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COUNTING PERFECT MATCHINGS AND THE SWITCH CHAIN∗

MARTIN DYER† AND HAIKO MÜLLER‡

Abstract. We examine the problem of exactly or approximately counting all perfect matchings in hereditary classes of
nonbipartite graphs. In particular, we consider the switch Markov chain of Diaconis, Graham and Holmes. We determine the
largest hereditary class for which the chain is ergodic, and define a large new hereditary class of graphs for which it is rapidly
mixing. We go on to show that the chain has exponential mixing time for a slightly larger class. We also examine the question
of ergodicity of the switch chain in an arbitrary graph. Finally, we give exact counting algorithms for three classes.

Key words. Hereditary Graph Classes, Matchings, Approximate Counting, Markov Chains

AMS subject classifications. 68Q25, 68R10, 60J10

1. Introduction. In [11], we examined (with Jerrum) the problem of counting all perfect matchings
in some particular classes of bipartite graphs, inspired by a paper of Diaconis, Graham and Holmes [10]
which gave applications to Statistics. That is, we considered the problem of evaluating the permanent of
the biadjacency matrix. This problem is well understood for general graphs, at least from a computational
complexity viewpoint. Exactly counting perfect matchings has long been known to be #P-complete [34],
and this remains true even for graphs of maximum degree 3 [8]. The problem is well known to be in FP for
planar graphs [23]. For other graph classes, less is known, but #P-completeness is known for chordal and
chordal bipartite graphs [29]. In Section 6, we give positive results for three graph classes. Definitions and
relationships between the classes we study are given in the Appendix. See also [3] and [9]. The Appendix
also gives a convenient summary of results.

Approximate counting of perfect matchings is known to be in randomized polynomial time for bipartite
graphs [21], but the complexity remains open for nonbipartite graphs. The algorithm of [21] is remarkable,
but complex. It involves repeatedly running a rapidly mixing Markov chain on a sequence of edge-weighted
graphs, starting from the complete bipartite graph, and gradually adapting the edge weights until they
approximate the target graph. Simpler methods have been proposed, but do not lead to polynomial time
approximation algorithms in general.

In [11], we studied a particular Markov chain on perfect matchings in a graph, the switch chain, on some
hereditary graph classes.1 That is, classes of graphs for which any vertex-induced subgraph of a graph in
the class is also in the class. For reasons given in [11], we believe that hereditary classes are the appropriate
objects of study in this context. For the switch chain, we asked: for which hereditary classes is the Markov
chain ergodic and for which is it rapidly mixing? We provided a precise answer to the ergodicity question
and close bounds on the mixing question. In particular, we showed that the mixing time of the switch chain
is polynomial for the class of monotone graphs [10] (also known as bipartite permutation graphs [32] and
proper interval bigraphs [18]).

In this paper, we extend the analysis of [11] to hereditary classes of nonbipartite graphs. In Section 2 we
consider the question of ergodicity, and in Section 3 we consider rapid mixing of the switch chain. In both
cases, we introduce corresponding new graph classes, and examine their relationship to known classes. In
particular, we introduce a class generalising monotone graphs, quasimonotone graphs, and show that the
switch chain mixes rapidly in this class. In a companion paper [13], we show that this class can be recognised
in polynomial time. In Section 4, we show that the switch chain can have exponential mixing time in some
well known hereditary graph classes.

∗The work reported in this paper was partially supported by EPSRC research grants EP/M004953/1 “Randomized algorithms
for computer networks” and EP/S016562/1 Sampling in hereditary classes”.

†School of Computing, University of Leeds, Leeds LS2 9JT, UK. Email: m.e.dyer@leeds.ac.uk.
‡School of Computing, University of Leeds, Leeds LS2 9JT, UK. Email: h.muller@leeds.ac.uk.
1A preliminary version of [11] appeared as [12]. Inter alia, this used a different, and seemingly less successful, approach to

proving rapid mixing of the switch chain for monotone graphs.
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Some reasons for restricting attention to hereditary classes are given in [11]. However, we might consider
the class of all graphs on which the switch chain is ergodic. In Section 5, we discuss the question of deciding
ergodicity of the switch chain for an arbitrary graph. We give no definitive answer, but give some evidence
that polynomial time recognition is unlikely.

Finally, in Section 6, we give positive results for exactly counting perfect matchings in some “small” graph
classes, namely cographs, graphs with bounded treewidth and complements of chain graphs. See [3, 9],
Section 6, and the Appendix for definitions.

1.1. Notation and definitions. Let N = {1, 2, . . .} denote the natural numbers, and N0 = N ∪ {0}.
If n ∈ N, let [n] = {1, 2, . . . , n}. For a set S, S(2) will denote the set of subsets of V of size exactly 2. For a
singleton set, we will generally omit the braces, where there is no ambiguity. Thus, for example S ∪ x will
mean S ∪ {x}.

Let G = (V,E) be a (simple, undirected) graph with |V | = n. More generally, if H is any graph, we denote
its vertex set by V (H), and its edge set by E(H). We write an e ∈ E between v and w in G as e = vw, or
e = {v, w} if the vw notation is ambiguous. The degree of a vertex v ∈ V will be denoted by deg(v), and its
neighbourhood by N (v).

The empty graph G = (∅,∅) is the unique graph with n = 0. We include the empty graph in the class of
connected graphs. Also, G = (V, V (2)), is the complete graph on n vertices. The complement of any graph
G = (V,E) is G = (V, V (2) \ E). We use the notation G1 ≃ G2 to indicate graph isomorphism.

If U ⊆ V , we will write G[U ] for the subgraph of G induced by U . Then a class C of graphs is called
hereditary if G[U ] ∈ C for all G ∈ C and U ⊆ V . For a cycle C in G, we will write G[C] as shorthand for
G[V (C)]. Definitions of the hereditary graph classes we consider, and relationships between them, are given
in the Appendix.

Let L,R be a bipartition of V , i.e. V = L ∪ R, L ∩ R = ∅. Then we will denote the L,R cut-set by
L:R = {vw ∈ E : v ∈ L,w ∈ R}. The associated bipartite graph (L ∪R,L:R) will be denoted by G[L:R]. If
C is an even cycle in G, then an alternating bipartition of C assigns the vertices of C alternately to L and
R as the cycle is traversed.

A matching M is an independent set of edges in G. That is M ⊆ E, and e ∩ e′ = ∅ for all {e, e′} ∈ M (2).
A perfect matching M is such that, for every v ∈ V , v ∈ e for some e ∈ M . For a perfect matching M to
exist, it is clearly necessary, but not sufficient, that n is even. Then |M | = n/2. A near-perfect matching
M ′ is one with |M ′| = n/2− 1. The empty graph has the unique perfect matching ∅.

A hole in a graph G will mean a chordless cycle of length greater than 4, as in e.g. [3, Definition 1.1.4]. Note
that the term has been also used to mean a chordless cycle of length at least 4, as in e.g. [35]. An odd hole
is a hole with an odd number of edges and vertices, and an even odd hole is a hole with an even number of
edges and vertices. More generally, an i-cycle is a cycle with i edges.

1.2. Approximate counting and the switch chain. Sampling a perfect matching almost uniformly
at random from a graph G = (V,E) is known to be computationally equivalent to approximately counting
all perfect matchings [22]. The approximate counting problem was considered by Jerrum and Sinclair [19],
using a Markov chain similar to that suggested by Broder [5]. They showed that their chain has polynomial
time convergence if ratio of the number of near-perfect matchings to the number of perfect matchings in
the graph is polynomially bounded as a function of n. They called graphs with this property P-stable, and
it was investigated in [20]. However, many simple classes of graphs fail to have this property (e.g. chain
graphs; in the Appendix, we indicate which of the classes we consider are P-stable.) A further difficulty with
this algorithm is that the chain will usually produce only a near-perfect matching, and may require many
repetitions before it produces a perfect matching.

For any bipartite graph, the Jerrum, Sinclair and Vigoda algorithm [21] referred to above gives polynomial
time approximate counting of all perfect matchings. This is a major theoretical achievement, though the
algorithm seems too complicated to be used in practice. Moreover, the approach does not appear to extend
to nonbipartite graphs, since odd cycles are problematic. Indeed, Štefankovič, Vigoda and Wilmes [33] have
recently shown that the algorithm of [21] can fail for nonbipartite graphs. They also give positive results for
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some graph classes, seemingly different from those discussed here.

For this reason, a simpler Markov chain was proposed in [10], which was called the switch chain in [11].
This mixes rapidly in cases that the Jerrum-Sinclair chain does not, and vice versa, so the two cannot
be compared. For a graph G possessing some perfect matching M0, the switch chain maintains a perfect
matching Mt for each t ∈ [tmax], whereas the Jerrum-Sinclair chain does not. It may be described as follows.

Switch chain
(1) Set t← 0, and find any perfect matching M0 in G.
(2) Choose v, v′ ∈ V , uniformly at random. Let u, u′ ∈ V be such that uv, u′v′ ∈Mt.
(3) If u′v, uv′ ∈ E, set Mt+1 ← {u

′v, uv′} ∪Mt \ {uv, u
′v′}.

(4) Otherwise, set Mt+1 ←Mt.
(5) Set t← t+ 1. If t < tmax, repeat from step (2). Otherwise, stop.

A transition of the chain is called a switch. This chain is clearly symmetric on the set of perfect matchings,
and hence will converge to the uniform distribution on perfect matchings, provided the chain is ergodic. It
is clearly aperiodic, since there is delay probability of at least 1/n at each step, from choosing v = v′ in
step (2). For any v 6= v′ the transition probability is at most 4/n2, since the choice v, v′ can also appear as
v′, v, and the choice of u, u′ as u′, u, but the transition may fail in step (3).

