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Highlights 

- A multi-stain approach allows for biofilm EPS architecture to be observed using TEM 

- SEM of thin sections hosting Os-stained biofilms reveals microbial microcolonies  

- Hydromagnesite crystals nucleate on EPS tangential to cyanobacteria filaments 

- Biofilm architecture visualization can aid mineral nucleation studies  

- Modern biofilm mineralization processes can help elucidate microfossil generation 
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Abstract 

Microbial biofilms and mats have long been studied for their role in mineral precipitation 

reactions in natural environments. Scanning electron microscopy (SEM) is often used to 

characterize biofilms and their associated precipitates, however, conventional SEM sample 

preparation methods do not typically preserve the structure of the extracellular polymeric 

substances (EPS), which account for a large portion of biofilm material and play critical roles 

in biofilm function and mineral nucleation. In the present investigation, three biofilm fixation 

and staining protocols were test with regards to their ability to preserve, and aiding the 

visualization of, EPS using transmission electron microscopy (TEM). Although these 

protocols were initially developed for preserving complex tissue samples of eukaryotic 

organisms, the heterogeneous, three-dimensional nature of the biofilms make them suitable 

candidates for these sample processing methods. The results suggest that cryofixation 

provides the best preservation of cyanobacteria-dominated biofilm structures. A staining 

protocol including six different pre-embedding stains allowed for TEM visualization of the 

EPS matrix that encompasses biofilm cells and precipitate. Of the stains used, uranyl acetate 

appears to be critical in avoiding biofilm deformation during sample processing. Using these 

staining protocols, cell-EPS-mineral relationshipswere observed, including the precipitation 

of hydromagnesite [Mg5(CO3)4(OH)2·4H2O] on the EPS adjacent to the cyanobacteria cell 

exterior. Beachrock-associated biofilms were characterized using both TEM of ultrathin 

sections, as well as SEM of resin embedded osmium stained biofilms prepared as 

petrographic thin sections. Combining these two approaches enabled characterization of both 

the micrometer-scale cell-carbonate mineral contacts, as well as the larger scale microbial 

colony-mineral cement relationships. These results suggest that sample preparation 

techniques developed for rapid preservation of eukaryotic tissue samples can be used to 

preserve and characterize biofilm architecture. These findings have applications to 
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understanding mineral nucleation in biofilms, and the preservation of biofilms as microfossils 

in the rock record. 

 

1. Introduction 

 Geomicrobiology involves the study of microbe-mineral interactions, and the 

influence these interactions have on the geochemistry of natural environments (Ehrlich, 1998; 

Ehrlich, 1999). Due to the scale on which these biogeochemical relationships occur, 

microscopy and other microanalytical techniques have long been utilized in this field of study 

(Benzerara et al., 2006; Benzerara et al., 2014; Benzerara et al., 2004; Beveridge and Murray, 

1976; Dupraz and Visscher, 2005; Dupraz et al., 2004; Fortin and Langley, 2005; Geesey et 

al., 2008; Kappler and Newman, 2004; Konhauser and Ferris, 1996; Li et al., 2016; Obst and 

Dittrich, 2005; Phoenix and Konhauser, 2008; Reid et al., 2000; Shuster et al., 2015; 

Southam, 2012; Southam and Beveridge, 1994). These techniques include confocal light 

microscopy, fluorescence microscopy, scanning (SEM) and transmission electron microscopy 

(TEM), atomic force microscopy, and various analyses using synchrotron radiation. Although 

recent advances of these techniques have enabled detailed characterization of structures and 

geochemical gradients generated at the interface of microbe-mineral relationships (Miot et 

al., 2014), the innate characteristic of geomicrobiological specimens to contain both 

biological and lithological components continues to present a challenge for sample 

preparation. Preserving these specimens can be especially difficult if the biominerals are 

redox sensitive, or require anoxic sample processing. The hydrated, fluid, and dynamic nature 

of the biofilms and microbial mats often targeted in geomicrobiology make them difficult to 

preserve. The challenge of maintaining the structure of extracellular polymeric substances 

(EPS) (Lawrence et al., 2003) and the microbe-mineral relationships that exist in hydrated 

biofilms has been the focus of several studies, which have primarily turned to cryogenic 
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techniques (Beveridge, 2006; Dohnalkova et al., 2011). These developments are based on the 

long known fact that cryo-preparation of biological samples results in better preservation of 

bacteria structures than chemical fixation (Graham and Beveridge, 1990a; Graham and 

Beveridge, 1990b; Graham et al., 1991; Miot et al., 2011). These techniques have recently 

been optimized such that they can be completed in a matter of hours (McDonald, 2007; 

McDonald, 2014). There has not, however, been any utilization of these faster processing 

protocols in the field of geomicrobiology, leaving the field of TEM examination of natural 

microbial biofilms underdeveloped.  

The complex challenge of characterizing biofilm samples is compounded by the fact 

that even if the biofilm is accurately preserved, the chemistry and mineralogy of the nano- to 

micrometer sized mineral crystals often precipitated in biofilms is difficult to analyze. 

Adsorption of metals to bacterial cell envelopes (Beveridge and Murray, 1976), the ability of 

cells and EPS to act as nucleation sites for mineral precipitation (Braissant et al., 2007; 

Dupraz et al., 2009; Gallagher et al., 2012; Shuster et al., 2015; Southam and Beveridge, 

1994), and the formation of intracellular mineral precipitates (Benzerara et al., 2014; Cam et 

al., 2016; Cam et al., 2018; Komeili et al., 2004) make it critical to maintain both biofilm 

structure, mineral precipitate structure and redox state, such that the whole specimen can be 

imaged and analyzed in a single sample. Only by achieving this can microbe-mineral 

interactions be thoroughly characterized.   

