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TIME-CHANGES PRESERVING ZETA FUNCTIONS

SAWIAN JAIDEE, PATRICK MOSS, AND TOM WARD

To Graham Everest (1957–2010), in memoriam

Abstract. We associate to any dynamical system with finitely many periodic
orbits of each period a collection of possible time-changes of the sequence of
periodic point counts for that specific system that preserve the property of
counting periodic points for some system. Intersecting over all dynamical
systems gives a monoid of time-changes that have this property for all such
systems. We show that the only polynomials lying in this monoid are the
monomials, and that this monoid is uncountable. Examples give some insight
into how the structure of the collection of maps varies for different dynamical
systems.

1. Introduction

We are concerned with operations (that we will call time-changes) that act on
integer sequences and preserve the following property. An integer sequence (an) is
called realizable if there is a map T : X → X with the property that

an = Fix(X,T )(n) = |{x ∈ X | T nx = x}|

for all n > 1. In this case we will also say that the sequence (an) is realized by
the system (X,T ). If we require X to be a compact metric space and T to be a
homeomorphism, or indeed if we require T to be a C∞ diffeomorphism of the 2-
torus, then the same collection of sequences is characterized by this definition (by
work of Puri and the last author [8] or Windsor [11], respectively). Notice that not
all integer sequences are realizable: certainly if (an) is realizable then an > 0 for
all n > 1, but there are congruence conditions as well. For example, a2 − a1 is the
number of points that live on closed orbits of length precisely 2 under the map T ,
so a2 − a1 must be both non-negative and even.

Certain operations on integer sequences preserve the property of being realizable
for trivial reasons. If (an) is realized by (X,T ) and (bn) by (Y, S), then the product
sequence (anbn) is realized by the Cartesian product T×S : X×Y → X×Y , defined
by (T ×S)(x, y) = (T (x), S(y)) for all (x, y) ∈ X × Y . Similarly, the sum (an + bn)
is realized by the disjoint union T ⊔ S : X ⊔ Y → X ⊔ Y , where T ⊔ S is defined as

(T ⊔ S)(z) =

{

T (z) if z ∈ X ;

S(z) if z ∈ Y.
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All these statements may also be expressed in terms of the dynamical zeta func-

tion of (X,T ), formally defined as ζ(X,T )(z) = exp
(
∑

n>1 Fix(X,T )(n)
zn

n

)

. Here we

are interested in properties of the collection of all possible dynamical zeta functions.
Thus, for example, the space of all zeta functions is closed under multiplication,
because the sum of two realizable sequences is realizable, and is closed under a
Hadamard-like formal multiplication because the product is. We refer to work of
Carnevale and Voll [1] or Pakapongpun and the last author [6, 7] for more on the
combinatorial and analytic properties of these ‘functorial’ operations on realizable
sequences.

A different kind of operation on sequences (or on zeta functions) is a time

change, defined as follows. Any function h : N → N defines an operation on in-
teger sequences by sending (an) to (ah(n)). If the original sequence (an) is re-
alized by (X,T ), then this may be thought of as replacing the sequence of it-
erates T, T 2, T 3, . . . , whose fixed point counts give the sequence (an), with the
time-changed sequence T h(1), T h(2), T h(3), . . . . The question we are interested in is
this: counting the number of points fixed by those iterates T h(1), T h(2), T h(3), . . .
gives an integer sequence. Is it possible that this sequence counts periodic points
for some (other) system (Y, S)?

Definition 1. For a map T : X → X with Fix(X,T )(n) <∞ for all n > 1, define

P(X,T ) = {h : N → N |
(
Fix(X,T )(h(n))

)
is a realizable sequence}

to be the set of realizability-preserving time-changes for (X,T ). Also define

P =
⋂

{(X,T )}
P(X,T )

to be the monoid of universally realizability-preserving time-changes, where the
intersection is taken over all systems (X,T ) for which Fix(X,T )(n) <∞ for all n > 1.

Some remarks are in order.

(a) Clearly the identity map defined by h(n) = n for all n ∈ N lies in P(X,T ) for
any system (X,T ). Thus P is non-empty.

