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ABSTRACT

Timing analysis is an important part of the development of critical
real-time systems. It stems from the need to provide evidence on the
behaviour of the system, compliance to requirements and timing
bounds. The formal testing process is complicated, and includes
tests to achieve compliance with certification requirements. Where
possible, testing should be performed on a host and then validated
on the target. This is especially important for real systems where
the target may not be available early in the project or target-based
testing is expensive and time consuming. Meaningful host-based
testing is difficult when it comes to timing analysis. Automation
helps reduce the costs and move testing earlier in the application
development cycle. Moving testing earlier in the development cycle
not only enables the testing to scale to whole systems, it allows
the risks of projects to be managed and software to be optimised
before target-based testing is performed.

In this paper, we extend existing work achieving reliable cover-
age and High WaterMark (HWM) measurement, to scale its appli-
cation to the analysis of a full system software build, automate the
test process, and minimise the set of tests deployed on target. Our
case study demonstrates the successful application of the approach
on a large code base, i.e. an existing controls system software code.
The paper ends with a position statement about how this work is
instrumental for both future research but also as part of industry
practically analysing the timing behaviour of systems automatically
and certifying mixed-criticality systems.

ACM Reference Format:

Benjamin Lesage, Stephen Law, and Iain Bate. 2018. TACO: An industrial
case study of Test Automation for COverage. In 26th International Confer-

ence on Real-Time Networks and Systems (RTNS ’18), October 10ś12, 2018,

Chasseneuil-du-Poitou, France. ACM, New York, NY, USA, Article 4, 11 pages.
https://doi.org/10.1145/3273905.3273910

1 INTRODUCTION

Testing is an important part of any engineering process and safety-
critical software engineering is no exception. One area of software
testing important to many safety-critical systems is to support tim-
ing analysis as these systems tend to be hard real-time systems,
i.e where a failure to meet the system’s timing requirements is
potentially catastrophic. As the focus of this paper is timing, the
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terms tests and testing are not using the strict DO-178C definitions
which refer to verifying that functional requirements are met. In-
stead, testing refers to executing the software under a set of test
conditions, where an individual test includes the inputs to a code
item and the configuration of the system, in order to understand
the timing behaviour of a system.

In this paper, our focus is obtaining execution time traces on
an industrial scale as part of Measurement-Based Timing Analysis
(MBTA). The context for the work is in the design of Full Authority
Digital Engine Controllers (FADEC) that are designed according to
DO-178C DAL A guidelines for certification [17]. Our aims are to
reliably find execution time bounds for a task, either as aHWMclose
to the actual Worst-Case Execution Time (WCET) or supporting
WCET analysis with tools such as RapiTime [16]. The requirement
in particular is to obtain full coverage of the executed code to
provide confidence in an efficient and reliable fashion that de-risks
the FADEC development early in the design life-cycle. As full path
coverage is not possible, a realistically achievable level of coverage
is aimed for. The work is also a step towards the analysis of DAL C
software and, as part of this, the framework has been tested with a
more advanced processor platform, i.e. a Raspberry PI3.

The work is also a step towards the analysis of DAL C systems as
part of a wider study on the potential of Mixed-Criticality Systems
(MCS). The timing estimatesCi for a task can be derived by analyses
dictated by its criticality level i with higher criticality levels relying
on more conservative analysis, e.g. using the observed HWM as
CC or CLo and predicted WCET through RapiTime as CA or CHi .

In [14], Law proposed a search-based algorithm that could reli-
ably provide better coverage data andWCET estimates than existing
state of the art search algorithms when applied to existing bench-
marks [8], as well as some of the FADEC software on Rolls-Royce’s
target flight hardware. In this paper, reliably means it normally
gets more coverage as well as a larger HWM and estimated WCET
than the other approaches given a finite amount of time, and better

means the HWM is closest to that ever observed across a very large
amount of tests. The results were shown to be both statistically
and scientifically significant. Reliable is important as one off good
results are insufficient for both designing the FADEC but more
importantly as part of justifying the process during certification.

One of the proposed fitness function, BCHLr , in particular re-
liably gets the best executed code coverage, HWM and WCET
estimates. BCHLr combined multiple metrics: a form of block cov-
erage that not only counted how many blocks were executed but
also considered local path coverage, i.e. whether all feasible routes
(termed edges) exiting the blocks have been covered; a form of
loop counts; and finally reverts to a previous solution if progress
wasn’t being made. The important driver for these metrics is they
are based on structural coverage, which DO178-C uses to assess
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the scope of functional tests, meaning the fitness function does not
require execution times to generate the best test vectors.

The contributions of this paper are as follows:

• Produce an automated test framework - Test Automation
for COverage (TACO), defining analyses processes based on
coverage and timing data.

• Scaling the approach in [14] to a large FADEC system.
• Support extensive tests on low-cost platforms, e.g. Raspberry
PI3 (PI3) and the host desktop PCs.

• Demonstrate that tests on the host correlate with the final
results on the target in terms of coverage.

The structure of the paper is as follows. Section 2 discusses
related work especially in the domain of measurement-based timing
analysis and test case generation. We summarise the contents of
[14] that are relevant for understanding the fitness function that
drives the search-based algorithm in our framework in Section 4.
Section 5 provides an overview of the framework, and Section 6
discusses its application to different target platforms. We present
the results of the application of the TACO framework to a FADEC in
Section 7. The results of our case study led to the position statement
in Section 8 as part of the conclusions.

