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Abstract— This paper presents the development of a 
pneumatic robotic system for bilateral upper limb interactive 
training with variable resistance (resistance means force 
resistance here). This device can be adjusted to certain angle 
of inclination to enlarge its workspace. A motion module is 
designed to direct linear movement of two handles in parallel. 
The handle can be actively driven by human users with 
variable resistance that is realized through a pneumatic 
system. The pneumatic system mainly consists of pneumatic 
cylinders, throttle valves and electromagnetic valves, which 
allows for the resistance control of each motion module. Three 
work modes, including asynchronous, synchronous and 
independent movements, are implemented.  A game was also 
developed to guide human users to do task-oriented bilateral 
training. Quantitative experiments were conducted in a lab 
environment to evaluate the variable resistance performance 
of the robotic system. Qualitative feedbacks were also 
obtained from each participant. Results show that the robotic 
system is able to deliver appropriate bilateral training with 
different levels of resistance. The majority of the participants 
gave a positive feedback in using this device. 

I. INTRODUCTION 

Stroke is the second leading cause for acquired disability 
in adults [1, 2]. A report [3] shows that the stroke is a costly 
disease from human, family and societal perspectives in the 
world. Every two seconds, someone in the world will have 
a stroke. In 2016, there were almost 14 million incidences 
of first-time strokes worldwide. In the UK, there are more 
than 100,000 strokes annually, almost 12 strokes every 
hour, including over 400 childhood strokes. There are over 
1.2 million stroke survivors, and two thirds of them leave 
hospital with disabilities. 

Upper-limb motor impairments are very common on 
stroke survivors [4]. In the past few decades, robot-assisted 
upper-limb rehabilitation techniques have advanced 
rapidly [5-8]. With respect to traditional physical therapy, 
robotic systems can provide more intensive training by 

increasing the number of repetitions than that a therapist 
could impose [9, 10]. 

A variety of upper-limb rehabilitation robots have been 
developed with experimental validation on human 
subjects. They can be divided into wearable exoskeletons 
and platform devices based on the structural design. Some 
examples of upper-limb robotic exoskeletons are the 
ARMin III [ 11], the Rehab-Exos exoskeleton [12], and the 
L-EXOS [13, 14]. In contrast, these robotic system, such as 
the MIT-MANUS [15] and the hCAAR [16], fall into the 
group of platform-based devices. Upper-limb rehabilitation 
robots can be also divided into unilateral or bilateral 
systems. Most of existing robotic devices are designed for 
unilateral training of human shoulder, elbow, wrist, and 
even fingers [15]. 

Bilateral upper limb training that stimulates coordinated 
movement of both arms is a new form of stroke 
rehabilitation. Evidences show that this kind of training 
method has great potential in improving the efficiency of 
stroke rehabilitation[17, 18], including muscle strength, 
FMA scores, daily functions, etc.  

A common way to achieve bilateral training is based on 
master-slave control (or mirror control) by healthy limbs 
guiding impaired ones for specific tasks. Li, et al. [19] 
proposed a master-slave control on a robot to implement 
bilateral arm training. The healthy limb provides the 
corresponding force for the impaired limb. Similarly, for a 
hand robotic device, the master-slave control was 
developed by Rashedi, et al. [20] to achieve mirror-image 
motion pattern.  More advanced, Trlep, et al. [21] presented 
an adaptive assistance control on a bimanual training 
system to adjust the contribution of the unaffected arm for 
reducing the load on the paretic arm. Trials on four chronic 
stroke patients showed that the subjects were able to apply 
forces with the paretic arm similar to the forces of the 
unaffected arm. 

This paper aims to develop a new rehabilitation robot to 
deliver bilateral upper limb coordination and muscle 
strength training for stroke patients. This device is 
developed to work in an active mode with different levels 
of resistance. It does not rely on external power for 
actuation, which makes it have great potential for clinical 
applications due to enhanced training safety. This paper is 
organized as follows. Following the Introduction, the 
development of the bilateral robotic system is described 
with details, including the mechanical design, pneumatic 
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design, electrical system, and interactive gaming. Then, 
experiments were conducted to evaluate the control 
performance of the resistance performance of the robot, as 
well as the whole robotic system for bilateral training. 
Conclusion is summarized lastly. 