(b) If functions h1, h2 lie in P, then their composition h1◦h2 also lies in P, because
by definition if (an) is a realizable sequence then (ah2(n)) is also realizable, and
so (ah1(h2(n))) is too. Thus P is a monoid inside the monoid of all maps N → N

under composition.
(c) Notice that P(X,T ) is a certain collection of functions defined by (X,T ),

but it will typically be some other system (Y, S) that bears witness to the
statement h ∈ P(X,T ), by satisfying the property

Fix(Y,S)(n) = Fix(X,T )(h(n))

for all n > 1.
(d) The requirement that Fix(X,T )(n) < ∞ for all n > 1 is natural for the type of

question we are interested in, and will be assumed of all systems from now on.

It is not obvious that any non-trivial maps h could have either of the properties
in Definition 1, but the following simple examples show how functions with this
type of property can arise.
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Example 2. If |X | = 1, then Fix(X,T )(n) = 1 for all n > 1, so the sequence of
periodic point counts for (X,T ) is the constant sequence (1, 1, 1, . . . ). Any func-
tion h : N → N time-changes this constant sequence to itself, so lies in P(X,T )
because it is realized by the system (X,T ) itself. Thus in this case P(X,T ) = NN

is the monoid of all maps N → N.

Example 3. If h : N → N is a constant function, with h(n) = k for all n > 1, then
for any system (X,T ) the time-change produces the constant sequence whose nth
term is Fix(X,T )(k) for all n > 1. This sequence is realized by the system (Y, S),
where |Y | = Fix(X,T )(k) and S is the identity map. That is, h ∈ P.

Example 4. For any system (X,T ) we clearly have Fix(X,T )(2n) = Fix(X,T 2)(n)

for all n > 1, because the 2nth iterate of T is the nth iterate of T 2. Thus the map h
defined by h(n) = 2n for all n > 1 is a member of P(X,T ) for any system (X,T ),
and so is universally realizability-preserving. Thus h ∈ P.

Our purpose is to prove two results about the structure of P, and describe
some examples that expose more subtle possibilities for the collection of func-
tions P(X,T ).

Theorem 5. A polynomial lies in P if and only if it is a monomial.

We illustrate what is going on in Theorem 5 with examples. Some of these
involve statements about specific dynamical systems, and an adequate reference for
these results is [2, Ch. 11].

Example 6. (a) Let (X,T ) denote the ‘golden mean’ system. This is one of a
family of maps called shifts of finite type. It is defined on the space

X = {(xn)n∈Z ∈ {0, 1}Z | xk = 1 =⇒ xk+1 = 0 for all k ∈ Z}

by the left shift, so T sends (xn)n∈Z to the sequence whose kth term is xk+1 for
all k ∈ Z. Then it may be shown that

(1) Fix(X,T )(n) = trace

(
1 1
1 0

)n

for all n > 1, so Fix(X,T )(n) is the nth Lucas number, the sequence of periodic

point counts begins (1, 3, 4, 7, 11, . . . ), and ζ(X,T )(z) = 1
1−z−z2 . The Cartesian

square T × T is also a shift of finite type, and a calculation shows that

ζ(X×X,T×T )(z) =
1

(1+z)(1−2z−2z2+z3) .

Theorem 5 asserts in part that the map h defined by h(n) = n2 for all n > 1 lies
in P. In particular, this means that there is some system (Y, S) whose sequence of
periodic point counts is obtained by sampling the Lucas sequence along the squares,
namely (1, 7, 76, 2207, . . . ). Such a system cannot be conjugate to a shift of finite

type, because lim supn→∞
1
n2 log Fix(Y,S)(n) = log

(
1+

√
5

2

)
> 0, while shifts of finite

type have periodic point counts that only grow exponentially fast, because they can
be expressed in terms of the trace of powers of an integer matrix as in (1).
(b) In the reverse direction, Theorem 5 says that the map h defined by h(n) = n2+1
for all n > 1 is not universally realizability-preserving. This means there must be
some system (X,T ) with the property that time-changing by sampling its periodic
point counts along the polynomial n2+1 produces an integer sequence which cannot
be the periodic point count of any map. A system that bears witness to the fact
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that h /∈ P may be constructed as follows. LetX = N, and define a map T : X → X
as follows:

• T (1) = 1, so the subset {1} consists of a single closed orbit of length 1
for T ;

• T (2) = 3, and T (3) = 2, so the subset {2, 3} consists of a single closed orbit
of length 2 for T ;

• T (4) = 5, T (5) = 6, and T (6) = 4, so the subset {4, 5, 6} consists of a single
closed orbit of length 3 for T ;

and so on, resulting in a system (X,T ) which has exactly one closed orbit of length n
for every n > 1. We will write Orb(X,T )(n) = 1 for all n > 1 to express this.
Now Fix(X,T )(n) =

