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Abstract. The nonlinear dynamics of magneto-hydrodynamic ballooning mode

perturbations is conjectured to be characterised by the motion of isolated elliptical

flux tubes. The theory of stability, dynamics and saturation of such tubes in tokamaks

is developed using a generalised Archimedes’ principle. The equation of motion for

a tube moving against a drag force in a general axisymmetric equilibrium is derived

and then applied to a simplified ‘s-α’ equilibrium. The perturbed nonlinear tube

equilibrium (saturated) states are investigated in an ‘s-α’ equilibrium with specific

pressure and magnetic shear profiles. The energy of these nonlinear (ballooning)

saturated states is calculated. In some cases, particularly at low magnetic shear, these

finitely displaced states can have a lower energy than the equilibrium state even if

the profile is linearly stable to ballooning modes (infinitesimal tube displacements) at

all radii. Thus nonlinear ballooning modes can be metastable. The amplitude of the

saturated tube displacement in such cases can be as large as the pressure gradient scale

length. We conjecture that triggering a transition into these filamentary states can lead

to hard instability limits. A short survey of different pressure profiles is presented to

illustrate the variety of behaviour of perturbed elliptical flux tubes.

1. Introduction

Ballooning modes are pressure driven instabilities that occur in magnetically confined

fusion plasmas and are localized to the bad curvature region [1]. These instabilities

can produce both hard and soft stability limits on the plasma. A soft limit is where the

plasma pressure gradient is held at a critical value. If the profile goes above this value at

any given point the instability is triggered and it produces sufficient transport to drive

the pressure profile back to the soft limit value [2]. This may be the process that limits

the pressure gradient in the pedestal region of a tokamak plasma. However, there are

also hard limits which are characterised by an explosive loss of a significant amount of

plasma energy. Examples of this are Edge Localized Modes (ELMs) [3,4], certain types
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of plasma disruptions in tokamaks especially discharges with internal transport barriers

(ITBs) [5] or, the core density collapse in the LHD stellarator [6]. In some cases, e.g.

ITB disruptions, explosive instability caused by a hard limit terminates the plasma. In

other cases, e.g. ELMs, the loss of energy takes the plasma pressure gradient well below

the critical value. The plasma then reheats slowly returning the pressure gradient to the

critical state thereby triggering repeated explosive events. An improved understanding

of what causes a hard limit could lead to strategies to avoid it and thus confidence to run

plasmas with steep pressure profiles such as tokamak plasmas with ITBs which could

improve the economics of fusion power.

In a series of papers we have shown that the early nonlinear stage of the ballooning

mode generates explosively unstable elliptical flux tubes –“filaments” [7, 8, 11]. The

interaction between filaments (flux tubes) tends to suppress the weaker filaments leading

to isolated filaments [12,13]. Thus we have conjectured that the fully nonlinear state of

the ballooning type modes is isolated displaced elliptical flux tubes [11]. This conjecture

is consistent with observations of (see for example [4–6]). Some progress was made by

Zhu et. al. [9, 10] in describing the transition to a fully nonlinear state. Recently

we investigated the nonlinear states of an elliptical ballooning flux tube in tokamak

geometry [14]. In particular, we derived a generalised Archimedes’ principle [11] and

stated the resulting nonlinear equation in toroidal geometry [14]. We will give the full

details of the calculation and also survey more of the parameter space in this paper.

In [14] we found that there were ballooning flux tubes which were stable to

infinitesimal perturbations but unstable to finite amplitude perturbations. In other

words the flux tubes were metastable. Metastability is ubiquitous in the physical

sciences but it is largely unexplored in magnetically confined fusion plasmas. For a

hard instability limit to be possible a finite displaced lower energy state of the plasma

must be accessible. In this paper (and in [14]) we examine the possible end states of

the ballooning flux tube perturbation – specifically the equilibrium states of the flux

tube. In the metastable cases we indeed find lower energy finitely displaced flux tube

equilibria. When a metastable plasma approaches the linear stability boundary the

energy needed to trigger the nonlinear instability tends to zero. Small amplitude noise

in the plasma can trigger onset of the nonlinear instability close to the linear instability

boundary. We conjecture that the ballooning mode provides a hard instability limit only

if there are metastable flux tubes.