2. Ergodicity of the switch chain. For a graph G, we define the transition graph G(G) of the switch
chain on G as having a vertex for each perfect matching M in G, and an edge between every two perfect
matchings M , M ′ which differ by a single switch. Then we will say G is ergodic if G(G) is connected. Since
the switch chain is aperiodic, this corresponds to the usual definition of ergodicity when G(G) is non-empty.
A class C of graphs will be called ergodic if every G ∈ C is ergodic.

As in [11], we say that a graph G = (V,E) is hereditarily ergodic if, for every U ⊆ V , the induced subgraph
G[U ] is ergodic. As discussed in [11], this notion is closely related to that of self-reducibility (see, for
example [19]). A class of graphs C will be called hereditarily ergodic if every G ∈ C is hereditarily ergodic.
We characterise the class of all hereditarily ergodic graphs below. This is the largest hereditary subclass of
the (non-hereditary) class of ergodic graphs.

If G(G) is the empty graph, then G is ergodic. If G has a unique perfect matching, G is ergodic, since
G(G) has a single vertex, and so is connected. Otherwise, let X, Y be any two distinct perfect matchings
in G = (V,E). Then X is connected to Y in G(G) if there is a sequence of switches in G which transforms
X to Y . Since, X ⊕ Y is a set of vertex-disjoint alternating even cycles, it suffices to transform X to Y
independently in each of these cycles. Thus, since we are dealing with a hereditary class, we must be able to
transform X to Y in the graph induced in G by every even cycle. Therefore, it is sufficient to decide whether
or not we can transform X to Y when X ∪ Y is an alternating Hamilton cycle in G.

Thus, let H: v1 → v2 → . . . → v2r → v1 be a Hamilton cycle in the graph G = (V,E), where V =
{v1, v2, . . . , v2r}. Let X, Y be the two perfect matchings which form H and suppose, without loss of
generality, that X = {v2i−1v2i : i ∈ [r]}. Now the first switch in a sequence from X to Y must use a 4-cycle
in G with two edges v2i−1v2i, v2j−1v2j ∈ X, with 1 ≤ i < j ≤ r. The other two edges of the cycle must
be either v2i−1v2j , v2iv2j−1 or v2i−1v2j−1, v2iv2j . We call the first an odd switch, and the second an even
switch, see Fig. 2.1.

The only switch that can change an edge in X to an edge in Y must have v2iv2j−1 ∈ Y , and hence j = i+1.
We will call this a boundary switch. Clearly a boundary switch is an odd switch, see Fig. 2.1.

The edges v2i−1v2i, v2j−1v2j divide H into two vertex-disjoint paths P1 : v2i → v2j−1 and P2 : v2j → v2i−1,
see Fig. 2.1. Thus performing an odd switch on a 4-cycle (v2i−1, v2i, v2j−1, v2j) results in two smaller
alternating cycles P1∪v2i−1v2j and P2∪v2iv2j−1, on which we can use induction, since we are in a hereditary
class. However, performing an even switch on a 4-cycle (v2i−1, v2j−1, v2i, v2j) simply produces a new Hamilton
cycle H ′ = X ′ ∪ Y , where X ′ = X \ {v2i−1v2i, v2j−1v2j} ∪ {v2i−1v2j−1, v2iv2j}, see Fig. 2.1.

An edge vivj ∈ E \ C is a chord of a cycle C. If C is an even cycle, it is an odd chord if j − i = 1 (mod 2)
and even if j − i = 0 (mod 2). Note that j − i = i− j (mod 2), so the definition is independent of the order
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v2i−1

v2i v2j−1

v2j

P1

P2

v2i−1

v2i v2j−1

v2j

P1

P2

v2i−1

v2i v2i+1

v2i+2

P1

P2

Fig. 2.1: An odd switch, an even switch and a boundary switch

of i and j on C. Note that even and odd chords are not defined for odd cycles.

An odd chord divides an even cycle C into two even cycles, sharing an edge. Thus an odd switch involves
two odd chords, and an even switch involves two even chords. However, a 4-cycle with two odd chords may
not be an odd switch and a 4-cycle with two even chords may not be an even switch, if the cycle edges
involved are not both in X or Y . We call these illegal switches, see Fig.2.2.

v2i−1

v2i v2j

v2j+1

P1

P2

→
v2i−1

v2i v2j

v2j+1

P1

P2

Fig. 2.2: An illegal switch

We define the graph class OddChordal as follows. A graph G = (V,E) is odd chordal if and only if every
even cycle C in G of length six or more has an odd chord. Note that this is a hereditary graph property.
The switch chain is hereditarily ergodic on the class OddChordal, but it is not the largest class with this
property.

Let (v2i−1, v2i, v2j , v2j−1) be an even switch for the even cycle C, with cycle segments P1, P2 as above. Then
a crossing chord is an edge (vk, vl) such that vk ∈ P1, vl ∈ P2, see Fig. 2.3.

We can now define our target graph class Switchable. A graph G = (V,E) is switchable if and only if every
even cycle C in G of length 6 or more has an odd chord, or has an even switch with a crossing chord. Clearly
we may assume that the crossing chord is an even chord. This class is also hereditary, and the definition
implies OddChordal ⊆ Switchable.

Our choice of names for the classes OddChordal and Switchable is obvious from the above, and Theo-
rem 2.1 below.

Theorem 2.1. A graph G = (V,E) is hereditarily ergodic if and only if G ∈ Switchable.

Proof. Suppose G ∈ Switchable and G has a Hamilton cycle H which is the union of two perfect matchings
X and Y . We wish to show that X can be transformed to Y using switches in G. We will argue inductively
on the size of G. If H is a 4-cycle, we can transform X to Y with a single switch. Suppose then that we
can transform X ′ to Y ′ for every two perfect matchings X ′, Y ′ in any graph G′ ∈ Switchable that has
fewer vertices than G. First suppose C has an odd chord (vi, vj). Then H ∪ vivj forms two even cycles C1,
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v2i−1

v2i v2j−1

v2j

vk

vl

C1

C2

→
v2i−1

v2j−1 v2i

v2j

vk

vl

C1

C2

Fig. 2.3: An even switch with a crossing chord

C2, with vivj as a common edge, so that vi+1 ∈ C1 and vi−1 ∈ C2, see Fig. 2.4. If i is odd and j is even,
then vivi+1, vj−1vj ∈ C1 ∩X, and if i is even and j is odd, then vi−1vi, vjvj+1 ∈ C2 ∩X. In the first case
C1 is an alternating cycle for X ′ = X ∩ C1, Y

′ = C1 \X
′, and in the second C2 is an alternating cycle for

X ′ = X ∩C2, Y
′ = C2 \X

′. Consider the first case, the second being symmetrical. Then, since C1 is shorter
than H, we can transform X ′ to Y ′ by induction. After this, C2 is an alternating cycle shorter than C, with
X ′′ = (X ∩ C2) ∪ vivj , Y

′′ = Y ∩ C2, so we can transform X ′′ to Y ′′ by induction. This transforms X to Y
for the whole cycle H, and we are done.

vi

vj

C1

C2

→
vi

vj

C1

C2

→
vi

vj

C1

C2

Fig. 2.4: Switching a cycle using an odd chord

Now suppose H has no odd chord, so it has an even switch with an even crossing chord. The even switch
gives another Hamilton cycle H ′ = P1 ∪ v2j−1v2i−1 ∪ P2 ∪ v2jv2i, and suppose its vertices are numbered
in the implied order. Now, in this numbering, the parity of vertices in P1 remains as in C, but the edge
v2j−1v2i−1 changes the parity of all vertices in P2. Finally, the edge v2jv2i restores the parity in P1. Thus,
in particular the crossing chord vkvl changes from being an even chord in H to an odd chord in H ′. (See
Fig. 2.3.) Now, since H ′ has an odd chord, we can use the argument above to show that its matching
X ′ = X \ {v2i−1v2i, v2i−1v2j} ∪ {v2i−1v2j−1, v2iv2j} can be transformed to Y .

Suppose G /∈ Switchable. Then we may assume that there is a Hamilton cycle H0 in G, of length 2r ≥ 6,
which has only even chords. Let X0, Y be the two perfect matchings such that H0 = X0 ∪ Y . Then H0 has
only even switches, and no even switch can have a crossing chord. Therefore, any switch from X0 to X1 in
G produces a new Hamilton cycle H1 = X1 ∪ Y in G. Since there are no crossing chords, the switch does
not change the parity of any chord from H0 to H1, so H1 also has only even chords, and hence only even
switches. The switch cannot produce a crossing chord for any even switch in H1, since this chord would
also have been crossing in H0. Thus H1 is a Hamilton cycle with no odd chord and no even switch with a
crossing chord.

Therefore, suppose there is a sequence of switches, X0, X1, . . . , Xi, . . . , Xl = Y . Let s be the smallest i such
that Xi ∩ Y 6= ∅. The switch from Xs−1 to Xs introduces an edge of Y , and so requires a boundary switch
in Hs−1, which is odd switch. However, by induction, no Hamilton cycle in the sequence H0, H1, . . . , Hs−1
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has an odd chord, and so there can be no odd switch in Hs−1. Hence Xs ∩ Y 6= ∅, a contradiction. So the
switch chain is not ergodic on G, as required.

Lemma 2.2. If G ∈ Switchable, the diameter of G(G) is at most (n− 3).