2 RELATED WORK

This section presents a study of the existing work in the field of
Measurement-Based Timing Analysis (MBTA) and Automatic Test
Case Generation (ATCG).

2.1 Measurement-Based Time Analysis

MBTA techniques rely on measuring the code items under analysis
on target to derive their Worst-Case Execution Time (WCET). The
provision of a sound bound however requires consideration of an
oft intractable input space, combining numerous factors, e.g. input
variables, system and platform state [22]. A common approach
to MBTA is to simplify the problem. This includes reducing the
size of the problem, e.g. the number of paths to explore, to more
amenable chunks, or extrapolating from a sample of measurements.
Deverge & Puaut [5] segment a program and only explore the full
paths’ set within each segment to avoid the need to exercise the
code item under all feasible paths. In a similar vein Stattelmann &
Martin [18] present an MBTA tool that also breaks the test code
item into a number of easily traceable segments; the WCET is then
expressed as an equation of the timing observations across each
segment. Both approaches are not practical for large scale industrial
projects, as the number of analysed functions and code segments
increase with the complexity of the system. So the processing, or
engineering, effort required would remain significant. For example
a typical electronic engine control system produced by Rolls-Royce
contains around 5000 separate functions.

The RapiTime tool from Rapita Systems Ltd is a commercially
available WCET analysis tool aimed at the industrial market. The
tool breaks the code items down through the use of source code
instrumentations, in contrast to [18] however the analysis is per-
formed at the block level, and depending on the target hardware,
does not require path coverage.

Measurement-Based Probabilistic Timing Analysis was first pro-
posed by Stewart & Burns [6]. This was later extended by Hansen

et al [9] and Cucu-Grosjean et al [4]. Provided the observations fed
into MBPTA follow some strict statistical properties, MBPTA can
produce statistical upper-bounds on the temporal behaviour of a
code item using Extreme Value Theory (EVT). A recent paper by
the EVT community highlighted a number of challenges that exist
including generating the appropriate test vectors [7].

Ultimately all measurement techniques are dependent on the
quality of the data fed into the analysis. The nature of this data is
analysis dependent but the quality of this data, and hence the quality
of the analysis result, is a direct result of the inputs exercised on the
item under analysis and the testing environment. The previouswork
in the field has focused on generating results with a given known
good data set, or in the case of [4] using hardware randomisation
to force hardware to make a data set good.

2.2 Automatic Test Case Generation

Wegener [20] and Tracey [19] both illustrated how search algo-
rithms could be used for test data generation, particularly with
regard to applications which requirements go beyond simple state-
ment coverage, e.g. Modified Condition/Decision Coverage require-
ments for adequate testing [17].

Wegener’s early work [20] built off Jones et al [11] and pre-
sented an investigation into how genetic algorithms can be used to
estimate the minimum and maximum execution times of software
targeting embedded systems. Tracey introduced a framework of
tools designed to automatically generate test data to perform dy-
namic analysis on an test code item. One of the targeted analyses
being the analysis of the WCET. The work was targeted towards
safety-critical systems using strongly typed Ada [19]. The frame-
work introduced is primarily based on search algorithms, which
when compared to system HWM observations, produced good re-
sults. However the drawback was that the tool had to achieve path
coverage to obtain a sound WCET.

Wenzel [21] introduces an MBTA tool designed to calculate safe
WCET bounds of safety-critical software. This is achieved through
a combination of test data reuse, random search, genetic algorithms
and finally model checking [21]. Unfortunately the tool places a
number of restrictions, and assumptions on the code under test, for
example the tool is only capable of analysing acyclic code and does
not allow function calls.

Williams [23] proposes a static analysis tool which aims to iden-
tify a test vector to exercise every path through the code under
test. The WCET can then be read off as the HWM observed during
testing. This was extended in [24] with an analysis into possible
simplifications that can be made to avoid the analysis requiring full
path coverage, this includes maximising loop counts, and assuming
branches are always taken. The paper recognises that further inves-
tigation and justification is required, but it does indicate possible
areas where MBTA coverage requirements could be simplified.

Bünte et al [3] examined the effectiveness of using model check-
ing [10] to produce test suites with enough coverage to provide
reliable WCET estimates. Their research focuses on identifying
effective coverage metrics to drive a model checking test suite
generator. This was extended in [2] which combines the results pro-
duced with a genetic algorithm, which then aims to identify larger
execution times. Drawbacks include the software being analysed
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has to be simplified to ensure each decision point relies on only a
single variable and the tool’s use of model checking risks the tool’s
portability to larger, more complex functionality.

Khan and Bate [1, 12] introduce the idea of incorporating multi-
criteria optimisations into a search based WCET analysis tool using
advanced processor features known to cause larger WCET values,
such as cache misses, and also focused in on low level software
coverage such as loop iterations. The paper concluded that no one
fitness function provided better results across all test code items,
and that the fitness function chosen should be dependant on the
target environment.

In our previous work [14], a different approach to search-based
WCET analysis is taken. Instead of focussing on timing, the focus
is on path coverage but due to the size of real software a pragmatic
approach is taken based on block coverage, local path history and
loop counts. More details can be found in Section 4. The approach
was shown to reliably provide a higher block coverage, observed
and analysed execution times than other fitness functions including
maximising the HWM given a finite amount of tests. Due to reasons
of space, only a limited number of benchmarks [8] and FADEC
tasks were presented. The results were based on a cycle accurate
simulator of a deterministic bespoke avionics processor designed
by Rolls-Royce.