In Section 2 we give details of the derivation of the generalised Archimedes’ principle

in axisymmetric geometry. In Section 3 we calculate the required quantities for the

governing equation for a simplified ‘s − α’ type equilibrium [15]. Section 4 gives the

energy change which results from the flux tube erupting. We discuss the results of

a numerical investigation with given pressure gradient and magnetic shear profiles in

Section 5. Discussion and Conclusions are given in Section 6. In Appendix A we discuss

the conditions under which the perturbation of the field outside the elliptical tube can

be ignored. The details of our simplified equilibrium calculations are given in Appendix

B. Finally in Appendix C we calculate the weakly nonlinear evolution of an elliptical
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Figure 1: An elliptical (orange) flux tube sliding along the (blue) surface

S = S0. The external (black) field lines are only slightly perturbed. The tube

crosses the (yellow) unperturbed flux surfaces labelled by the variable r. The

equations for a field line in the tube which starts on the r = r0 surface is

r = r(r0, θ, t) and S = S0.

flux tube in the ‘s-α’ model.

2. Erupting flux tubes in a general axisymmetric equilibrium

In this Section we generalize the treatment of [11] to the geometry of a single isolated flux

tube in a general axisymmetric stationary magnetic equilibrium. We shall assume that

the flux tube is moving somewhat slower than the sound speed, since we are interested in

the behaviour near marginal stability and the saturated states of the flux tube. Consider

a field aligned tube of plasma that is displaced through the plasma – sliding along a

surface that is parallel to the undisplaced magnetic field lines outside the tube see Figure

1. The field inside the tube is denoted Bin and the field outside Bout. The tube has

an elliptical cross section, elongated in the direction of motion and narrower across

(δ1 ≪ δ2), see Fig. 2. The exact cross sectional shape of the tube is not important

here - just that it is narrow enough that the perturbation of the surrounding field

is unimportant and that it is considerably elongated in the direction of motion (see

discussion in Appendix A and [11]).

As the erupting tube moves it must follow a surface S, which is tangent to both the

tube (Bin · ∇S = 0) and the surrounding field lines (Bout · ∇S = 0 see Figure 1). We

shall assume that the surrounding field is largely unperturbed – i.e. Bout = B0. We can

therefore take the surface S to be a surface of a Clebsch potential of the unperturbed

field, i.e B0 = ∇ψ × ∇S. We will use the straight line flux coordinates introduced in

Greene, Johnson and Weimer [16]. Thus we use r to label flux surfaces, φ the toroidal
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Figure 2: The filament is assumed to be elliptical in shape of width δ1 in

the direction perpendicular the surface S and δ2 in the direction of motion

along S with δ2 >> δ1. The external field Bout bends around the filament –

this perturbation is discussed in Appendix A. The field just inside and just

out the filament are at a finite angle θ to each other – i.e. Bin · Bout ∼

Bin · B0 = BinB0 cos θ. Thus there are current sheets along the sides of the

filament. The fact that the flux tube is elliptical is an assumption, however this

is motivated by previous work and physical intuition. First, in linear theory, [1],

the eigenfunction across the field is elliptical (δ1 ∼ R0

n
, δ2 ∼ R0√

n
with n ≫ 1).

Secondly, the weakly nonlinear theory shows that the linear eigenfunction

evolves into a narrow elliptical flux tube [7, 8]. Finally, the elliptical shape

minimizes sideways distortion of the external field (See Appendix A.) to more

efficiently extract energy in the fully nonlinear motion.

angle and, θ the straight field-line poloidal angle. We deviate slightly from [16] in

choosing θ = 0 to be the outer midplane rather than inner midplane for the simplified

circular flux surface (‘s− α′) equilibrium of our example. In the notation of [16]:

B0 = −B̄0R0f(r)∇r ×∇S where S = φ− q(r)(θ − θ0(r)). (1)

Where B̄0 and R0 are constants, q(r) is the safety factor and θ0(r) is an arbitrary

function. The trajectory of a field line in the flux tube that is displaced from the

surface r0 is:

r = r(θ, r0, t), and S = constant (2)

with the boundary condition r → r0 as |θ| → ∞. Note θ measures position along the

field line.