∑

d |n dOrb(X,T )(d) = σ(n) (the sum of divisors of n), since the

points fixed by T n are exactly the union of the d points lying on each closed orbit
of length d for each divisor d of n. Thus the sequence of periodic point counts
for (X,T ) begins (1, 3, 4, 7, 6, 12, . . . ). Time-changing this along the polynomial
given by n2 + 1 gives the sequence (3, 6, 18, 18, 42, . . .) which cannot count the
periodic points of any map, as such a map would need to have 6−3

2 closed orbits of
length 2.
(c) A Lehmer–Pierce sequence, with nth term | det(An − I)| for some integer ma-
trix A, counts periodic points for an ergodic toral endomorphism if it is non-zero
for all n > 1. Time-changing it along the squares then gives a sequence that counts
periodic points for some map, and this sequence has a characteristic quadratic-
exponential growth rate, resembling a ‘bilinear’ or ‘elliptic’ divisibility sequence.
However, it will have fundamentally different arithmetic properties, and cannot be
an elliptic sequence by work of Luca and the last author [4].

Theorem 5 suggests that P is (unsurprisingly) small, but work of the second
author may be used to show that there are many other maps in P, resulting in the
following result. This will be proved in Section 3.

Theorem 7. The monoid P is uncountable.

2. Proofs of Theorem 5

First we recall from [8] that an integer sequence (an) is realizable if and only if

(2)
1

n

∑

d |n
µ(n/d)ad =

1

n

∑

d |n
µ(d)an/d ∈ N0

for all n > 1, where µ denotes the Möbius function. Equivalently, (an) is realizable
if and only if (µ ∗ a)(n) is non-negative and divisible by n for all n > 1, where ∗
denotes Dirichlet convolution.

The condition (2) characterizes realizability because we have

an = Fix(X,T )(n) =
∑

d |n
dOrb(X,T )(d)

for all n > 1 if and only if

Orb(X,T )(n) =
1

n

∑

d |n
µ(n/d)Fix(X,T )(d) =

1

n
(µ ∗ a)(n)

is the number of closed orbits of length n under T , for all n > 1.



TIME-CHANGES PRESERVING ZETA FUNCTIONS 5

Proof of ‘if ’ in Theorem 5: monomials preserve realizability. We follow the method
of the thesis [5] of the second author. Assume that h(n) = cnk for some c ∈ N

and k ∈ N0.
If k = 0, then the result is clear, as the constant sequence (ac, ac, ac, . . . ) is

realized by the space comprising ac points all fixed by a map (as mentioned in
Example 3 above). If (an) is realized by (X,T ), then (acn) is realized by (X,T c)
for any c ∈ N (as mentioned in Example 4 above for c = 2), so it is enough to
consider the case h(n) = nk for some k > 1.

Assume therefore that (an) is realizable — which for this argument we think of
as satisfying (2) rather than in terms of a system that realizes the sequence — and
write bn = ank for n > 1. We wish to show property (2) for the sequence (bn).
Fix n ∈ N, and let n = pn1

1 · · · pnr
r be its prime decomposition, with nj > 1

for j = 1, . . . , r. Then

(3) (µ ∗ b)(n) = ank −
∑

pi

ank/pk
i
+

∑

pi,pj

ank/pk
i
pk
j
− · · ·+ (−1)rank/pk

1 ···pk
r

where pi, pj , . . . are distinct members of {p1, . . . , pr}. Let

δ = nk/pk−1
1 · · · pk−1

r ,

so in particular n
∣
∣δ. Let

(4) e =
∑

m |nk

δ |m

∑

d |m
µ(m/d)ad.

Since (an) is realizable, we have by (2) that

m
∣
∣
∑

d |m
µ(m/d)ad > 0,

so in particular e > 0 and n
∣
∣e. Thus it is enough to show that e = (µ ∗ b)(n).

Let m
∣
∣nk with δ

∣
∣m, so that we may write

(5) m = p
k(n1−1)+j1
1 · · · pk(nr−1)+jr

r

with 1 6 j1, . . . , jr 6 k. Thus by (4) we have

e =

k∑

j1=1

· · ·

k∑

jr=1

∑

d |m
µ(d)am/d

with m given by (5). Let

(6) m1 = m/p
k(n1−1)+j1
1 = p

k(n2−1)+j2
2 · · · pk(nr−1)+jr

r .