3 INDUSTRIAL CONTEXT

The work builds upon the current industrial setup deployed within
Rolls-Royce, as described by [15]. The FADEC software and process-
ing architectures are amenable to analysis. The control software
uses standardized interfaces between the various application layers
and the hardware, with well-defined parameters and value ranges.
The code uses robustly defined types. In particular, the types of
inputs are known, bounded, and verified against requirements. The
Rolls-Royce platform, described in Section 3.1, provides accurate
tracing and timestamping during code execution. Facilities exist
such that tests can be queued, executed and their results collated.
The executed code of test items (individual functions) is extensively
covered by low-level tests. The code under test and the code in the
final system are compared to prevent any discrepancies.

The coverage provided by low-level tests allows for the collection
of timings across all blocks of all test items, where each block is a
sequence of straight code without outgoing or incoming branches.
The individual blocks’ timing are then combined by RapiTime [16]
to compute the Worst-Case Execution Path and associated WCET.

3.1 The Rolls-Royce Platform

The Rolls-Royce Processor, the VISIUMCORE, is a packaged device
that integrates a core, memory, IO and tracing interfaces. Being
targeted at the safety-critical embedded sector, the device is DO-254
Level A compliant. It has extensive single-event-upset protection
and is suitable for harsh environments. The processor does not
incorporate a data or instruction cache. The processor is the target
processor for all Rolls-Royce DAL A control system applications,
and has been in use and in service since 2017.

The processor has been carefully designed to ensure that each
instruction’s execution is time-invariant; in other words each in-
struction will take the same time to execute, regardless of the data

its operation is performed upon. These design features ensure that
previous processor state has no effect on the current operation
of the device; the execution and timing of a block of code is not
impacted by prior execution path. There is thus a strong correla-
tion between coverage of an analysed test item blocks and better

computed timing estimates through MBTA tools.
To enable timing of functions, the processor provides facilities

to non-intrusively collect an entire instruction trace complete with
timestamps. The processor has also been augmented with func-
tionality to output a user-specified value and timestamp. Both the
trace facility and the instruction are low-overhead, incurring only
a single instruction fetch.

4 COVERAGE TECHNIQUE [14]

The investigation in [14] identifies how effectively a basic search
algorithm could be at generating data for a hybrid MBTA tool, in
this case RapiTime [16]. The algorithm supplants low-level tests
in driving executed code for coverage. Where a low-level test exe-
cutes a sequence of manually defined test vectors, the algorithm
starts from a random test vector and defines the next test vector to
evaluate based on the current test vector, past observations, and its
internal state.

We focus on one fitness function, BCHLr. BCHLr was the most
reliable one in terms of coverage, HWM, and analysed WCET from
[14] and has the additional benefit of not using execution times as
these clearly change between targets. We further rely on Ran, a
wholly pseudo-random fitness function, to provide a baseline for
experimentations.

Example: In the following, we consider the program in Algo-

rithm 1 to illustrate the behaviour of the algorithm and the framework.

It consists of two code items, f and g, each including multiple paths

selected according to the values of different variables, respectively

A and D. The types of all variables are constrained and their value

interval is known. B and C are inputs of function f, while A is part

of the system state. A minimal test for exhaustive code coverage of

f would go through input vectors: {A: 1.0, B: True, C: 4} (B1,

B2, B3, B5, B6, B8, B7), and {A: 1.0, B:False, C: 0} (B1, B2, B4,

B7).

4.1 Algorithm Objectives

As the search algorithm executes on the target, coverage and timing
measurements are taken across the test code item. Upon comple-
tion this entire set of timing measurements are imported into the
RapiTime tool. Therefore the aim of the search algorithm is not to
execute the worst case path, and identify the WCET. Instead the
aim is to obtain high code coverage across the analysed item to en-
sure the analysed WCET (RWCET), approaches the Actual WCET
(AWCET). Note except for the simplest of cases, AWCET is not
computable. The technique was designed with specific objectives
in mind.

(1) Efficiency - The first objective of the algorithm is to produce
results in a reasonable time frame, allowing the analysis to
be performed efficiently over a large number of functions.
This objective is important as an industrial scale project will
be expected to complete a large number of analyses in a
restricted time frame, on a limited hardware set.
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Algorithm 1 Example of code items

1 type Prob i s f l o a t range 0 . . 1 . 0 ;
2 type Byte i s i n t e g e r range 1 . . 8 ;
3

4 s t a t i c A : Prob ;
5

6 f u n c t i o n f ( B : i n Boolean , C : Byte )
7 / ∗ B1 ∗ /
8 i f A > 0 . 7 5
9 / ∗ B2 ∗ /
10 i f B
11 / ∗ B3 ∗ /
12 g (C )
13 e l s e
14 / ∗ B4 ∗ /
15 / ∗ B7 ∗ /
16

17 f u n c t i o n g (D : Byte )
18 / ∗ B5 ∗ /
19 I : i n t e g e r range 0 . . 7 ;
20 I : = 0
21 whi l e I < D
22 / ∗ B6 ∗ /
23 I : = I + 1
24 / ∗ B8 ∗ /

(2) Consistently the highest instrumentation point coverage
- If the test has not achieved good instrumentation point
coverage, then the result cannot be trusted as sound. This
is because the analysis would have no concept of untested
blocks, which could have an effect on the computed RWCET.
The objective is assessed overall by capturing the number of
portion of instrumented blocks’ covered for each code item.