Proof. Remember n = |V (G)|. Let Dn be the diameter of G(G). Clearly D4 = 1 = 4−3, and this will be the
basis for an induction. Using the construction in the proof of Theorem 2.1, the graph G is decomposable into
two smaller graphs G1 and G2, which have a common edge, after one switch. Let G1 and G2 have t+1 and
n− t+1 vertices, for some t. Thus by induction, Dn ≤ Dt+1+Dn−t+1+1 ≤ (t−2)+(n− t−2)+1 = n−3.

For the class OddChordal, we can prove a stronger bound, which also gives a characterisation of the class
in terms of the switch chain,

Lemma 2.3. G ∈ OddChordal if and only if diam(G(C)) = |C|/2− 1 for every even cycle C in G.

Proof. Let C be any even cycle in G ∈ OddChordal. Then C has a boundary switch. First consider
the matchings X,Y for which C is an alternating cycle. To switch X to Y , we first perform the boundary
switch, leaving an alternating cycle C ′ with |C ′| = |C|−2, Assume by induction that dist(X,Y ) = |C|/2−1,
the base case being for a quadrangle, here dist(X,Y ) = 1 = 4/2 − 1. Then dist(X,Y ) = 1 + (|C ′|/2 −
1) = (|C| − 2)/2 = |C|/2 − 1, continuing the induction. Thus diam(G(C)) ≥ |C|/2 − 1. Now, if X,Y
are any two matching in G(C), X ⊕ Y can be divided into alternating cycles C1, C2, . . . , Ck, say. Then

dist(X,Y ) ≤
∑k

i=1(|Ci|/2 − 1) = |C|/2 − k ≤ |C|/2 − 1, with equality if and only if X ∪ Y = C. Thus
diam(G(C)) = |C|/2− 1.

Conversely, suppose C is an even cycle with no odd chord, but G(C) ∈ Switchable, so diam(G(C)) is well
defined. First consider matchings X,Y such that C is an alternating cycle. Then the first switch on the
path from X to Y must be an even switch, giving matchings X ′, Y ′ which form an alternating cycle C ′ with
|C ′| = |C|. Now, from above, dist(X ′, Y ′) ≥ |C ′|/2 − 1 = |C|/2 − 1, and thus dist(X,Y ) ≥ |C|/2. Hence
diam(G(C)) 6= |C|/2− 1.

Corollary 2.4. If G = (V,E) ∈ OddChordal, with n = |V |, then diam(G(G)) ≤ n/2− 1.

Proof. If X,Y are any two matching in G(G), X ⊕ Y can be divided into alternating cycles C1, C2, . . . , Ck,

say. Then dist(X,Y ) ≤
∑k

i=1(|Ci|/2− 1) ≤ n/2− k ≤ n/2− 1.

Finally, we note that, even if the switch chain is not ergodic on a graph G, it may still be able to access
an exponential number of perfect matchings from any given perfect matching. Thus the graphs which are
not ergodic for the switch chain do not necessarily have “frozen” perfect matchings. Since the existence of
frozen states is the most usual criterion for non-ergodicity of large Markov chains, deciding non-hereditary
ergodicity seems problematic.

Example 1. The graph G in Fig. 2.5 has n = 4k vertices, and a Hamilton cycle H = X ∪ Y , where X, Y
are the following two perfect matchings:

X =
{

{1, 2}, {3, 4}, . . . , {4k − 1, 4k}
}

, Y =
{

{2, 3}, {4, 5}, . . . , {4k − 2, 4k − 1}, {4k, 1}
}

.

From either X or Y , there are k even switches, each without a crossing chord. Each of these switches can
be made independently, leading to 2k = 2n/4 different matchings. However Y cannot be reached from X,
or vice versa. Note that there are 4(k − 1) illegal switches for H, for example (1, 2, 4k − 2, 4k − 1) and
(2, 3, 4k − 1, 4k).

4k 4k − 1 4k − 2 2k + 2 2k + 1

2k2k − 1321

Fig. 2.5: Example 1
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2.1. Relationship to known graph classes. We will now consider the relationship between the
classes defined above and known hereditary graph classes, which are defined in the Appendix. First we will
show that OddChordal ⊂ Switchable, by means of the following example.

Example 2. The graph G in Fig. 2.6 has an (even) Hamilton cycle H is 1 → 2 → 3 → 4 → 5 → 6 →
7 → 8 → 1, and no odd chords, but there is a sequence of switches which transforms the perfect matching
X = {(1, 2), (3, 4), (5, 6), (7, 8)}, shown in solid line, to the perfect matching Y = {(2, 3), (4, 5), (6.7), (8, 1)},
shown dashed. Other edges of G are shown dotted. The switch used to obtain the (solid) perfect matching
from its predecessor is shown below each graph. The first switch is an even switch (3, 7, 8, 4) with two crossing
even chords (1, 5), (2, 6). In the last step two disjoint odd switches have been made simultaneously.

1

2

3 4

5

6

78

G

1

2

3 7

6

5

48

(3,7,8,4)

1

2

3 7

6

5

48

(1,2,6,5)

1

2

3 7

6

5

48

(2,6,7,3), (1,5,4,8)

Fig. 2.6: Example 1.

This example may be extended so that the outer cycle has any even number of vertices. These graphs are
the Möbius ladders, which appear in [13], in a related context.

Next we consider the simple class Cograph. (See Section 6.1 for definitions and the notation used here.)
We may show that Cograph * Switchable, and hence the switch chain is not necessarily ergodic even in
this class. Consider the graph G shown in Fig. 2.7:

5

6

1 2

3

4

Fig. 2.7: A non-ergodic cograph

This is a cograph, since G = G1 1 G2, where G1 = G[{1, 2, 4, 5}], G2 = G[{3, 6}] are cographs, since
G1 ≃ (K1 1 K1) + (K1 1 K1) and G2 ≃ K1 ⊎ K1. However G is not odd chordal, since the 6-cycle
(1, 2, 3, 4, 5, 6) spans G and has only even chords: {1, 3}, {2, 6}, {3, 5} and {4, 6}. Moreover, G is not
switchable, since the two even switches {1, 3}, {2, 6} and {3, 5}, {4, 6} have no crossing chord. However, we
will show in Section 6, that perfect matchings in a cograph can be counted exactly, and hence a random
matching can be generated, in polynomial time.

It is known that Cograph ⊆ Permutation, the class of permutation graphs [9]. Thus we know that
Permutation * Switchable. However, there are permutation graphs which are not cographs and are
not switchable. Consider the graph G shown in Fig. 2.8. It has the intersection model shown, so G ∈
Permutation. However, G is not a cograph, since G[{2, 3, 4, 5}] ≃ P4. The 6-cycle (1, 2, 4, 3, 5, 6) spans G,
and has no odd chord or even switch. So, by Theorem 2.1, G /∈ Switchable. This example can be extended
to an infinite sequence of connected non-ergodic permutation graphs on 2(k + 1) vertices (k > 1) which are
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a 2k-ladder with a triangle at each end. These graphs also appear, in a related context in [13].

1

2

4 3

5

6

1 2 43 5 6

124 356

Fig. 2.8: A non-ergodic permutation graph

The class OddChordal does not seem to have been studied previously in the graph theory literature. We
have the following relationships to the known classes ChordalBipartite, Interval, Strongly chordal,
Chordal, EvenHoleFree and OddChordal. (For definitions, see the Appendix, [9], and Section 2 for
OddChordal.)

ChordalBipartite ⊂ OddChordal ⊂ Switchable ⊂ EvenHoleFree

Interval ⊂ StrongChordal = Chordal∩OddChordal

ChordalBipartite = Bipartite∩OddChordal.

The inclusions are strict, as illustrated in Example 2 above and Fig. 2.9 below. Fig. 2.9(a) contains a triangle,
so cannot be chordal bipartite, but has no odd hole. The only 6-cycle has an odd chord {1, 4}, so the graph is
odd chordal. In Fig. 2.9(b), the 6-cycle has an even chord {1, 5}, but no odd chord, so the graph has no even
hole, but is not odd chordal. In Fig. 2.9(c), the graph is odd chordal, since the only even cycle is the 4-cycle
(3,6,7,8), but it has an odd hole (1,2,3,4,5). In Fig. 2.9(d), the outer 6-cycle has no odd chord, but is chordal,
since all other chordless cycles are triangles. So, in addition to the inclusions, we see that Chordal and
OddHoleFree are incomparable with OddChordal. Thus, from [6], odd chordal graphs are not perfect
in general. Note that, except for OddChordal, Switchable and EvenHoleFree, all these classes are

1

2

3

4

5

6

(a)

1

2

3

4

5

6

(b)

1

2 3 4
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6

7

8

(c)

1

2

3

6
5

4

(d)

Fig. 2.9: Distinction between graph classes

known to be recognisable in polynomial time. Thus, an obvious question is: does OddChordal have a
polynomial time recognition algorithm? We conjecture that the answer is “yes”, but currently we cannot
prove this.

3. Rapid mixing and quasimonotone graphs. The switch chain for monotone graphs (also known
as bipartite permutation graphs, or proper interval bigraphs), was studied in [11]. These are graphs for which
the biadjacency matrix has a “staircase” structure. See [11] for precise definitions. The chain was shown to
have polynomial mixing time. As far as we are aware, that is the only proof of rapid mixing of the switch
chain for a nontrivial class of graphs. Thus, we consider here extending the proof technique of [11] to a
much larger class of graphs, which are not necessarily bipartite. To define this class, we need the following
definition.

3.1. Quasiclasses. Let C ⊆ Bipartite, where Bipartite denote the class of bipartite graphs. Then
we will define the class quasi-C as follows. A graph G is in quasi-C if G[L:R] ∈ C for all bipartitions L,R of
V . This may seem a very demanding definition, but it is not so for most classes of interest, as we shall see.
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Lemma 3.1. If C ⊆ Bipartite is a hereditary class, then so is quasi-C.