The choice of Clebsch potentials is not unique. In principle, we could consider

motion along any S surface defined by any function θ0(r). In the ‘s−α’ examples given

here we restrict ourselves to the choice θ0(r) = 0. This is the choice for the most linearly

unstable motions but not necessarily the most nonlinearly unstable. It is not a priori

obvious how to choose S, the Clebsch surface. Indeed it is likely to be determined by the
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dynamics (i.e. the flux tube defines the Clebsch surface S as it erupts) and outside our

considerations here. Our general theory applies to cases where θ0(r) 6= 0 but we have not

explored any specific such cases. The tube wraps around the torus many times and we

consider r(θ, r0, t) on the domain −∞ < θ < ∞. We ignore the fact that the S surface

intersects itself as θ increases since we assume that the perturbations are sufficiently

localised in θ to avoid self intersection of the flux tube. Note this assumption can hold

even when the tube localisation in θ is much greater than 2π (as long as r0 is not a low

order rational surface e.g. q(r0) = 1). We also assume that flux tubes do not intersect

other displaced tubes. The plasma is taken to be perfectly conducting – i.e. the plasma

is frozen to the field. Thus the field lines must remain attached to their original surfaces

and therefore r = r(θ, r0, t) → r0 as |θ| → ∞. Clearly the surface S twists, the local

twist is a measure of the local shear – note the twist of the blue surface in Figure 1. The

twist stretches the flux tube making it narrower and longer (Figure 1) as |θ| increases.

We define the perpendicular vector that is also tangent to the S surface

e⊥ =
1

B0
∇S ×B0, (3)

We define three equilibrium quantities

u‖ = u‖(r, θ) = −B̄0R0f
1

B0
B0 ·∇θ,

u⊥ = u⊥(r, θ) = B̄0R0f
1

B0
e⊥ ·∇θ, w2 = w2(r, θ) =

u2‖|e⊥|
2

B2
0

. (4)

Where |B0| = B0 (not to be confused with the constant B̄0). Since Bin · ∇S = 0 we

must be able to write

Bin = B‖(θ, r0, t)B0 +B⊥(θ, r0, t)e⊥ (5)

The equation for a field line inside the tube is:
(

∂r

∂θ

)

r0,t

=
Bin · ∇r

Bin · ∇θ
=

B⊥
B‖u‖ − B⊥u⊥

(6)

The force (per unit volume) on the plasma is:

F = −
1

µ0

∇

[

B2

2
+ µ0p

]

+
1

µ0

B · ∇B. (7)

The force across the narrow tube (in the ∇S direction) is formally large, O(p/δ1), and

must cancel to this order, i.e.

F · ∇S ∼ −
1

µ0
|∇S|2

∂

∂S

[

µ0p+
B2

2

]

= 0 (8)

Thus integrating across the tube we get:

µ0pin +
B2

in

2
= µ0pout +

B2
out

2
(9)

where ‘in’ refers to inside the tube and ‘out’ refers to just outside the tube (at the same

r and θ along the tube). We will assume that the field and pressure outside the tube

are unperturbed (this sets a condition on δ1 and δ2 See Appendix A.) so that:

pout = p0(r) and Bout = B0(r, θ) (10)
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are known. The total pressure forces at a point on the tube are thus identical to the

pressure forces on the plasma it replaced. We shall assume that the motion of the tube

is slow enough that pressure balance along the tube is established – i.e. pin = p(r0).