(3) Consistently large execution times, whetherHWMor RWCET.
This is the ultimate aim of the algorithm, to produce the
largest possible computed RWCET result.

4.2 Search Algorithm Setup

The search algorithm used for the analysis is a derivative of the
simulated annealing algorithm, originally presented in [13]. The
basic algorithm is shown in Algorithm 2. Additional steps, such has
reheating [13], are taken to prevent the algorithm being caught in
a local minima.

The algorithm starts from a random solution, i.e. a valid test
vector for the function under test. On each iteration the Mutate
function generates a new solution by modifying one randomly
selected input in the current test vector. Both operations, genera-
tion and mutation, respect the constraints on the function inputs.
The analysed code item is then executed using the new solution,
and EvaluateFitness is used to assess the solution’s fitness ac-
cording to its execution and previous solutions. The new solution
is accepted, by the if statement on line 8, if an improvement, or
pseudo-randomly selected if a degradation. As the test progresses
the pseudo-random selection of worse solutions will decrease, as
controlled by temperature. Finally StopAlgorithm will end the
search after no solutions have been accepted for a few iterations
(with a basic minimum of 1000 iterations).

Example: Function f in Algorithm 1 has three input variables: A,

B, and C. According to the constraints on their type ranges, {A: 0.75,

B: True, C: 6} is a valid random initial solution. The Mutate

Algorithm 2 Simulated Annealing

1 t empe ra tu r e : = I n i t T empe r a t u r e ( )
2 c u r r e n t S o l u t i o n : = RandomSolut ion ( )
3 do
4 newSo lu t ion : = Mutate ( c u r r e n t S o l u t i o n )
5 newSta t s : = C a l l F un c t i o n ( newSo lu t ion )
6 newF i tne s s : = E v a l u a t e F i t n e s s ( newSta t s )
7

8 i f random ( 0 . . 1 ) < exp ( newF i tne s s / t empe ra tu r e )
9 c u r r e n t S o l u t i o n = newSo lu t ion
10

11 t empe ra tu r e = DecreaseTempera ture ( t empe ra tu r e )
12 l oop whi l e not S topAlgor i thm ( )

operation may opt to randomly mutate A, {A: 0.8, B: False,

C: 6}, and then B in the subsequent call, {A: 0.8, B: True, C:

6}. The input vector {A: 0.0, B: False, C: 12} violates the

constraints on the values of C and such solutions cannot be produced

by the search algorithm.

4.3 BCHLr Fitness Function

The BCHLr fitness function evaluates the fitness of a new solution,
to be accepted or rejected, based on three components:

• Branch Coverage (BC) - Accept solutions which cover new
branches to execute all branches through the code.

• BranchHistory (H) - Revert to a previous solution that reaches
unexplored paths to execute all branches through the code.

• Maximum Loop Counts (Lr) - Accept solutions which improve
on the observed loop iterations to maximise the iterations
of each loop through the code, as proposed by Khan [1].

4.3.1 Branch Coverage (BC). computes the average fitness of the
branches traversed through the execution path of the new solution.
A branch’s fitness is based on the number of edges out of the branch
and the number of unexplored edges amongst those. A solution that
reaches a branch with yet unseen outgoing edges will be favoured
over one that only covers explored branches. The fitness computed
through BC depends on the history of explored solutions.

Example: S ={A: 1.0, B: False, C: 1} has a lower fitness

as an initial solution to the analysis of f than {A: 1.0, B: True,

C: 1} in Algorithm 1. S covers only 2 unexplored edges, B1 to B2 and

B2 to B4, against 3 for the other solution. However, it is the converse

if B5 to B6 has already been covered as S covers the unexplored edge

B2 to B4.

4.3.2 Branch History (H). resets the search to previous solutions
of interest, that is solutions reaching brancheswith unseen outgoing
edges. As each branch through a solution’s path is analysed, the
input vector used to drive the current solution is stored against that
branch. If a sufficient number of new solutions have been rejected
then the set of unseen edges is examined, and the matching branch
is chosen at random. The input vector stored against this branch is
then adopted as the new input vector. This is designed to attempt
to lift the algorithm from poor solutions and focus the algorithm on
the area around branches that have only been partially executed.

Example: Consider B2 has been reached once with solution S ={A:

1.0, B: True, C: 7} in Algorithm 1, but that the transition from

B2 to B4 is un-explored. If the search rejects a sufficient number of

solution, as no new edge is explored, currentSolution will revert to
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S before the generation of a new solution to attempt to reach the

unexplored edge.

4.3.3 Maximum Loop Counts (Lr). calculates the average num-
ber of iterations of each loop on the path traversed by a solution,
the result is then normalised using the maximum observed number
of iterations. The algorithm is based on previous work by Khan [1].

Example: Consider function g in Algorithm 1 with a single in-

put D. The loops goes through i iterations based on the value of D.

The solution {D: 8} maximises the number of iteration and thus,

in the absence of other branching path, would always be accepted.

Conversely, {D: 4} would be accepted only if no higher value of D

has been considered.

