
This is a repository copy of Accurate Solution of Bayesian Inverse Uncertainty 
Quantification Problems Combining Reduced Basis Methods and Reduction Error Models.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/137454/

Version: Published Version

Article:

Manzoni, A, Pagani, S and Lassila, T orcid.org/0000-0001-8947-1447 (2016) Accurate 
Solution of Bayesian Inverse Uncertainty Quantification Problems Combining Reduced 
Basis Methods and Reduction Error Models. SIAM/ASA Journal on Uncertainty 
Quantification, 4 (1). pp. 380-412. ISSN 2166-2525 

https://doi.org/10.1137/140995817

© 2016, Society for Industrial and Applied Mathematics. Reproduced in accordance with 
the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

SIAM/ASA J. UNCERTAINTY QUANTIFICATION c© 2016 Society for Industrial and Applied Mathematics
Vol. 4, pp. 380–412 and American Statistical Association

Accurate Solution of Bayesian Inverse Uncertainty Quantification Problems
Combining Reduced Basis Methods and Reduction Error Models∗

A. Manzoni† , S. Pagani‡ , and T. Lassila§

Abstract. Computational inverse problems related to partial differential equations (PDEs) often contain nui-
sance parameters that cannot be effectively identified but still need to be considered as part of the
problem. The objective of this work is to show how to take advantage of a reduced order framework
to speed up Bayesian inversion on the identifiable parameters of the system, while marginalizing
away the (potentially large number of) nuisance parameters. The key ingredients are twofold. On
the one hand, we rely on a reduced basis (RB) method, equipped with computable a posteriori error
bounds, to speed up the solution of the forward problem. On the other hand, we develop suitable
reduction error models (REMs) to quantify in an inexpensive way the error between the full-order
and the reduced-order approximation of the forward problem, in order to gauge the effect of this
error on the posterior distribution of the identifiable parameters. Numerical results dealing with
inverse problems governed by elliptic PDEs in the case of both scalar parameters and parametric
fields highlight the combined role played by RB accuracy and REM effectivity.

Key words. inverse problems, Bayesian inference, reduced order models, nuisance parameters, approximation
error model, partial differential equations
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1. Introduction. The efficient solution of inverse problems governed by partial differen-
tial equations (PDEs) is a relevant challenge from both a theoretical and a computational
standpoint. In these problems, unknown or uncertain parameters related to a PDE model
have to be estimated from indirect observations of suitable quantities of interest. Being able
to design efficient solvers for inverse problems is paramount in several applications, ranging
from life sciences (e.g., electrical impedance tomography [26, 32], characterization of myocar-
dial ischemias, and identification of blood flow parameters [42, 21]), to material sciences (e.g.,
scattering problems [10] or subsurface damage detection [3]) and environmental sciences (e.g.,
identification of permeability in groundwater flows [29], or basal sliding in ice dynamics [34]).

In a parametrized context, a forward problem consists in evaluating some outputs of
interest (depending on the PDE solution) for specified parameter inputs. Whenever some
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parameters are uncertain, they can be identified by considering either a deterministic or a
statistical framework. In the former case, we solve an optimization problem by minimizing
(e.g., in the least-squares sense) the discrepancy between the output quantities predicted by
the PDE model and the observations. In the latter case, we assess the relative likelihood of the
parameters which are consistent with the observed output, that is, we need to quantify uncer-
tainties associated with the identifiable parameters due to measurement errors and to nuisance
parameters. Such a problem can be referred to as an inverse uncertainty quantification (UQ)
problem. By relying on a Bayesian approach, we model the unknown parameters as random
variables and characterize their posterior probability density function (PDF), which includes
information both on prior knowledge on the parameters distribution and on the model used
to compute the PDE-based outputs [44]. In this way, inference of unknown parameters from
noisy data accounts for the information coming from (possibly complex and nonlinear) phys-
ical models [45, 19]. Nevertheless, we need to face some key numerical challenges, related to
(i) parametric dimensionality, (ii) slow Markov chain Monte Carlo (MCMC) convergence, and
(iii) many forward queries; see, e.g., [16, 40] for a general introduction to MCMC techniques.
While the first issue can be addressed by considering a parametric reduction (e.g., through
a modal decomposition exploiting a Karhunen–Loève expansion [26] or suitable greedy algo-
rithms [25]), several techniques have emerged in the last decade to speed up both MCMC
sampling algorithms [28, 23] and the solution of the forward problem.

In this work we focus on this latter aspect, showing how a low-dimensional, projection-
based reduced-order model (ROM) can be exploited to speed up the solution of Bayesian
inverse problems dealing with parametrized PDEs. Among projection-based ROMs, reduced
basis (RB) methods built through greedy algorithms [6, 21] or proper orthogonal decomposi-
tion (POD) [14, 26, 29, 39] have been already successfully exploited in this field during the
last decade. Such methods approximate the solution of the forward problem by a handful
of snapshots of the full-order problem—i.e., solutions computed for properly selected param-
eter values; as a result, each forward query becomes relatively inexpensive and the overall
computational cost of Bayesian inversion can be greatly reduced. Very recently, a possible
way to compute snapshots adaptively from the posterior distribution, yielding a data-driven
ROM, has been shown in [12]. Proper generalized decomposition has also been combined
with stochastic spectral methods to deal with dynamical systems in the presence of stochastic
parametric uncertainties [11]. Besides projection-based ROMs, a low-fidelity model can be
also built according to simplified physics, coarser discretizations, or multiscale formulations.
Such a model can also be equipped with correction functions using global polynomials in
terms of the stochastic parameters. For instance, nonintrusive polynomial chaos using or-
thogonal polynomials [15] and stochastic collocation using interpolation polynomials [2, 47]
have been developed in conjunction with physics-based low-fidelity models [31]. See, e.g., [6]
for a detailed discussion on the use of low-fidelity or surrogate models to speed up inverse
problems.

A relevant question, arising when a ROM is exploited to solve inverse UQ problems, is
related to the propagation of reduction errors along the inversion process. In other words, we
need to quantify those uncertainties due to the use of a ROM and associated with the identi-
fiable parameters, to which we can refer to as ROM uncertainty. This latter can be seen as a
form of epistemic uncertainty (i.e., pertaining to uncertainty about a deterministic quantityD
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that nevertheless cannot be fully ascertained) and its quantification is essential in order to
obtain precise and robust solutions to the inverse UQ problem. ROM uncertainty is indeed
quite similar to the so-called model form uncertainty, arising whenever a limited understand-
ing of the modeled process is available [18, 17]. Concerning the modeling of the reduction error
itself, different approaches to approximation have been considered very recently: the so-called
approximation error model [1, 26], Gaussian process (GP)-based calibration (or GP machine
learning) [39], interpolant-based error indicators [33], and regression-based error indicators
[13]. In all of these cases, a statistical representation of the ROM error through calibration
experiments is used to model the difference between the full-order and the lower-order model.
In the approximation error model, an additive Gaussian noise term is introduced in the model
to represent the reduction error; in GP machine learning a GP is used, estimating the covari-
ance function through the calibration experiments. However, error characterization through
well-defined probability distributions may impose a large amount of (sometimes unjustified)
statistical structure, thus leading to inaccurate results. For instance, in the approximation
error model, the uncertainty yielded by the ROM is described as an independent Gaussian
error term, which might be a restrictive assumption (see section 7). On the other hand,
GP machine learning techniques entail more severe computational costs; a possible reduction
technique in this context has been recently presented in [13] and takes advantage of a poste-
riori error bounds, weighted with a GP to generate a more accurate correction. One of our
proposed reduction error models (REMs) (see section 4.3) shares some similarities with this
approach, but enables variance estimations directly from a regression analysis and an easier
treatment of sign effects/corrections, this latter aspect being not treated in [13].

In contrast to the approaches taken in [13, 33], where the objective was to construct REMs
that could be used to train or adapt the ROM accordingly in the case that no other error
estimator was readily available, our proposed approach is instead aimed at the accurate solu-
tion of inverse problems using ROMs, and may use existing ROM error bounds as additional
information, if available. In previous work [21] we have shown that using low-fidelity ROMs
as surrogates for solving inverse problems can lead to biased and overly optimistic posterior
distributions. Our goal is to exploit the existing features of the ROM, such as rigorous a poste-
riori error estimators, and then to correct for the reduction error within the Bayesian inversion
process through suitable REMs. By extending some preliminary ideas presented in [21], we
show how to take advantage of RB error bounds to gain a strong computational speedup
without necessarily increasing the size of the RB or the resulting online computational cost.
Hence, (i) we propose three REMs to manage ROM uncertainties, (ii) include them within
the Bayesian computational framework, and (iii) show how they allow us to obtain posterior
distributions that are free of bias and more reliable than those provided by the ROM alone.

First, we test the approximation error model of [1] (called REM-1 from here on), which
requires no a posteriori error bounds to be constructed but, however, may perform quite
poorly when dealing with problems involving nuisance parameters and/or error empirical
distributions far from the Gaussian case. Then, we present two alternatives. In the second
approach (REM-2), a radial basis interpolant allows us to evaluate a surrogate reduction error
over the parameter space, relying on a few calibration experiments. A special feature of this
interpolant-based approach compared to others presented in the literature is that instead of
directly interpolating the ROM error we interpolate the (inverse) effectivity of the ROM errorD
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estimator. In the third approach (REM-3), we fit a log-linear regression model to explain the
variability of the reduction errors by means of the corresponding error bounds.

The structure of the paper is as follows. In section 2 we provide a general formulation of
the class of problems we are interested to, whereas in section 3 we recall the main properties
of RB methods. In section 4, we introduce the three REMs considered, and we show how
to incorporate them into the Bayesian estimator and in section 5 we sum up the proposed
computational procedure for the solution of a reduced inverse problem. In section 6 we
prove some results related to the effectivity of the corrections made by the REMs, on the
reduced-order likelihood function and the corresponding posterior distribution. We assess
the performance of the proposed framework on two numerical examples of inverse problems
governed by elliptic PDEs in section 7, and finally draw some conclusions in section 8.

2. Bayesian inverse problems governed by PDEs. Let us introduce the abstract formu-
lation of the forward problem modeling our system of interest, and recall the basic features of
the Bayesian framework for the solution of inverse problems governed by PDEs.