Proof. Suppose G = (V,E) ∈ quasi-C and v ∈ V . We wish to show that G[V \ v] ∈ quasi-C. Let L,R be any
bipartition of V \ v. Then L,R can be extended to a bipartition of L∪ v,R of V . Thus G[L∪ v:R] ∈ C and,
since C is hereditary, G[L:R] ∈ C. Thus G[V \ v] ∈ quasi-C.

Lemma 3.2. Let C ⊆ Bipartite be a graph class that is hereditary and closed under disjoint union, then
C = Bipartite ∩ quasi-C.

Proof. First let G = (L∪R,E) be any bipartite graph that does not belong to C. Since G = G[L:R], G does
not belong to quasi-C. Hence C ⊇ Bipartite ∩ quasi-C.

Next we show C ⊆ Bipartite∩ quasi-C. Let G = (X ∪ Y,E) be a graph in C and let L:R be any bipartition
of X ∪ Y . Now G[L:R] is the disjoint union of G1 = G[(X ∩ L) ∪ (Y ∩R)] and G2 = G[(X ∩R) ∪ (Y ∩ L)].
The graphs G1 and G2 belong to C since the class is hereditary, and hence G[L:R] ∈ C, because C is closed
under disjoint union. Thus G ∈ quasi-C.

We also have

Lemma 3.3. quasi-ChordalBipartite = OddChordal.

Proof. G /∈ OddChordal if it has an even cycle C with only even chords. Then C is a hole in G[L:R],
for any bipartition L,R of V which is alternating on C. Thus G[L:R] /∈ ChordalBipartite, so G /∈
quasi-ChordalBipartite. Conversely, suppose that G /∈ quasi-ChordalBipartite. Then there is some
bipartition L,R of V such that G[L:R] contains a hole C. The edges of G[C] that are not in G[L:R] must
be even chords of C, so C has only even chords in G. Thus G /∈ OddChordal.

In [13], some other examples of quasi--classes are discussed. As a final example here, in Section 3.4 we
consider the quasi-class corresponding to the class Chain, of chain graphs. See [11], [9] or the Appendix for
definitions.

Our motivation for introducing this concept is that methods and results for bipartite graph classes may be
easily extendible to the corresponding quasi-class. In particular, we are interested in the case of monotone
graphs.

3.2. Quasimonotone graphs. For the class Monotone [11], of monotone graphs, we will denote
the hereditary (by Lemma 3.1) class quasi-Monotone by QMonotone, and a graph G ∈ QMonotone

will be called quasimonotone. All monotone graphs are quasimonotone, by Lemma 3.2. Since Monotone⊂
ChordalBipartite, QMonotone⊂OddChordal, by Lemmas 3.1 and 3.3. So the switch chain is ergodic
on quasimonotone graphs, since we have OddChordal⊂Switchable.

3.2.1. Unit interval graphs. A unit interval graph G (also called a proper interval graph, claw-free
interval graph or indifference graph) is the intersection graph of a set of unit intervals vi = [xi, xi + 1]
(i ∈ [n]) on the real line. That is, G = (V,E), where V = {vi : i ∈ [n]} and vivj ∈ E if and only if i 6= j and
vi ∩ vj 6= ∅. The class of unit interval graphs will be denoted by UnitInterval.

UnitInterval is a hereditary class, with the following forbidden subgraphs: all chordless cycles Ck of length
k ≥ 4, the claw, the 3-sun and its complement, the net, as shown in Fig. 3.1. Our interest in this class
results from the following.

claw net 3-sun

Fig. 3.1: Forbidden subgraphs for unit interval graphs
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Theorem 3.4. UnitInterval⊂QMonotone.

Proof. Let G = (V,E) ∈ UnitInterval, and suppose that L,R is any bipartition of V . Then, by definition,
G[L:R] is a unit interval bigraph [18]. It is shown in [18] that the class of unit interval bigraphs coincides
with the class Monotone. Thus G[L:R] is a monotone graph, and hence G is quasimonotone.

Clearly Monotone∪UnitInterval⊆QMonotone, but the class is considerably larger than this, and
there seems to be no simple characterisation of all graphs in the class. In Fig. 3.2(a), we give an example
of a quasimonotone graph which is not monotone (because it is nonbipartite) and not unit interval (because
it is not chordal). In Fig. 3.2(b), we give an example of a quasimonotone graph which is chordal (so not
monotone) but not unit interval (because it contains claws). We omit the proof that these graphs are
quasimonotone. For the recognition algorithm, see [13]. We show in Section 3.3 below that the switch
chain is rapidly mixing in the class QMonotone. Therefore, the applicability of the switch chain requires
a recognition problem for quasimonotone graphs. In particular, can we recognise a quasimonotone graph
in polynomial time? Trivially, this problem is only in co-NP, by guessing a bipartition L,R, and using an
algorithm for recognising monotone graphs [32] to show that G[L:R] is not monotone. However, we show
in [13] that the problem of quasimonotone graph recognition is in P.

(a) (b)

Fig. 3.2: Two quasimonotone graphs

3.3. Rapid mixing of the switch chain. We will now show that the switch chain has polynomial
time convergence on the class of quasimonotone graphs. Here we asssume some familiarity with [11].

To do this, we simply extend to quasimonotone graphs the analysis for monotone graphs given in [11, Sec. 3].
We construct a canonical path between any pair of perfect matchings X, Y in G by considering the set of
alternating cycles in X⊕Y . Since quasimonotone graphs form a hereditary class, we can reduce the problem
to constructing a canonical path for switching each of these cycles, taken in some canonical order. Each
such cycle H is an alternating Hamilton cycle in the graph G′ = G[H]. Note that G′ is quasimonotone, by
heredity, and has an even number n of vertices, since H is alternating. We will denote the restrictions of X
and Y to G′ by X ′ and Y ′.

Now consider the alternating bipartition L,R of H, which gives a bipartition of G′ such that |L| = |R| = n/2.
Since G′ is quasimonotone, G′[L:R] is monotone, and we have H ⊆ G′[L:R]. Hence we can use the “mountain
climbing” technique of [11] to construct a canonical path and an encoding for switching X ′ to Y ′ in G′[L:R].
This is also a canonical path for switching X ′ to Y ′ in G′, with length O(n2), as in [11].

The rest of the analysis follows closely that in [11, Sec. 3], noting only that L,R each have at most n/2
vertices, rather than n, as in [11]. However the conclusion, that the mixing time is O(n7 log n), remains the
same. See [11] for further details.

Of course, the starting configuration for the switch chain must be a perfect matching. In the case of monotone
graphs, a simple linear time algorithm was given in [11]. This does not extend to quasimonotone graphs, but
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the O(n3) algorithm of [26] for general graphs suffices to obtain O(n7 log n) mixing time. However, we know
that an O(n2) algorithm exists, by making use of the quasimonotone structure. We will not give details
here, since this is not a critical issue. We leave open the question of the existence of a o(n2) algorithm for
quasimonotone graphs.

3.3.1. Forbidden subgraphs of quasimonotone graphs. The forbidden subgraphs for the class
Monotone are all (even) holes, together with the three 7-vertex graphs shown in Fig. 3.3, as shown in [25].

tripod armchair stirrer

Fig. 3.3: Forbidden subgraphs for monotone graphs

If H is a bipartite graph, a graph H ′ will be called pre-H if it has a bipartition L,R such that H ′[L:R] ∼= H.
Thus, if a class C of bipartite graphs can be characterised by the set F of forbidden subgraphs then quasi-C
can be characterised by forbidding all pre-F (F ∈ F) as induced subgraphs.

We will call any pretripod, prearmchair or prestirrer, a flaw. Referring to the three graphs in Fig. 3.3, these
are graphs whose only edges additional to those shown join two white vertices or two black vertices. There
are clearly too many of these for us to exhibit them all. A flawless graph G will be one which contains no
flaw as an induced subgraph. Let us call this (hereditary) class Flawless. Since all flaws have only seven
vertices, we can test in O(n7) time whether an input graph G on n vertices is flawless. Thus membership in
Flawless is certainly in P.

However, preholes can have unbounded size. It is easy to see that the preholes are all even cycles that have no
odd chord, which is an infinite class. These preholes are clearly the forbidden subgraphs for the class Odd-

Chordal. Thus quasimonotone graphs are characterised by the absence of preholes, pretripods, prestirrers
and prearmchairs, which is equivalent to the statement QMonotone = Flawless ∩ OddChordal.

Unfortunately, this characterisation of QMonotone does not seem to lead to polynomial time recognition.
We have observed above that we do not know whether the class OddChordal can be recognised in poly-
nomial time, so we cannot simply test whether G is flawless and odd chordal. However, we show in [13] that
quasimonotone graphs can be recognised in polynomial time.

3.4. Quasi-chain graphs. Chain graphs form a subclass of monotone graphs, and there is a trivial
algorithm (see [11]) for counting matchings in such graphs. However, this does not extend to the quasi-class.
We know of no better analysis of the switch chain, and no better algorithm for either approximately or
exactly counting matchings, than those we have given for quasimonotone graphs. However, we will show
that there is a simpler recognition algorithm for graphs in this quasi-class than that given in [13].

This class also illustrates a definitional issue. The class of chain graphs, Chain, is not closed under disjoint
union, so the quasi-class does not include the class itself. For example, in the simple chain graph of Fig. 3.4,
G[L:R] is a union of two chain graphs, so quasi-Chain does not contain Chain. Therefore, we define instead
the class Chains, which is the class of graphs such that every connected component is a chain graph.