This approximation is obviously correct in the stationary end state of the eruption – a

lower energy equilibrium with a finitely displaced tube. Thus

B2
in = B2

0 + 2µ0(p(r)− p(r0)) (11)

Using equation (5) we obtain:

B2
‖ = 1 +

2µ0(p(r)− p(r0))

B2
0

−B2
⊥
|e⊥|2

B2
0

(12)

Thus we obtain expressions for B‖ and B⊥

B‖ =

√

√

√

√

√

1 + 2µ0(p(r)−p(r0))

B2

0

(

1 + u⊥
(

∂r
∂θ

)

r0

)2

+ w2
(

∂r
∂θ

)2

r0

[

1 + u⊥

(

∂r

∂θ

)

r0

]

B⊥ =

√

√

√

√

√

1 + 2µ0(p(r)−p(r0))
B2

0

(

1 + u⊥
(

∂r
∂θ

)

r0

)2

+ w2
(

∂r
∂θ

)2

r0

[

u‖

(

∂r

∂θ

)

r0

]

. (13)

Substituting r = r(θ, r0, t) into p(r), B2
0(r, θ), u⊥(r, θ), u‖(r, θ) and w2(r, θ) in these

expressions yields B‖(θ, r0, t) and B⊥(θ, r0, t) – i.e. along the field line labelled by r0.

The ideal MHD force, F⊥ pushing the field line along S in the direction e⊥ =

(∇S ×B0)/B0 is:

F⊥ = F · e⊥ =
1

µ0

[

Bin ·∇Bin −∇

(

B2
in

2
+ µ0pin

)]

· e⊥

=
1

µ0

[Bin ·∇Bin −B0 ·∇B0] · e⊥. (14)

The second expression follows from Eq. (9) and the unperturbed equilibrium relation

∇ (B2
0/2 + µ0p0) = B0 · ∇B0. Eq. (14) is valid when the tube is sufficiently elliptical

that δ21R0 sin
2 θ ≪ δ32, where θ is the angle betwee Bin and Bout – see Appendix A. The

expression in Eq. (14) is a generalised form of Archimedes’ principle where the net force

is the curvature force of the tube minus the curvature force of the tube it has displaced.

Substituting equation (5) into (14) we obtain

µ0F⊥ = (B2
‖ − 1)(B0 ·∇B0) · e⊥ +B0(B‖B0 +B⊥e⊥) ·∇

(

|e⊥|2

B0

B⊥

)

− B2
⊥B

2
0e⊥ ·∇

(

|e⊥|2

2B2
0

)

. (15)

Equation (15) with B‖ and B⊥ given by equation (13) determines the force given

the shape of the field line, r(θ, ψ0) for each r0. Note that by definition Bin · ∇r0 =

(B‖B0+B⊥e⊥) ·∇r0 = 0 and therefore Bin ·∇ ≡ Bin ·∇θ
(

∂
∂θ

)

r0
. Therefore we can treat
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r0 as a parameter in equation (15). For an infinitesimal perturbation (r− r0 = ξ ≪ r0)

equation (15) reduces to the form familiar from the linear ballooning equation of Connor

et al. [1]

−µ0

B̄0R0f
F⊥ ∼ B0B0 ·∇

(

|e⊥|2

B2
0

B0 · ∇ξ

)

+
2µ0

B3
0

(e⊥ ·∇p)e⊥ ·(B0 ·∇B0)ξ.(16)

The first term in this equation arises from the extra line bending of field lines by the

perturbation and is stabilizing. The second term is the change of the field line bending

force due to the change of field strength (sometimes called the interchange drive)

The flux tube can have several equilibrium states. Obviously the unperturbed state

r = r0, B⊥ = 0 and B‖ = 1 is an equilibrium. We are interested in finding displaced

equilibria. Such states of the flux tube must satisfy F⊥ = 0 which we write as:

(B‖u‖ − B⊥u⊥)

(

∂B⊥
∂θ

)

r0

= (B2
‖ − 1)a1 +B⊥B‖a2 +B2

⊥a3 (17)

where u⊥ and u‖ are defined in equation (4) the coefficients are

a1 = a1(r, θ) =
B̄0R0fe⊥ · (B0 · ∇B0)

|e⊥|2B0

a2 = a2(r, θ) =
B̄0R0fB0 · ∇( |e⊥|2

B0

)

|e⊥|2

a3 = a3(r, θ) =
B̄0R0fe⊥ · ∇(|e⊥|2)

2|e⊥|2B0
. (18)

Equations (17) and (6) with B‖ determined from Equation (12) constitute a second order

system of one dimensional nonlinear ordinary differential equations for r = r(θ, r0) and

B⊥ = B⊥(θ, r0) – i.e. the equilibrium shape of the displaced field line. As before the

equilibria are attained through flux frozen motion so the field lines must stay connected

to their original surface. Thus we apply the boundary conditions r → r0 as θ → ∞.