Then we have
∑

d |m
µ(d)am/d =

∑

d |m1

µ(d)
(
am/d − am/p1d

)
.

Thus, because m1 is independent of j1,

k∑

j1=1

∑

d |m
µ(d)am/d =

∑

d |m1

k∑

j1=1

µ(d)
(
am/d − am/p1d

)
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and hence

k∑

j1=1

∑

d |m
µ(d)am/d =

∑

d |m1

µ(d)
(
a
p
kn1
1 m1/d

− a
p
k(n1−1)
1 m1/d

)
.

It follows from (4) that

e =

k∑

j2=1

· · ·

k∑

jr=1

∑

d |m1

µ(d)
(
a
p
kn1
1 m1/d

− a
p
kn1
1 m1/pk

1d

)
,

where m1 is given by (6). The same procedure may be repeated, first setting

m2 = m1/p
k(n2−1)+j2
2 ,

to obtain e = e1 − e2, where

e1 =

k∑

j3=1

· · ·

k∑

jr=1

∑

d |m2

µ(d)
(
a
p
kn1
1 p

kn2
2 m2/d

− a
p
kn1
1 p

kn2
2 m2/pk

2d

)

and

e2 =

k∑

j3=1

· · ·

k∑

jr=1

∑

d |m2

µ(d)
(
a
p
kn1
1 p

kn2
2 m2/pk

1d
− a

p
kn1
1 p

kn2
2 m2/pk

1p
k
2d

)
.

Continuing inductively shows that each expression obtained matches up with a term
in (3), as required. �

Proof of ‘only if ’ in Theorem 5: only monomials preserve realizability. This argu-
ment proceeds rather differently, because we are free to construct dynamical systems
with convenient properties to constrain what the polynomial can be. So assume
that

h(n) = ck + ck−1n+ ck−2n
2 + · · ·+ c0n

k

is a polynomial in P with c0 6= 0, k > 1, and h(N) ⊂ N. For completeness we recall
the following well-known result.

Lemma 8. The coefficients of h are rational, and the set of primes dividing

some h(n) with n ∈ N is infinite.

Proof. We have









h(1)
h(2)
h(3)
...

h(k + 1)










=










1 1 1 · · · 1
1 2 4 · · · 2k

1 3 9 · · · 3k

...
1 (k + 1) (k + 1)2 · · · (k + 1)k



















ck
ck−1

ck−2

...
c0










,

and the determinant
∏

16i<j6k+1(j − i) of this matrix (a so-called ‘Vandermonde’

determinant, an instance of Stigler’s law [12]) is non-zero, so the coefficients of h
are all rational.

Turning to the prime divisors of the values of h, if ck = 0 the claim is clear, and
if k = 1 then c0 and c1 are integers so we may write c1+c0n as gcd(c1, c0)

(
c′1+c

′
0n

)

with gcd(c′1, c
′
0) = 1 to see this, so assume that ck 6= 0 and k > 1. Then we may

write h(n) = np(n) + ck for some polynomial p of positive degree. We may not
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have p(N) ⊂ N of course, but h (and hence p) certainly has rational coefficients.
Then we have

m!c2kp(m!c2k) + ck
ck

= m!ckp(m!c2k) + 1 =
h(m!c2k)

ck
.

If m is large then p(m!c2k) is an integer because p has rational coefficients and ck is
rational, so h(m!c2k) must be divisible by some prime greater than m. �

Using Lemma 8, we let q be a very large prime dividing some value of h, let n0 be
the smallest value of n such that q

∣
∣h(n), and let (X,T ) consist of a single orbit of

length q. (Looking further ahead, it is here that we are failing to solve question (e)
from Section 5, in that we choose the system using information from the candidate
polynomial rather than universally.) Then, by construction,

(7) an = Fix(X,T )(n) =

{

0 if q 6
∣
∣ n;

q if q
∣
∣n.

Thus the assumption that h ∈ P means that (ah(n)) is a realizable sequence, and
we know from (7) that it only takes on the values 0 and q. Since q is prime, we
have

ah(1) ≡ ah(q) (mod q)

by (2). Since (ah(n)) only takes the values 0 and q, we deduce from (7) that n0 is
the smallest n such that ah(n) = q. Thus the sequence (ah(n)) starts

(8) (ah(n)) = (0, . . . , 0, q, . . . )

with the first q in the h(n0)th place. Now (ah(n)) is, by the assumption that h ∈ P,
realizable by some dynamical system (Y, S), so (8) says that S has no fixed points,
no points of period 2, and so on, but it has q points of period h(n0). By (2) this is
only possible if h(n0)

∣
∣q, so we deduce that

(9) h(n0) = q.