Now quasi-Chains will contain Chains, by Lemma 3.2. Clearly Chains ⊆ Monotone, since each chain
graph is monotone, and Monotone is closed under disjoint union. However, it is known that the forbidden
subgraph for the class Chain is 2K2, but we see from Fig. 3.4 that 2K2 ∈ Chains. (The graph 2K2 comprises
two disjoint edges.) So we need a different characterisation of Chains, in which the forbidden subgraphs are
connected. This is not difficult. The following result seems to be folklore. It is stated without proof in [4,
Proposition 2] and [15, Property 1]. (In fact [4, Proposition 2] does have a two-line proof, but it is a proof
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G L,R G[L:R]

Fig. 3.4

of Corollary 3.6 below.) It seems to be attributed to [1], which does contain related results, but not this.
Therefore, we will give a short proof via monotone graphs. The graphs P5 and C5 are shown in Fig. 3.6.
The graphs Pk, Ck denote, respectively, a path and cycle with k vertices.

Lemma 3.5. G ∈ Chains if and only if it is bipartite and P5-free.

Proof. If G is not bipartite, it is clearly not in Chains. If it has an induced P5, this must be entirely in
some component G′ of G. But P5 contains an induced 2K2, by deleting its middle vertex. So G′ cannot be
a chain graph, and hence G /∈ Chains. Conversely, suppose G is bipartite and P5-free. It cannot contain a
flaw, or a k-hole for k > 4, since the flaws contain an induced P5, and so does every k-hole for any k ≥ 6.
See Fig. 3.5. Thus G ∈Monotone.

tripod armchair stirrer 6-hole

Fig. 3.5

Now consider any connected component G′ of G, with monotone biadjacency matrix A′. If G′ is not a chain
graph, then A′ must contain a submatrix of the form below, or its transpose.

x y

u 1 0

v 1 1

w 0 1

But this corresponds to an induced path (u, x, v, y, w), which is a P5, giving a contradiction. Thus G′ must
be a chain graph, and G ∈ Chains.

Corollary 3.6. G ∈ Chains if and only if it is (triangle,C5, P5)-free.

Proof. If G is P5-free, it has no holes of size 6 or more. Therefore, unless it has a triangle or a 5-hole, it
must be bipartite. So, if we exclude these two possibilities, Lemma 3.5 implies G ∈ Chains. The converse
is also clear from Lemma 3.5. All graphs in Chains are P5-free and bipartite, so cannot have a triangle or
a 5-cycle.

Corollary 3.7. quasi-Chains is precisely the class of (pre-P5)-free graphs, and membership can be recog-
nised in O(n5) time.

Proof. From Lemma 3.5, the forbidden subgraphs for quasi-Chains are pre-P5’s and preholes. But any
prehole has size 6 or more, and so induces a pre-P5. Thus preholes give no new forbidden subgraphs. The
pre-P5’s have only 5 vertices, so they can be searched for by brute force in O(n5) time.

The class pre-P5 contains the ten graphs shown in Fig. 3.6, up to isomorphism. They are in order of the
number of edges added to P5, which is given an alternating bipartition.
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P5 C5 bull co-banner dart

butterfly house 3-fan sailboat W4

Fig. 3.6: Forbidden subgraphs for quasi-Chains

Lemma 3.8. Let C be a hereditary bipartite graph class. Then quasi-C ⊆ HoleFree if and only if C ⊆
Chains.

Proof. If G /∈ quasi-HoleFree, then G contains a hole H. Then any bipartition of G which extends an
alternating bipartition of H contains P5 as a subgraph, Thus G /∈ quasi-Chains, by Lemma 3.5. Thus
quasi-Chains ⊆ HoleFree.

Now suppose G /∈ Chains. Then G contains a P5 by Lemma 3.5. Thus, by heredity, C contains P5 and
all its subgraphs. Then quasi-C contains C5, since every bipartition of C5 gives P5 or its subgraphs. Thus
quasi-C * HoleFree.

In particular, we see that if C * Chains, then quasi-C * Perfect, by [6].

Thus we have completely settled the ergodicity of the switch chain on hereditary graph classes. Since this has
given rise to new classes, the question of efficient recognition of these classes is an interesting open question.

4. Slow mixing of the switch chain. Unfortunately, the switch chain appears to mix slowly in the
worst case on graphs in many hereditary classes of interest. In this Section we consider the two classes
Interval and Permutation, by showing that even their intersection ChordalPermutation exhibits
slow mixing.

4.1. Chordal permutation graphs. The examples we present here are inspired by those given for
biconvex graphs in [2, 28].

4.1.1. Construction. For every integer k ≥ 1 let Gk be the graph with vertex set U ∪W ∪X ∪ Y ∪Z
and edge set EUW ∪ EW ∪ EWX ∪ EX ∪ EXY ∪ EY ∪ EYZ defined by

U = {ui | 1 ≤ i ≤ k} Z = {zi | 1 ≤ i ≤ k}

W = {wi | 1 ≤ i ≤ k} Y = {yi | 1 ≤ i ≤ k}

X = {xi | 1 ≤ i ≤ 2} EX = {x1x2}

EUW = {uiwj | 1 ≤ i ≤ j ≤ k} EYZ = {ziyj | 1 ≤ i ≤ j ≤ k}

EW = {vw | w ∈W, v ∈W \ {w}} EY = {vy | y ∈ Y, v ∈ Y \ {y}}

EWX = {vx | x ∈ X, v ∈ U ∪W} EXY = {vx | x ∈ X, v ∈ Y ∪ Z}

Thus Gk has n = 4k + 2 vertices.

Using the notation for cographs, i.e. ⊎ for disjoint union and 1 for complete join, we have Gk = (X,EX) 1
(

(U ∪W,EUW ∪ EW) ⊎ (Y ∪ Z,EYZ ∪ EY)
)

. The graphs Gk[U ∪W ] and Gk[Y ∪ Z] are threshold graphs,
that is, these graphs are both interval and permutation graphs, see Fig. A.1 in the Appendix. Since both
these classes are closed under disjoint union and join with complete graphs, Gk too is both an interval graph
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and a permutation graph. For illustration, Fig. 4.1 gives G4, where w2, w3, y2, y3 are not labelled for clarity.
Then Fig. 4.2 gives an interval model of G4, and Fig. 4.3 gives a permutation model.

x1

x2

u1

u2

u3

u4

z1

z2

z3

z4

w1

w4

y1

y4

Fig. 4.1: The graph G4
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w1

w2
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y3

y4

x1

x2

Fig. 4.2: An interval model of G4
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z1z2z3z4

y1y2y3y4

y1 y2 y3 y4

u1 u2 u3 u4

u1 u2 u3 u4

w1 w2 w3 w4

w1w2w3w4

x1

x1

x2

x2

Fig. 4.3: A permutation model of G4

4.1.2. Perfect matchings of Gk. Now we consider the perfect matchings of Gk. One of them is

M0 = {uiwi, yizi | i ∈ [k]} ∪ {x1x2}

and plays a special role. If a perfect matching M of Gk contains the edge x1x2 then M = M0 because
the threshold graphs Gk[U ∪W ] and Gk[Y ∪ Z] have only one perfect matching, namely M0 ∩ EUW and
M0 ∩ EYZ.

No perfect matching of Gk matches one vertex in X to a vertex in U ∪W and the other to a vertex in Y ∪Z,
because, for every v1 ∈ U ∪W and v2 ∈ Y ∪Z, the graph Gk \ {v1, x1, v2, x2} contains two odd components.
For v1 6= wk and v2 6= yk it consists of two connected components that contain 2k − 1 vertices each.

That is, every perfect matching M of Gk either contains the edge x1x2 or it contains edges x1v1 and x2v2
where either v1, v2 ∈ U ∪W or v1, v2 ∈ Y ∪ Z. We call this the one-sided property of the perfect matchings
of Gk.
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Let M be the set of perfect matchings of Gk and let M′
1 and M′

2 be the set of perfect matchings of
Gk[U ∪W ∪X] and Gk[X ∪ Y ∪ Z], respectively. With

M1 = {M ∪ (M0 ∩ EXY) |M ∈M
′
1}

M2 = {M ∪ (M0 ∩ EUW) |M ∈M′
2}

we have

M =M1 ∪M2 {M0} =M1 ∩M2

by the one-sided property shown above. From |M′
i| = 3k for i = 1, 2 follows |M| = 2 · 3k − 1.

4.2. Mixing time. Note that G(Gk) is connected, but G(Gk) \M0 is not. By induction we show that
every matching M ∈M is at most k switches away from M0. This is obvious for M = M0. In the inductive
step we may assume M ∈ M1 \ M0 by symmetry. We consider the maximal index i such that uiwi /∈ M .
Let uix and wiv be the two edges in M that saturate ui and wi. Since ujwj ∈ M for i < j ≤ k we have
x ∈ X and v ∈ W ∪X. Hence vx is an edge of Gk. Switching the 4-cycle (ui, wi, v, x) transforms M into a
matching containing the edges ujwj for all indices j with i ≤ j ≤ k. By induction, the distance from M to
M0 in Gk is at most k. We may also observe that, |N (M0) ∩M1| = k in G(Gk), and |N (M0) ∩M2| = k.

Now, similarly to [2, 28], we upper bound the conductance of the switch chain by computing the flow
through the cut M1 \ M0 : M2. There are only k edges in the cut, those from M0 to M1, and each
has transition probability 2/n2. The uniform equilibrium distribution π of the chain gives every state
M ∈ M probability π(M) = 1/|M|, and thus π(M1 \M0) < 1/2. Thus the flow through the cut is at most
2k/(n2|M|) < 1/(8k|M|), and hence the conductance of the chain is

Φ ≤
2

8k|M|
=

1

4k(2.3k − 1)
.