4.3.4 Combining fitness components. The BCHLr function com-
bines the result produced using BC, with the result using Lr to
produce a fitness function that begins by trying to identify unseen
blocks, but evolves as the search progresses to favour higher loop
counts. Both fitnesses are combined using a weighted sum, with
weightsWLr andWBC for Lr and BC respectively:

FitnessBCHLr =WLr × FitnessLr +WBC × FitnessBC (1)

As the test progresses, and the branch coverage obtained in-
creases, then the loop fitness Lr weighting (WLr ), is increased (and
WBC accordingly decreases). This changes the priority of the fitness
function as the test progresses to focus on maximising loop counts.

5 TACO FRAMEWORK

TACO is a framework for the automated generation of test cases.
It provides a set of tools to drive any code item by executing test-
vectors prepared beforehand or generated on the fly, e.g. using a
search algorithm. A driver, such as the simulated annealing algo-
rithm presented in Section 4, can then control the execution of
any test code item by selecting the exercised inputs for each execu-
tion. The traces resulting from the execution of the code item, both
on target or on host platforms, provide information about the set
of covered instrumentation points, the executed test vectors, and
blocks’ timing when available on platform. The resulting informa-
tion and tools can thus be used to build different analysis processes.
As an example, executed code coverage can be obtained on a full
system scale by first driving the search through the system entry
points, then repeating the process on sub-functions that have not
been sufficiently covered.

The application of the TACO framework to a specific test code
item, illustrated in Figure 1 and detailed in the subsequent sections,
relies on the following steps:

(1) Generating a testport, a function that can execute the code
item using a specified test vector;

(2) Instrumenting the code, capture the structure of the code
and insert primitives to gather timing and coverage;

(3) Preparing a driver, compile the testport with a test vector
driver;

(4) Executing the testport, execute the code item with the se-
lected or generated test vectors and gather data on the exe-
cution;

(5) Processing execution traces, identify covered sub-functions,
blocks, and their timings.

Figure 1: Steps of the TACO Framework

5.1 Generating a testport

The framework relies on a generic interface between driver and
executed test item, that is a generic definition of a test vector, such
that either can be exchanged as needed. A testport thus provides
a single entry point to initialise, run, measure the behaviour of a
test item, and provide feedback to the driver on the executed path,
from a valid test vector.

The generation of a testport relies on amodel of the test item built
from its defined requirements and Ada SPARK type annotations.
The test vector definition thus captures the number, types, and
ranges of all relevant inputs to the test item, including both direct
arguments but also relevant parts of the system state. Vectors and
structures are expanded down to individual scalars, integer, floating
point or boolean, each represented as a single entry in the test vector.
As an example, an array of three integers will use three separate
integers in the test vector.

The test driver is independent from the test item. While the test
driver defines the values in a test vector, it has no direct access to
the matching variable in the system build; the testport is responsible
for the initialisation of the variables in the system from the driver-
provided test vector.

Example: We use function f of Algorithm 1 to illustrate the

testport generation process. The system model includes all inputs of

the function, their types and value range:

• A: {in internal, float, min: 0,max: 1.0}

• B: {in parameter, integer,min: 1, max: 8}

• C: {in parameter, Boolean}

The testport needs to setup the value of internal state variable A

based on the input vector and call function f with the selected values

of B and C, conceptually:

1 f u n c t i o n C a l l F u n c t i o n ( t e s t )

2 A : = t e s t . i n p u t [ 'A ' ]

3 S t a r t T r a c i n g ( )

4 f ( t e s t . i n p u t [ 'B ' ] , t e s t . i n p u t [ 'C ' ] )

5 S t o p T r a c i n g ( )

6 r e t u r n C o l l e c t S t a t s ( )

5.2 Instrumenting the code

Each code item is instrumented by the Rapita Verification Suite,
which includes RapiTime [16]. Instrumentation Points are inserted
throughout the source code in order to record the program flow,
this includes at the start and end of each function, and around
conditional statements. Instrumentation points uniquely identify
basic blocks in the code. RapiTime further extracts the structure
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of the code to generate the structures used by the BCHLr heuristic
(Section 4) to track executed edges and loops. In the example of
Algorithm 1, blocks are denoted by Bi.

5.3 Preparing a driver

A driver produces a sequence of test vectors, previously selected
or generated data. Driver, testport and code item are combined
into a single executable whose execution proceeds to call the code
item through the testport using the driver’s test vectors. Using a
simulated annealing algorithm as the driver (see Section 4), the
configuration stage includes selecting the right fitness function and
setting up the search parameters, e.g. initial temperature.

5.4 Executing the testport

Each execution of the testport produces a corresponding trace in-
cluding at the traversed instrumentation points, and thus the cov-
ered code blocks. Additional implementation-specific information
may be collected regarding the behaviour of the driver or the under-
lying platform, such as blocks’ execution times. Each such trace can
be linked back to the specific test vector that drove the execution.

Example: The execution of the test vectors defined in Section 4 for

Algorithm 1, {A: 1.0, B: True, C: 4} and {A: 1.0, B:False,

C: 0}, produces two execution traces, respectively [B1, B2, B3, B5, B6,

B6, B6, B6, B8, B7] and [B1, B2, B4, B7].

5.5 Processing execution traces

The execution traces can then be processed and compared against
the structure of the code to identify covered andmissing code blocks
both in the code item and in its sub-programs. The TACO process
can then be repeated; by generating a testport and driver for the
uncovered items, the tool can iteratively build complete block and
timing coverage of the system.