In the presented study, a variety of preservation techniques were applied to 

cyanobacteria-dominated biofilms for characterization using TEM, as well as explore the use 

of electron diffraction as a means of identifying hydrated magnesium carbonate minerals in 

these biofilms. Three protocols were used to examine preservation and staining of 

cyanobacteria biofilms, thereby we first examine the difference in biofilm preservation using 

cryo- versus chemical-fixation, and second compare the staining of extracellular structures in 
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the biofilm, with the goal of optimizing the quality of both preservation and staining. 

Additionally, samples of beachrock-hosted biofilms provided an example how the third 

staining protocol can be applied to a mineral-bearing complex natural biofilm.  

2. Methods 

2.1 Scanning electron microscopy of non-mineralized biofilms. A cyanobacteria biofilm 

was grown in the laboratory in BG-11 growth medium (Vonshak, 1986), sourced from a 

microbial mat sample collected from pit waters in the Woodsreef Asbestos Mine, NSW, 

Australia (McCutcheon et al., 2017b; McCutcheon et al., 2016b). The biofilm was fixed using 

2.5% glutaraldehyde prior to an ethanol dehydration (20%, 40%, 60%, 80%, 100%, 100%, 

100%) using a Pelco Biowave (Tedpella, Redding, CA) microwave (no vacuum, 250 W, 40 s 

each step), followed by critical point drying using a tousimis Samdri-PVT-3B critical point 

dryer (tousimis, Rockville, MD). The samples were mounted on stainless steel SEM stubs 

using adhesive carbon tabs and coated with 4 nm of osmium using a Filgen OPC80T osmium 

plasma coater (Filgen, Inc., JP). The samples were observed and imaged using secondary-

electron SEM (SE-SEM) using a Zeiss Leo 1540 XB (Carl Zeiss, Jena, DE).  

2.2 Biofilm preservation and staining techniques for TEM. The three protocols used to 

preserve and stain the cyanobacteria Woodsreef Mine biofilm sample, hereafter referred to as 

Protocols 1, 2 and 3, are outlined in Figure 1.  

2.2.1 Protocol 1.  

Fixation: the biofilm sample was fixed by high-pressure freezing  (HPF) using a Leica EM 

Pact2 high-pressure freezer (Leica Biosystems, Wetzlar, DE). The samples were added to 

0.7% (wt./vol.) Type VII agarose in 100 µm deep Au-coated Cu specimen carriers prior to 

being high-pressure frozen using the protocol described by McDonald and Webb (2011).  

Staining: the HPF step was followed by the quick freeze substitution method outlined by 

McDonald and Webb (2011), using a solution of 1%(aq) osmium tetroxide (OsO4), 0.5%(aq) 
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uranyl acetate (UA), and 5% (vol./vol.) water in acetone, contained in a liquid nitrogen-filled 

Styrofoam™ container set on a platform shaker operated at 125 rpm (McDonald, 1999). 

Solvent: following staining, the samples were washed in 100% acetone.  

Resin-infiltration: the samples were embedded in Epon EMbed 812 Resin (Luft, 1961) 

(Electron Microsocpy Sciences (EMS), Hatfield, PA) using Epon:acetone mixtures of 20, 40, 

60, 80, 90, 100, 100, 100 in the Biowave microwave at 250 W with the vacuum on, with the 

microwave on for 2 min, then off for 2 min, then on for 2 min for each step, after which the 

Epon was cured at 60°C for 48 h. Note, the microwave steps are longer in duration than 

typically used for embedding to ensure complete infiltration of resin into the cells.  

Ultrathin sectioning: the resin blocks were trimmed, and cut into 70 nm thick ultrathin 

sections using an Ultra 45° DiATOME diamond knife (DiATOME, Hatfield, PA) and a Leica 

Ultracut UC6 ultramicrotome (Leica Biosystems, Wetzlar, DE), and collected on 200 mesh 

Formvar-carbon coated copper grids.  

Post-stain: none.  

2.2.2 Protocol 2.  

Fixation and staining: the biofilm sample was fixed using 2.5% glutaraldehyde and 2.0% 

paraformaldehyde while concurrently being stained with 75 mM ݱ-lysine and 0.075%(aq) 

ruthenium red in a 0.1M sodium cacodylate buffer (Figure 1) (Fassel et al., 1998). The lysine 

solution was made using ݱ-lysine monohydrochloride. Both solutions were made using a 

cacodylate buffer after which they were mixed together and the sample was immediately 

placed in the combined solution. The sample was left in the fixative for 2 h at 4°C, after 

which it was rinsed with 0.1 M sodium cacodylate buffer.  

Additional staining: after the 2 h fixation, the biofilm was rinsed with 0.1 M sodium 

cacodylate buffer and stained using 2.0%(aq) OsO4 using the Biowave (vacuum on, 80 W, 2 × 

[2 min on, 2 min off, 2 min on]) (Garland et al., 1975). 
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Solvent: the sample was dehydrated using an ethanol dehydration series at concentrations of 

20%, 40%, 60%, 80%, 90%, 3 × 100% using the Biowave (no vacuum, 250 W, 40 s each 

step).  

Resin-infiltration: The sample was then embedded as described in Protocol One, with the 

exception that the Epon-solvent mixtures contained ethanol rather than acetone. 

Ultrathin sectioning: as outlined in Protocol 1.  

Post-stain: following ultrathin sectioning, the grids were post-stained using Reynolds’ lead 

citrate (Reynolds, 1963).  

2.2.3 Protocol 3. 

Fixation and staining: as outlined in Protocol 2.  