2.1. Abstract formulation of forward problem. In this paper we consider systems mod-
eled by linear parametrized PDEs and (a set of) linear outputs of interest. Let us denote
by X a Hilbert space of functions defined over a domain Ω ⊂ R

d, d = 1, 2, 3. In the case
of second-order, elliptic PDE operators, typically (H1

0 (Ω))
ν ⊂ X ⊂ (H1(Ω))ν , where ν = 1

(resp., ν = d) in the case of scalar (resp., vectorial) problems. Here we restrict ourselves to the
scalar case; the extension to the vectorial case is straightforward, concerning the formulation
of an inverse problem. The forward problem depends on a finite-dimensional set of parameters
µ ∈ P ⊂ R

P . Its abstract formulation reads as follows: given µ ∈ P, find u(µ) ∈ X such that

(2.1)

{

a(u(µ), v;µ) = f(v;µ) ∀v ∈ X (state equation),

s(µ) = ℓ(u(µ)) (observation equation).

Here a : X × X × P → R and f : X × P → R are a parametrized bilinear (resp., linear)
form, s : P → R

s and ℓ = (ℓ1, . . . , ℓs), being ℓj : X → R a linear form for any j = 1, . . . , s.
This assumption is not as restrictive as one would think, since for example field-valued inverse
problems can be treated by discretizing the underlying field with sufficient accuracy (P ≫
1) or by employing a truncated Karhunen–Loève expansion. In particular, we assume that
the parameter vector is divided into two parts: µ = (γ, ζ) ∈ R

Pγ+Pζ ; we denote by γ the
identifiable parameters, and by ζ the nuisance parameters. For the cases at hand, both
identifiable and nuisance parameters will be related to physical properties of the system, thus
entering the differential operator and possibly boundary conditions and source terms. See,
e.g., [21] for further details about the case of geometrical parameters.

We require that the forward problem is well-posed for any choice of the parameter vector
µ ∈ P. To this aim, we assume that a(·, ·;µ) is continuous and uniformly coercive over X for
any µ ∈ P, and that f(·;µ) is continuous, that is, f(·;µ) ∈ X ′ for any µ ∈ P, being X ′ the
dual space of X. We also require that ℓj ∈ X ′ for any j = 1, . . . , s. The Lax–Milgram lemma
ensures uniqueness of the solution (and its continuous dependence on data) for any µ ∈ P.
This framework can also be adapted to stable problems in the sense of an inf-sup condition,
by using the Babuška–Nečas theorem; see, e.g., [36] for further details.D
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A numerical approximation of the forward problem (2.1) can be obtained by introducing,
e.g., a Galerkin finite element (FE) method relying on a finite-dimensional space Xh ⊂ X
of (possibly very large) dimension dim(Xh) = Nh; here h denotes an FE mesh parameter.
Hence, the full-order model (FOM) related to the forward problem reads as follows: given
µ ∈ P, find uh(µ) ∈ Xh such that

(2.2)

{

a(uh(µ), vh;µ) = f(vh;µ) ∀vh ∈ Xh (FOM state),

sh(µ) = ℓ(uh(µ)) (FOM observation).

Under the above assumptions, problem (2.2) is well-posed and admits a unique solution for
any µ ∈ P. In particular, the following continuous dependence on the data estimate holds:

‖uh(µ)‖X ≤ ‖f(·;µ)‖X′

αh(µ)
∀µ ∈ P

being αh(µ) the (discrete) stability factor related to the PDE operator, that is,

αh(µ) = inf
vh∈Xh

a(vh, vh;µ)

‖vh‖2X
≥ α0 > 0 ∀µ ∈ P

for a suitable α0 ∈ R. Being able to efficiently evaluate a tight lower bound 0 < αLB
h (µ) ≤

αh(µ) of the stability factor for any µ ∈ P plays a key role in the a posteriori error bounds
related to the RB approximation and, finally, in the solution of the inverse problem.

If the forward problem consists of solving (2.2) to predict the outcome of an experiment—
by computing u(µ) and evaluating the output s(µ)—in an inverse problem observed data
or measurements s∗ are used to estimate unknown parameters µ characterizing the physical
system. Such a problem can be cast in the optimal control framework; see, e.g., [21] for
further details. If s∗ is an experimental measure, possibly polluted by measurement error, we
need to rely instead on a statistical framework in order to quantify uncertainties (due to both
measurement errors and nuisance parameters) on the estimated parameter values.

2.2. Bayesian framework. We consider a Bayesian framework [19, 44, 45] for the solution
of the inverse UQ problems. We model both the observations s∗ and the parameters µ as
random variables, by introducing suitable PDFs. The solution of the inverse problem is given
by a point or interval estimation computed on the basis of the posterior probability density
πpost : P ×Y → R

+
0 , i.e., the probability density of the parameter µ given the measured value

of s∗, which can be obtained as

(2.3) πpost(µ | s∗) = π(s∗ | µ) πprior(µ)
η(s∗)

,

thanks to Bayes’ theorem. Here πprior : P → R
+
0 is the prior probability density, expressing all

available information on µ independently of the measurements on s∗ that will be considered
as data; π : Y × P → R

+
0 is the likelihood function of s∗ conditionally to µ; finally

η(s∗) =

∫

P

π(s∗ | µ) πprior(µ).D
ow
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In order to describe measurement errors, we consider an additive noise model, that is, if
we suppose that µ is the true parameter, the outcome of the experiment is

(2.4) s∗ = sh(µ) + εnoise = ℓ(uh(µ)) + εnoise,

where the measurement noise εnoise follows a probability distribution πnoise. In this way, our
data are d noisy s-variate measures {s∗1, . . . , s∗d}, s∗i ∈ R

s, for any i = 1, . . . , d, modeled by
assuming that the outcome of the numerical model is given by the output evaluated for the true
parameter value. The most typical description of experimental uncertainties is the Gaussian
model, that is, we deal with normally distributed, uncorrelated errors εnoise ∼ N (0, σ2

i δij),
i, j = 1, . . . , s, with known variances σ2

i , independent of µ. We also denote the likelihood
function appearing in (2.3) by highlighting the dependence on the FE space, as

(2.5) π(s∗|µ) = πh(s∗|µ) = πε(s
∗ − sh(µ))

so that the expression of the posterior PDF given by (2.3) is as follows:

(2.6) πh
post(µ | s∗) = πh(s∗|µ) πprior(µ)

ηh(s∗)
, being ηh(s

∗) =

∫

P
πh(s∗|µ) πprior(µ).

We highlight the dependence of the posterior PDF on the FE space, too. If the output depends
linearly on the parameters and we choose a Gaussian prior, the posterior is also Gaussian.
Instead, as soon as µ �→ s(µ) is a nonlinear map, the expression of the likelihood function
yields a posterior distribution which cannot be written in closed form, requiring instead an
exhaustive exploration of the parameter space. This becomes very hard to perform, above
all if the parameter space has a large dimension. We then need to rely on MCMC to sample
the posterior PDF, such as the well-known Metropolis–Hastings or Gibbs sampling techniques
[16, 24]. These methods are exploited to draw a sequence of random samples from a (multi-
dimensional) PDF which cannot be expressed in closed form. This is meant in order not only
to approximate the posterior PDF, but also to compute integrals related to this distribution.
Then, since we are not interested in the nuisance parameters ζ, we proceed to marginalize
them. This leads to computing the conditional marginal distribution

(2.7) πh
post(γ | s∗) = 1

ηh(s∗)

∫

Pζ

πh(s∗|µ) πprior(γ, ζ) dζ.

MCMC methods are needed to evaluate (possibly) high-dimensional integrals like the one in
(2.7). These methods involve repeated evaluations of the likelihood function πh(s∗ |γ, ζ)—and
thus repeated evaluations of the forward problem (2.2)—so that relying on the FOM would
also be too expensive in the case of linear elliptic problems.

Therefore, we seek to replace (2.2) with a computationally less expensive, ROM providing
an inexpensive approximation un(µ) to uh(µ). This allows us to compute a reduced-order
(and inexpensive) approximation sn(µ) to the full-order output sh(µ). Replacing the full-order
likelihood function πh with its ROM approximation

(2.8) πn(s∗|µ) = πε(s
∗ − sn(µ))D
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clearly affects the posterior distribution, which changes as follows:

(2.9) πn
post(µ | s∗) = πn(s∗|µ) πprior(µ)

ηn(s∗)
, being ηn(s

∗) =

∫

P
πn(s∗|µ) πprior(µ).

Consequently, the marginal PDF of the identifiable parameters becomes

(2.10) πn
post(γ | s∗) = 1

ηn(s∗)

∫

Pζ

πn(s∗|µ) πprior(γ, ζ) dζ.

Nevertheless, being able to quantify the ROM effect on the inversion procedure by relying
on a suitable measure of the error sh(µ)− sn(µ) is paramount: the main goal of this paper is
to set up a suitable procedure to answer this question.

3. ROMs and a posteriori error bounds. Solving large PDE systems for several param-
eter values may require huge computational resources, unless efficient and reliable ROMs for
parametrized PDEs are used. In this paper we rely on a certified RB method, whose basic
ingredients are recalled in this section. A general introduction to this method can be found,
e.g., in [37]; see also [41].

3.1. Reduced subspaces and projection-based ROMs. The RB method is a projection-
based ROM which allows us to compute an approximation un(µ) of the solution uh(µ) (as
well as an approximation sn(µ) of the output sh(µ)) through a Galerkin projection onto a
reduced subspace Xn; given µ ∈ P, find un(µ) ∈ Xn s.t.