6 PORTING THE TACO FRAMEWORK

The limited availability of the target platform for a system, due to
costs or a limited number of units for testing, may hinder the capa-
bility to perform tests. Target-based testing may also be expensive
and time-consuming due to resource constraints on safety-critical
embedded platforms. There is therefore a strong requirement to
reduce the time spent running on the target platform which con-
tradicts the use of a runtime-based search algorithm. Limits on
memory and available communication channels may further re-
strict the class of applicable algorithms for automated search and
the capacity to extract valuable information during the process.

The BCHLr heuristic (Section 4) has no dependency on the un-
derlying platform. It relies on the executed path through a test
item under analysis, as defined by source-level blocks of code. Sim-
ilarly, testports and the input vectors are generated to be platform-
independent. The range, type and number of inputs in the analysed
software are known before compilation (Section 3). The set of val-
ues each input can take, and their impact on the program flow, are
independent of the underlying platform1.

1Different platforms may use different precisions for floating point values, but their
range is still bounded and representation precision should have no bearing on the
executed path in the considered software.

The instrumentation routines capture the execution of instru-
mentation points in the code and feedback to the BCHLr heuristic
on the executed paths through the code. The timing data associ-
ated to instrumentation points only needs to be captured on the
Rolls-Royce platform (Section 3.1), and is easily omitted from devel-
opment platforms. Instrumentation primitives are simply replaced
by writes to an allocated buffer in memory; the instrumented code
itself is left unchanged. Like on the VISIUMCORE, the coherence
between the source and compiled code is guaranteed by the instru-
mentation process, and thus coherence between platforms.

The Input/Output primitives provide the interface to extract
information from the ongoing execution of a code item, such as
the exercised test vectors or more importantly the execution trace.
General purpose platforms offer a wide array of channels for com-
munication. Ports of the framework for the ARM Raspberry Pi3,
using a Real-Time Kernel and general purpose desktop platforms
output a wide variety of statistics on the ongoing search through
simple output files.

6.1 Reducing on-target testing

As a proof of concept, we now consider an application of the in-
formation extracted from a host platform to improve the coverage
achieved on target while reducing the number of tests on target.
This is a further illustration of the compositional nature of the
TACO framework to define new analysis processes. The use of a
general purpose computing platform, as opposed to the VISIUM-
CORE embedded processor, offers the opportunity to extract more
information from the running search algorithm. In particular, dur-
ing the execution of a testport we extract the inputs exercised on
the code item under test at each stage of the search algorithm. Ex-
ercised inputs can thus be matched against the instrumentation
points they exercise in the tested item.

Using a simple heuristic, we reduce the set of exercised inputs
and test items on the general purpose platform, to one that can
achieve the same level of coverage at a lower cost. The selected
inputs are replayed by using a driver that iterates through the test
vector selection for the relevant code items. The selection first re-
duces the set of exercised items, by selecting the least observed
instrumentation point and picking the item that reaches it most
often. The relevant inputs within each selected item are then se-
lected to reach the instrumentation point. The process is outlined
in Algorithm 3. The selection is performed first at the item level,
instead of the run level, to reduce the complexity of the problem;
millions of iterations, and the instrumentation points they reach,
would need to be loaded and compared to reach an optimal solution
that minimises the overall number of required runs.

7 EVALUATION

We applied the TACO framework on a range of items from a Rolls-
Royce (RR) aircraft engine controls system. The evaluation includes
two different targets to compare their behaviour and support the
claim that the heuristics are platform-independent. This includes a
standard desktop computer, i686, and the VISIUMCORE, VISIUM-

CORE (Section 3.1). TACO was applied in bulk, with the full process
being repeated for each test code item. We further include the Ran
fitness function which always accepts new solutions.
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Algorithm 3 Selection of test code items and inputs to achieve
target coverage from observations.

1 Replay_Data : = { }
2 Rep l ay_Po i n t s : = { }
3 So r t Obse rved_Po in t s from l e a s t t o most obse rved
4 f o r P in Obse rved_Po in t s
5 i f P not in Rep l ay_Po i n t s
6 So r t Te s t _ I t ems from most to l e a s t c ove r i ng P
7 f o r I i n Te s t _ I t ems
8 f o r T in Trace s ( I )
9 i f P in Po i n t s ( T )
10 Add ( I , I n pu t s ( T ) ) t o Rep lay_Data
11 Add Po i n t s ( T ) to Rep l ay_Po i n t s
12 Next P

7.1 FADEC system

The industrial test code used for the analysis was taken from an
unmodified Rolls-Royce engine control system and has been de-
signed and verified according to DO-178C standards as a level A
package [17]. The models required for the generation of the TACO
testports were made available for a selection of 1800 test code items.
They cover a broad section of the engine control system from the
tasks dispatched by the scheduler (250+), down to small utilities
function. Some items contain complex constructs, input dependant
loops or infeasible paths, whereas other items are more simplis-
tic and contain fewer branches and simpler constructs. High level
functions are also included, which further call other items. This
is important to evaluate the scalability and performance of any
automatic analysis.

Some items further include a number of internal (or static) ‘state
variables’ carried forward to the execution of the test code item from
its previous execution. The Rolls-Royce code items are taken from a
control system which incorporates a large amount of feedback, this
means different test iterations are influenced by previous system
state, set up by previous test iterations. An example of this is a fuel
management system could determine how much fuel is left not
only based on a level sensor but also based on an earlier trusted
level and by continuously using the fuel flow rate to get a predicted
value of how much fuel has been used since the earlier trusted level.
This type of calculation can be used for both situations where a
current value of a parameter is hard to obtain or for validating using
dissimilar sensed values the current value. It may be that some
Fault Accommodation Code can only be reached if the current and
predicted values differ by x%.