Additional staining: the biofilm sample was rinsed with phosphate buffered saline (PBS) 

(Biowave: vacuum on, 80 W, 2 × 40 s) and further stained with osmium, ferricyanide and 

thiocarbohydrazide, a modified version of the protocol described by Holcomb et al. (2013); a 

staining procedure developed for 3D reconstruction of brain tissue. This multi-stain approach 

combines stains for which there have been individual protocols for a number of years 

(McDonald, 1984; Palade, 1952; Seligman et al., 1966; Watson, 1958). To the best of our 

knowledge, however, there has been little use of this particular combination of stains in 

geomicrobiology. Briefly, the sample was sequentially stained using: 2%(aq) OsO4 and 

1.5%(aq) ferricyanide (Biowave: vacuum on, 80 W, 2 × [2 min on, 2 min off, 2 min on]); 

rinsed with UHQ water (once on the bench, once in the Biowave: vacuum on, 80 W, 2 × 40 

s); 1%(aq) thiocarbohydrazide (TCH) (Note, TCH takes 1 h to dissolve at 60°C with agitation 

every 10 min; once dissolved, the sample was stained for 20 min); rinsed with UHQ water 

(once on the bench, once in the Biowave: vacuum on, 80 W, 2 × 40 s). Due to the toxicity of 

TCH, the sample was placed in a new sample tube to minimize additional TCH 

contamination of the sample processing materials. Samples were then stained with 2%(aq) 
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OsO4 using the Biowave (vacuum on, 80 W, 2 × [min on, 2 min off, 2 min on]); rinsed with 

UHQ water (once on the bench, once in the Biowave: vacuum on, 80 W, 2 × 40 s); 1%(aq) 

uranyl acetate (Watson, 1958) (vacuum on, 150 W, 2 × 2 min on, 2 min off, 2 min on); and 

rinsed with UHQ water (once on the bench, once in the Biowave: vacuum on, 80 W, 2 × 40 

s). 

Solvent: as outlined in Protocol 2.  

Resin-infiltration: as outlined in Protocol 1.  

Ultrathin sectioning: as outlined in Protocol 1.  

Post-stain: none.  

2.3 Transmission electron microscopy. All samples were characterized using a JEOL-JEM 

1011 TEM  (JEOL Ltd., Akishima, JP) equipped with an Olympus Soft Imaging Solutions 

Morada CCD camera at 80 kV, and a JEOL-JEM 1010 TEM equipped with an Olympus Soft 

Imaging Solutions Veleta 2K × 2K wide angle digital camera at 80 kV.  

2.4 Characterization of cyanobacteria-hosted hydromagnesite using TEM-SAED. A second 

cyanobacteria-dominated biofilm sample from a natural consortium known to precipitate 

hydromagnesite [Mg5(CO3)4(OH)2·4H2O] (McCutcheon et al., 2014) was fixed using 2.5% 

glutaraldehyde and stained using a modified version of Protocol 3. As the sample was already 

fixed prior to staining, the lysine-ruthenium red step was excluded because this step typically 

occurs concurrently with aldehyde fixation. Additionally, the uranyl acetate steps was 

omitted because these stains are too acidic for use on samples containing carbonate. In some 

cases, in which pH is a concern, osmium tetroxide should also be omitted. These changes 

need not be made for biofilms containing minerals stable at low pH values. Sample 

dehydration using ethanol and resin infiltration using Epon was continued as described in 

Protocol 3. Selected area electron diffraction (SAED) was conducted using a JEOL-JEM 

2100 TEM at 120 kV equipped with a Gatan Orius 1000 slow scan CCD camera (Gatan Inc., 
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Pleasanton, CA). The lattice spacing measured from the SAED patterns were compared to 

known lattice data for hydromagnesite (ICDD, 1975).  

2.5 Characterization of beachrock biofilms and calcium carbonate precipitates. Microbial 

mats and biofilms found on, and within, the beachrock on Heron Island (Capricorn Group, 

Great Barrier Reef, Australia) have been previously studied for their ability to precipitate 

calcium carbonate cements and form microbialites (McCutcheon et al., 2016a; McCutcheon 

et al., 2017a; Webb et al., 1999). A sample of the cyanobacteria-dominated microbial mat 

hosting abundant carbonate mineral grains was collected from the surface of the beachrock 

and prepared using the protocol outlined in Section 2.1. A second surface beachrock-biofilm 

sample was stained using 2%(aq) OsO4 prior to being processed through an ethanol 

dehydration series at concentrations of 20%, 40%, 60%, 80%, 90%, 100%, 100%, 100% 

using the Biowave (no vacuum, 250 W, 40 s each step). Once dehydrated, the sample was 

embedded in Epon EMbed 812 Resin, and prepared as polished petrographic thin sections. 

Thin sections were characterized using back-scattered electron (BSE) SEM, in conjunction 

with energy dispersive spectroscopy (EDS) using an Oxford Instruments (Abingdon, UK) 

INCA x-sight energy dispersive spectrometer. A third sample of beachrock biofilm was 

processed using the modified version Protocol 3 described in Section 2.4, in which the lysine-

ruthenium red and uranyl acetate steps were excluded, prior to observation using TEM. 

 

3. Results 

3.1 Scanning electron microscopy of non-mineralized biofilms. SEM of the Woodsreef 

Mine biofilm sample confirmed that it primarily contained filamentous cyanobacteria, with 

associated heterotrophs (Fig. 2A,B). Large quantities of EPS can be seen (Fig. 2C), which is 

visible as mesh-like fibers on cell surfaces. Although the EPS is retained through sample 
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preparation, its structural integrity was compromised during the dehydration, and its structure 

as a hydrated gel is not preserved.  

