounds from Theorems 3.1 and 3.2’ on

ρ(ETG) (dashed) and actual values of ρ(ETG) on a 42 by 42 grid. Lower curve, marked with
o’s, is for pre- and post-smoothing; upper curve, marked with ∗’s, is for pre-smoothing only or
post-smoothing only.

Unfortunately, the coarsening ratio for the aggregates shown in Figure 2 is only 7/16,
while the coarse grid in a geometric multigrid method for a 2-D problem usually has
about 1/4 as many points as the fine grid. The next aggregate type considered is shown
in Figure 4. The potential aggregate is split into four smaller box-shaped aggregates
so that the coarsening ratio is 1/4. This type of aggregate is standard for isotropic
problems.

Figure 4: Box aggregates.

In this case, if nodes are again numbered consecutively in aggregates (so the lower
left aggregate consists of nodes 1-4, the lower right aggregate consists of nodes 5-8, etc.)

then the matrix D(k)(I − π
(k)
D ) in (17) is

8(1 + ǫ)









I −









1
4e4e

T
4

1
4e4e

T
4

1
4e4e

T
4

1
4e4e

T
4

















.
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The constant vectors are contained in the null space of D(k)(I − π
(k)
D ), but note

that when ǫ = 0 the null space of A(k) is not a subset of that of D(k)(I − π
(k)
D ).

The vector (0, 0, 0, 0, 1, 1, 1,−1,−1,−1, 2, 2,−2,−2, 3,−3)T (using a diagonal ordering
of nodes), was shown to be in the null space of A(k), but with the current order-
ing of nodes this vector becomes (0, 1,−1, 0, 2, 3, 1, 2,−2,−1,−3,−2, 0, 1,−1, 0)T and

this is not in the null space of D(k)(I − π
(k)
D ) given above; the product is 2(1 + ǫ) ·

(0, 4,−4, 0, 0, 4,−4, 0, 0, 4,−4, 0, 0, 4,−4, 0)T . Thus it can be expected that for small ǫ

the right-hand side of (17) will be large; µ
(k)
D approaches ∞ as ǫ → 0.

Figure 5 shows the spectral radius ρ(ETG) on a 42 by 42 grid using one pre- and
one post-smoothing step per cycle (o’s) and using only one pre-smoothing or one post-
smoothing step per cycle (∗’s). The left graph uses a linear scal in ǫ, while the right one
displays the same results using a logarithmic scale for ǫ between 1.0e − 3 and 1. The
spectral radius is indeed close to 1 when ǫ is small, but it is not as bad as indicated by
the upper bound in terms of µ

(k)
D . For ǫ = 0.001, for example, the computed value of

µ
(k)
D was 595.12, while the value of µD on the 42 by 42 grid was only 17.95. The spectral

radius of the iteration matrix was 0.9655 for ν1 = ν2 = 1 and 0.9752 for ν1 + ν2 = 1,
while the estimate based on µ

(k)
D would have been µX ≤ (9.003/4.004) · 595.12 = 1338.1,

ρ(ETG) ≤ 1− 1/1338.1 = 0.9993.
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Figure 5: Actual values (o’s and ∗’s) for ρ(ETG) with box aggregates on a 42 by 42 grid. Lower
curve with o’s is for pre- and post-smoothing, upper curve with ∗’s is for pre-smoothing only
or post-smoothing only.

For these aggregates, when ǫ is small, the value µ
(k)
D is a large overestimate of µD,

at least on a 42 by 42 grid. It is shown in Figure 6, however, that µD increases with
the grid size. It is not clear whether it asymptotes to the value µ

(k)
D = 595.12 or to

something smaller, but in either case it is large enough to indicate poor convergence
of the two grid method. The lower bound (24) is not of much help here because the

vectors v
(k)
∗ , k = 1, . . . , Nb used to derive that bound are near null vectors of A(k). This

means that the coefficients α1, . . . , αNb
in (23) will be huge if the γk’s are of order 1

and hence that ṽTArṽ will be huge unless the γk’s can be chosen in such a way that
|ṽTArṽ| << ‖Ar‖ ‖ṽ‖2. We have found no such γk’s and, for very small ǫ, the best lower
bounds of this form appear to be obtained by taking γ0 = 1 and γ1 ≈ . . . ≈ γNb

≈ 0, in
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which case one obtains a lower bound on the order of µ
(0)
D << µD.
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Figure 6: Computed values of µD vs grid size n for box aggregates, θ = π/4, ǫ = 0.001.