Now consider the points of period 2n0 in (Y, S). There are ah(2n0) of these points,

and of course any point fixed by Sn0 is also fixed by S2n0 , so

ah(2n0) > ah(n0) = q.

On the other hand, the sequence (ah(n)) only takes on the values 0 and q, so in fact

ah(2n0) = q.

The same argument shows that ah(jn0) = q for all j > 1. By (7), it follows

that q
∣
∣h(jn0) for all j > 1. Thus we have

h(n0) = ck + ck−1n0 + · · ·+ c0n
k
0 ≡ 0,

h(2n0) = ck + ck−12n0 + · · ·+ c02
knk

0 ≡ 0,

...

h((k + 1)n0) = ck + ck−1(k + 1)n0 + · · ·+ c0(k + 1)knk
0 ≡ 0



8 SAWIAN JAIDEE, PATRICK MOSS, AND TOM WARD

modulo q. That is,









1 1 1 · · · 1
1 2 4 · · · 2k

1 3 9 · · · 3k

...
1 (k + 1) (k + 1)2 · · · (k + 1)k



















ck
ck−1n0

ck−2n
2
0

...
c0n

k
0










≡










0
0
0
...
0










modulo q. Since k is fixed and q is large, the determinant
∏

16i<j6k+1(j− i) of this
matrix is non-zero modulo q, so we deduce that the matrix is invertible modulo q,
and hence

(10) ck−jn
j
0 ≡ 0 (mod q)

for j = 0, . . . , k.
Now, by definition, n0 is the smallest n with q

∣
∣h(n), which tells us nothing

about the size of n0. However, we have seen in (9) that the realizability preserving
property shows that h(n0) = q. It follows that for large q we have

n0 ≈
( q

c0

)1/k

≪ q

since c0 6= 0. So (10) shows that

ck−jn
j
0 ≈ ck−j

( q

c0

)j/k

≪ q

for j 6 k−1, and therefore the congruences in (10) in fact imply a list of equalities,

ck = ck−1 = · · · = c1 = 0

because we can choose q to be as large as we please. It follows that h(n) = c0n
k,

as claimed. We can of course deduce nothing about c0, because c0n
k
0 ≈ q. �

3. Examples and Proof of Theorem 7

The statement that monomials are realizability-preserving in Theorem 5 may be
applied in several ways to give (potentially) new results about existing sequences as
follows. If (an) is an integer sequence known to be realized by some system (X,T ),
then Theorem 5 says that (ank) is also realizable for any k ∈ N. The basic rela-
tion (2) then allows us to deduce three types of result:

• Congruences in the spirit of Fermat’s little theorem, because
∑

d |n
µ(n/d)adk ≡ 0

modulo n for all n > 1.
• Positivity statements, because

∑

d |n µ(n/d)adk > 0 for all n > 1.

• Integrality statements, because the collection of all closed orbits for a sys-
tem (X,T ) may be thought of as a disjoint union of individual orbits,
showing that

ζ(X,T )(z) = exp




∑

n>1

Fix(X,T )(n)
zn

n



 =
∏

n>1

(
1− zn

)−Orb(X,T )(n),
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so the Taylor expansion of ζ(X,T )(z) at z = 0 automatically has integer

coefficients, and hence the Taylor expansion of exp
(
∑

n>1 ank
zn

n

)

at z = 0

has integral coefficients.

The congruence statements may be thought of as generalizations of Fermat’s
little theorem because of the following simple example.

Example 9. The full shift T on a > 2 symbols (that is, the left shift on the
sequence space X = {1, 2, . . . , a}Z) has Fix(X,T )(n) = an for all n > 1. Following
the three observations above, we deduce from Theorem 5 the following statements,
for any k ∈ N and for all n > 1:

•
∑

d |n µ(n/d)a
dk

≡ 0 modulo n, so in particular we have ap
k

≡ a modulo p

for any prime p;

•
∑

d |n µ(n/d)a
dk

> 0;

• the Taylor expansion of exp
(
∑

n>1 a
nk zn

n

)

at z = 0 has integer coefficients.