3.2 Biofilm fixation and staining protocol comparison using TEM. The three protocols by 

which the Woodsreef biofilm samples were processed resulted in varying degrees of 

preservation and structure visualization when observed using TEM. The HPF-freeze 

substitution protocol (protocol one) provided the best preservation of cyanobacteria cell 

structures, particularly thylakoids and carboxysomes, although little can be seen of EPS or 

other extracellular features (Fig. 3A,B). In contrast, Protocols 2 and 3 provided better staining 

of the extracellular features of the biofilm. Protocol 2 provided good contrast of thylakoids, 

carboxysomes, and exopolymer (Fig. 3C,D). It appears, however, that this protocol resulted 

in some deformation of the EPS structure, with the EPS beginning to develop the fiber-like 

morphology often seen as an artefact of specimen preparation for SEM (Fig. 2C). Protocol 3 

provided the best contrast of the biofilm, and appears to have maintained the gel-like 

structure representative of EPS in live cultures (Fig. 3E,F). The third protocol is also 

preferable over the second with regards to staining of cyanobacteria cell structures such as the 

cell envelope, thylakoids, and carboxysomes (Fig. 3,4). In Figure 3E,F, note the clear 

visualization of the thylakoids, carboxysomes, and what appear to be polyhydroxybutyrate 

(PHB) granules. The staining of the thylakoids and other cell structures by Protocol 2 resulted 

in a grainy appearance (Fig. 4A,B),  an artefact not observed for those stained using Protocol 

3 (Fig. 4C,D).  

3.3 Characterization of mineral precipitates in biofilms.  

3.3.1 Cyanobacteria and hydromagnesite. The precipitates observed in the biofilm sample 

appeared to primarily form on the EPS that encapsulates cyanobacteria cells, precipitating 

such that the crystals are oriented tangential to filament surfaces (Fig. 5A-D). This is 

consistent with the typical presentation of this filament-mineral association as seen using 
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SEM (Fig. 5E,F). SAED of the precipitates in this orientation was difficult, as only the edges 

of the ~20 nm thick platy crystals were accessible for diffraction, providing a very limited 

detectable sample volume within the confines of the 70 nm-thick section. SAED generated a 

limited set of diffraction spots (Fig. 5D, inset), the lattice spacings of which were consistent 

with known values for hydromagnesite (Table 1). While it is not ideal diffraction data, this 

is,to our knowledge, the first in situ identification of biologically mediated hydromagnesite 

precipitates using electron diffraction.  

3.3.2 Beachrock biofilm and calcium carbonate. SE-SEM of the beachrock biofilm revealed a 

heterogeneous assortment of intermixed cells, EPS, and mineral grains (Fig. 6A). When 

observed as a polished thin section using BSE-SEM, it becomes apparent the microbial cells, 

including filamentous cyanobacteria, are systematically organized in microcolonies (Fig. 6B). 

A sample of fractured beachrock viewed using SE-SEM reveals the presence of microfossils 

of filamentous cyanobacteria, visible as mineralized molds of the microbial cells (Fig. 6C,D). 

Using SEM, nothing can be discerned of the pre-mineralization biofilm structure. In contrast, 

TEM of a non-mineralized portion of the beachrock biofilm reveals the complex 

heterogeneous nature of the sample, containing larger filamentous cyanobacteria, smaller 

heterotrophs, remnants of lysed cells, and EPS (Fig. 6E,F).  

BSE-SEM of the polished thin section of beachrock biofilm revealed abundant 

filamentous cyanobacteria, which in some cases, contain micrometer to sub-micrometer-scale 

intracellular bodies (Fig. 7A,B) stained with osmium, and interpreted as PHB granules. Much 

smaller granules were also observed colocalized with the thylakoid membranes of a lysed cell 

using TEM (Fig. 7C,D,E). The remains of the cell envelope and EPS can also be observed in 

Figure 6F, on which extracellular carbonate precipitates, such as those in Figure 8, tend to 

form. Micritic extracellular calcium carbonate precipitates can be observed using BSE-SEM 

among the densely packed microcolonies (Fig. 8A). Similar to the hydromagnesite in Figure 
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5, these precipitates are located on the EPS that can be seen surrounding the cells (Fig. 8B). 

These precipitates are composed of Ca-Mg-C-O, as indicated by the representative EDS 

spectrum overlain on Figure 8B. The cell-EPS-mineral grain relationship is better viewed 

using TEM (Fig. 8C,D). The cell is encapsulated in a mineral-free envelope of EPS, outside 

of which the precipitates can be seen (Fig. 8D). 

 

4. Discussion 

4.1 Biofilm visualization: intracellular versus extracellular structures. SEM of the biofilm 

shows the collapse of EPS often documented when biofilm samples are processed using a 

solvent dehydration series and subsequent critical point drying, thus demonstrating one of the 

reasons for pursuing this investigation (Fig. 2) (Dohnalkova et al., 2011). Examining the 

structure of a biofilm using TEM requires preservation using either chemical or cryogenic 

methods. Although cryogenic methods of sample fixation are known to better preserve cell 

structures (Graham and Beveridge, 1990a; Graham and Beveridge, 1990b; Graham et al., 

1991; McDonald, 1999; McDonald, 2014; Miot et al., 2011), chemical fixation is more 

common in geomicrobiology, likely because it is more practical for immediately preserving 

samples collected from the natural environment. Sample collection from remote field 

locations may necessitate the use of chemical fixation; however, cryogenic methods would be 

preferable for use in laboratory studies as they provide instantaneous, and more accurate, 

preservation of cellular structures (McDonald, 2014). Previous studies applying cryofixation 

and freeze-substitution to cyanobacteria samples have primarily focused on internal cell 

structure rather than extracellular features, particularly EPS, occurring in biofilms (Hoiczyk 

and Baumeister, 1995; Mehta et al., 2015). The present study has demonstrated that high-

pressure freezing achieves good quality visualization of cell ultrastructures, such as the 
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carboxysomes shown in Figure 3A, but that metal fixatives, such as ruthenium red, are 

required to visualize EPS.  