(3.1)

{

a(un(µ), vn;µ) = f(vn;µ) ∀vn ∈ Xn (ROM state),

sn(µ) = ℓ(un(µ)) (ROM observation),

where dim(Xn) = n ≪ Nh. The reduced subspace Xn is constructed from a set of (well-
chosen) full-order solutions, usually by exploiting one of the following techniques [22, 38]:

• Greedy algorithm [35, 46]. Basis functions are obtained by orthonormalizing a set of
full-order solutions, corresponding to a specific choice Sn = {µ1, . . . ,µn} of parameter
values, built by means of the following greedy procedure. Let us denote Ξtrain ⊂ P
a (sufficiently rich) finite training sample, selected from P according to a uniform
distribution. Given a prescribed µ1 ∈ Ξtrain and a sharp, inexpensive error bound
∆n(µ) (see section 3.3) such that

‖uh(µ)− un(µ)‖X ≤ ∆n(µ) for all µ ∈ P,

we choose the remaining parameter values as

µn := arg max
µ∈Ξtrain

∆n−1(µ) for n = 2, . . . , nmax

until ∆nmax(µ) ≤ εRB
tol for all µ ∈ Ξtrain, being εRB

tol a suitably small tolerance.
• POD [4, 43]. In this case, the reduced subspace Xn is given by the first n (left) singular

vectors of the snapshot matrix S = [uh(µ
1) | · · · | uh(µNs)] ∈ R

Nh×Ns , corresponding
to the largest n singular values σ1 ≥ σ2 ≥ · · · ≥ σn. Here uh(µ

1), . . . , uh(µ
Ns)D
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are Ns full-order solutions of the forward problem, computed for a random sample
µ1, . . . ,µNs . By construction, the POD basis is orthonormal; moreover, the error in
the basis is equal to the squares of the singular values corresponding to the neglected
modes, and the maximum subspace dimension is such that

∑r
i=n+1 σ

2
i ≤ εPOD

tol , r =
min{Ns, Nh}, being εPOD

tol a suitably small tolerance.

3.2. Affine parametric dependence and offline/online decomposition. Constructing the
reduced subspace requires several evaluations of the FOM, which are performed only once,
during the so-called offline stage. Each online evaluation of the reduced solution (and related
output) requires us to solve a problem of very small dimension n ≪ Nh. Such an offline/online
decomposition is made possible under the assumption that a suitable affine parametric de-
pendence property is fulfilled by the µ-dependent operators. Hence, we require that a(·, ·;µ),
f(·;µ) can be written as a separable expansion of µ-independent bilinear/linear forms:

a(u, v;µ) =

Qa
∑

q=1

Θa
q(µ)aq(u, v), f(v;µ) =

Qf
∑

q=1

Θf
q (µ)fq(v)

for some integers Qa, Qf . A similar decomposition would be required also on the linear forms
ℓj, j = 1, . . . , s, if they were µ-dependent, too.

3.3. A posteriori error bounds. We can easily derive an a posteriori (residual-based)
error bound with respect to the full-order solution, for both the PDE solution and linear
outputs [37, 38]. Let us denote by r(w;µ) = f(w;µ) − a(un(µ), v;µ), for any w ∈ Xh, the
residual of the state equation (evaluated on the RB solution un(µ)) and its dual norm by
‖r(·;µ)‖X′ = supv∈Xh

r(v;µ)/‖v‖X . Then, the error bound on the solution reads as follows:

(3.2) ‖uh(µ)− un(µ)‖X ≤ ∆n(µ) :=
‖r(·;µ)‖X′

αLB
h (µ)

∀µ ∈ P.

We remark that also the computation of the dual norm of residuals, as well as of the lower
bound αLB

h to the stability factors, takes advantage of a similar offline-online stratagem,
allowing us to get an inexpensive evaluation of the error bound for each µ ∈ P; see, e.g., [38].

Regarding the error bound on the output, which is relevant to the Bayesian inversion, we
recall here its expression in the case of linear, noncompliant outputs, as the numerical test
cases presented in the remainder deal with this situation. For any ℓj ∈ X ′, let us introduce
the following (full-order approximation of the) dual problem: find ψj

h(µ) ∈ Xh such that

a(vh, ψ
j
h(µ);µ) = −ℓj(vh) ∀ vh ∈ Xh.

In addition to the reduced space for the forward problem (2.2) (which can be referred to as the
primal problem), let us define a reduced subspace for each dual problem, by using the same
algorithm (either greedy-RB or POD) chosen for the primal problem. Here Xj

n denotes the
dual subspace related to the jth output, although the dimension of each of these subspaces
can be different, and differ from n. The resulting RB approximation ψj

n(µ) ∈ Xj
n solves

a(vn, ψ
j
n(µ);µ) = −ℓj(vn) ∀vn ∈ Xj

nD
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and is required to get the following error bound on the output:

(3.3) |sjh(µ)− sjn(µ)| ≤ ∆j
n(µ) ≡

‖r( · ;µ)‖(Xh)′

(αLB
h (µ))1/2

‖rj( · ;µ)‖(Xh)′

(αLB
h (µ))1/2

∀µ ∈ P,

where rj(w;µ) = −ℓj(w) − a(w,ψj
n(µ);µ), ∀w ∈ Xh, is the dual residual related to the jth

output. Here sjh(µ) = ℓj(uh(µ)) denotes the full-order jth output, whereas sjn(µ) = ℓj(un(µ))
is the corresponding ROM output.

In the same way, for the RB dual solution we have

‖ψj
h(µ)− ψj

n(µ)‖X ≤ ∆ψj

n (µ) :=
‖rj(·;µ)‖X′

αLB
h (µ)

∀µ ∈ P.

As already remarked for the primal residuals, dual residuals can also be efficiently evaluated
by taking advantage of the affine µ-dependence. We also denote by

Φj
n(µ) =

∆j
n(µ)

s
j
h(µ)− s

j
n(µ)

∀µ ∈ P, 1 ≤ j ≤ s,

the effectivity of the estimator ∆j
n(µ). It is possible to show that 1 ≤ |Φj

n(µ)| ≤ Mh(µ)/α
LB
h (µ),

where Mh(µ) is the FE continuity constant of a(·, ·;µ); see, e.g., [37] for further details.
4. REMs. Being able to evaluate the output quantity of a PDE system at a greatly

reduced cost is essential to speed up the solution of inverse UQ problems within a Bayesian
framework. Our goal, once an RB approximation has been built in the offline stage, is to
exploit its fast and inexpensive online queries to speed up the evaluation of the posterior
PDF, of related (point or interval) estimates, and of MCMC integrals like (2.7) or (2.10).
Not only that, but by taking into account reduction errors or available error bounds, we can
obtain reliable solutions at the end of the inversion process, too. Although ROMs have been
exploited to speed up the solution of inverse problems in several works, very few papers have
focused on the analysis of reduction error propagation; see, e.g., [23, 8].

In particular, we wish to incorporate a model for the error engendered by the ROM into
the Bayesian estimator. To this end, we provide suitable (both deterministic and statistical)
REMs, possibly by exploiting available error bounds on the outcome of the forward problem.
A basic observation is made possible by expressing, when dealing with linear (with respect to
the PDE solution) outputs, the measurement equation (2.4) as

(4.1) s∗ = ℓ(un(µ)) + [ℓ(uh(µ))− ℓ(un(µ))] + εnoise = ℓ(un(µ)) + δ(µ),

where δ(µ) = εROM(µ) + εnoise and

(4.2) εROM(µ) = [s1h(µ)− s1n(µ), . . . , s
s
h(µ)− ssn(µ)]

T

is the reduction error, that is, the error due to ROM approximation of the forward problem
and related output. Although in principle εROM is deterministic, in practice its evaluation is
out of reach since it would require, for any µ, the solution of the FOM. Here we propose three
approaches for approximating the reduction error εROM(µ) by a suitable indicator ε̃#(µ),
# = 1, 2, 3, according to suitable REMs which can be easily incorporated into the Bayesian
framework. In particular:D
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• in [REM-1] we treat ROM errors as epistemic uncertainties, represented through ran-
dom variables, following the so-called approximation error model [1];

• in [REM-2] we provide a deterministic approximation of ROM errors by considering
radial basis interpolants of the error over the parameter space;

• in [REM-3] we express ROM errors through a linear model depending on output error
bounds, fitted through regression analysis.

Hence, we end up with error indicators which can be either deterministic—that is, ε̃(µ) =
mROM(µ), being mROM(µ) a suitable function of µ—or expressed through a random vari-
able ε̃(µ), whose distribution πε̃ is characterized by mROM(µ) = E[ε̃(µ)] and ΣROM(µ) =
Cov[ε̃(µ)]. Correspondingly, we end up with a corrected reduced-order likelihood

(4.3) π̃n(s∗|µ) =
{

πε(s
∗ − sn(µ)−mROM(µ)), deterministic REM,

π
δ̃
(s∗ − sn(µ)−mROM(µ)), statistical REM,

being δ̃(µ) = ε̃(µ) + εnoise and Cov[δ̃(µ)] = Σnoise(µ) + ΣROM(µ), by assuming that ROM
errors and measurement noise are independent. Correspondingly, we obtain the following
corrected reduced-order posterior PDF

(4.4) π̃n
post(µ | s∗) = π̃n(s∗|µ) πprior(µ)

η̃n(s∗)
, being η̃n(s

∗) =

∫

P

π̃n(s∗|µ) πprior(µ),

yielding to a similar correction in the marginal PDF of the identifiable parameters (2.10). In
the following subsections we discuss the construction of these three REMs.

4.1. REM-1: Approximation error model. Following the so-called approximation error
model of Arridge et al. [1], we assume that ROM errors are the outcome of a Gaussian random
variable, so that εROM(µ) is replaced by

(4.5) ε̃1(µ) ∼ N (mROM,ΣROM),

being mROM ∈ R
s and ΣROM ∈ R

s×s the sample constant mean and covariance, respectively,
obtained by sampling Ncal errors {sh(µk)− sn(µ

k)}Ncal

k=1 :

mROM =
1

Ncal

Ncal
∑

k=1

εROM(µk),

ΣROM =
1

Ncal − 1

Ncal
∑

k=1

(εROM(µk)−mROM)(εROM(µk)−mROM)T .

We refer to the random sample SNcal
= {µ1, . . . ,µNcal} as the calibration set, since the

computational experiments leading to εROM(µ̃), µ̃ ∈ SNcal
, are additional queries to both

the FOM and the ROM, required to characterize our REM-1. In this case, the correction
does not depend on µ by construction. If we assume in addition that measurement errors are
Gaussian—that is, εnoise ∼ N (0,Σnoise)—and independent from ROM errors, we have that

(4.6) δ̃1(µ) := εnoise + ε̃1(µ) ∼ N (mROM,Σnoise +ΣROM).D
ow

nl
oa

de
d 

03
/0

7/
19

 to
 1

29
.1

1.
22

.5
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 
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Indeed, the effect of the ROM error results in a shift of the likelihood function and an
additional contribution to its variance, provided the normality assumption on the errors eval-
uated over SNcal

is fulfilled. In this case, only a slight modification of the numerical solver is
required within the MCMC process, thus making this REM particularly easy to implement.
Nevertheless, very often ROM errors do not show a Gaussian distribution, so that further
operations are required in order to use such a REM.