These statements are all straightforward, but the same conclusions hold start-
ing from any realizable sequence (an). To illustrate the type of conclusions one may
reach, we list some less straightforward examples. Links to the Online Encyclopedia of Integer Sequences [10]
are included for convenience. In each case a family of congruence, positivity, and
integrality results of the same shape follow from Theorem 5.

• The Bernoulli numerators (τn) or denominators (βn), define by
∣
∣B2n

2n

∣
∣ = τn

βn

in lowest terms for all n > 1, where t
et−1 =

∑∞
n=0Bn

tn

n! (see A27641, shown

to be realizable in [3]; A2445 shown to be realizable in [5], respectively).

• The Euler numbers
(
(−1)nE2n

)
, where 2

et+e−t =
∑∞

n=0En
tn

n! (see A364,

shown to be realizable in [5]).
• The Lucas sequence (1, 3, 4, 7, 11, . . . ) (see A204 and [9] for its special status
as a realizable sequence).

• The divisor sequence (σ(n)) = (1, 3, 4, 7, 6, 12, 8, . . .).

Example 10. The following sequences of coefficients are integral, answering ques-
tions raised in the relevant Online Encyclopedia of Integer Sequences entry.

• The sequence A166168 is the sequence of Taylor coefficients of the zeta
function of the dynamical system with periodic point data given by time-
changing the Lucas sequence along the squares, and so is integral as con-
jectured in the Online Encyclopedia of Integer Sequences. More generally,
the same property holds for the Lucas sequence sampled along any integer
power.

• We have exp
(
∑

n>1 σ(n)
zn

n

)

=
∑

n>0 p(n)z
n, where p is the partition

function A41; time-changing along the squares gives as Taylor coefficients
the Euler transform of the Dedekind ψ function. The argument here shows
that sampling along any power also gives integral Taylor coefficients.

Because of the diversity of integer sequences satisfying the condition (2), it is
clear that the property of preserving realizability is extremely onerous. Indeed, the
forward direction of Theorem 5 (stating that monomials are universally realizability-
preserving) is a little surprising, and one might ask if there are any further functions
with this property. In fact Moss [5] has constructed many such maps.

https://oeis.org/
http://oeis.org/A027641
http://oeis.org/A002445
http://oeis.org/A000364
https://oeis.org/A000204
https://oeis.org/
https://oeis.org/A166168
https://oeis.org/A000041
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Lemma 11. Let p be a prime, and define gp : N → N by

gp(n) =

{

n if p6
∣
∣ n;

pn if p
∣
∣n.

Then gp lies in P.

Proof. Let (an) be a realizable sequence and write (bn) = (agp(n)). We need to

show that (bn) satisfies (2). Fix n, and write n = pordp(n)m with gcd(m, p) = 1.
Assume first that ordp(n) = 0. Then p6

∣
∣ n and so

∑

d |n
µ(n/d)bd =

∑

d |n
µ(n/d)ad

and so (bn) satisfies (2) at n.
Next assume that ordp(n) = 1, so that n = pm and p6

∣
∣ m. Then

(µ ∗ b)(n) =
∑

d |pm
µ(d)bpm/d =

∑

d |m
µ(d)bn/d + µ(p)

∑

d |m
µ(d)bm/d

=
∑

d |m
µ(d)ap2m/d −

∑

d |m
µ(d)am/d(11)

since µ is multiplicative. Now

(µ ∗ a)(pn) = (µ ∗ a)(p2m) =
∑

d |p2m

µ(d)ap2m/d

=
∑

d |m
µ(d)ap2m/d −

∑

d |m
µ(d)apm/d(12)

and

(µ ∗ a)(n) = (µ ∗ a)(pm) =
∑

d |pm
µ(d)apm/d

=
∑

d |m
µ(d)apm/d −

∑

d |m
µ(d)am/d.(13)

Adding (12) and (13) gives

(µ ∗ a)(pn) + (µ ∗ a)(n) =
∑

d |m
µ(d)ap2m/d −

∑

d |m
µ(d)am/d = (µ ∗ b)(n)

by (11), so (bn) satisfies (2) at n.
Finally, assume that ordp(n) > 2. Then

∑

d |n
µ(n/d)bd =

∑

d |m
µ(n/d)ad

︸ ︷︷ ︸

Σ0

+

ordp(n)∑

j=1

∑

d |m
µ(n/pjd)apd

︸ ︷︷ ︸

Σj

Now µ
(
n
d

)
= 0 for all d dividing m, so Σ0 = 0.