Interestingly, as many as 20 carboxysomes can be observed per cyanobacterial cell, 

which is on par with the maximum number of carboxysomes observed in cyanobacteria (Li et 

al., 2016). These carboxysomes are up to 500 nm in diameter, which is consistent with the ߚ-

carboxysomes typically observed in freshwater cyanobacteria (Rae et al., 2013). The 

abundance of carboxysomes in the cyanobacteria in this culture is of interest, as this culture 

was sourced from a microbial biofilm growing in a chrysotile mine pit lake that was collected 

for the purposes of studying microbial carbonation reactions (McCutcheon et al., 2016b). 

Carboxysomes house the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase 

(RuBisCO), which is critical to the CO2-concentrating mechanism (CCM) utilized by 

cyanobacteria to encourage the carboxylase step at the beginning of the Calvin Cycle (Rae et 

al., 2013). In the context of microbial carbonation, the proteinaceous shell of carboxysomes 

have been suggested to act as a nucleation site for intracellular carbonate precipitation (Li et 

al., 2016), and consequently, it is worth refining the cryogenic methods capable of better 

visualizing these intracellular structures.  

Other intracellular features can be observed using TEM, including what appear to be 

PHB granules in Figure 3E,F, similar to those documented by Zhang et al. (2014) and 

Damrow et al. (2016). Although the sample was sourced from a different environment than 

the sample depicted in Figure 3, some of the osmium-stained, ‘electron dense’ bodies 

observed in the Heron Island beachrock biofilm using BSE-SEM may also be PHB granules 

(Fig. 7A,B). These hydrophobic storage molecules are typically 200-500 nm in size (Reusch, 

2012), can account for up to ~6% dry weight of cells (Ansari and Fatma, 2016), and are 

known to bind calcium, as indicated by EDS analysis in the present study (Fig. 7B, overlain) 

(Reusch and Sadoff, 1988). The formation of PHB is often triggered by macronutrient 
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limitation stress, such as a lack of nitrogen or phosphorous (Damrow et al., 2016; Madison 

and Huisman, 1999). The smaller, electron-dense granules observed colocalized with the 

remnants of the thylakoid membranes using TEM (Figure 7C-E), may be glycogen granules 

similar to those observed by Yamauchi et al. (2011) and Yu et al. (2015). These carbon 

biopolymers are water-soluble and are typically an order of magnitude smaller than PHB 

granules (Damrow et al., 2016), though similarly, they are also generated during nutrient-

limiting growth conditions (Damrow et al., 2016; Yamauchi et al., 2011). Interestingly, PHB 

is less commonly used by cyanobacteria as a storage molecule compared to glycogen, and 

microbes typically only produce one or the other type of granule (Beck et al., 2012). 

Consequently, while both types of granules indicate the same environmental stressor, the 

PHB and glycogen bearing filaments likely represent different cyanobacterium species in the 

Heron Island beachrock biofilm community (McCutcheon et al., 2016a). 

 In comparison to cryogenic methods, chemical fixation still provides adequate 

preservation of the biofilm and cellular structures, and is more suitable as a method to 

precede the staining techniques used in Protocols 2 and 3. The ‘grainy’ texture observed in 

the biofilm prepared using Protocol 2 is likely due to the lack of a UA step in this protocol. A 

UA step is typically included in conventional sample preparation protocols, and appears to be 

important in achieving complete fixation of cellular materials such that condensation, and 

production of these granular features within the cytoplasm, does not occur. This finding is 

consistent with that presented by McDonald (1984), in which UA was found to stabilize 

delicate cell structures throughout the dehydration and embedding steps. Protocol 3 provided 

the best staining of the extracellular aspect of the biofilm, when compared to the more 

traditional stains used in Protocol 1 and 2. Combining the high-quality preservation of 

intracellular structures achieved using cryofixation, with the detailed contrast of EPS and 

extracellular features attained using the stains in Protocol 3 for EPS would likely provide the 
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best result for visualizing overall extracellular biofilm structures. Such a method, however, 

has not yet been developed. 

4.2 Biofilm dehydration and resin infiltration.  One of the main challenges of preserving 

biofilms is the hydrated nature of EPS. EPS is adept at retaining water, making it difficult to 

thoroughly dehydrate. Attempting to embed an incompletely dehydrated biofilm in most 

resins will result in poor polymerization of the resin. This problem is partially abated by 

using the microwave for infiltration of the sample by stains, solvents, and resins alike, rather 

than relying on ambient diffusion (Boon et al., 1986). Use of a microwave is especially 

beneficial when it is combined with a vacuum, particularly for resin infiltration (McDonald 

and Webb, 2011). If infiltration problems persist, increasing the number steps in the ethanol 

dehydration series and resin infiltration can reduce the effects. Increasing the number of steps 

taken to dehydrate the sample with the solvent; however, can result in increased disruption of 

structures in the sample (Graham and Beveridge, 1990b). As a result, it is preferable to use 

the fewest possible steps to achieve complete dehydration and infiltration of the sample, 

which may need to be determined on a per sample basis. As mentioned in the methods, the 

duration of the resin infiltration steps in the present study were increased, a decision made 

based on poor infiltration results previously achieved when a shorter microwave steps was 

used (results not shown).   

4.3 Biofilms as three-dimensional structures. TEM of traditional microbiological samples 

often focus on monocultures grown in the laboratory, typically with the goal of characterizing 

individual cellular structures (Beveridge and Graham, 1991; Graham and Beveridge, 1990a; 

Hoiczyk and Baumeister, 1995; Southam et al., 1993). These methods have been adapted for 

use in geomicrobiology, most simply by removing the use of metals in fixation or staining. 