To overcome this fact, we can generalize the previous framework by considering any (para-
metric) distribution for the ROM errors conveniently fitted on the set of calibration experi-
ments, that is, ε̃1(µ) ∼ πε̃(µ) possibly depending on a set of shape parameters. Although we
assume that ROM errors are independent of (Gaussian) measurement errors, the distribution
of δ̃1(µ) = εnoise + ε̃1(µ) cannot be found, in general, in a closed form. In these cases, at
each MCMC step, we quantify δ̃1(µ) by calculating the realization of the sum of two random
variables by the following convolution:

(4.7) δ̃1(µ) =

∫

P
πε̃(µ+ ν)πε(ν)dν .

The evaluation of this integral can be performed, e.g., by an internal MCMC algorithm, which
does not feature expensive extra calculations at each step of the outer MCMC process.

Thus, in the case of REM-1, a global approximation of the ROM error over the parameter
space is provided—hence, not depending on µ—by prescribing the distribution of a random
variable fitted over a sample of calibration experiments.

4.2. REM-2: Radial basis interpolation. Despite being straightforward, REM-1 can per-
form badly, for instance, when ROM errors cannot be explained by means of a sample sta-
tistical distribution in closed form, because of their complex variability over the parameter
space. For this reason, we turn instead to a local error model, still exploiting the errors
{sh(µk) − sn(µ

k)}Ncal

k=1 computed over a calibration set SNcal
, by considering a radial basis

interpolant for each output component. In particular, a deterministic µ-dependent correction
can be obtained as

sjh(µ)− sjn(µ) ≃ Πj(µ)∆j
n(µ), j = 1, . . . , s,

where Πj(µ) is a weighted combination of radial basis functions (RBFs), i.e.,

Πj(µ) =

Ncal
∑

k=1

wkφ(‖µ− µk‖), j = 1, . . . s,

and the coefficients {wk}Ncal

k=1 are determined so that Πj fulfills the following interpolation
constraints over the calibration set:

sjh(µ
k)− sjn(µk)

∆j
n(µk)

= Πj(µk), k = 1, . . . , Ncal, j = 1, . . . , s.

In other words, we compute an interpolant of the inverse effectivities (Φj
n(µ))−1 ∈ [−1, 1], for

each j = 1, . . . , s. This choice yields more accurate results than those obtained by interpolatingD
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ROM errors over the calibration set, that is, by considering sjh(µ
k) − sjn(µk) = Π̃j(µk),

k = 1, . . . , Ncal, j = 1, . . . , s (see section 7.1), while φ : R+
0 → R is a fixed shape function,

radial with respect to the Euclidean distance ‖ · ‖ over R
P . Here we use multiquadric basis

functions (φ(r) =
√
1 + r2); see, e.g., [9] for other available options. Thus, in our deterministic

REM-2 we replace ROM errors εROM(µ) by ε̃2(µ) with

(4.8) mROM(µ) = [Π1(µ)∆1
n(µ), . . . ,Π

s(µ)∆s
n(µ)]

T ,

which features a µ-dependent shifting of the likelihood function. If in addition we want to
take into account the variability of the ROM errors, we can incorporate the sample covariance
evaluated over the calibration set as in REM-1, and thus consider

δ̃2(µ) := εnoise + ε̃2(µ) ∼ N (mROM(µ),Σnoise +ΣROM(µ)).

Assuming that ROM errors are Gaussian might be very limiting, as highlighted in the previous
section. Here we consider this argument just as an heuristic correction.

Although very simple to be characterized, REM-2 suffers from the usual curse of dimen-
sionality of multivariate interpolation, which arises from the fact that the simple choices of
interpolation node sets (such as tensor product girds) grow exponentially in size as the para-
metric dimension P = dim(P) is increased, so that both sampling the parameter space and
evaluating calibration experiments rapidly becomes less and less affordable even for relatively
small P (say P > 5). Sparse grid techniques provide partial but not totally satisfactory reso-
lution to this problem [5]. Nevertheless, RBF interpolation is suitable also for scattered data
and, for the cases at hand, shows a very good compromise between accuracy and simplicity.

4.3. REM-3: linear regression model. A possible way to overcome the curse of dimen-
sionality is to rely on a model where the surrogate ROM error is computed as a function of
a scalar quantity depending on µ, rather than on µ itself, no matter which is the parametric
dimension P of µ ∈ P ⊂ R

P . In fact, the quantity which provides a good, inexpensive, and
readily available representation of the ROM error is the a posteriori error bound (3.3).

In order to derive a REM depending on a posteriori error bounds, we remark that a
linear dependence between (the absolute values of the) output errors and related error bounds
is shown when considering a logarithmic transformation, as already pointed out in a recent
contribution [13]. Thus, we can in principle consider the following model:

(4.9) ln |sjh(µ)− sjn(µ)| = βj
0 + βj

1 ln(∆
j
n(µ)) + δjreg, j = 1, . . . , s,

being δjreg ∼ N (0, σ2
reg,j), and fit it to the datasets {∆j

n(µk), sjh(µ
k)−sjn(µk)}Ncal

k=1 obtained by
sampling errors and corresponding error bounds for each output, over a calibration set SNcal

.

By doing this, we get the estimates β̂j
0, β̂j

1 of the coefficients by exploiting standard linear
regression theory, as well as the estimate of the variances σ̂2

reg,j through the corresponding
mean square errors. Thus, by fitting model (4.9) we obtain the following relation for the
absolute value of the ROM error:

|sjh(µ)− sjn(µ)| = exp(β̂j
0 + β̂j

1 ln(∆
j
n(µ)) + δ̂jreg), j = 1, . . . , s,D
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being δ̂jreg ∼ N (0, σ̂2
δ,j). If we consider the deterministic REM-3, the absolute value of ROM

errors |εROM(µ)| can be replaced by

(4.10) mROM(µ) =
[

exp
(

β̂1
0 + β̂1

1 ln(∆
1
n(µ))

)

, . . . , exp
(

β̂s
0 + β̂s

1 ln(∆
s
n(µ))

)]T
.

Instead, by taking into account the variability shown by ROM errors, |εROM(µ)| would be
replaced by the following log-normal random variables:
(4.11)

ε̃3(µ) ∼
[

logN (β̂1
0 + β̂1

1 ln(∆
1
n(µ)), σ̂

2
reg,1(µ)), . . . , logN (β̂s

0 + β̂s
1 ln(∆

s
n(µ)), σ̂

2
reg,s(µ))

]T
.

However, in both cases no indications about the sign of the error are provided by the error
bound (3.3), so that a correction based on (4.9) would be necessarily too poor. Once we have
fitted the linear models, we shall infer the error sign (on each output component j = 1, . . . , s)
from the calibration set, in order to replace ε̃jROM (µ) by ρj ε̃

j
3(µ), where ε̃j3(µ) is given by

(4.10) or (4.11) and ρj ∈ {−1,+1} is determined by adopting one of the following strategies:

1. Nearest neighbor : assigning to ε̃j3(µ) the sign of the sampled error in the calibration
set closest to µ, that is

ρj = sgn
(

sjh(µ̂
k)− sjn(µ̂

k)
)

, µ̂k = argmin
µk∈SNcal

‖µ− µk‖.

2. Bernoulli trial : assigning to ε̃j3(µ) the sign

ρj = −1 + 2Xj , Xj ∼ Be(p̂j), p̂j =
|Sj

+|
Ncal

∈ [0, 1],

being Sj
+ = {sjh(µ)−sjn(µ) > 0 : µ ∈ SNcal

} and Sj
− = {sjh(µ)−sjN (µ) < 0 : µ ∈ SNcal

},
i.e., weighting the Bernoulli trial according to the observed distribution of signs in the
calibration sample. While heuristic in nature, this rule does correctly treat the cases
where the reduction error is heavily biased towards one sign or another instead of
simply assigning, say, a positive sign to all errors.

The splitting of the calibration set into two subsets Sj
+ and Sj

− suggests considering a
regression model over each subset, depending on the computed errors sign. In conclusion, we
obtain for each µ ∈ P the random variable:

(4.12) δ̃3(µ) := εnoise + ρε̃3(µ),

which is the sum of two random variables with different distributions (and can be computed
similarly to (4.7)).

5. Inversion procedure. Let us now summarize the whole numerical procedure we use
to solve a parametric inverse UQ problem. A first offline stage (Algorithm 1) consists in
the computation of the reduced space and in the additional calibration set evaluation. More
advanced versions of the greedy algorithm where the two greedy loops are interlaced could
also be used, but since this step is independent of the REM step that follows, here we have
presented for simplicity a basic version. During the online stage (Algorithm 2), an MCMC
procedure is performed by considering at each iteration the reduced output sn(µ) instead of
the full-order output sh(µ).D

ow
nl

oa
de

d 
03

/0
7/

19
 to

 1
29

.1
1.