Hence, state is an important feature that cannot be ignored.
Each test may thus execute the state from previous test iterations
and has a significant effect on the current path. This emphasises
how difficult it can be to manually generate test cases that provide
sufficient coverage for MBTA. Each state variable contained within
each test code item is modelled as a potential input by the testport.
However in this experiment they are only randomly exercised to
let the system progress naturally during some successive runs. This
proved to be the most efficient configuration across all heuristics.
Not exercising the state as inputs restricts the set of paths that are
reachable by the search algorithm. Conversely, always enforcing
the inputs on the internal state ignores the natural rate of change
for some values and can prevent the execution of specific paths in
the code.

Figure 2: Relationship between covered instrumentation

points and analysed WCET on the RR platform.

7.2 Correlation between timing and coverage

The timing of a block on the VISIUMCORE platform is impacted
neither by the prior execution, nor by the inputs applied to the soft-
ware. This creates a correlation between code coverage (observed
blocks) and WCET estimates computed through MBTA (combined
timings of blocks). We applied TACO to a small subset of code items
in the case study, using both BCHLr and Ran heuristics, and fed the
results through the RapiTime tool to produce a WCET estimate.

Figure 2 illustrates the correlation for one such code item, VCP.
When a new path and thus new instrumentation points are covered,
the analysed WCET increases in consequence. The gap in the num-
ber of instrumented points stem from a hard to reach path in the
code item, once reached many other branches are discovered and
explored by the algorithm. Because of the instrumentation profile
use during the case study, i.e. one instrumentation point at the
beginning and end of each function, even straight line code may
hold more than one instrumentation point.

We focus on code coverage as a metric in the rest of the evalua-
tion. Coverage still allows for a broad view comparison between the
performance of different search heuristics across wildly different
code items. Due to the scope of the experiments, collecting timing
data on target for all code items and considered configurations
could take a considerable amount of time2.

7.3 Framework scalability

The TACO framework aims at providing an automated cross-platform
framework for driving the execution of test code items, that is the
ability to take a given system build and automatically exercise its
individual components.We first evaluate the scalability of the frame-
work on the test items available as part of the case study. Figure 3
captures the portion of the evaluated items for which a testport
was generated and successfully driven for each configuration.

Overall, more than 95% of the 1800 test code items have been
successfully analysed through the framework. Some items are not
amenable to testport generation in the absence of some contextual

222 million test vectors were tested by the BCHLr heuristic on the i686 platform in
less than 48 Hours, where 2000 iterations take an average of 1 Hour on target [14]
because of data upload/download overheads.
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Figure 3: Test code items successfully analysed through

TACO

knowledge, e.g. look-up tables containing system-specific constants,
which impact the size of input arrays. Information beyond the test
code item model is then required to generate a testport.

On the VISIUMCORE, less items could be processed using the
Ran or BCHLr heuristics, respectively 90% and 83%. While the
heuristics applied to drive the testports are item and platform-
independent, their overheads and memory complexity relate to
the item under analysis. As an example, the memory required to
store the history for the BCHLr heuristic increases with the num-
ber of inputs and instrumentation points in a test code item. For
resource constrained targets, such as the RR embedded platform,
those structures may not fit in memory of embedded platform and
only simpler heuristics, like Ran, can reliably run on target.

7.4 Portability of the heuristics

The heuristics evaluated in this work do not rely on the behaviour
of the underlying platform to drive the search algorithm. Instead,
they rely on the exercised paths through the program as captured
at the source level. We ran each configuration of test code item and
heuristic on both the desktop platform and the RR platform. Figure 4
presents (using a log scale on the y-axis) the resulting difference for
each configuration in achieved coverage, i.e. the impact of applying
the configuration on a different platform. The items that cannot
be analysed on both platforms have been omitted to ensure a fair
comparison. This includes as an example issues related to BCHLr
history memory occupancy on the RR platform. Figure 5 further
presents for each item under the BCHLr heuristic the coverage
achieved on both platforms. There are only marginal differences
between runs of the heuristics on different platforms with more
than 99% of configurations exhibiting the same behaviour. The
remaining differences amount to differences in the pseudo random
number generator between platforms and thus differences in the
generated test vectors.

7.5 Scalability of the heuristics

We now consider the performance of the test generation framework
in terms of code coverage. Figure 6 presents the overall coverage

Figure 4: Absolute difference between the coverage achieved

on different platforms for the same heuristic and test code

item.

Figure 5: Comparison of the coverage achieved by the

BCHLr heuristic on VISIUMCORE and i686 platforms.

achieved by each heuristic across the whole set of test items on
the different platforms. The results consider for each item solely
the blocks covered during its run of the analysis. It captures the
number of items which coverage after execution of the framework
falls within a given coverage range. The further to the right a range
ends, as compared to a different configuration, the more items
achieve the same or higher coverage. As an example, more than
1100 items have a coverage > 70% from BCHLr on the i686 platform.
Figure 6 also captures the items that fail to run, flagged with a 0%
coverage, as an example using BCHLr on the VISIUMCORE.