II. ROBOT DEVELOPMENT AND ANALYSIS 

This section details the development of the bilateral 
robotic system, including mechanical design, pneumatic 
design, electric components, and an interactive game. 

A. Mechanical Design 

The bilateral robot mechanically consists of three 
modules, as in Figure 1, including a base (A), an 
adjustment mechanism (B), and a motion mechanism (C) 
for bilateral training. The base is a wheeled frame used to 
support the adjustment unit and the motion mechanism. 
The motion module, as the most important part of this 
robotic system, is designed to deliver linear movement to 
each human arm. The adjustment module is installed 
between the base and the motion mechanism. 
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Figure 1. The bilateral robotic system. (A: Base, B: Adjustment unit, 

C: Motion mechanism, D: Control box, E: Computer screen) 

The adjustment module is implemented through an 
electric telescopic rod that is mounted inside the base, as 
shown in Figure 2 (A). This allows the adjustment of the 
inclination (Ac) of the robot motion mechanism, ranging 
from 0° to 40°. Such posture adjustment of the motion 
module leads to a larger robot workspace for patients’ 
upper limb rehabilitation training. It can be also adjusted to 
a specific angle depending on clinical needs of an 
individual, ensuring the training comfort and efficacy. 

The motion module allows linear movement for each 
human arm, as shown in Figure 2 (B). During bilateral 
upper limb training, the participant is required to actively 
hold the handle, or passively fixed on it by straps if he/she 
does not have holding capacity. 

Further in Figure 2 (B), the motion module can be 
divided into two sides (left and right) for bilateral training. 
They are same in function of linear movement for human 
arms. The distance (Sw) between two sides of the motion 
module could be adjusted manually, which allows for a 
larger workspace of this robotic system with flexibilities. 

Figure 2 (C) is presented to show the structure of each side, 
consisting of a base plate, a linear guide way, a slider, a 
pneumatic cylinder, a handle and the housing. The handle 
is fixed on the slider, driven to move straightly along the 
linear guide way by human users. The cylinder rod is 
rigidly connected with the handle, and the cylinder barrel 
rigidly connects with the base plate. The moving range (Sl) 
of the handle is set to 300 mm.  
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Figure 2. Schematic description of the adjustment and motion 

mechanism. (Ac: Angle of inclination, Sw: Width between two sides of 
motion module, Sl: Moving range of handle) 

B. Pneumatic Design 

Variable resistance of the bilateral robotic system can be 
adjusted based patients’ disability levels. The motion 
module employs two pneumatic cylinders whose air flow 
change leads to variable resistance. This study uses 
different combinations of throttle valves for different air 
flows control.  
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Figure 3. The pneumatic schematic of the bilateral robotic system. (The 
mode switching unit in a red square and the throttle valve groups in a 

blue square) 

The pneumatic schematic of this bilateral robotic system 
is presented in Figure 3. It contains three main parts: two 
pneumatic cylinders (p1-p2: CHSCS MAL20-300), a mode 
switching unit (in a red square) composed of four two-way 
electromagnetic valves (e1-e4: CKD 3PA110), four 
throttle valve groups (in a blue square), each consisting of 
three one-way throttle valves (r1-r3: Airtac ASC100-06), 



and three one-way electromagnetic valves (x1-x3: Airtac 
2V025-06). 

Due to the mode switching unit in Figure 3, the device 
can be operated with three different movement modes: 
bilateral asynchronous movement, bilateral synchronous 
movement and bilateral independence movement. The air 
circulation of each mode is shown in Figure 4. If the 
electromagnetic valves in the mode switching unit are all 
closed, motion resistance of each pneumatic cylinder is 
independently controlled by the corresponding throttle 
valve group, as shown in Figure 4 (c). The patient could 
put his/her arms on two handles and actively push or pull 
them to accomplish bilateral training under different 
resistance levels. Since both sides of the motion module are 
independent to each other, the coordination of the bilateral 
upper limb is completely controlled by patient 
himself/herself.  