22
.5

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

MODEL AND ERROR REDUCTION FOR INVERSE UQ PROBLEMS 393

Algorithm 1 Offline procedure.
1: procedure Basis computation

2: FE matrices:
3: Ah

q , F h
q ← state problem

4: Lh
q,s ← ouput evaluation & dual problems

5: Lower bound :
6: αLB(µ) ← successive constraint method / heuristic strategies
7: Greedy procedure state problem:
8: while maxi∈Ξtrain

∆n(µi) > εtolRB do

9: µ
n = argmaxi∈Ξtrain

∆n(µi); Sn = Sn−1 ∪ span{uh(µ
n)}

10: An
q , Fn

q ← compute reduced state matrices

11: Greedy procedure dual problems: for each output j = 1, . . . , s
12: while maxi∈Ξtrain

∆j
n(µi) > εtolRB do

13: µ
n
j = argmaxi∈Ξtrain

∆j
n(µi); S

j
n = Sj

n−1 ∪ span{ψj
h(µ

n
j )}

14: An
q,j , Ln

q,j ← compute reduced dual matrices

15: procedure REM Calibration

16: for j = 1 : Ncal do

17: sh(µ
j), uh(µ

j) ← FE state problem

18: sn(µ
j), un(µ

j), ∆
(1:s)
n (µj),← RB state and dual problems

19: errj,1:s = s
(1:s)
h (µj)− s

(1:s)
n (µj)

20: compute REM

Algorithm 2 Online procedure.
1: procedure Metropolis sampling

2: µ
(1) ← initial value

3: sampling loop:
4: for cont = 2 : K do

5: µ̄ ← random walk
6: [sn(µ̄),∆n(µ̄)] ← compute RB state + dual problems
7: mROM(µ̄) ← evaluate REM mean
8: if REM is deterministic then

9: π̃n ← πε(s
∗ − sn(µ̄)−mROM(µ̄))

10: if REM is statistical then
11: ΣROM(µ̄) ← evaluate REM covariance matrix
12: π̃n ← π

δ̃
(s∗ − sn(µ̄)−mROM(µ̄))

13: π̃n
post(µ̄|s

∗) ← Bayes’ formula

14: γ ← π̃n
post(µ̄|s

∗)/π̃n
post(µ

(k)|s∗)
15: y ← random sampling from U(0, 1)
16: if y < γ then

17: µ
(k+1) ← µ̄; k ← k + 1

18: burn-in:
19: eliminate first M simulations��

�

µ
(1:M)

20: thinning :
21: keep every dth draw of the chain µ

(1:d:end)

The selection of the basis functions is performed through a greedy (RB) algorithm. This
procedure requires the efficient evaluation of the a posteriori error bound (3.2), for which a
suitable offline/online procedure is exploited (see [27] for further details). The calibration pro-
cedure consists in evaluating the difference between the ROM output sn(µ) and the full-orderD
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output sh(µ) for each parameter in the calibration set SNcal
. Finally, the REM construction

is performed according to the procedure described in section 4.
During the online stage, the posterior distribution is sampled through a Metropolis–

Hastings algorithm, which generates a sequence of sample values, whose distribution con-
verges to the desired corrected distribution π̃n

post. Each MCMC iteration entails an online
query, which is performed in an efficient way by the ROM and the REM. The quality of the
sampling sequence is finally improved by performing a subsequent burn-in and thinning, in
order to reduce the autocorrelation between the sampled points; see, e.g., [16, 24] for further
details.

6. Effectivity of proposed REMs. Let us now analyze the effectivity of the corrections
made on the reduced-order likelihood function thanks to the proposed REMs. In particular,
we aim at stating some conditions to be fulfilled by REM corrections in order to guarantee
that the corresponding posterior PDF π̃n is more robust and closer to the full-order PDF πh
than the reduced-order PDF πn without corrections.

To this end, let us recall the notion of Kullback–Leibler (KL) divergence, which is a
non-symmetric measure of the difference between two probability distributions πA and πB:

(6.1) DKL(πA||πB) =
∫

πA(z) log

(

πA(z)

πB(z)

)

dz.

Clearly, DKL(πA||πB) ≥ 0 whereas DKL(πA||πB) = 0 if πA = πB almost surely. This notion
has already been used to compare approximations of posterior distributions obtained through
generalized polynomial chaos representations; see, e.g., [30, 8] for further details.

6.1. Consistency result. Before comparing our REMs and showing their effect on the
reduced-order posterior PDFs, we prove that the reduced-order likelihood function πn ap-
proximates the full-order one πh in a consistent way, as long as the ROM dimension increases.

Proposition 6.1. Let us consider the additive Gaussian noise model (2.4) and the RB ap-
proximation sn(µ) of the output sh(µ) defined by (3.1) and (2.2), by assuming an analytic
µ-dependence in the bilinear/linear forms. Then, for any µ ∈ P,

(6.2) DKL(π
h||πn) =

s
∑

j=1

1

2σ2
j

(sjh(µ)− sjn(µ))
2,

so that limn→Nh
DKL(π

h||πn) = 0 exponentially.

Proof. The solution un(µ) ∈ Xn of (2.2) is obtained as a Galerkin projection over Xn,
then

‖uh(µ)− un(µ)‖X ≤
(

M̄

α0

)1/2

inf
wn∈Xn

‖uh(µ)− wn‖X ,

being M(µ) ≤ M̄ the continuity constant of a(·, ·;µ) and α0 > 0 such that αh(µ) ≥ α0 for
any µ ∈ P. Thus we have that ‖uh(µ)−un(µ)‖X → 0 when n → Nh. By the same argument,
‖ψh(µ) − ψn(µ)‖X → 0 when n → Nh. Moreover, the Kolmogorov n-width1 of the solution

1The Kolmogorov n-width dn(Mh;X) measures how a finite-dimensional subspace uniformly approximates
the manifoldMh={uh(µ),µ∈P} of the PDE solutions: dn(Mh;X)=infXn⊂X supuh∈Mh

infwn∈Xn
‖uh−wn‖X ,

where the first infimum is taken over all linear subspaces Xn ⊂ X of dimension n.D
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set Mh converges exponentially:

(6.3) dn(Mh;X) ≤ Ce−αn for some C,α > 0,

provided the µ–dependence in the bilinear/linear forms is analytic; see [20] for further details.
Regarding the output, by exploiting twice Galerkin orthogonality we have that

sjh(µ)− sjn(µ) = ℓj(uh(µ))− ℓj(un(µ)) = a(un(µ), ψn(µ);µ)− a(uh(µ), ψh(µ);µ)
= a(un(µ)− uh(µ), ψn(µ)− ψh(µ);µ).

Then, |sjh(µ) − sjn(µ)| ≤ M̄‖uh(µ) − un(µ)‖X‖ψh(µ) − ψn(µ)‖X so that, when n → Nh,

|sjh(µ) − sjn(µ)| → 0 for any j = 1, . . . , s; furthermore, the order of convergence of the ROM
output to the FEM output is twice larger than the one of the state solution. In particular, by
considering an additive Gaussian noise model, for any µ ∈ P

DKL(π
h||πn) =

∫

Rs

πh(s|µ) log
(

πh(s|µ)
πn(s|µ)

)

ds =

s
∑

j=1

1

2σ2
j

(sjh(µ)− sjn(µ))
2,

thanks to the definition (6.1) of KL divergence, so that limn→Nh
DKL(π

h||πn) → 0; finally,
convergence takes place at an exponential rate thanks to (6.3).

The consistency property can be extended to the posterior PDFs according to the follow-
ing.

Proposition 6.2. Under the assumptions of Proposition 6.1, limn→Nh
DKL(π

h
post||πn

post) = 0
exponentially.

Proof. Thanks to the definition of KL divergence,

(6.4)

DKL(π
h
post||πn

post) =

∫

P

πh(s∗|µ)πprior(µ)
ηh(s∗)

log

(

πh(s∗|µ)
πn(s∗|µ)

ηn(s
∗)

ηh(s∗)

)

dµ

= log

(

ηn(s
∗)

ηh(s∗)

)

+

∫

P

πh(s∗|µ)πprior(µ)
ηh(s∗)

log

(

πh(s∗|µ)
πn(s∗|µ)

)

dµ.

By using the definition of πh and πn, and the Lipschitz continuity of exp(−s) for s ≥ 0 (that
is, |e−s − e−t| ≤ Λ|s− t| for any s, t > 0 with Λ = 1), we obtain

∣

∣πh(s∗|µ)− πn(s∗|µ)
∣

∣ =

s
∏

j=1

1
√

2πσ2
j

∣

∣

∣

∣

∣

exp

(

−
(s∗j − sjn(µ))2

2σ2
j

)

− exp

(

−
(s∗j − sjh(µ))

2

2σ2
j

)∣

∣

∣

∣

∣

≤
s
∏

j=1

1
√

2πσ2
j

∣

∣

∣

∣

∣

−
(s∗j − sjn(µ))2

2σ2
j

+
(s∗j − sjh(µ))

2

2σ2
j

∣

∣

∣

∣

∣

≤
s
∏

j=1

1
√

2πσ2
j 2σ

2
j

∣

∣

∣
sjn(µ)− sjh(µ)

∣

∣

∣

∣

∣

∣
2s∗j − sjh(µ)− sjn(µ)

∣

∣

∣

so that, for any µ ∈ P, |πh(s∗|µ)−πn(s∗|µ)| → 0 when n → Nh because |sjh(µ)−sjn(µ)| → 0 for
any j = 1, . . . , s. In the same way, |ηn(s∗) − ηh(s

∗)| = |
∫

P(π
h(s∗|µ) − πn(s∗|µ))πprior(µ)dµ|

→ 0 for any given s∗ ∈ R
s. Thus, both terms in the second line of (6.4) vanish for n →

Nh.D
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6.2. A result of effectivity for the proposed REMs. Since we are mainly interested in
the case where the ROM dimension n is fixed (and possibly small) we want to show that
performing a correction according to an REM improves the quality of the reduced posterior
(in terms of the the KL divergence).

By following the structure of the previous section, we first state a result dealing with the
approximation of the likelihood function by a corrected ROM.

Proposition 6.3. Under the assumptions of Proposition 6.1, if there exists Cj < 1 such that,
for any j = 1, . . . , s,

(6.5) |sjh(µ)− sjn(µ)−mj
ROM(µ)| ≤ Cj|sjh(µ)− sjn(µ)| ∀µ ∈ P

then

(6.6) DKL(π
h||π̃n) ≤

(

max
j=1,...,s

C2
j

)

DKL(π
h||πn)

provided that the correction is made according to a deterministic REM.

Proof. In analogy with relation (6.2), a correction operated by means of a deterministic
REM affects just E[s∗|µ], so that

(6.7) DKL(π
h||π̃n) =

s
∑

j=1

1

2σ2
j

(sjh(µ)− sjn(µ)−mj
ROM (µ))2.

Thus, under condition (6.5), (6.6) directly follows.