The tube consists of field lines from a region of r0 – we can solve for each field line

independently since r0 is merely a parameter in equation (17). However the calculation

of the cross sectional shape of the tube is beyond the scope of this paper – see Appendix

A.

3. Nonlinear Ballooning Equation in simplified toroidal geometry

We next simplify the nonlinear ballooning equation in general geometry to the large

aspect ratio equilibrium with a transport barrier. We calculate the required metrics

in a large aspect ratio toroidal geometry with two regions, an outer region where the

pressure gradient is small and an narrow (of width ∆r ∼ O(ǫ)) inner region where

the pressure gradient is large, so that we can obtain the nonlinear ballooning equation

for this case. We calculate all the elements of the force equation to find a nonlinear

generalisation of the ‘s − α’ ballooning equation. We need the metric elements from
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the ‘s − α’ large aspect ratio equilibrium. The details of the equilibrium are given in

Appendix B.

Using S = φ− q(r)(θ − θ0) and metric coefficients from Appendix A.

|e⊥|
2 = |∇S|2 =

q2

r2
[

1 + (s(θ − θ0)− α sin θ)2) +O(ǫ)....
]

(19)

where s = rq′/q is the magnetic shear and α = −2µ0R0p
′q2/B̄2

0 is the normalised

pressure gradient. We have taken θ0 = constant since for this simple case we expect

that θ0 = 0. In general we can consider cases with θ0 a function of r. Using the metric

coefficients from the Appendix we obtain:

u⊥ =
s(θ − θ0)

r
+O(

ǫ

r
).... (20)

u‖ = −
B̄0r

q2R0

+O(B̄0ǫ
2)..... (21)

w2 =
1

q2R2
0

[

1 + (s(θ − θ0)− α sin θ)2) +O(ǫ)....
]

(22)

The magnetic curvature can be expressed as

(B0 ·∇B0) · e⊥ = e⊥ ·∇

(

B2
0

2
+ p0(r)

)

=
qB̄2

0

rR0

[cos θ + sin θ(s(θ − θ0)− α sin θ)] (23)

The displacement of the flux tube is taken to be of order the transport barrier width so

that

r − r0 ∼ O(rǫ) →

(

∂r

∂θ

)

r0

∼ O(rǫ) (24)

which allows the following simplifications

B2
‖ − 1 =

2µ0(p2(r)− p2(r0))

B̄2
0

∼ O(ǫ2) (25)

and

B⊥ = −
B̄0r

q2R0

(

∂r

∂θ

)

r0

∼ O(B̄0rǫ
2) (26)

(Bin ·∇θ) =
B̄0

qR0

+O(
B̄0ǫ

qR0

) (27)

We have now calculated all of the elements required for the nonlinear ballooning Eq.

(14). Substituting them into Eq. (14) gives the nonlinear ballooning operator in a large

aspect ratio tokamak with a transport barrier

−F⊥
µ0qR

2
0r

B̄2
0

= (βN(r0)− βN(r)) [cos θ + sin θ(sθ − α sin θ)]
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+

(

∂

∂θ

)

r0

(

[

1 + (α sin θ − sθ)2
]

(

∂r

∂θ

)

r0

)

−
1

2

(

∂r

∂θ

)2

r0

(

∂

∂r

)

θ

(α sin θ − sθ)2 (28)

where

βN(r) = 2R0q
2µ0p2(r)

B̄2
0

→ α(r) = −
dβN(r)

dr
(29)

Our notation for βN (r) is deliberately reminiscent of the normalised beta of Troyon [21],

however our variable is not normalised in quite the same way as Troyon’s. Note that in

Eq. (28) α is a function of r so that:
(

∂α

∂θ

)

r0

=

(

∂r

∂θ

)

r0

(

∂α

∂r

)

θ

(30)