Now, for example from [27, Thm. 7.3], the mixing time τmix for the chain to reach variation distance 1/4 from
π satisfies τmix ≥ 1/(4Φ). Thus, for the switch chain on Gn,

τmix ≥
4k(2.3k − 1)

4
= k(2.3k − 1) > 3k+1 > 3(n+2)/4 ,

for all k ≥ 2. Thus the mixing time of the switch chain increases exponentially for the graph sequence Gn

(n = 10, 14, 18, . . .).

5. The switch chain in general graphs. We have considered the ergodicity and rapid mixing prop-
erties of the switch chain in hereditary classes where all graphs have the relevant property. However, we
might ask about recognising the ergodicity, or rapid mixing, of the switch chain for an arbitrary graph. We
have seen that there are graphs that are not ergodic, and ergodic graphs that are not rapidly mixing. So we
might wish to establish the complexity of recognising ergodicity, or rapid mixing. Since recognising rapid
mixing is at least as hard as recognising ergodicity, we will consider only the ergodicity question. Consider
the following computational problems, where we measure the complexity of the problem as a function of the
graph size n.

Ergodicity
Input: A graph G on n vertices.
Question: Is G(G) a connected graph?

or the seemingly simpler problem,

Connection
Input: A graph G on n vertices, and two perfect matchings X, Y in G.
Question: Are X, Y in the same component of G(G)?

Connection is easily seen to be in PSPACE. It is the st-connectivity problem on a graph with less than
nn vertices and degrees less than n2. Then, since st-connectivity is in L (log-space) [30], it follows that
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Connection is in PSPACE. Thus Ergodicity is also in PSPACE. We simply guess two matchings which are
disconnected, and use the Connection algorithm to prove disconnection in PSPACE. So Ergodicity is in
PSPACENP = PSPACE. It is possible that the problem is PSPACE-complete, but we have no evidence for
this.

However, it is not clear that either problem is in NP, or even in the polynomial hierarchy, though we
suspect that this is the case. We could place Connection in NP if we had a polynomial bound on the
diameter of G(G). Then, from the argument above, Ergodicity could be solved in co-NP using an oracle
for Connection, which would place it within the first two levels of the polynomial hierarchy.

Thus we might first ask: what is the maximum diameter of G(G), over all ergodic graphs G on n vertices?
In particular, is this polynomially bounded?

For hereditarily ergodic graphs, we showed, in Lemma 2.2, that G(G) has diameter O(n). However, this is
not true in general. In the following, we show that the diameter of the switch chain can be Ω(n2) for a
graph on which it is ergodic. Of course, this gives a rather weak lower, rather than an upper, bound on the
diameter. But it does show that there is not necessarily a “monotonically improving” path from a matching
X to a matching Y in G. And the difficulty of proving even this weak result suggests that establishing a
polynomial upper bound will be far from easy.

5.1. The spider’s web graph. Let 〈j〉 denote j mod 6. The spider’s web graph Wk is (Vk, Ek),

V0 = ∅, Uk = {ukj : j ∈ [6]}, Vk = Vk−1 ∪ Uk (k ≥ 1) .

E1 = {(u11, u14)} ∪ {(u1j , u1, 〈j〉+1) : j ∈ [6]} ,

Ek = Ek−1 ∪ {(uk−1,j , ukj), (ukj , uk, 〈j〉+1) : j ∈ [6]}, (k ≥ 1) .

For example, W5 is shown in Fig. 5.1. Note that Wk is bipartite, with bipartition Vk,0, Vk,1, where Vk,p =
{uij : i+ j = p mod 2}. We will also define the following subgraphs: the hexagon Ci = Wk[Ui] (i ∈ [k]), and
the annulus Ai = Wk[Ui∪Ui+1] (i ∈ [k−1]). Clearly Ci ≃ C1, for all i ∈ [k], and Ai ≃ A1, for all i ∈ [k−1].
Also Wk[Vi] ≃Wi for any i ∈ [k], so we may refer to this subgraph simply as Wi.

u51

u52u53

u54

u55 u56

Fig. 5.1: Spider’s web W5

Note that Wk is not hereditarily ergodic for any k > 1. This follows from [11, Lem. 2], but note that we
have A1 ⊂Wk, and the matchings M1, M2 in Fig. 5.2 have no switches in A1.

However, these two matchings are the only obstructions to ergodicity.

Lemma 5.1. G(A1) comprises a connected component, and two isolated vertices, M1 and M2.

Proof. Let M be any matching in A1. Suppose first that M has a cross edge u1ju2j for some j ∈ [6].
The graph A1 \ {u1j , u2j}, given by deleting u1j , u2j , is hereditarily ergodic, by [11, Lem. 2]. Thus, M is
connected to the matching M0 = {u1ju2j : j ∈ [6]} with all cross edges, as shown in Fig. 5.5. Therefore
suppose M has no cross edges, but has a pair of parallel edges {u1ju1,[j]+1, u2ju2,[j]+1}, for some j ∈ [6].
Switching the quadrangle (u1j , u2j , u2,[j]+1, u1,[j]+1) results in a matching M ′ with a cross edge (u1j , u2j).
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M1

←→/

M2

Fig. 5.2: Non-ergodicity of A1

Hence M is again connected to M0, via M ′. Now any perfect matching in A1 which has no cross edges or
parallel edges is either M1 or M2, and these have no available switch.

We will use this to show that Wk is ergodic.

Lemma 5.2. G(Wk) is connected, for all k ≥ 1.

Proof. We use induction on k. As basis, W1 is ergodic: G(W1) is shown in Fig. 5.3. For k > 1, let X, Y
be any two perfect matchings in Wk. From Lemma 5.1, we can exchange X ∩ Ak−1 and Y ∩ Ak−1 to give
matchings X1, Y1 so that X1 ∩Ak−1, Y1 ∩Ak−1 have no cross edges. (See Figs. 5.2 and 5.5). By induction,
we can exchange X1∩Wk−1 to Y1∩Wk−1 to give matchings X2, Y2 so that every edge of X2∩Ck−1 is parallel
to an edge of X2∩Ck, and every edge of Y2∩Ck−1 is parallel to an edge of Y2∩Ck. Using Lemma 5.1 again,
X2, Y2 can be transformed to X3, Y3, so that X3 ∩Ak−1 = Y3 ∩Ak−1. Finally, by induction, X3, Y3 can be
transformed to X4, Y4, so that X4 ∩Wk−1 = Y4 ∩Wk−1 and X4 ∩ Ck = Y4 ∩ Ck, and we are done.

←→ ←→

Fig. 5.3: Switching W1

Let W ′
k = Wk \ u11u14 be the graph Wk after deleting the edge u11u14. Then the two perfect matchings M1,

M2 in W ′
k given by

Mp = {wi,jwi,〈j〉+1 : i+ j = p− 1 mod 2, i ∈ [k], j ∈ [6]} (p = 1, 2),

and shown in Fig. 5.4, have no available switch, so are isolated vertices in G(W ′
k). Thus W ′

k is not ergodic.
Given this, we might suppose that M1 and M2 are far apart in G(Wk), and that is the case.

M1 M2

Fig. 5.4: Matchings M1, M2 in W5

Lemma 5.3. The distance between M1, M2 in G(Wk) is k(3k − 1).

Proof. Let Xt be the perfect matching at step t on a path P from M1 to M2 in G(Wk), so X0 = M1 and
Xℓ = M2, where ℓ is the path length. For any hexagon Ci (i ∈ [k]), we will write Ci(t) ⊃ Mj to mean
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Ci ∩ Xt = Ci ∩Mj (j = 1, 2). Initially Ci(0) ⊃ M1, for all i ∈ [k]. At step t, we will say Ci has been
exchanged if Ci(t) ⊃ M2. Let s(t) = |{i ∈ [k] : Ci(t) ⊃ M2}| denote the number of exchanged hexagons, so
s(0) = 0 and s(ℓ) = k.

Let ti be the first step on P at which Ci has been exchanged, and let t′i < ti be the last step before any edge
of Ci has been switched. Initially, the only switch that can be performed is in W1, using u11u14. After two
switches, C1 can be exchanged (see Fig. 5.3). Since at least two quadrangles must be switched to change
the state of six edges, this is clearly the minimum number of switches needed to exchange C1. Thus t

′
1 = 0,

t1 = 2 and s(2) = 1.

For i > 1, sinceM1, M2 are edge-disjoint, we can exchange Ci only by switching all six edges. Therefore, since
no two edges of Ci share a quadrangle, at least six switches are needed to exchange Ci. Now, an edge of Ci

can be switched only if there is a parallel edge in Ci−1 or Ci+1. Since, by assumption Ci(t
′
i), Ci+1(t

′
i) ⊃M1,

we must have Ci−1(t
′
i) ⊃M2.

Then we have the situation shown in Fig 5.5, and we can perform exactly six switches in Ai−1 so that
Ci(ti) ⊃ M2, where ti = t′i + 6. However, we now have Ci−1(ti) ⊃ M1, so s(ti) = s(t′i). Thus s(t) changes
only when C1 is exchanged. So C1 must be exchanged at least k times to switch the whole of Wk.

←→ ←→

Fig. 5.5: Switching Ai

After switching Ci (i ∈ [k − 1]) for the first time, we have Ci(ti) ⊃M2, Ci+1(ti) ⊃M1. So we can exchange
Ci+1, using six switches in Ai. Thus we can propagate the exchanged cycle Cj(t) ⊃ M2 outwards, starting
with j = 1, and until j = i, leaving Cj(ti) ⊃M1 (j ∈ [i− 1]). See Fig. 5.6.