By means of (6.5), we require that the correction provided by an REM is effective, that is, it
yields a reduction in the KL divergence between the reduced-order and the full-order posterior
PDFs, when in the former case a correction through a deterministic REM is considered.
Instead, when relying on statistical REMs, we need to distinguish between two cases:

• The correction shall result in a normal random variable (REM-1 or REM-2), with
mean mROM and covariance matrix (ΣROM )ij = (σROM

j )2δij . In this case, we would
obtain

(6.8) DKL(π
h||π̃n) =

1

2

s
∑

j=1

(

(sjh(µ)− sjn(µ)− ε̃j(µ))2

σ2
j + (σROM

j )2

+
σ2

σ2
j + (σROM

j )2
− 1− log

(

σ2
j

σ2
j + (σROM

j )2

))

instead of (6.7). Thus, in order to ensure that a relation like (6.6) still holds, we need
to further require that (σROM

j )2 is sufficiently small compared to σ2
j , j = 1, . . . , s—

in practice problems only arise if σj = 0 (i.e., the jth likelihood function is a true
delta function), whereas any realistic inverse problem will inherently experience finite
variance in its outputs arising from measurement noise, numerical approximations,
etc., and so provided that the ROM approximation is convergent a sufficiently large
RB can always be found such that remainder terms in (6.8) are negligible.D
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• The correction shall result in a nonnormal distributed random variable (such as, e.g.,
when using REM-3, where the correction is a multivariate log-normal random vari-
able). In this case we cannot provide a closed-form expression for the KL diver-
gence. However, also in this case the key factors affecting the comparison between
DKL(π

h||π̃n) and DKL(π
h||πn) are the same as in the previous case (as shown by the

numerical results in the following section).
Let us now turn to evaluate how the corrections introduced through our REMs impact

on the posterior PDFs. First of all, let us remark that, by taking the expectation of the KL
divergence between πh(s∗|µ) and πn(s∗|µ), and changing the order of integration, we obtain

(6.9) E[DKL(π
h||πn)] =

∫

P
DKL(π

h||πn)πprior(µ)dµ.

Moreover, thanks to the positivity of the KL divergence and relation (6.6), we get

(6.10) E[DKL(π
h||π̃n)] ≤

(

max
j=1,...,s

C2
j

)

E[DKL(π
h||πn)].

6.3. Posterior comparison for fixed n. We now want to compare the KL divergences
between the full-order and the corrected/uncorrected posterior PDFs for small n. We can
show the following.

Proposition 6.4. Under the assumptions of Proposition 6.3 and provided that ηn(s) ∼ ηh(s)
for n → Nh for any s ∈ R

s, we have that

(6.11) E[DKL(π
h
post||π̃n

post)] ≤ E[DKL(π
h
post||πn

post)]

if the correction is made according to a deterministic REM.

Proof. Let us express the right-hand side of (6.11) as
(6.12)

E[DKL(π
h
post||πn

post)] =

∫

Rs

(

log

(

ηn(s)

ηh(s)

)

+

∫

P

πh(s|µ)πprior(µ)
ηh(s)

log

(

πh(s|µ)
πn(s|µ)

)

dµ

)

ηh(s)ds.

In the same way, the left-hand side of (6.11) becomes
(6.13)

E[DKL(π
h
post||π̃n

post)] =

∫

Rs

(

log

(

η̃n(s)

ηh(s)

)

+

∫

P

πh(s|µ)πprior(µ)
ηh(s)

log

(

πh(s|µ)
π̃n(s|µ)

)

dµ

)

ηh(s)ds.

We proceed by analyzing separately the two terms of the right-hand side of (6.12). The second
term coincides with (6.9), i.e.,

∫

Rs

(
∫

P

πh(s|µ)πprior(µ)
ηh(s)

log

(

πh(s|µ)
πn(s|µ)

)

dµ

)

ηh(s)ds

=

∫

P

(
∫

Rs

πh(s|µ) log
(

πh(s|µ)
πn(s|µ)

)

ds

)

πprior(µ)dµ = E[DKL(π
h||πn)].
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In the same way, the second term of the right-hand side of (6.13) is such that

∫

Rs

(
∫

P

πh(s|µ)πprior(µ)
ηh(s)

log

(

πh(s|µ)
π̃n(s|µ)

)

dµ

)

ηh(s)ds = E[DKL(π
h||π̃n)].

On the other hand, by developing the first term of (6.12) with a Taylor expansion, we obtain

∫

Rs

log

(

ηn(s)

ηh(s)

)

ηh(s)ds =

∫

Rs

(

(

ηn(s)

ηh(s)
− 1

)

− 1

2

(

ηn(s)

ηh(s)
− 1

)2

+O
(

ηn(s)

ηh(s)
− 1

)3
)

ηh(s)ds

=

∫

Rs

(ηn(s)− ηh(s))ds −
∫

Rs

1

2

(

ηn(s)
2

ηh(s)
− 2ηn(s) + ηh(s)

)

ds

+

∫

Rs

O
(

ηn(s)

ηh(s)
− 1

)3

ηh(s)ds.

The first term of the last sum can be rewritten as
(6.14)
∫

Rs

(ηn(s)− ηh(s))ds =

∫

P

(
∫

Rs

πn(s|µ)ds
)

πprior(µ)dµ−
∫

P

(
∫

Rs

πh(s|µ)ds
)

πprior(µ)dµ,

and it is vanishing, since
∫

P

(
∫

Rs

πh(s|µ)ds
)

πprior(µ)dµ =

∫

P

(
∫

Rs

πn(s|µ)ds
)

πprior(µ)dµ =

∫

P
πprior(µ)dµ = 1.

In this way
∫

Rs

log

(

ηn(s)

ηh(s)

)

ηh(s)ds = −1

2

∫

Rs

(

ηn(s)
2

ηh(s)
− 1

)

ds+

∫

Rs

O
(

ηn(s)

ηh(s)
− 1

)3

ηh(s)ds,

considering the integral of the remainder term of the Taylor expansion to be sufficiently small
when ηn ∼ ηh. Similarly, the first term of the right-hand side of (6.13) is negligible, so that

E[DKL(π
h
post||π̃n

post)] = −1

2

∫

Rs

(

η̃n(s)
2

ηh(s)
− 1

)

ds+ E[DKL(π
h||π̃n)]

+

∫

Rs

O
(

η̃n(s)

ηh(s)
− 1

)3

ηh(s)ds,

E[DKL(π
h
post||πn

post)] = −1

2

∫

Rs

(

ηn(s)
2

ηh(s)
− 1

)

ds+ E[DKL(π
h||πn)]

+

∫

Rs

O
(

ηn(s)

ηh(s)
− 1

)3

ηh(s)ds.

In conclusion, by using (6.10), inequality (6.11) follows under the following condition:

1

2

∫

Rs

(

ηn(s)
2

ηh(s)
− η̃n(s)

2

ηh(s)

)

ds+

∫

Rs

O
(

η̃n(s)

ηh(s)
− 1

)3

ηh(s)ds

≤
(

1− max
j=1,...,s

C2
j

)

E[DKL(π
h||πn)] +

∫

Rs

O
(

ηn(s)

ηh(s)
− 1

)3

ηh(s)ds,

which can be seen as a robustness condition on the correction entailed by the REM.D
ow

nl
oa

de
d 

03
/0

7/
19

 to
 1

29
.1

1.
22

.5
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

MODEL AND ERROR REDUCTION FOR INVERSE UQ PROBLEMS 399

Figure 1. Test case 1: domain, boundary conditions (left) and different sample solutions of 7.1 (right).

Remark 6.5. According to (2.6), (2.9), ηn ∼ ηh as soon as the likelihood functions πh and
πn are very close to each other, that is, DKL(π

h||πn) < ε for any given, small ε > 0.

7. Numerical results and discussion. We present two numerical examples illustrating the
properties and the performances of the correction strategies proposed in section 4. We recall
that our final goal is to exploit fast and inexpensive online ROM queries by improving their
accuracy through suitable REMs. For the cases at hand, we consider a model problem dealing
with the scalar heat equation, where uncertain parameters describe either the scalar conduc-
tivities over different subdomains or the continuous conductivity field over the whole domain.
By measuring the average of the state solution over three boundary portions, identifiable
parameters are reconstructed by marginalizing away the nuisance parameters.

7.1. Test case 1. We consider in Ω = (0, 1.5)2 the following diffusion problem:

(7.1)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∇ · (k(x,µ)∇u) = 0 in Ω,

k(x,µ)∇u · n = 0 on Γw,

k(x,µ)∇u · n = 1 on Γb,

u = 0 on Γt,

where ∂Ω = Γw∪Γb∪Γt (see Figure 1, left). Here k(x,µ) is a parametrized diffusion coefficient

k(x,µ) = 0.1IΩ0(x) +

3
∑

i=1

µiIΩi
(x),

IΩi
is the characteristic function of Ωi, being Ω1 = (0, 0.5)2 ∪ (1, 1.5)2 , Ω2 = (0, 0.5) ×

(1, 1.5) ∪ (1, 1.5) × (0, 0.5), Ω3 = (0.5, 1)2, and Ω0 = Ω \⋃3
i=1Ωi; the outputs are

sj(µ) =

∫

Γj

u(µ)dΓ, j = 1, 2, 3.
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Figure 2. Histogram of the ROM errors for each output sj(µ), j = 1, 2, 3.

Our objective is to identify γ = µ3 by observing the outputs sj(µ), j = 1, 2, 3, in the presence
of two nuisance parameters ζ = (µ1, µ2). We suppose that the target value s∗ corresponds to
the full-order output vector evaluated for γ∗ = 2 and a random value of ζ ∈ (0.01, 10)2 .

The forward problem (7.1) is first discretized using the FE approach with linear P1 FEs,
which generate a total of Nh = 1, 056 degrees of freedom (dofs). In view of the application of
the MCMC algorithm, we adopt the RB method: we stop the greedy algorithm after selecting
n = 10 basis functions for the forward problem and for each dual problem related to one of
the three outputs, in view of the analysis of the corrections effects. We intentionally select
few basis functions (satisfying a tolerance ǫtolRB = 5 · 10−2) in order to assess the capability
of our REMs in correcting the outcome of a possible inaccurate ROM. Note that for more
complex (e.g., nonaffine and/or nonlinear) problems a larger number of RB functions might
be required to guarantee a sufficient accuracy, with a consequent loss of efficiency. As a matter
of fact, we reach in our case a considerable speedup (n/Nh ≃ 1/100). Nevertheless, output
evaluations are affected by ROM errors, which have to be taken into account by the correction
methods. To this aim, we construct a calibration set of Ncal = 100 points in the parameter
space from a Gauss–Patterson sparse grid, from which we calculate the full-order FE as well
as the RB solutions and the relative outputs. In this way, we obtain a sample of the outputs
ROM errors, upon which we calibrate the proposed REMs. This operation can be performed
in parallel and does not impact significantly on the offline complexity. We highlight that in
our test cases very similar results in terms of calibration performances can be obtained by
relying on a random sampling of the parameter space, due to the small parametric dimension.