Such modifications are necessary when processing redox sensitive samples, as some stains, 

such as osmium tetroxide, are strong oxidizing agents. Although these methods are useful, 
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they do not account for the extracellular features of complex, heterogeneous microbial 

biofilms (Fig. 6E,F), or the relationship between these biofilms and any mineral precipitates 

they may contain (Fig. 7,8). In spite of the fact that the EPS matrix accounts for up to 90% of 

the total organic carbon of biofilms (Frølund et al., 1996), it is often overlooked in TEM 

sample preservation techniques. EPS is composed of water, polysaccharides, proteins, lipids, 

and nucleic acids (Flemming and Wingender, 2010). This material plays a critical role in 

biofilm function, aiding with: biofilm stability and adhesion to surfaces, cell aggregation 

enabling cell-cell interaction and lateral gene transfer, water retention, sorption of organic 

molecules and inorganic ions, and providing a source and sink for excess energy and 

nutrients (Flemming and Wingender, 2010). The structural integrity of EPS is largely 

provided by polysaccharides, allowing it to support the cells from which it is derived. Cross-

linking of the polysaccharides with ions in solution, such as alginate with Ca2+, can cause an 

increase in the mechanical stability of the biofilm (Körstgens et al., 2001). Such interactions 

are useful in natural biofilms as these ions become available for the precipitation of minerals 

(Braissant et al., 2007; Braissant et al., 2009), such as the calcium carbonate precipitation 

observed in Figures 7 and 8. The structural integrity also changes in response to 

environmental stressors, such as temperature, desiccation, UV radiation, and shear stress 

(Flemming and Wingender, 2010). Desiccation instigates the production of EPS, and 

concurrently reduces the volume of the biofilm, causing cross-linking of non-specific binding 

sites (Potts, 1994; Roberson and Firestone, 1992). The tendency for desiccation to induce 

EPS produce may, in part, explain the copious amounts of EPS observed in the Heron Island 

biofilms (Fig. 6-8), as these biofilms were sampled from an intertidal habitat that would have 

been subjected to tide-induced wetting and drying cycles. Extracellular enzymatic activity is 

important for degradation of organic compounds to low-molecular weight products that can 

be utilized by the cells in the biofilm as sources of carbon and energy (Flemming and 
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Wingender, 2010). In nutrient limited conditions, degradation of the EPS itself can act as a 

nutrient source for the biofilm inhabitants while concurrently altering the matrix structure 

(Braissant et al., 2009; Decho et al., 2005). The presence of the PHB and glycogen granules 

in the Heron Island biofilms indicate that nutrient limiting growth conditions may have 

presided, in which case EPS may also have acted as an emergency energy store for the 

microbes in these biofilms.  

Additionally, natural microbial mats typically contain numerous different types of 

microorganisms, both prokaryotes and eukaryotes, all at various stages of their life cycle 

(Visscher and Stolz, 2005), as demonstrated in Figure 6E,F. Organisms are often situated 

within microbial mats based on metabolism, such that: oxygenic phototrophs are near the 

surface, methanogens or acetogens are at the bottom, and a range of intermediate metabolic 

strategies interspersed along the geochemical gradient found between these end members 

(Jørgensen and Des Marais, 1986; Jørgensen et al., 1979; Visscher and Stolz, 2005). A result 

of this metabolic stratification is a corresponding change in pore fluid chemistry (de Beer et 

al., 1994; Glud et al., 1992; Stewart and Franklin, 2008).  

The product of these spatial heterogeneities of cell type, metabolism, fluid 

geochemistry, and extracellular matrix is a truly three-dimensional structure. In this sense, 

microbial mats are more akin to the complex tissue samples of eukaryotic organisms than the 

bacteria monocultures with which they are often lumped due to both being composed of 

‘microbes’. Three-dimensional reconstruction of tissue samples of eukaryotic organisms is 

common practice, with extensive methods development recently taking place in the fields of 

plant and animal tissue reconstruction (Gillies et al., 2014; Haley and Lawrence, 2016; 

Kittelmann et al., 2016; Mouw et al., 2014; Randles et al., 2016; Starborg and Kadler, 2015; 

Starborg et al., 2013; Young et al., 2014). These advances in technique development, 

however, have seen little use in geomicrobiology. This may, in part, be the product of a 
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division between research fields known for TEM sample preparation expertise, such as 

neurobiology, and the fields of research interested in natural biofilm samples that are found 

largely within the geosciences. As a result, although biofilms and microbial mats are the 

focus of numerous biogeochemical studies, these materials are often processed using 

techniques more appropriate for rock, soil, or sediment samples. This dichotomy between 

research fields and sample preparation protocols means that technique development for 

examining natural biofilms using TEM has remained underdeveloped. Only by visualizing all 

of the extracellular components can the architecture of the biofilm be constrained.  

4.4 Mineral precipitation in biofilms.  Once EPS can be seen, it becomes possible to observe 

where minerals are forming within a biofilm, observations that are critical to understanding 

mineral nucleation processes. In this investigation, the hydromagnesite crystals appear to be 

precipitating directly on the EPS encapsulating the cyanobacterial cells (Fig. 5A-D). It 

appears that, in some cases, the EPS and attached crystals are then shed from the cell exterior 

(Fig. 5C,D). Capturing the orientation of these crystals gives us an indication of where they 

nucleated with respect to the cyanobacterial filament. This orientation, however, made it 

difficult to identify the phase using SAED, as only the hydromagnesite crystal cross-section 

can be seen and analyzed, rather than the crystal face.  