Different with the mode (c) for independent bilateral 
movement, the bilateral asynchronous movement mode (a) 
and bilateral synchronous movement mode (b) lead to an 
interaction effect on the two handles. 

Under the bilateral asynchronous movement mode (a), 
the electromagnetic valve e1 and e4 in the mode switching 
unit are open, the four throttle valve groups are closed, two 
rodless chambers of the cylinder are connected with each 
other, and the two rod chambers do in the same way. When 
one human arm pushes the handle, inner air of the cylinder 
is forced to flow to the connected chamber, causing the 
other handle to pull. The bilateral synchronous movement 
mode (b) is nearly same as the mode (a), except that the 
handles move in the same direction. The implementation of 
this mode requires to open the electromagnetic valve e2 
and e3.  

LoadLoadLoad Load
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c. Independence 
movement  

Figure 4. Air circulation of three working modes. 

Further about the throttle valve groups, they are used to 
adjust and control the resistance of the linear movement of 
the hand. It should be noted that these throttle valve groups 
are just needed for the mode (c). In this study, each throttle 
valve group consists of three one-way throttle valves (r1-
r3) for adjusting the air flow. To achieve different flow 
configurations, we set the position of valve spool according 
to its flow characteristic curve, valve x1 to 15L/min, x2 to 

27L/min, and x3 to 80L/min. Different combinations of 
these three throttle valves can result in eight different levels 
of air flow values, as in Table 1. 

TABLE 1.       COMBINATION RESULT OF THROTTLE VALVE  

B A Combination 
Valve flow* 

15 27 80 

5 VIII 0 × × × 

4 VII 15 √ × × 

3 VI 27 × √ × 

- V 42 √ √ × 

2 IV  80 × × √ 

- III  95 √ × √ 

- II  107 × √ √ 

1 I 122 √ √ √ 

*the data is given under 0.6Mpa and unit is L/min; √ represents selected; ×means not selected. 

Specifically, when all valves shut down, the flow is 0 
L/min, when all open, the maximum flow is about 208 
L/min. Considering that throttle effect is not obvious with 
bigger flow, only level I, IV, VI, VII, VIII in column A are 
used for resistance adjustment and they are renumbered as 
level 1-5 in column B. 

C. Electrical System 

The electrical component of this robotic system consists 
of two displacement sensors (s1-s2: Panasonic HG-
C1400), 16 electromagnetic valves, an electric telescopic 
rod and an embedded controller (NI myRIO-1900). The 
electromagnetic valves and electric telescopic rod are 
controlled by digital input/output (DI/O) of myRIO. The 
displacement sensors’ signal are read by the analog input 
(AI), which provide the handles’ position feedback to the 
system. The speed and acceleration feedback is calculated 
from the position feedback. Controlling the electric 
telescopic rod stretching out and drawing back, the angle 
of inclination of the motion module with respect to the base 
varies from 0° to 40°. Inclination feedback is provided by 
the built-in gravity accelerometer of myRIO. The Z axis of 
the gravity accelerometer is perpendicular to the plane of 
the motion module, its X axis is parallel to the handle path. 
Considering the moving speed is slow and stable, the angle 
of inclination of the motion module is calculated in (1). ߙ ൌ arctan ቀୋ೥ୋೣቁ                                        (1) 

Where Ƚ is the angle of inclination, ܩ௭ is the reading on the 
Z axis, ܩ௫ is the reading on the X axis. 

D. Interactive Gaming 

A game is designed to guide human users for bilateral 
upper limb training. For early-stage rehabilitation, a good 
game should be easy to play, have direct mapping 
relationship between the arm motion and the game target.  

The length of bar 1 and bar 2 represents the displacement 
of the left and right handle or human hand, respectively. 
The position of bar 3 is decided by bar 1 and bar 2. When 
a human user actively drive both handles, bar 3 will move 
around on the screen. For a therapy task, the participant is 



required to drive bar 3 to track bar 4. The bar 4 (a static 
target) appears on the screen randomly. When bar 3 gets 
into the target bar 4, the participant is required to keep the 
target on for a few seconds. While the time runs out, the 
participant is guided to complete the next round. The way 
how the bar 3 is driven, involving the driving speed, 
distance, and the targeting accuracy, can be recorded for 
evaluation of the training efficacy. Figure 5 shows an 
interactive game developed in labVIEW for robot-assisted 
bilateral upper limb training. 