Before analyzing the quality of the corrections, we provide a few details related to the
REMs construction. By a direct inspection of the errors sample generated over the calibration
set, we remark that their distribution is far from being Gaussian (Figure 2). The Shapiro–
Wilk test rejects the null hypothesis that the errors come from a normal distribution (p-value
< 10−5 for each j = 1, 2, 3). Moreover, errors are not equally distributed over the parameter
space: for this reason µ-dependent approaches (like REM-2 and REM-3) should better capture
the error variability. Concerning REM-2, we point out that the approach relying on error
bound effectivities is preferable to the one based on ROM errors if we aim at minimizing the
maximum norm of the interpolation error (see Figure 3).

Furthermore, for REM-3, a linear regression model on the log-variable is fitted for each
output and by distinguishing the errors sign (see Figure 4). It is not surprising that modelsD
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Figure 3. REM-2 construction: comparison between the absolute values of the error (in blue), of the RBF
interpolation of the errors (in black, dashed), and of the REM-2 reconstructed errors (in red, dashed), for each
output sj(µ), j = 1, 2, 3, on varying µ3 (µ1 = 7, µ2 = 3).

Figure 4. REM-3 construction: linear regression (in the log / log space) of the ROM errors against error
bounds and 95% confidence intervals. A linear model (4.9) in the log / log space is fitted over each subset of
computed error bounds and corresponding (positive or negative) errors Sj

+, S
j
−, j = 1, 2, 3.

providing a better fitting are those built on larger datasets, even if the Bernoulli sign trick
proposed in section 4.3 contributes to filter out those models built on smaller samples.

A primary test for assessing the quality of our REMs has been made by considering
a random sample of 5,000 points in P and computing the frequencies of ROM errors andD
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402 A. MANZONI, S. PAGANI, AND T. LASSILA

the corresponding corrections obtained with the three REMs, when (for the sake of com-
parison) Ncal = 50 or Ncal = 200 points in the calibration sample are considered (see Fig-
ure 5).

As expected, REM-1 results in a simple shift of the errors distribution. On the other hand,
the distributions of the errors in presence of µ-dependent approaches (REM-2 and REM-3)
show a more symmetric shape, with mean closer to zero and smaller variance than in the
ROM errors distributions. Hence, the µ-dependent approaches allow us to reduce the ROM
error by at least one order of magnitude. REM-2 performs very well in this case, although it
can suffer from the curse of dimensionality.

Then, we have applied the MCMC algorithm to reconstruct the unknown parameters
values, by starting from a uniform prior on the parameters and sampling the RB posterior
corrected by the three different REMs. A closer look at the results reported in Figures 5–7
allows us to conclude that

• the correction provided by REM-1 does not improve the accuracy of the RB poste-
rior since the distribution of the calibration ROM errors is far from being Gaussian.
Even by assuming log-normal calibration ROM errors, we do not get a significant
improvement on the accuracy of the corrected posterior (see Figure 6);

• REM-2 is quite good in terms of performance when compared purely in terms of model
error estimation to REM-1 and REM-3; see Figure 5. As a matter of fact, REM-2
enhances also the evaluation of reduced posteriors; the same conclusion can also be
drawn for REM-3, provided a suitable sign model is taken into account (see Figure 7,
left);

• by considering also statistical correction (Figure 7, right), we get maximum a poste-
riori (MAP) estimates, close to the full-order ones, even if this procedure generates
heavy-tailed posterior distributions and consequently less tight a posteriori prediction
intervals.

So far we have considered a uniform prior distribution. Turning to a Gaussian prior on
the parameters, numerical results still confirm good behavior of REM-2 and REM-3, and a
worse performance of REM-1. In this case, we have tested a situation of wrong a priori input
with low confidence on it, i.e., µp,3 = 3 and variance σ2

i δii = 1, 1 ≤ i ≤ s. As before, we
are able to get a good reconstruction of the full-order posterior distribution for REM-2 and
REM-3 (see Figure 8).

Finally, as a validation of the theoretical results presented in section 6, we report in
Table 1 the MAP estimate, the 95% prediction interval (PI), and the KL-divergences for the
three REMs and both prior distributions. We are able to verify the relation between REMs
corrections and KL divergences of Proposition 6.4. However, this relation does not hold in the
presence of a significant variance associated with the correction (in this case the KL divergence
increases).

The use of the RB method allows us to obtain a reduction of order 102 in terms of both
RB dimension and required CPU time for each online forward query. Moreover, the proposed
REMs yield a KL divergence on the posterior distributions which is 50–100 times smaller in
the case of REM-corrected posteriors, with respect to the case without correction.

Regarding computational costs, a REM-1 correction can be inexpensively obtained, whereas
REM-2 and REM-3 entail a CPU time for the correction comparable to the one required byD
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Figure 5. Comparison between the REM reconstruction of the errors for the outputs s1, s2, and s3 (from
top to bottom: without REM, REM-1, REM-2, REM-3 with both options for the sign model). Two different
calibration samples have been considered: Ncal = 50 for the gray distribution, Ncal = 200 for the black one.D
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404 A. MANZONI, S. PAGANI, AND T. LASSILA

Figure 6. Distribution of the output errors divided by the sign (left) and the corrected reduced posterior
obtained by REM-1 correction (right), starting from a uniform prior distribution. REM-1 does not yield a
relevant improvement of the posterior distribution obtained with the RB method.

Figure 7. Posterior distributions obtained with deterministic (left) and statistical (right) corrections, us-
ing a uniform prior distribution. REM-2 and REM-3 yield a much relevant improvement of the posterior
distribution obtained with the RB method than REM-1.

the solution of the RB system (see Table 2). Concerning the offline CPU time, the calibration
stage required by any REM entails about 10% of the CPU time required by the offline RB
stage if n = 10 RB functions and Ncal = 100 calibration points are used.

The numerical performances in terms of both efficiency and accuracy obviously depend
on the RB dimension n and the size Ncal of the calibration sample. To assess this fact, we
have considered different combinations (n,Ncal) for the test case discussed along this section.

By comparing the KL divergences in Table 3, it clearly turns out that a better RB ap-
proximation yields a more accurate solution of the inverse UQ problem. Building an RB
approximation of dimension n = 10 (resp., n = 40) requires an offline CPU time of 134 sD
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Figure 8. Posterior distributions obtained with deterministic (left) and statistical (right) REMs in the case
of Gaussian prior distribution. Also in this case REM-2 and REM-3 yield a much relevant improvement of the
posterior distribution obtained with the RB method than REM-1.

Table 1
MAP estimates, 95% PIs and KL divergences from the posterior FE distribution.

Uniform prior Gaussian prior

µMAP
3 PI 95% KL dist µMAP

3 PI 95% KL dist

FE 1.9837 (1.8075, 2.1598) 2.1498 (2.0166, 2.2830)

RB 1.8139 (1.5968, 2.0311) 1.2152 2.0776 (1.9879, 2.2499) 0.2936

REM-1 1.8997 (1.5783, 2.2213) 0.3829 2.2726 (2.0986, 2.5446) 1.0856

REM-2 1.9881 (1.7608, 2.2150) 0.0555 2.1493 (2.0110, 2.2876) 0.0014

REM-3 (near) 1.9917 (1.7623, 2.1898) 0.0516 2.1420 (2.0102, 2.2818) 0.0213

REM-3 (near+var) 1.9719 (1.4932, 2.4501) 0.3423 2.2121 (2.0224, 2.4017) 0.3064

REM-3 (BE) 1.9762 (1.8002, 2.1850) 0.0406 2.1331 (2.0329, 2.3228) 0.0124

REM-3 (BE+var) 1.9645 (1.5546, 2.3723) 0.2474 2.1830 (1.9553, 2.4464) 0.2538

Table 2
Computational performances of the proposed framework for both test cases.

Approximation data test 1 test 2 Performances test 1 test 2

Number of FE dofs Nh 1, 056 1, 572 burn-in M 500 1,000
Number of RB dofs n 10 20 thinning d 50 100
Dofs reduction 101:1 79:1 ROM solution 2 · 10−4 s 3 · 10−4 s
Number of parameters 3 8 ROM error bound 4 · 10−4 s 8.2 · 10−4 s
FE solution 4 · 10−2 s 1.3 · 10−1 s REM-1 ≈ 0 s ≈ 0 s
Offline: basis computation 134 s 776 s REM-2 7.5 · 10−4 s 1.32 · 10−3 s
Offline: REM calibration 13 s 24 s REM-3 (near) 7 · 10−4 s 1.12 · 10−3 s
MCMC iterations 5 · 105 106 REM-3 (Be) 4 · 10−4 s 8.2 · 10−4 s

(resp., 226 s), whereas its online evaluation requires 2 ·10−4 (resp., 7 ·10−4 s). This latter fact
has a major drawback in the overall CPU time required by the MCMC procedure, which grows
at the same factor 3.5. On the other hand, considering a calibration sample of increasing di-D
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Table 3
MAP estimates, 95% PIs, and KL divergences from the posterior FE distribution obtained with a uniform

prior, different RB dimensions n = 10, 40, and sizes Ncal = 50, 100, 200 of the calibration sample.

n = 10 n = 40

µMAP
3 PI 95% KL dist µMAP

3 PI 95% KL dist

FE 1.9837 (1.8075, 2.1598) 1.9837 (1.8075, 2.1598)

RB 1.8139 (1.5968, 2.0311) 1.2152 2.0645 (1.8892, 2.3114) 0.2806

Ncal = 50 1.9192 (1.7872, 2.1104) 0.3524 1.9418 (1.8206, 2.2137) 0.0512
REM-1 Ncal = 100 1.8997 (1.5783, 2.2213) 0.3829 1.9618 (1.8357, 2.2300) 0.0675

Ncal = 200 1.93393 (1.8535, 2.1022) 0.2464 1.9671 (1.8463, 2.2054) 0.0459

Ncal = 50 1.9657 (1.8238, 2.2168) 0.0850 1.9752 (1.8175, 2.1902) 0.0430
REM-2 Ncal = 100 1.9881 (1.7608, 2.2150) 0.0555 1.9928 (1.7981, 2.2025) 0.0380

Ncal = 200 1.9881 (1.8335, 2.1429) 0.0541 1.9782 (1.8076, 2.1735) 0.0344

Ncal = 50 1.9713 (1.8260, 2.1166) 0.1075 1.9630 (1.8140, 2.1604) 0.0634
REM-3 (near) Ncal = 100 1.9917 (1.7623, 2.1898) 0.0516 1.9923 (1.8180, 2.2136) 0.0351

Ncal = 200 1.9760 (1.8002, 2.1851) 0.0405 1.9779 (1.8196, 2.1572) 0.0337

Ncal = 50 1.95873 (1.8637, 2.1482) 0.0947 1.9488 (1.8101, 2.1726) 0.0967
REM-3 (BE) Ncal = 100 1.9762 (1.8002, 2.1850) 0.0406 1.9665 (1.8138, 2.1370) 0.0344

Ncal = 200 1.9814 (1.7929, 2.1699) 0.0377 1.9818 (1.8271, 2.1966) 0.0328

mension Ncal = 50, 100, 200 yields better results in terms of (corrected) posterior distributions,
however, entailing a weaker increase of both (offline and online) costs: evaluating the errors
over the calibration sample requires 6, 13, 25 s, respectively, during the offline stage, whereas
the online correction requires almost the same time in the case of REM-2 (7.5 · 10−4 s) and
REM-3 with Bernoulli sign model (4 · 10−4 s); in the case of REM-3 with nearest neighbor
sign model, the cost varies from 4.75 · 10−4 (Ncal = 50) to 1.05 · 10−3 (Ncal = 200).