In general, whenD(k) is a scalar multiple of the identity, or, more generally, a diagonal
matrix with positive diagonal entries, in order for a vector to be in the null space of
D(k)(I − π

(k)
D ), it must be constant on individual aggregates. But when ǫ = 0, the null

space of A(k) contains a vector that is constant only on the diagonal aggregates pictured
in Figure 2. Thus, for small ǫ, one can expect poor behavior (or at least a poor bound on
the convergence rate) of the method for any aggregates other than those (or a refinement
of those) shown in Figure 2.

The automatic aggregation procedure described in [10] and implemented in [13] does
not use “potential aggregates” but tries various pairwise aggregations successively, in
order to minimize a quantity related to the aggregate quality. For the problem with
θ = π/4 and ǫ = 0.001, in the first pass it formed pairwise aggregates aligned with
the anisotropy, as pictured in Figure 7(a). On the second pass, however, the algorithm
grouped pairs to the north and south above the 45◦ line and pairs to the east and west
below the 45◦ line, forming the parallelogram shaped aggregates shown in Figure 7(b).
In this case, the spectral radius of the iteration matrix with pre- and post-smoothing on
a 42 by 42 grid was 0.9307, indicating rather slow convergence of the two-grid method.
This spectral radius increased to 0.9614 on an 82 by 82 grid, and while it will asymptote
to something less than 1, the asymptotic value as N → ∞ may be quite close to 1.

6 Determining Appropriate Aggregates

The negative results of the previous section suggest a possible way to determine which
points to aggregate. Form the potential aggregates and the splitting Ab −Ar. Compute
the eigensystem of each block A(k) and look at the eigenvectors corresponding to any
small eigenvalues. Aggregate only points on which those eigenvectors are near constant.
For example, when θ = π/6 and ǫ = 0.001, one finds that the matrix A(k) again has a
zero eigenvalue corresponding to the constant vector and it has an eigenvalue of 0.0027
corresponding to a vector whose first and tenth components are close (0.13 and 0.15),
whose second and eleventh components are close (−0.07 and −0.04), whose third and
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(a) First pass
=⇒

(b) Second pass

Figure 7: First pass and second pass of the automatic aggregation procedure in [10]

twelfth components are close (−0.26 and −0.23), etc., with the close components lying
along lines at an angle π/6 with the vertical axis, as pictured in Figure 8. Additionally,
components four and eight are fairly close (−0.46 and −0.35), as are components nine
and thirteen (0.35 and 0.46), so these might be considered for aggregation as well.

Figure 8: Aggregates based on nearly equal components of eigenvector of A(k) corresponding
to eigenvalue 0.0027 when θ = π/6, ǫ = 0.001.

Before proceeding with this example, it should be noted that with this parameter
set, the finite element matrix defined by (13) is not an M-matrix; couplings to points
to the left and right, (2 − 4ǫ) cos2 θ + (2ǫ − 4) sin2 θ = .4975, are positive. Hence not
all points next to the boundary of the domain correspond to diagonally dominant rows,
and such points should be included among the potential aggregates. In order to keep
the blocks identical, we will now include all points next to the boundary among the
potential aggregates. The number of interior grid points in each direction will be taken
to be a multiple of 4 so that each block A(k) still corresponds to a 4 by 4 group of nodes.