Bar4
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Bar1 Bar2

 
Figure 5. An interactive game to direct bilateral upper limb training. 

III.  EXPERIEMNTAL RESULTS 

A. Resistance tests with constant speed 

To evaluate different levels of resistance, this study used 
a linear module to simulate a human hand with a constant 
moving speed. The slider of the linear module is fixed to 
one end of a force sensor. Its the other end rigidly connects 
with the handle. The setup of the experiment is shown in 
Figure 6. 
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Figure 6. Setup of the resistance test with a constant moving speed. 

This experiment aimed to test the resistance 
characteristic under each level. The resistance level of the 
motion module can be affected by both the throttle valve 
groups and the driving speed. To evaluate the role of 
different valve groups, the experiments were conducted at 
a constant speed of 200 mm/s. Specifically, the slider of the 
linear  module runs forward (push) at 200 mm/s, then hold 
for five seconds, then the slider runs backward (pull) at the 
same speed, and finally stops. While the whole range of the 
motion module is 300 mm, this study selected the middle 
240 mm for resistance tests to eliminate random errors, as 
in Figure 6. 

By operating the corresponding electromagnetic valves 
of each configuration, as in Table 1, five levels of handle 
resistance were tested in sequence with results presented in 
Figure 7. 

Push
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Figure 7. Characteristic of each resistance level at 200mm/s. 

In Level 5, all electromagnetic valves are shutdown, 
which means the air in the cylinder chamber is sealed. This 
is its main difference with other four levels. With the 
handle pushing, the volume of the sealed air reduces and 
the pressure increases. When the handle is pushed to the 
end, the generated pressure reaches the peak that means the 
maximum resistance to human users. As in Figure 7, the 
maximum resistance is about 94.9N. During the five 
seconds holding stage, the generated resistance keeps at a 
relatively stable level. The force variation during the pull 
stage is nearly opposite with that of the push period. 

The force variation of the other four levels behave to be 
similar, except their different force peaks. The maximum 
resistance force decreases as the level decreases (Level 4-
52.5N, Level 3-33.6N, Level 2-22N, and Level 1-15.2N). 
In the pushing period, resistance increases along with the 
moving of the handle, when the handle reaches the end 
point, the resistance begins to decrease quickly since the air 
sealed in the cylinder chamber leaks quickly through 
throttle valves. Frictional resistance results in negative 
values of the force sensor when the handle is back to its 
origin (Stop stage). 

B. Resistance tests with variable speeds 

To further investigate the influence of different driving 
speeds on resistance of the motion module, experiments 
were conducted with the same throttle valve groups (here 
Level 4 was selected). 

 
Figure 8. Resistance force characteristic of level 4 at different speeds. 

(Speed 1:13.3mm/s, Speed 2:33.3mm/s, Speed 3:66.7mm/s, Speed 4: 
100mm/s, Speed 5:133mm/s) 



The setup shown in Figure 6 was adopted for this test, 
where five different driving speeds were given. The 
corresponding results are presented in Figure 8. It is worth 
mentioning that from 0 second to the peak moment belongs 
to the push stage, and the remaining time is for holding 
until the 8th second. 

Obviously it can be found in Figure 8 that with the 
driving speed increasing from Speed 1 to Speed 5, the 
resistance force reaches a higher peak value with less time. 
This feature can be considered as an adaptive resistance 
strategy that gives larger resistance for quicker moving 
speed. 