Our current equation only gives the force. This will allow us to find the saturated

states, F⊥ = 0, but it does not allow us to look at the time dependent solution of the

system. If we assume the time evolution is dominated by viscous drag we can develop a

time dependent evolution equation. This is probably too simplistic but it does however

allow us the examine the energy evolution. We first need an expression for the velocity,

v = ve⊥ so that

v ·∇r =
∂r

∂t
→ v = −R0f

∂r

∂t
= −

r

q

∂r

∂t
(31)

where we have used f = r
R0q

+ O(ǫ2). We introduce a drag to balance the force

F⊥ = νv · e⊥ (similar to [11]) so that:

ν ′
(

∂r

∂t

)

[

1 + (α sin θ − sθ)2)
]

=

(βN(r0)− βN(r)) [cos θ + sin θ(sθ − α sin θ)]

+

(

∂

∂θ

)

r0

(

[

1 + (α sin θ − sθ)2
]

(

∂r

∂θ

)

r0

)

−
1

2

(

∂r

∂θ

)2

r0

(

∂

∂r

)

θ

(α sin θ − sθ)2 (32)

with ν ′ = ν µ0q2R0

B2

0

. This a nonlinear evolution equation for the flux tube position

r(θ, r0, t). Note that if we linearise Eq. (32) (r − r0 ≪ ǫr) we recover the usual ‘s− α’

equation for ballooning modes.

Figure 1 shows a typical solution of the ballooning mode equation in simplified

toroidal geometry. A orange flux tube has ballooned out, moving along the blue surface

S=0. This surface is twisted because of the magnetic shear in the system. The flux

tube parts the black field lines outside which means that the flux tube can move without
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reconnection ocuring. The displacement of the flux tube is larger on the low field, or

outboard, side. The flux tube is stretched on the inboard side due to the magnetic shear.

In figure 1 the trajectory (in θ) of the displaced field lines inside the tube is a solution

of the ballooning equation (32) and the distortion of the cross section by magnetic shear

is calculated – however the outboard shape of the tubes is guessed.

4. Energy Equation

In [11] we derived an energy (or action) functional E = E [r(θ, r0), r0] that is stationary

for equilibria and minimised for stable equilibria. This is;

E =

∫ ∞

−∞
Bin · dr =

∫ ∞

−∞
B2

in

dθ

Bin ·∇θ

=

∫ ∞

−∞
Bin(r, θ)

√

1 +
r2|∇r|2

R2
0q

2

√

√

√

√

(

1 + u⊥

(

∂r

∂θ

)

r0

)2

+ w2

(

∂r

∂θ

)2

r0

qRdθ

where we have used Eq. (22). This integral is performed keeping r0 constant – i.e.

we take r = r(θ, r0, t). The integral is formally infinite so we should subtract the

unperturbed integral – Eq. (33) with r = r0.

Expanding in inverse aspect ratio for our case we obtain the energy/action

functional:

E =

∫ ∞

−∞
dθ

[

1

2

(

∂r

∂θ

)2

r0

(

1 + (α sin θ − sθ)2
)

]

−

∫ ∞

−∞
dθ
[(

A(r, r0) cos θ + B(r, r0)θ sin θ − C(r, r0)(sin θ)
2
)]

(33)

where the new coefficients are:

A(r, r0) =

∫ r

r0

(βN(r0)− βN (r
′))dr′

B(r, r0) =

∫ r

r0

(βN(r0)− βN (r
′))s(r′)dr′

C(r, r0) =
1

2
(βN (r0)− βN(r))

2 (34)

It is straight forward to show that equilibrium solutions of equation (32) (F⊥ = 0) are

stationary states (δE = 0)under variation of r = r(θ, r0) in (33). The evolution of E

using Eq. (32) is

ν ′
∫ ∞

−∞
dθ

[

(

∂r

∂t

)2

r0,θ

(

1 + (α sin θ − sθ)2
)

]

= −
dE

dt
. (35)

Note that the energy must always decrease in the drag evolution so that it seeks out

the minimum energy equilibrium states.
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Figure 3: Transport barrier profiles used in the numerical investigation: a) magnetic

shear, s(r), and pressure gradient α(r); and b) safety factor and pressure profiles used

for this numerical investigation. The parameters for this case are: s0 = 0.1, s1 = 0.3,

α0 = 0.28, ǫ = 0.07, ra = 0.7 and rs = 0.72 see equations (36) and (37).