Using the aggregates in Figure 8 does not result in a very small value for µ
(k)
D since

the eigenvector of A(k) associated with the small eigenvalue is not extremely close to
the null space of D(k)(I − π

(k)
D ); we found µ

(k)
D = 50. The computed value of µD was

considerably smaller, however. For a 44 by 44 grid (where now all nodes are considered
for aggregation), we computed µD = 3.71, ρ(ETG) = 0.83 for pre- and post-smoothing,
and ρ(ETG) = 0.88 for pre-smoothing only or post-smoothing only. Figure 9 shows µD

for larger grid sizes. Again it grows with the grid size and the asymptotic limit is not
clear, even from grid sizes up to n = 1100.
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Figure 9: µD vs grid size n for aggregates corresponding to θ = π/6; ǫ = 0.001.

Based on the above results it appears that eigenvectors corresponding to small eigen-
values of A(k) do, indeed, indicate the direction of anisotropy and can be used to de-
termine appropriate aggregates. However, to automate this procedure, one must define
exactly what a “small” eigenvalue of A(k) is and how “nearly equal” eigenvector com-
ponents must be in order to be aggregated. We will return to this later, but for now
we consider another idea for automating the choice of aggregates. That is to try several
different choices from among the potential aggregates and see which gives the smallest
value for µ

(k)
D . As noted previously, µD may be small even when µ

(k)
D is not, but it is

reasonable to expect that even when µ
(k)
D cannot be made small, aggregates that make

it less large will be more likely to yield a good value for µD.
In the upper left block of Figure 11, we have plotted the spectral radius of the

iteration matrix using pre- and post-smoothing on a 44 by 44 grid as a function of ǫ
and θ, where the aggregates were chosen from among the 13 possible choices pictured
in Figure 10. For these tests, we let ǫ range between 0 and 1; more specifically, ǫ =
0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, . . . , 1. The angle θ ran from −π/2
to π/2, in steps of 0.1.

Although some aggregate choices give a better coarsening ratio than others, we did
not take this into account but simply chose the aggregate type that gave the smallest
value for µ

(k)
D . The upper middle block of Figure 11 shows the aggregate types that were

chosen for each (ǫ, θ) pair. For ǫ > 0.5, box aggregates (type 13) were always chosen;
these problems have only mild anisotropy. For more strongly anisotropic problems,
the aggregates tended to align with the anisotropy, as can be seen by comparing the
aggregate type numbers in Figure 11 with their definitions in Figure 10. Also plotted
in Figure 11 are the values of µ

(k)
D (lower left) and µD (lower right). It can be seen that

the value of µD, which determines the spectral radius, is significantly less than µ
(k)
D for

ǫ near 0.
For comparison, the upper right plot in Figure 11 shows ρ(ETG) using box aggregates

only. It can be seen that for ǫ near 0, box aggregates give significantly larger values for
ρ(ETG). The maximum value using box aggregates was 0.9965, while for aggregates

that minimize µ
(k)
D , it was 0.9324. Moreover, while ρ(ETG) using box aggregates was

large for all angles θ when ǫ = 0.001 (greater than 0.9668), for values of θ that could
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Figure 10: Possible aggregate choices.

be well-represented in the potential aggregates, ρ(ETG) dropped as low as 0.7618 when
appropriate aggregate types were chosen.

With information from these runs in hand, we decided to choose a definition of
“small” eigenvalue and “nearly equal” components of the corresponding eigenvector and
attempt to choose aggregates based on these notions, rather than having fixed aggregate
choices. Recall that the difficulty with these problems stems from the fact that when ǫ =
0, each block A(k) has a second null vector, in addition to the constant vector, and this
will be a null vector ofD(k)(I−π

(k)
D ) only if points within an aggregate correspond to equal

components of this eigenvector. We decided that the second eigenvalue of A(k) would be
considered “small” if it was less than 1/2 times the next smallest eigenvalue. If it was
greater than this, then we concluded that the problem was not highly anisotropic and
chose box aggregates. If the second eigenvalue was deemed “small”, then we examined
the corresponding eigenvector. We set a tolerance for “nearly equal” components at
0.05. We then looked for groups of four or more entries of the eigenvector whose values
ranged over no more than three times the tolerance, or, 0.15. The largest such group
was aggregated and we then checked the remaining entries for any more such groups,
aggregating the largest such group and repeating until there were no more groups of
four or more that differed by less than 0.15. We then searched the remaining entries
for any groups of three whose values differed by at most twice the tolerance, or, 0.1.
Such groups of three were aggregated. Finally we searched the remaining entries of the
eigenvector for pairs that differed by no more than 0.05, and we aggregated such pairs.
Remaining entries were left as singletons on the “coarse grid”.