Since Ck must be switched, we continue this outward propagation until i = k. Then we have Ck(tk) ⊃ M2

and Ck(tk) ⊃M1 (i ∈ [k−1]), after tk = 6(k−1)+2 = 6k−4 switches. This is clearly the minimum number
of switches needed to exchange Ck, starting from X0 = M1.

W1←→
A1←→

A2←→
A3←→

A4←→

Fig. 5.6: Exchanging C5

Now, for each i = k, k − 1, . . . , 2, 1, suppose we have M1 in Wi and M2 in Wk \Wi. Then we can exchange
Ci in Wi as above, and hence P will terminate with Xℓ = M2. The minimum number of switches needed to
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exchange Ci in Wi is ti = (6i− 4). Let ℓmin be the minimum total number of switches required to exchange

all Ci (i ∈ [k]). It follows that ℓmin =
∑k

i=1 ti =
∑k

i=1(6i− 4) = k(3k − 1). Thus k(3k − 1) is the minimum
length of any path P in G(G) from M1 to M2.

Theorem 5.4. There exists a sequence of graphs Gn, on n vertices, such that the transition graph G(Gn) is
connected, but has diameter Ω(n2).

Proof. For the sequence of graphs Wk (k = 1, 2, . . .), we have n = 6k and, from Lemma 5.3, G(Wk) has
diameter at least k(3k − 1) = n(n− 2)/12.

However, in spite of having no sub-exponential bound on the diameter for general graphs, it not clear that
we can even construct graphs for which the diameter is Ω(n3).

6. Exact counting. We conclude this paper by considering the problem of exactly counting perfect
matchings in some “small” classes of graphs. In fact, we show that all matchings of any fixed size can be
counted. For graphs in such classes, there is often an ordering which permits a dynamic programming type
of algorithm to be employed. Such an algorithm was given in [11], for example, for monotone graphs of small
width. Here we give algorithms for three graph classes defined in the Appendix.

6.1. Cographs. For two graphs G = (V,E) and H = (W,F ) with V ∩W = ∅ we define their disjoint
union G ⊎H = (V ∪W,E ∪ F ), and complete join G 1 H = (V ∪W,E ∪ F ∪ {vw | v ∈ V,w ∈W}). These
two operations are complementary: G 1 H = G ⊎H and G ⊎H = G 1 H.

A graph G is a cograph (or complement-reducible) if

(a) G ≃ K1, that is, G has one vertex and no edges, or
(b) G = G1 ⊎G2, where G1, G2 are cographs, or
(c) G = G1 1 G2, where G1, G2 are cographs.

The class of cographs was introduced in [7]. In particular, it was shown in [7] that G is a cograph if and
only it is P4-free, where P4 is the path with four vertices and three edges. Since P4 = P4, this implies that
G is a cograph if and only if G is a cograph.

The decomposition of a cograph can be represented by a rooted binary tree T , called a cotree. The leaves of
T are the vertices of G, and its internal nodes are marked ⊎ and 1, corresponding to constructions (b) and
(c) above. Two vertices are adjacent in G if and only if their lowest common ancestor in T is marked 1.

a c b e

f g

d

1 1

1⊎

⊎

1
a b

c e

f g

d

Fig. 6.1: A cotree and the cograph represented with a bipartition into a tripod.

Recurrence equation. For a graph G and an integer s let m(G, s) denote the number of matchings
of G that have size exactly s. If G has n vertices then m(G, s) = 0 holds for s < 0 or 2s > n. For cographs
the values of m can be computed recursively as follows:

leaf For a cograph with one vertex we have m(K1, s) = 1 if s = 0 and m(K1, s) = 0 otherwise, because K1

has only one matching, the empty set.
union For the disjoint union of two graphs G and H we have

m(G ⊎H, s) =

s
∑

i=0

m(G, i) ·m(H, s− i)
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because there are no edges between the vertices of G and the vertices of H.
join For g = |V (G)| and h = |V (H)| we have

m(G 1 H, s) =

min(s,⌊g/2⌋)
∑

i=0

min(s−i,⌊h/2⌋)
∑

j=0

m(G, i) ·m(H, j) ·

(

g − 2i

k

)

·

(

h− 2j

k

)

· k!

where k = s − i − j. A matching of size s in G 1 H partitions into a matching of size i in G, a
matching of size j in H and a matching of size k between the vertices of G and H. The subgraph G
has g − 2i vertices that are not matched internally, that is, are unsaturated or matched to vertices
of H. Similarly, the subgraph H has h−2j vertices that are not matched internally. From both sets
we can choose exactly k vertices to be matched across the join. The partial subgraph isomorphic to
Kk,k has k! perfect matchings.

Algorithm. Let G be a cograph with n vertices. A cotree T of G can be computed in linear time [17]
and has n − 1 internal nodes. For every cograph H represented by a rooted subtree of T we can compute
m(H, s) for all values of s with 0 ≤ s ≤ n/2. This takes time O(1) for leaves, O(n) for union nodes and
O(n2) for join nodes. Hence m(G,n/2), the number of perfect matchings of G, can be computed in time
O(n4).

6.2. Graphs with bounded treewidth. A pair (T,X) is a tree decomposition of a graph G = (V,E)
if T is a tree with node set I and X maps nodes of T to subsets of V (called bags) such that

(a) ∀v ∈ V, ∃i ∈ I, v ∈ X(i);
(b) ∀uv ∈ E, ∃i ∈ I, {u, v} ⊆ X(i);
(c) ∀v ∈ V, T [{i | v ∈ X(i)}] is connected.

The width of (T,X) is maxi∈I |X(i)|−1 and the treewidth of G is the minimum width of a tree decomposition
of G. It is denoted as tw(G). The class of graphs with tw(G) ≤ w, for some constant w, is clearly hereditary.

In a rooted tree decomposition we choose one node r to become the root of the tree. For all other nodes i,
the neighbour of i on the path to r is the parent of i, all other neighbours are children of i. All neighbours of
r are children of the root. For a rooted tree decomposition (T,X) and every i ∈ I let Y (i) = X(i)∪

⋃

j Y (j)
where the union is taken over all children of i. Especially we have Y (i) = X(i) for all leaves i of T , and
Y (r) = V .

A nice tree decomposition of G = (V,E) is a rooted tree decomposition (T,X) of G where each node has at
most two children, which recursively uses the operations:

start If i is a leaf of T then X(i) = ∅.
introduce/forget If i has exactly one child j then X(i) and X(j) differ by one vertex. More precisely, i is

an introduce node if X(i) ⊃ X(j) and i is a forget node if X(i) ⊂ X(j).
join If i has two children j and k then X(i) = X(j) and X(i) = X(k).
root The root r is a node with X(r) = ∅, usually a forget node, but a start node if V = ∅.

Every graph G = (V,E) has a nice tree decomposition of width tw(G) that contains O(|V |) nodes, see
Lemma 13.1.2 on page 149 of [24].

Recurrence equations. Let (T,X) be a nice tree decomposition of a graph G = (V,E). For every node
i of T and every set U ⊆ X(i) let p(i, U) denote the number of perfect matchings in the graph G[Y (i) \ U ]
such that every vertex in X(i) \ U is matched to a vertex in Y (i) \ X(i). That is, a matching containing
an edge with both endpoints in X(i) does not contribute to p(i, U) for any U . The numbers p(i, U) can be
computed recursively as follows:

start If i is a leaf of T then p(i,∅) = 1 since ∅ is the unique perfect matching of the empty graph.
introduce If i is an introduce node with child j and v ∈ X(i) \X(j) then p(i, U) = 0 and p(i, U ∪ {v}) =

p(j, U) hold for all U ⊆ X(j). By Condition (b) of the definition the new vertex v has no neighbour
vertex in Y (i) \X(i).
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forget If i is a forget node with child j and v ∈ X(j) \X(i) then

p(i, U) =
∑

u∈N (v)∩X(i)\U

p(j, U ∪ {u, v})

holds for all U ⊆ X(i). The vertex v ∈ X(j)\X(i) must be matched to a neighbour u ∈ X(i). We add
the edge uv to the matchings of G[Y (j)\ (U ∪{u, v})]. Note that p(i, U) = 0 if N (v)∩X(i)\U = ∅.

join If i is a join node with children j and k then

p(i, U) =
∑

J∩K=∅

J∪K=X(i)\U

p(j, U ∪ J) · p(k, U ∪K) .

Condition (c) of the definition implies (Y (j) \ X(j)) ∩ (Y (k) \ X(k)) = ∅. In G[Y (i) \ U ] every
matching edge with exactly one endpoint in X(i) \U has its other endpoint either in Y (j) \X(j) or
in Y (k) \X(k).

Algorithm. The following generalises the algorithm given in [11] for bounded-degree monotone graphs.
Let G = (V,E) be a graph with a nice tree decomposition (T,X) rooted at r. By the definition of p(i, U) the
graph G has p(r,∅) perfect matchings. This value can be computed recursively by the recurrence equations
above. If the width of (T,X) is w then such an algorithm will run in time O(3wn), where n = |V |, by
computing “bottom up” from the leaves to the root in the tree T . In the case where (T,X) is a path
decomposition, that is, there are no join nodes, the algorithm takes only O(w2wn) time.

6.3. Complements of chain graphs. A bipartite graph G = (V,E) with bipartition (X,Y ) is a chain
graph if for every pair of vertices u, v ∈ X we have N (u) ⊆ N (v) or N (u) ⊇ N (v). That is, the vertices in
X can be linearly ordered such that N (x1) ⊆ N (x2) ⊆ · · · ⊆ N (xn). It is easy to see that this implies a
linear ordering on Y as well such that N (y1) ⊇ N (y2) ⊇ · · · ⊇ N (ym).