Similarly, µ
(

n
pjd

)
= 0 for j 6 ordp(n)− 2, so Σj = 0 for 1 6 j 6 ordp(n)− 2.
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For the two remaining terms, we have

Σordp(n) +Σordp(n)−1 =
∑

d |m
µ(m/d)apd +

∑

d |m
µ(pm/d)apd

=
∑

d |m
µ(m/d)apd −

∑

d |m
µ(m/d)apd = 0,

so (2) holds trivially for (bn) at n.
We deduce that (bn) satisfies (2) for all n > 1, as required. �

Proof of Theorem 7. Let S = {p1, p2, . . . } ⊆ {2, 3, 5, 7, 11, . . .} be any set of primes,
and define gS : N → N formally by gS = gp1 ◦ gp2 ◦ · · · in the notation of Lemma 11.
For definiteness, we write a set of primes as {pj1 , pj2 , . . . } with pj1 < pj2 < · · · .
More precisely, the map gS then may be defined as follows. For n ∈ N the set

{pj | pj divides n} = {pj1 , . . . , pjt}

is finite, and then we define

gS(n) = gpj1
◦ · · · ◦ gpjt

(n).

If S and T are different subsets of the primes, then there is a prime p in the
symmetric difference of S and T , and clearly gS(p) 6= gT (p). It follows that there
are uncountably many different functions gS .

Formally, we also need to slightly improve the simple observation that P is a
monoid in Section 1 (remark (b) after Definition 1), as follows. If (h1, h2, . . . ) is a
sequence of functions in P with the property that

{j ∈ N | hj(n) 6= n} = {j(1)n , j(2)n , . . . , j(rn)n }

is finite for any n ∈ N, then the infinite composition h = h1 ◦ h2 ◦ · · · defined by

h(n) = h
j
(1)
n

◦ · · · ◦ h
j
(rn)
n

(n)

for any n ∈ N is also in P. This is clear, because for any given n checking (2) only
involves evaluating h on finitely many terms. We deduce that there are uncountably
many different elements of P from Lemma 11. �

4. Dynamical systems with additional polynomial time-changes

As mentioned in Example 2, if X simply comprises a single fixed point for T
then P(X,T ) = NN. Less trivial systems will have fewer maps that preserve realiz-
ability, and the complex way in which properties of a map relate to the structure of
its associated set of maps are illustrated here by examples of systems (X,T ) with

(14) P ( P(X,T ) ( NN.

Example 12. Let T : X → X be the full shift on a > 2 symbols, so that we
have Fix(X,T )(n) = an for all n > 1. Then we claim (this is an observation from

the thesis of the second named author [5]) that if h(n) = c0 + c1n + · · · + ckn
k

is any polynomial with non-negative integer coefficients, then h ∈ P(X,T ). By

Theorem 5, we know that the sequence (an
j

) is realized by some map Tj : X → X
for any j = 1, . . . , k. Certainly the constant sequence (a, a, . . . ) is realized by the
identity map T0 on a set with a elements. Then the Cartesian product

S = T0 × · · · × T0
︸ ︷︷ ︸

c0 copies

×T1 × · · · × T1
︸ ︷︷ ︸

c1 copies

× · · · × Tk × · · · × Tk
︸ ︷︷ ︸

ck copies
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acting on Y = Xc0+c1+···+ck has

Fix(Y,S)(n) = ac0
(
an

)c1
· · ·

(
an

k)ck = ah(n)

for n > 1, by construction. Thus h ∈ P(X,T ), showing that P(X,T ) is strictly
larger than P. On the other hand, if the map that exchanges 1 and 2 (and fixes all
other elements of N) lies in P(X,T ), then we must be able to find some dynamical
system S : Y → Y with Fix(Y,S)(1) = a2 and Fix(Y,S)(2) = a. This forces a2 6 a
(because every fixed point of a map is also fixed by the second iterate of the map),
so a 6 1. It follows that P(X,T ) is strictly smaller than NN, since a > 2.

In general it is not at all easy to describe P(X,T ) — indeed with the exception
of the trivial case NN which arises for the identity map on a finite set, we have
no examples with a complete description any more insightful than the definition.
Example 12 relies on the accidental fact that anam = an+m, allowing us to translate
Cartesian products of systems into addition in the time-change. The next example
of a system satisfying (14) relies on a different arithmetic trick, as well as the result
from Example 12.