Figure 12 shows the results for θ = ±π/3, ± π/4, 0, and an angle chosen randomly
between −π/2 and π/2, which turned out to be about 0.99. [Note that the results for
negative θ should be identical to those for positive θ unless roundoff plays a role; in our
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experiments, the results for negative θ were the same as for positive θ.] The spectral
radius of the iteration matrix (with pre- and post-smoothing) using the newly chosen
aggregates is plotted with x’s, while the spectral radius of the iteration matrix using
aggregates chosen from the ones in Figure 10 is plotted with o’s. We went out only to
ǫ = 0.6, because for larger values of ǫ both codes chose box aggregates and thus had
identical results. For θ = ±π/4, the new code chose the same diagonal aggregates (types
4 and 10) as the previous one. It got somewhat better results for ǫ = 0.3 and 0.4 because
it deemed the second eigenvalue not to be “small” in these cases and switched to box
aggregates, while the code that based its choices on the minimum value of µ

(k)
D did not

switch to box aggregates until ǫ = 0.5. Of course, this is very sensitive to the definition
of a “small” second eigenvalue. For θ = 0 and ǫ small (less than 0.1) both codes chose
vertical aggregates (type 1). The new code continued to choose vertical aggregates until
it switched to box aggregates at ǫ = 0.5. Based on these results, it might have done
better to switch earlier. The code that based its aggregate choice on µ

(k)
D chose aggregate

type 12 when ǫ = 0.1 and aggregate type 2 when ǫ = 0.2 (near vertical aggregates), but
these choices turned out not to be quite as good as the vertical aggregates. It switched
to box aggregates when ǫ = 0.3 and got a smaller spectral radius than the new code
until it too switched to box aggregates.

For θ = ±π/3 and θ = 0.99, the new code chose some aggregates that are not
pictured in Figure 10. For example, when θ = −π/3 and ǫ ≤ 0.1, it chose the aggregates
below on the left (14), and for ǫ = 0.2 it chose the aggregates in the middle (15). It
chose the aggregates on the right (16) when θ = 0.99 and ǫ ≤ 0.1. Here the coarsening
ratio was only 10/16, and it might have been useful to force the code to aggregate some
of the singletons. In general, however, both codes performed comparably, with similar
coarsening ratios and with spectral radii between 0.5 and 0.9. The largest spectral radius
still occurred for the smallest value of ǫ, namely, ǫ = 0.001 (unless θ = ±π/4), but both
codes obtained significantly better results than using box aggregates for small values of
ǫ.

14. 15. 16.

All of these results deal with a two-grid method and the spectral radius of the re-
sulting iteration matrix. In practice, of course, more grid levels are used and the simple
iteration procedure described here is usually accelerated using conjugate gradients or
related iterative methods. To see if these two-grid results would carry over to a K-cycle
multigrid method with flexible conjugate gradient acceleration, we decided to test the
first aggregation strategy (based on minimizing µ

(k)
D using aggregate choices in Figure

10) in the code AGMG [10]. This aggregation strategy was used only on the finest level,
where it was straightforward to identify the potential aggregates and then to choose the
actual aggregates from among the choices in Figure 10 to minimize µ

(k)
D . Aggregates at

other levels were formed using the procedure in the AGMG code. Number of iterations
and execution times were compared, with and without the new aggregation strategy, for
ǫ = 0.001 and θ = π/12, π/6, and π/4. A right-hand side vector of all 1’s was used,
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ǫ = 0.001 aggregates that minimize µ
(k)
D AGMG aggregates