For the sake of completeness, we re-derive a recurrence given in [11] for the number of matchings in a chain
graph. For positive integers m and n let G = (V,E) be a chain graph, as defined above, with V = Xn ∪ Ym

where Xn = {xi | 1 ≤ i ≤ n} and Ym = {yj | 1 ≤ j ≤ m}. Let M(i, s) be the number of matchings of size
exactly s in the subgraph Gi of G induced by Xi ∪ Ym. We have

M(i, 0) = 1 for 0 ≤ i ≤ n

M(i, s) = 0 for 0 ≤ i < s ≤ n

M(i, s) = M(i− 1, s) + (deg(xi)− s+ 1)M(i− 1, s− 1) for 1 ≤ s ≤ i ≤ n

In the last equation, M(i− 1, s) counts matchings of size s in Gi with xi unmatched. The other term counts
all matchings of size s in Gi with xi matched, as follows. Since Gi is a chain graph, each matching of size
(s− 1) in Gi−1 can be extended to a matching of size s in Gi, with xi matched, in exactly (deg(xi)− s+ 1)
ways.

Next we consider complete graphs. Let p(G) denote the number of perfect matchings in G. Then p(K2n+1) =
0 and p(K2n) = (2n)!!, where (2n)!! = 2 · 4 · · · (2n− 2)(2n), which is 2nn!.

Finally let G be the complement of a chain graph with bipartition (X,Y ). Then X and Y are cliques of G,
and if we remove their edges from G we obtain a chain graph Gb. For |X| = n and |Y | = m we have

p(G) =

min(n,m)
∑

s=0

M(n, s) · p(Kn−s) · p(Km−s)

where M(n, s) is the number of matchings of size exactly s in Gb. Since we can compute M(i, s) for all
values of i and s in O(n2) time using the recurrence above, p(G) can be computed in this time as well.
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[32] J. Spinrad, A. Brandstädt, and L. Stewart, Bipartite permutation graphs, Discrete Applied Mathematics, 18 (1987),

pp. 279 – 292, https://doi.org/http://dx.doi.org/10.1016/S0166-218X(87)80003-3, http://www.sciencedirect.com/
science/article/pii/S0166218X87800033.
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the following (non-hereditary) graph classes.

Holes: Hn = {Ci | i ∈ N, i ≥ n}, where Ci is a chordless i-cycle.
Antiholes: Hn = {Ci | i ∈ N, i ≥ n}, where Ci is the complement of Ci.
Even holes: En = {C2i | i ∈ N, 2i ≥ n}.
Odd holes: On = {C2i+1 | i ∈ N, 2i+ 1 ≥ n}.
Suns: Sn = {Si | i ∈ N, i ≥ n}, where Si is the i-sun, defined as follows. The graph Si contains a
complete graph Ki, together with a new vertex we and edges uwe, vwe for each edge e = uv of a
Hamilton cycle of Ki. The 3-sun is shown in Fig. 3.1.

OddHoleFree Odd-hole-free graphs are the O5-free graphs.

EvenHoleFree Even-hole-free graphs are the E6-free graphs. Note that some papers, e.g. [35], define
even-hole-free graphs to be E4-free.

Switchable Switchable graphs are defined in Section 2.

WeakChordal Weakly chordal graphs, also known as weakly triangulated graphs, are defined by the class
of forbidden subgraphs H5 ∪H5.

Bipartite Bipartite graphs can be coloured by two colours. That is, their vertex set splits into two in-
dependent subsets, called colour classes or partite sets. Bipartite graphs are exactly the O3-free
graphs.

Perfect Perfect graphs are defined by the absence of graphs in O5 ∪O5, from [6].

OddChordal A graph G is odd-chordal if every even cycle of length at least six in G has an odd chord.

Chordal A graph G is chordal if every cycle of length at least four in G has a chord. That is, chordal
graphs are the H4-free graphs.

ChordalBipartite A bipartite graph G is chordal bipartite if every cycle of length at least six in G has
a chord. Since every cycle in a bipartite graph is even, and every chord is odd, the class of chordal
bipartite graphs is the intersection of the classes of odd chordal and bipartite graphs. This class
is characterised by the forbidden set O3 ∪ E6. That is, every chordless cycle in a chordal bipartite
graph has length four.

TreeWidthw These are the classes of bounded treewidth. That is, for every value of k there is a class
{G | tw(G) ≤ k}. For k = 0 this is all edgeless graphs, for k = 1 all forests. For example, the
permutation graph in Fig. 2.8 has treewidth 2.

StrongChordal The class of strongly chordal graphs is the intersection of the classes of odd chordal and
chordal graphs, see [14]. This class is characterised by the forbidden set H4 ∪ S3.

Split The vertex set of a split graph splits into a clique and an independent set. These are exactly the
chordal graphs with chordal complement. The class is characterised by forbidden 2K2, C4 and C5.

Convex A bipartite graph is convex if one of its partite sets can be linearly ordered such that, for each
vertex in the other partite set, the neighbours appear consecutively.

Forest An acyclic graph is called forest. Each connected component of a forest is a tree. Forests have
treewidth at most one. Their minimal forbidden graphs are H3.

StrongChordalSplit The class of strongly chordal split graphs is the intersection of the classes of
strongly chordal graphs and split graphs, characterised by the minimal forbidden subgraphs in
S3 ∪ {2K2, C4, C5}.

Biconvex A bipartite graph is biconvex if both its partite sets can be linearly ordered such that all neigh-
bourhoods appear consecutively.

Permutation Permutation graphs are the intersection graphs of straight line segments between two parallel
lines, where each segment has one endpoint on each line. The ordering of the endpoints defines the
characteristic permutation. The intersection model is also called a matching diagram.

Interval Interval graphs are the intersection graphs of intervals on the real line.

Monotone The class of monotone graphs is the intersection of the classes of bipartite graphs and permu-
tation graphs, see [11].

QMonotone A graph is quasimonotone if all its bipartitions are monotone.

ChordalPermutation The class of chordal permutation graphs is the intersection of the classes of per-
mutation graphs and interval graphs.

E-Free E-free (chordal bipartite) graphs have been characterised in [12]. (“E” is a P5 with an additional
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vertex joined (only) to its middle vertex.)

Cograph A graph is complement reducible, or cograph, if it has at most one vertex, or is the disjoint union
or the complete join of smaller cographs. The class is characterised by the forbidden P4 [7].

UnitInterval Unit interval graphs are the intersection graphs (see, e.g., [31]) of unit-length intervals on
the real line. The minimal forbidden graphs for this class are H4 ∪ {K1,3, S3, S3}. (See Fig. 3.1.)

Chain A bipartite graph is a chain graph if every pair of vertices in the same partite set has comparable
neighbourhoods with respect to set inclusion. This class is characterised by the minimal forbidden
subgraphs C3, 2K2 and C5.

QChains The quasi-class of disjoint unions of chain graphs.

Threshold Threshold graphs, characterised by forbidden 2K2, C4 and P4.

Cochain Complements of chain graphs, characterised by the absence of 3K1, C4 and C5.

CompleteBipartite Complete bipartite graphs are characterised by the absence of K2 +K1 (the comple-
ment of P3) and C3.

Complete Complete graphs are the 2K1-free graphs, i.e every pair of vertices is connected by an edge.

QCompletes Quasi-graphs of disjoint unions of complete bipartite graphs. The class is characterised by
the absence of P4, paw (a triangle with pendant edge) and diamond (two triangles sharing one edge).
Every component of a graph in QCompletes is complete or complete bipartite [13].

The graph classes are partially ordered by inclusion. Fig. A.1 shows a Hasse-diagram of this partial order,
restricted to the classes we consider in this paper and some others.

A class B of bipartite graphs and a class S of split graphs are linked if,

(a) for every G in B, both graphs H obtained from G by completing one of its partite set belongs to S,
and

(b) for each graph H in S, the graph G obtained from H by removing all edges between vertices in the
clique of the split graph belongs to B.

If the bipartite graph G has partite sets of the same size then the extra edges in H cannot be used by any
perfect matching. That is, G and H have exactly the same perfect matchings. If the partite sets of G differ
in size then G has no perfect matching. However, H might have a perfect matching if its clique contains
more vertices than its independent set. In Fig. A.1 dotted lines indicate linked classes. Double lines indicate
the inclusion of a class C in quasi-C∗ where the graphs in C∗ are disjoint unions of graphs in C. For further
information on these classes and references to the original work see [3] or [16].
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OddHoleFree EvenHoleFree

Perfect Switchable⇓

WeakChordal

Bipartite⇑ OddChordal Chordal

ChordalBipartite⇈ TreeWidthw ⇑� StrongChordal Split⇑

Convex Forest StrongChordalSplit⇈ ↑

Biconvex ↑ Permutation QMonotone ↓ Interval

Monotone ChordalPermutation ↑

E-Free� Cograph⇑� QChains UnitInterval

Chain ↿↾ Threshold ↿↾ QCompletes ⇃⇂ Cochain�

CompleteBipartite Complete

⇑ This class contains graphs on which the switch chain is not ergodic.
⇓ The switch chain is ergodic on all graphs in this class.
⇈ Counting perfect matchings remains #P-complete when restricted to graphs in this class.
� For all graphs in this class the number of perfect matchings can be computed exactly in polynomial time.
↑ This class contains a sequence of graphs on which the switch chain mixes slowly.
↓ The switch chain mixes rapidly on all graphs in this class.
↿↾ This class contains graphs that are not P-stable.
⇃⇂ All graphs in this class are P-stable.

Fig. A.1: Containment of graph classes. Dotted lines indicate linked classes. Double lines indicate the
inclusion of a class in the quasi-class of its closure under disjoint union.
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