Example 13. Let T : X → X be the map x 7→ −ax modulo 1 on the additive
circle X = R/Z for some integer a > 2. Then we have Fix(X,T )(n) = an − (−1)n

for n > 1, and we claim that if h(n) = n2 + 1, then h ∈ P(X,T ). (In fact,
the same argument shows the same property for any polynomial with non-negative
coefficients, but for simplicity of notation we consider this specific example.) To
prove this, we first show that

(15) η(n) =
∑

d |n
(−1)dµ(n/d) = 0

for all n > 2. Writing µ(s) =
∑

n>1
µ(n)
ns , ζ for the Riemann zeta function, and η

for the Dirichlet η-function
∑

n>1
(−1)n−1

ns , it is clear that η(s) = (1 − 2−s)ζ(s)

by splitting into odd and even terms, and ζµ = 1, so µ(s)η(s) = (1 − 21−s)
for ℜ(s) > 1. It follows that η(1) = −1, η(2) = 2, and η(n) = 0 for n > 2.

As all our other arguments are elementary, for completeness we also show (15)
directly, by separating out the power of 2 dividing n, as follows.

• If n > 2 is odd, then

η(n) = −
∑

d |n
µ(n/d) = −

∑

d |n
µ(d) = 0.

• If n = 2k for some k > 1, then

η(n) =
∑

d |2k
(−1)dµ(2k/d) = µ(1) + µ(2) = 0.

• If n = 2m with m > 2 odd, then

η(n) =
∑

d |2m
µ(d)(−1)2m/d =

∑

d |m
µ(d)

(
(−1)2m/d − (−1)m/d

)
= 2

∑

d |m
µ(d) = 0.

• Finally, if n = 2km with k,m > 1 and m odd, then

η(n) =
∑

d |2km
µ(d)(−1)2

km/d =
∑

d |m
µ(d)

(
(−1)2

km/d − (−1)2
k−1m/d

)
= 0.
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We now show that h ∈ P(X,T ) using the basic relation (2). That is, we need to
show the congruence and positivity properties in (2) for the sequence (an) defined

by an = an
2+1+(−1)n for n > 1 (since (−1)n

2+1 = −(−1)n). Now (a∗µ)(1) = a2−1
and (a∗µ)(2) = a2(a3−1)+2, so we see that (a∗µ)(n) is non-negative and divisible
by n for n = 1, 2 as desired. For n > 2, we have

(16) (a ∗ µ)(n) =
∑

d |n
µ(n/d)ad

2+1 +
∑

d |n
(−1)dµ(n/d) =

∑

d |n
µ(n/d)ad

2+1

since η(n) = 0. Now a special case of Example 12 shows that the sequence (an
2+1)

is realizable, so by (2) the last sum in (16) must be non-negative and divisible by n
for all n > 2. This shows that (an) is a realizable sequence, and hence h ∈ P(X,T ).
To see that P(X,T ) is not everything, notice that if the map exchanging 1 and 3
lies in P(X,T ), then a3 6 a, which is impossible.

5. Questions

(a) The simple arguments showing that realizable sequences can be added and mul-
tiplied may be seen using disjoint unions and products of dynamical systems.
Is there a similar argument showing that monomials preserve realizability? For
example, from a ‘natural’ system (X,T ) with an = Fix(X,T )(n) for all n > 1 (a
smooth map on a compact manifold, say), is there a simple construction of a
system (X(2), T (2)) with the property that

Fix(X(2),T (2))(n) = an2

for all n > 1? Of course the proof above notionally ‘constructs’ such a system
because it can be used to extract a formula for how many orbits of each length
such a map must have, but in a far from natural or geometric way.

(b) There is no a priori reason for any given P(X,T ) to be a monoid under com-
position of functions, though P clearly is. For cases with P(X,T ) ) P, what
combinatorial properties of (Fix(X,T )(n)) determine the property that P(X,T )
is a monoid?

(c) Is there a sequence of systems
(
(Xn, Tn)

)

n>1
with the property that

P(Xn, Tn) ) P(Xn+1, Tn+1)

for all n > 1?
(d) Can a non-trivial permutation of N lie in P?
(e) Is there a map T : X → X with the property that the only polynomials

in P(X,T ) are monomials?
(f) Is there a map T : X → X with the property that P(X,T ) = P?
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