θ N # levels time in secs (iterations) time in secs (iterations)

π/4 5002 5 1.65 (60) 1.87 (66)
10002 5 8.17 (72) 9.48 (80)
20002 7 40.0 (82) 45.7 (93)
30002 7 92.4 (87) 111 (98)

π/6 5002 5 2.93 (97) 3.53 (124)
10002 6 15.1 (121) 18.7 (155)
20002 7 70.7 (139) 92.5 (182)
30002 7 201 (148) 262 (196)

π/12 5002 5 1.78 (65) 3.07 (103)
10002 5 8.53 (76) 15.7 (125)
20002 7 38.5 (85) 77.4 (146)
30002 7 99.7 (89) 191 (155)

Table 1: Timing and iteration counts for ǫ = 0.001 with and without the new aggregation
procedure on the finest grid.

with a zero initial guess. Results are shown in Table 1, where it can be seen that the
new aggregation strategy for the finest level did, indeed, reduce both the number of
iterations and the computation time. While more experiments are needed to determine
if this approach is really a viable alternative – Can we identify potential aggregates
without knowing the geometry of the problem? Can the new aggregation strategy be
used effectively on other levels as well? – preliminary results look promising.

7 Conclusions

We have used the analysis in [9] to show that if diagonal aggregates are used in a two-
grid aggregation method to solve a rotated anisotropic diffusion equation with angle of
anisotropy θ = π/4, then one obtains a bound on the convergence rate that is inde-
pendent of the mesh size and can be made independent of ǫ, the level of anisotropy, as
well.

We have suggested two possible strategies for choosing appropriate aggregates, based
on assembling groups of nodes that are candidates for aggregation, and then either
choosing from a number of possible aggregates the one that minimizes µ

(k)
D or looking at

the eigenvector corresponding to the smallest nonzero eigenvalue of A(k) and aggregating
points corresponding to nearly equal components of this eigenvector. The first strategy
seems more reliable, as it requires no estimation of what constitutes a “small” eigenvalue
or “nearly equal” components of the corresponding eigenvector. On the other hand, the
second strategy might find good aggregates that are not among the list of possibilities
for the first. Using larger potential aggregates should lead to better results for angles
of anisotropy that are better represented with more nodes, but this means significantly
more work for the first strategy as it would not only have to solve larger generalized
eigenvalue problems to compute µ

(k)
D but would also need to examine more possible
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aggregate choices. The increase in work for the second strategy would not be as great.
The question of how to choose the “potential aggregates” has not been addressed

in this paper. If the problem comes from a PDE (and this is known), then nodes that
are geometrically close make appropriate potential aggregates. In an algebraic setting,
such nodes might be identified using current methods of defining “strongly connected”
points.

The spectral radii observed in this paper are not spectacular in the realm of multigrid
methods. Still, it should be remembered that the problems studied here are typically
very difficult for algebraic multigrid methods and that the analysis was for the simplest
possible outer iteration and the simplest smoother, damped Jacobi. Early experiments
with the aggregation strategy in a true multigrid K-cycle using Gauss-Seidel smoothing
look promising, but much remains to be done.

Acknowledgments: The authors thank Yvan Notay for helpful comments on a first
draft of this paper, and they thank the referees for many additional helpful suggestions.
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Figure 11: Upper left: ρ(ETG) on a 44 by 44 grid using pre- and post-smoothing and aggregates

that minimize µ
(k)
D . Upper middle: Aggregate types (1-13) that were chosen. Upper right:

ρ(ETG) using box aggregates only. Lower left: µ
(k)
D is still fairly large for ǫ near 0. Lower right:

µD is significantly smaller than µ
(k)
D for ǫ near 0.
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Figure 12: ρ(ETG) on a 44 by 44 grid using pre- and post-smoothing and aggregates chosen
based on “nearly equal” components of the eigenvector corresponding to a “small” eigenvalue
of A(k) (curve marked with x’s) and using aggregates chosen from among those in Figure 10

to minimize µ
(k)
D (curve marked with o’s).
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