The presence of mineral precipitates may, in part, be the reason why new staining 

methods have not been applied in the field of geomicrobiology. In some cases, natural 

biomineralization is considered a means of ‘staining’ cells and seemingly eliminates the need 

for further staining. This is useful for some precipitates, such as iron oxides, which 

adequately highlight cell exteriors (Fortin and Langley, 2005; Langley et al., 2009). In 

samples in which mineralization is not pervasive, it is a possible that extracellular structures 

not coated in mineral precipitates are being overlooked. This is particularly true in nucleation 

studies; biofilms that are completely mineralized cannot provide information on where in the 
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biofilm nucleation starts. In this case, it is desirable to have minimal precipitation, along with 

which a geochemically compatible stain must be applied to highlight the biofilm architecture 

that is not yet mineralized. In the case of carbonate minerals, pH sensitivity eliminates the use 

of several traditional staining methods. Lead aspartate and uranyl acetate are acidic, making 

mineral dissolution a risk, while Reynolds’ lead citrate has a high pH and will precipitate on 

the ultrathin section in carbonate-bearing samples. A comprehensive investigation matching 

staining protocols to particular geochemical systems and corresponding mineral products 

would be valuable contribution to the current literature.  

Visualizing the onset of mineral nucleation in biofilms is crucial to understanding 

fossilization, as such samples are the forerunners to the mineralized biofilms preserved in the 

rock record over geologic time scales. In the context of fossilization, as the mineralized 

skeletons of eukaryotic organisms are more readily preserved than soft body tissue, 

mineralized biofilms in the form of micro- or macro-fossils, represent a microbiological ‘hard 

body tissue’, that is much more likely to be preserved than their non-mineralized 

counterparts. Observing contemporary biofilms in the early stages of mineralization can aid 

in understanding the biogeochemical controls on biofilm cementation processes that result in 

structures such as microbialites and stromatolites (Burne and Moore, 1987; Pace et al., 2018; 

Riding, 2000). Petrographic thin sections made from embedded sections osmium-stained 

samples of rock-associated biofilm provide a good means of observing these biofilm-rock 

contacts on a larger scale than what can be achieved using TEM, as demonstrated in Fig. 5B, 

6A,B, and 7A,B. 

The beachrock sample depicted in Figures 6-8 provide a contemporary example of the 

progression from a complex natural biofilm, through calcium carbonate mineral nucleation 

and precipitation, to a fossilized biofilm such as what may be preserved in the rock record. 

The heterogeneous biofilm consists of filamentous cyanobacteria, colonies of heterotrophs, 
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lysed cells, and abundant EPS, all of which are intermixed with mineral grains (Fig. 6E,F). 

Mineral nucleation can be observed in the beachrock biofilm samples as extracellular 

precipitates (Fig. 6) that appear to have formed on the EPS surrounding the cells (Fig. 8C,D). 

Notably, there is an expanse of EPS void of any minerals immediately surrounding the cell, 

outside of which the mineral grains can be seen. This cell-EPS-mineral relationship is 

comparable to that observed for the hydromagnesite precipitating biofilm described above, 

and may the product of these organisms generating EPS as a mechanism to ‘shed’ their 

extracellular precipitates, thus avoiding becoming encased in carbonate cement. 

It is worth noting that some of the mineral grains here observed may not be new 

precipitates that have nucleated within the biofilm, rather, detrital grains that have been 

trapped and bound by the biofilm EPS. Adhesion of sediment grains to biofilms through 

trapping and binding has been observed in stromatolites representing some of the earliest 

evidence of microbial life in the rock record (Altermann, 2008). This mechanism, combined 

with cement precipitation, can encase cells such that cemented molds of the filaments remain 

as microscopic ichnofossils of the biofilm (Fig. 6C,D). Once, mineralization has occurred, the 

complexity of the three-dimensional biofilm architecture is lost, thus demonstrating the need 

for further visualization of the mineralizing features, including EPS and lysed cells, in 

complex biofilm samples using TEM.  

  

5. Conclusions 

Three different protocols were used to prepare microbial biofilm samples in order to 

determine the ability of each protocol to aid in the visualization of extracellular biofilm 

features, particularly EPS. Cryofixation provided the best preservation of cellular structures 

(Protocol 1), while chemical fixation plus as many as six subsequent staining steps (Protocol 

3) provided the best overall visualization of EPS. It appears that uranyl acetate is important 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

for preserving cell structure throughout sample dehydration and embedding, as the biofilm 

samples prepared without UA exhibited condensation defects.  

The preservation and staining methods explored in this study provide better 

visualization of both intracellular and extracellular features of biofilms, particularly EPS, 

than conventional protocols often used for biofilm preparation. Achieving better visualization 

of EPS is crucial because EPS is the focus of many biomineralization investigations. 

Visualization of EPS within a biofilm allows for a better understanding of the three-

dimensional architecture that surrounds and supports individual cells. In the present study, 

biofilms stained with osmium, embedded in resin, and made into petrographic thin sections 

provide a valuable means of observing and characterizing larger sections of biofilm or 

microbial mat, thus enabling the visualization of cyanobacteria microcolonies, as well as the 

presence of intercellular micritic cements precipitated on EPS. Determining the location of 

mineral nucleation within a microbial mat can provide insight into the intricate interactions 

taking place between the microbial cells, their extracellular structures, the surrounding water 

chemistry, and the resultant mineral precipitates. In the present study, the precipitation of 

hydromagnesite crystals on EPS, oriented tangential to filamentous cyanobacteria cells, was 

observed.  

Although microbial biofilms and mats have been acknowledged as complex 

structures, the conventional microbiology TEM sample preparation methods being used to 

study these samples have focused on highlighting internal cellular features and do not always 

make it possible to visualize the complex extracellular features. In order to change this, it is 

necessary to treat these materials as complex, spatially heterogeneous three-dimensional 

structures not unlike tissue samples of eukaryotic organisms.  
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Figure Captions 

Figure 1. Summary of the key steps in the three protocols used to fix and stain cyanobacteria 

biofilms for TEM. Summary of useful references for various aspects of these protocols.  