Overall, the BCHLr heuristic on the i686 platform allows for
marginally greater items’ coverage at almost all given levels. How-
ever, those are obtained at a much greater memory and time com-
plexity than its Ran counterpart. Very restricted platforms cannot
accommodate for the size of the Branch History of some code items.
On the VISUMCORE, the lower number of items compliant with
BCHLr requirements reduces its performance. Ran also tends to
converge after much less moves as it does not benefit from reheat-
ing in the absence of rejected solutions. This raises the issues of
diminishing returns as more iterations are required to reach the
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less likely paths, w.r.t. the input vector values distribution, in the
application.

The results in Figure 6 only provide a partial picture of the
coverage of the system achieved by the TACO framework. Consider
items A and B such that A calls B during its execution. Some blocks
of B may be hard to reach when called from A, resulting only in
partial coverage of A during tests. If those blocks are covered when
B is tested in isolation then their results can be merged in the
analysis of A.

We thus extend the computation of the coverage achieved for
a test code item to include the whole set of blocks covered during
the analysis of the system, not only those encountered during its
analysis. The resulting merged coverage is presented in Figure 7.
For the sake of brevity, we omit the inclusion of results combined
across other platforms and/or heuristics.

Looking at system-wide results, more than 1100 items have been
fully covered by the automatic analysis (1132 for Ran, 1326 for
BCHLr and 1335 by combining both heuristics). Although some
items cannot be executed under specific configurations, credit for
the functions they call can still be taken and used to estimate their
behaviour. On the i686, while the BCHLr heuristic covers more
items (1326), additional items are covered by Ran resulting in a
combined coverage of 1335 items. Combining results across plat-
forms and heuristics, 1375 items are fully covered showing that
the heuristics are complementary and more effort results in higher
coverage albeit with diminishing returns. This further illustrates
a benefit of a tool that builds the coverage of a system, from the
top-level tasks down to the small utility functions.

7.6 Reducing on-target testing

The availability of multiple platforms to evaluate the coverage
achieved by different heuristics and configurations using the TACO
framework would be of little value if they were not applicable to
the target RR platform. We now explore how to utilise information
extracted from the host platform to reduce on-target testing.

As a proof of concept, we applied the heuristic defined in Sec-
tion 6.1 to the observations made on the i686 platform through the
BCHLr heuristic which encompassed 22,000,000 executions across
1775 test code items. The coverage achieved by this configuration
is presented in Figure 7.

To achieve the same level of coverage on other platforms, only
6131 tests across 658 items need to be replayed. This is an average
of 9 executions required per item with a maximum (respectively
minimum) of 168 (resp. 1) executions. The overall replay experiment
took less than a couple of days to complete using a target simulator
to extract coverage. In comparison, 2000 iterations of a single code
item took on target an average of 1 Hour in previous setups [14].
658 code items could thus be tested in the timespan 3 (52 including
collection on the i686 platform) code items can be run natively
through TACO on target, while providing higher coverage results.
This assumes TACO could be executed with the code items within
the memory limits of the target.

Figure 8 presents the results of applying the selected tests on
both the desktop host and RR target platforms. Minor differences
in the achieved coverage of the original and replayed runs illus-
trate the loss of precision in the inputs values extracted during

the original runs. Difference between platforms also amount to the
lower number of items supported on the VISIUMCORE with some
items selected by the heuristic not executed, e.g. when the set of
test vectors does not fit in memory. For further details, see Figure 3.

8 CONCLUSION AND FUTUREWORK

This paper has described an automatic test generation framework
which can help produce good coverage and thus WCET estimates,
when supported by a MBTA, early in the software lifecycle. A
key aspect of the approach is a search algorithm that is platform
independent as:

(1) There is no dependency on timing information.
(2) The tests produced by the search algorithm on a host, or

low-cost platform, can then be applied on the target.
(3) The host-based testing provides meaningful results.

The long-term aim of our research and development is to use
low-cost platforms, including desktops, to:

(1) Provide estimates early in the life-cycle
(a) understand the timing characteristics of software, e.g iden-

tify the longest parts of the software.
(b) predict the values of HWM and WCET using informa-

tion about how host-based coverage relates to timings on
target.

(2) Efficiently generate the set of tests needed for when the
target is available. Ultimately the target-based testing will
consist of:

(a) The best N different test cases found on the low-cost plat-
form will be replayed on the target.

(b) Where possible BCHLr will be applied to the target to
validate the results and check that no new information is
found.

(c) If BCHLr is not possible, then the search algorithm is
performed with the next best fitness function.

(3) Changes to the system could be quickly assessed in terms of
understanding the regression testing needed on the target.

(4) On existing systems, to quantify the confidence that is ob-
tained from the proposed system compared to our existing
manually generated tests.

(5) On future systems, to quantify the confidence of the testing
performed so that the developer knows when to stop testing
and as part of the higher-level design and analysis of the
mixed-criticality scheduling.

(6) Evaluate alternative drivers and configurations before de-
ployment on target.

On the target, the generated tests could then be used to find
the HWM and analysed WCET and some limited search-based test
generation could be performed. (Limited by the size of the buffers
on the target and the ability to offload via the communications the
information output.) This testing would give the final values for
HWM and analysed WCET and validate the earlier assumptions,
i.e. the correlations between coverage and timings on the low-cost
platform and the target.
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Figure 6: Block coverage achieved on the test code items by the heuristic

Figure 7: Block coverage achieved on the test code items after merging results across test items

Figure 8: Block coverage achieved on the test code items after replaying selected tests and merging results
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