C. Qualitative feedback on variable resistance 

This study implemented various resistance control on 
the robotic system through different combinations of three 
throttle valves. However, if this can generate acceptable 
and obviously different resistance levels by human users is 
not clear. To qualitatively evaluate the differences of these 
five resistance levels, 11 healthy subjects volunteered to 
participate in this test. Each of them was required to 
conduct the push-hold-pull-stop movement under five 
resistance levels. For the test, these five levels of resistance 
are randomly arranged. Immediately after the test, each 
participant was required to reorder the resistance levels 
based on their feelings. The test design and participants’ 
feedbacks are summarized in Table 2. 

TABLE 2.       QUALITATIVE RESISTANCE TEST DESIGN AND 

FEEDBACKS FROM ALL PARTICIPANTS 

No. Sex Age Random order Feedback 
1* M 20 2 4 5 3 1 3 4 5 2 1 

2 F 20 5 3 2 1 4 5 3 2 1 4 

3 F 21 5 2 1 3 4 5 2 1 3 4 

4 M 21 2 3 4 1 5 2 3 4 1 5 

5 M 23 3 4 5 2 1 3 4 5 2 1 

6 F 21 4 2 3 1 5 4 2 3 1 5 

7 M 31 2 3 1 5 4 2 3 1 5 4 

8 M 20 1 4 3 2 5 1 4 3 2 5 

9 F 24 1 4 5 3 2 1 4 5 3 2 

10* F 21 2 1 3 4 5 1 2 3 4 5 

11 M 22 1 5 3 4 2 1 5 3 4 2 

* represents the participants with mistakes in ordering the resistance level, and all others gave 
the right sequence. 

As shown in Table 2, 1 out of 11 (9.1%) volunteers 
mixed up level 2 and 3, 1 out of 11 (9.1%) volunteers mixed 
up level 1 and 2, the others (81.8%) managed to identify 
the correct resistance level as the predefined random 
orders.  

D. Qualitative feedback on the robotic system for 
bilateral training 

The 11 participants also played the game with this 
robotic system under three working modes, of which the 
bilateral independent mode also has five levels of 
resistance. After the test, each of them was required to give 
feedback based on a questionnaire. It consists of two 

ranking based questions and ten selective questions. Two 
ranking based questions contain “how interesting do you 
think is the performance of the game, are you satisfactory 
with the training effect”. Eight selective questions contain 
“Which level do you think a stoke patient could bear, is 
width between the handles suitable for you, do you feel 
uncomfortable during the training, do you think the 
bilateral asynchronous mode and bilateral synchronous 
mode are useful in rehabilitation training”. Any other 
comments involving this virtual-reality tracking game are 
also welcome to give if available. 

The purpose of this test is to evaluate people’s feelings 
with this robotic system for bilateral upper limb training. 
Before any test, each participant was requested to 
understand the game with a demo about how it works.  

Results show that two participants have previous 
experience in using rehabilitation equipment. The others 
have little knowledge of rehabilitation devices. Nine 
participants give a six or higher score for the game 
enjoyment and training effect. Ten of them considered 
resistance levels 1-4 to be suitable for human users’ 
bilateral training. The two participants with previous 
experiences of using rehabilitation devices also suggested 
that the bilateral asynchronous mode and the synchronous 
mode will bring extra difficulties and challenges in 
tracking the predefined targets within the game. Both are 
happy with this two new modes, but definitely suggested to 
further investigate how such modes can be brought into 
practice. 

IV.  CONCLUSION 

This paper presents the development of a pneumatic 
robotic system for bilateral upper limb training with 
variable resistance. It makes use of the atmosphere air to 
produce resistance, which does not require external power 
source and thus leads to more enhanced training safety. 

Quantitative experiments were conducted in a lab 
environment to evaluate the variable resistance 
performance of this robotic system. Qualitative feedbacks 
were also obtained from each participant. Results show that 
the robotic system is able to deliver appropriate bilateral 
training with different levels of resistance. Most 
participants gave a positive feedback in using this device 
for bilateral upper limb training. 

However, the proposed robot-assisted bilateral training 
techniques suffer from a limitation of unstable resistance 
even with constant driving speed. Future work will focus 
on developing new control techniques to achieve constant 
resistance even with different driving speeds. The 
modelling of the synchronous and asynchronous modes 
will be also explored for more accurate control, enabling 
its clinical applications. 
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