 

Figure 2. Secondary electron scanning electron micrographs displaying A) the biofilm used in 

the stain comparison investigation. The biofilm is composed of B) filamentous cyanobacteria 

cells and associated coccoid heterotrophs found coated with EPS. C) EPS appears as a 

collapsed mesh on the surface of the cells, representing a classic morphology that is actually 

an artefact of the sample preparation process.  

 

Figure 3. Transmission electron micrographs showing the results of preparing the 

cyanobacteria biofilm using A,B) protocol one: high-pressure freezing, freeze substitution, 

osmium tetroxide, and uranyl acetate; C,D) Protocol 2: glutaraldehyde, paraformaldehyde, 

lysine, ruthenium red, osmium tetroxide, and a lead post-stain; and E,F) protocol three: 

glutaraldehyde, paraformaldehyde, lysine, ruthenium red, osmium tetroxide, 
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thiocarbohydrazide, lead aspartate, osmium tetroxide, and uranyl acetate. High-pressure 

freezing provided the best preservation (protocol one), while the staining in protocol three 

provided the best visibility of extracellular features of the biofilm. In A) note the abundant 

carboxysomes per cell (arrow). In B,D,F) C: carboxysomes, T: thylakoid, PHB: 

polyhydroxybutyrate granule.  

 

Figure 4. Transmission electron micrographs showing the staining of the cyanobacteria cells 

using A,B) Protocol 2: glutaraldehyde, paraformaldehyde, lysine, ruthenium red, osmium 

tetroxide, and a lead post-stain; C,D) protocol three: glutaraldehyde, paraformaldehyde, 

lysine, ruthenium red, osmium tetroxide, thiocarbohydrazide, lead aspartate, osmium 

tetroxide, and uranyl acetate. Protocol 2 left the sample with a grainy texture consistent with 

the precipitation of lead, while protocol three produced uniformly stained cells.  

 

Figure 5. Transmission electron micrographs revealed the precipitation of hydromagnesite on 

EPS adjacent to cyanobacteria filaments (A,B). Note, the precipitates, which are primarily 

oriented perpendicular to the plane of the ultrathin section (C,D), with the mineral plane 

aligned with the filament surface, such that only the edge of the crystals can be seen, and in 

some cases, these minerals appear to be detaching, being shed from the cell envelope. This 

orientation makes them difficult to target with SAED (inlay of D, circles indicate visible 

diffraction spots, numbers relate to lattice spacings listed in Table 1). E) SE-SEM of the 

sample shows the same cyanobacteria-EPS-hydromagnesite relationship for small 

hydromagnesite platelets; however, the structure of the EPS is lost due to dehydration of the 

sample. F) SE-SEM of platy hydromagnesite crystals oriented tangential to a filamentous 

cyanobacterium; a similar spatial relationship as observed using TEM in A-D.  
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Figure 6. Scanning electron micrographs of the outer surface of the Heron Island beachrock 

biofilm (see McCutcheon et al. (2016a)) revealing the complexity of a natural biofilm (A). 

When viewed as a polished thin section (B), it can be observed that the biofilm is organized 

in microcolonies. Secondary electron SEM of a mineralized section of biofilm that has 

broken open, reveals microfossils in the form of mineralized molds of the filamentous 

cyanobacteria in carbonate cement (C,D). Note, the inside of the biofilm cannot be easily 

seen using secondary electron imaging. Transmission electron micrographs (E,F) illustrating 

the heterogeneity of the cyanobacteria-dominated biofilm including the presence of empty 

cell envelopes (arrows), which cannot be seen using BSE imaging, and the much smaller 

heterotrophs (circled) among the EPS matrix. 

 

Figure 7. Scanning electron micrographs (A,B) of a polished thin section of embedded 

microbial biofilm growing on the Heron Island beachrock revealing filamentous 

cyanobacteria containing intracellular bodies interpreted as polyhydroxybutyrate (PHB), 

visible as electron dense granules (bright white in BSE-SEM). EDS analysis (overlain on B) 

of the granule in the filament indicated with an arrow (B). Note, the S and Cl peaks identified 

using EDS are a product of the resin, and the Os is a product of the stain used during sample 

preparation, which targets hydrophobic materials. Smaller, electron-dense (black) 

intracellular granules observed using TEM (C,D). These granules (arrows) appear to be 

adhered to the remnants of the thylakoids (E). Transmission electron micrograph (F) 

illustrating the complex structure of the EPS on which extracellular mineral precipitates form 

(Figure 7).  

 

Figure 8. Back-scattered electron micrographs of a polished thin section of embedded Heron 

Island beachrock biofilm revealing microcolonies of cells around which extracellular micritic 
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mineral grains can be observed (bright white in BSE-SEM) (A). These grains can be 

observed forming on the exterior of the EPS encapsulating cells (B). A representative EDS 

spectrum indicating the Ca-Mg-C-O composition of these precipitates (overlain on B). The 

precipitates can be observed using TEM (C,D) as dark (electron dense) grains. At high 

resolution, note the complex spatial relationship between the cyanobacterium filament, 

encapsulating exopolymer, and (electron dense) minerals. Note, the labelled box in C 

corresponds to the region shown in D.  

 

Table 1. Reflections and associated lattice spacings measured for the mineral in Figure 4C,D 

compared to those for hydromagnesite (ICDD, 1975). The numbering of the diffraction spots 

refers to the numbers on the SAED pattern in 4D. 

Diffraction spots in 

Figure 4D Reflection h k l 

Hydromagnesite lattice 

spacing (Å) 

Measured lattice 

spacing (Å) 

1 3 1 0 2.899000 2.89 

2 3 2 1 2.692000 2.69 

3 0 2 3 2.207000 2.22 

4 5 1 2 1.968000 1.98 
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