A REM correction thus proves to be necessary also in the case where a more accurate
RB approximation is considered. Nevertheless, this latter may feature substantially higher
costs, especially when dealing with more complex problems than the one considered in this
paper. In this respect, a larger size Ncal of the calibration sample may yield more accurate
results, without showing a too large impact on the computational efficiency. In any case, both
n and Ncal have to be chosen according to the problem at hand; from our experience, to reach
the same level of accuracy, it may be preferable to deal with less accurate (but cheaper) RB
approximations and larger calibration samples; see, e.g., also the discussion reported in [7].

7.2. Test case 2. In order to consider a higher-dimensional problems in terms of para-
metric dimension P , we modify problem (7.1) by considering a parametric field description of
the diffusion coefficient k(x): all the possible configurations of the field are generated from a
standard multivariate Gaussian of dimension Nh (we also deal in this case with a discretiza-
tion made by linear P1 FEs). To reduce this complexity, we assume the field as generated by
a multivariate Gaussian distribution with covariance matrix

Cij = a exp−
‖xi−xj‖

2b2 +cδij ∀i, j = 1, . . . ,Nh,

a, b, c > 0 and {xi}Nh

i=1 are the nodes of the computational mesh. A further simplification is
obtained by considering a Karhunen–Loève expansion of the random field, which identifies
the d most relevant (independent) eigenmodes ξ1, ξ2, . . . , ξd of the covariance operator C cor-D
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Figure 9. Top: first most relevant modes ui, i = 1, . . . , 4, of the Karhunen–Loève expansion. Bottom: four
nuisance modes zi, i = 1, . . . , 4.

responding to the largest eigenvalues λ1(C) ≥ λ2(C) ≥ · · · ≥ λd(C). The same result can
be achieved by computing the POD of a set of random fields generated accordingly to the
proposed distribution. The field description then reduces to

(7.2) k(x,µ) = 3.5 +

d
∑

i=1

µi

√

λiξi,

where µi, 1 ≤ i ≤ d, will play the role of identifiable parameters (each one a priori distributed
as a standard Gaussian). In this way the sampling is done in a d-dimensional space, with
d ≪ Nh = 1, 572. By taking for the covariance matrix a = 1, b = 0.6, and c = 10−8, we
explain about the 90% of the variance by taking d = 4 modes (see Figure 9, top). We also
consider the presence of four nuisance parameters (see Figure 9, bottom), which describe the
presence of localized distortions zi of the parametric field given by

(7.3)
4

∑

i=1

µ4+izi(x) =
4

∑

i=1

µ4+i exp

(

−(x− xi)
2 + (y − yi)

2

0.025

)

,

where x = [0.25, 0.25, 1.25, 1.25] and y = [0.25, 1.25, 1.25, 0.25].
In this case, the inverse problem consists in identifying the posterior distributions of µi,

1 ≤ i ≤ 4, by observing the outputs sj(µ), j = 1, 2, 3, in the presence of the four nuisance
parameters µi, 5 ≤ i ≤ 8. We consider as a target values s∗ = s(µ∗), where µ∗ = [γ∗, ζ∗] and
γ∗ = (−1, 0.5,−0.6,−0.8), whereas ζ∗ is chosen randomly. We build an RB approximation
of the state and the dual problems associated with each of the three outputs; n = 20 basis
functions are selected for each of these four problems. This yields a reduction error on the
outputs that has been treated with the proposed REMs, built on a calibration set of Ncal = 100
values.

We then apply the MCMC procedure and we evaluate the effect of the proposed REMs on
the posterior distributions. Similar conclusions to those reported in section 7 can be drawn
also for this second test case. As shown in Figure 10, REM-2 is more effective than REM-1;
moreover, REM-3 appears to be the most effective model in terms of correction of the RBD
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Figure 10. Marginal posterior distribution for the four parameters of interest obtained with the RB method
and REM-1, REM-2 corrections. REM-2 yields a better correction (and less skewed distributions) than REM-1.

Figure 11. Marginal posterior distribution for the four parameters of interest obtained with the RB method
and REM-3 using a Bernoulli sign model. Both the deterministic (d) and the statistical (s) version of the REM
yield a very good correction of the posterior distribution.

posterior, possibly due to the increased parametric dimension (see Figure 11 for the case of
the Bernoulli sign model; similar results are obtained with the nearest neighbor sign model).

We then report the MAP estimates for each identifiable parameter and the KL-divergences
for each REM in Table 4; the 95% PIs for the MAP estimates are reported in Table 5; these
results confirm the efficacy of the deterministic correction provided by REM-2 and REM-3.
Moreover, regarding the identification of µ3 and µ4 the presence of a statistical correction
does not lead to an increase of KL divergence values.

Finally, we evaluate the diffusivity field (7.2) for the different MAP estimates, recovered a
posteriori by considering different REMs (see Figure 12). In order to quantify the difference
between the target field and the fields obtained through the inversion procedure, we compute
the L2(Ω)-norm of their difference (see Table 6). As expected, the most distant field is the one
obtained with the RB method without corrections, while the presence of the REMs improves
substantially the reconstruction of the field; the best performance in term of parameters
identification is provided by REM-3 based on a sign correction strategy.

8. Conclusions. The combined RB/REM methodology proposed in this paper shows how
to speed up the solution of an inverse UQ problem dealing with PDEs without affecting
the accuracy of the posterior estimates. Provided the RB dimension n is sufficiently small,D
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Table 4
MAP estimates for the identifiable parameters and KL divergences from the FE posterior distributions.

µMAP
1 DKL µMAP

2 DKL µMAP
3 DKL µMAP

4 DKL

FE −0.987 0.482 −0.571 −0.743

RB −0.967 0.327 0.139 0.241 −0.132 0.849 −0.476 0.439

REM-1 −0.988 0.575 0.356 0.713 −0.504 0.722 −0.528 0.657

REM-2 −0.986 0.205 0.3047 0.132 −0.526 0.177 −0.732 0.121

REM-3 (near) −0.997 0.288 0.584 0.166 −0.657 0.179 −0.831 0.142

REM-3 (near+var) −0.953 0.530 0.614 0.409 −0.687 0.432 −0.852 0.309

REM-3 (BE) −0.980 0.221 0.546 0.154 −0.632 0.195 −0.770 0.146

REM-3 (BE+var) −0.997 0.753 0.488 0.330 −0.601 0.313 −0.760 0.390

Table 5
95% PIs for each MAP estimator for different REMs.

µMAP
1 PI µMAP

2 PI µMAP
3 PI µMAP

4 PI

FE (−1.02,−0.95) (−0.52, 1.12) (−0.89,−0.16) (−1.23,−0.07)

RB (−1.032,−0.944) (−0.624, 0.902) (−0.864, 0.361) (−0.967, 0.015)

REM-1 (−1.130,−0.938) (−2.675, 3.000) (−1.902, 0.335) (−2.488, 1.433)

REM-2 (−1.045,−0.928) (−1.392, 1.707) (−1.182, 0.129) (−1.321, 0.458)

REM-3 (near) (−1.070,−0.924) (−0.906, 2.135) (−1.354,−0.021) −1.8094, 0.103

REM-3 (near+var) (−1.017,−0.890) (−1.203, 2.371) (−1.433, 0.119) (−2.059, 0.396)

REM-3 (BE) (−1.067,−0.892) (−0.930, 2.021) (−1.395, 0.133) (−1.806, 0.266)

REM-3 (BE+var) (−1.113,−0.881) (−1.151, 2.127) (−1.403, 0.200) (−2.020, 0.502)

Figure 12. Diffusivity field reconstructed by means of the different REMs (parameters values identified with
MAP estimators).

inexpensive online evaluations can be performed during the MCMC algorithm; this latter
takes, e.g., less than 1 h in the first test case we considered, compared to more than 6 h when
relying on the FOM. On the other hand, the REM calibration—which has a negligible impactD
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Table 6
L2(Ω)-norm of the distance between the reconstructed field for different REMs and the target one.

RB REM-1 REM-2 REM-3(near) REM-3(Be)

‖ · ‖L2(Ω) 0.328 0.146 0.099 0.060 0.045

on the offline phase—is instrumental to avoid bias in the computed posterior distributions.
Indeed, provided that the REM is trained on a sufficiently large calibration set, the small RB
dimension can be compensated with a suitable REM strategy, like the proposed REM-2 or
REM-3 approaches. This latter turns out to be a promising option also in view of higher-
dimensional problems.

The general trend arising from all our numerical experiments is therefore that REM-1
may be treated as a catch-all method that can be used in the most general case without
access to any a posteriori error estimators, but which relies heavily on the assumption of
Gaussianity and may not give good results when this assumption is strongly violated. On the
other hand, the REM-2 makes no a priori structural assumptions (except smoothness of the
inverse effectivity function) and provides excellent accuracy on low-dimensional problems, but
relies on multivariate interpolation that does not scale well to high-dimensional problems. The
REM-3 produces less accurate reduction error approximations, but only uses regression and
so it is more robust in terms of parametric dimension; this method too can exploit existing a
posteriori error estimators in correcting the posterior distributions.
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