5. Numerical investigation

The nonlinear ‘s− α’ equation derived in the previous section is solved numerically in

this section. We focus on calculating the saturated states from F⊥ = 0 where F⊥ is

given in equation (28). A time dependent method (Solution of equation (32)) was used

in [14].

5.1. Profiles

We investigate the model of a transport barrier type of equilibrium, since we see

filamentary structures exploding from such profiles in tokamak experiments, for example,

ELMs from the edge transport barrier or ballooning modes from ITBs in TFTR [5]. The

model is specified in terms of magnetic shear s(r), and pressure gradient, α(r). The

pressure gradient for this model is

α = −
dβN
dr

= α0sech
2

(

r − rα
ǫ

)

. (36)

and the shear profile is

s(r) = s0 +
s1 − s0

2

(

tanh

(

r − rs
ǫ

)

+ 1

)

. (37)

These produce pressure and β profiles

p2(r) = ǫp2

(

1− tanh

(

r − rα
ǫ

))

(38)

which gives a plasma βN profile

βN(r) = α0ǫ

(

1− tanh

(

r − rα
ǫ

))

. (39)
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For instability (linear or nonlinear) it is not sufficient that a displaced stationary

(equilibrium) state is available for a flux tube, such states must be energetically

favourable (i.e. E < 0) as well. We therefore need to calculate the change in energy for

our profiles. The integrals in equation (34) can be calculated exactly for the profiles of

pressure and shear that we are using by noting that

A(r, r0) =

∫ r

r0

(βN(r
′)− βN(r0))dr

′

= ǫα0

[

ǫ log

(

cosh

(

r′ − rα
ǫ

))

− r′ tanh

(

r0 − rα
ǫ

)]r

r0

(40)

B(r, r0) =

∫ r

r0

(βN(r
′)− βN(r0))s(r

′)dr′

=

(

s0 + s1
2

)

A(r, r0) + ǫα0

(

s1 − s0
2

)

×

[

r′ + ǫcoth

(

rα − rs
ǫ

)[

log

(

cosh

(

r′ − rα
ǫ

))

− log

(

cosh

(

r′ − rs
ǫ

))]]r

r0

−

[

ǫ2α0

(

s1 − s0
2

)

tanh

(

r0 − rα
ǫ

)

log

(

cosh

(

r′ − rs
ǫ

))]r

r0

(41)

C(r, r0) =
1

2
(βN(r)− βN(r0))

2

=
ǫ2α2

0

2

(

tanh

(

r − rα
ǫ

)

− tanh

(

r0 − rα
ǫ

))2

(42)

5.2. Solving for stationary equilibrium states

Any elliptical flux tube is made up of a bundle field lines from differing surfaces r0 –

each can be treated separately. We find for each field line (r0) the time independent

(stationary) equilibrium states by setting the time derivatives in Eq. (32) to zero and

using a shooting method. Specifically we take a long domain, −θmax < θ < θmax, where

θmax ≫ 1. We solve the second order nonlinear ordinary differential equation:

0 = (βN(r0)− βN(r)) [cos θ + sin θ(sθ − α sin θ)]

+

(

d

dθ

)

r0

(

[

1 + (α sin θ − sθ)2
]

(

dr

dθ

)

r0

)

−
1

2

(

dr

dθ

)2

r0

(

d

dr

)

θ

(α sin θ − sθ)2 (43)

for r = r(θ, r0) with the boundary conditions r(−θmax, r0) = 0 and dr
dθ
(−θmax, r0) =

ushoot. By varying ushoot and resolving equation (43) we find the values of ushoot for which

r(θmax, r0) = 0 – these are the stationary field line equilibrium states r = req(θ, r0). For

each equilibrium state we calculate the energy E from equation (34) with r = req(θ, r0)
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in the coefficients given by equations (40), (41) and (42). Clearly the unperturbed state,

ushoot = 0 for which E = 0, is always an equilibrium state. For the profiles we considered

we found that field lines originating from a given r0 could be in one of four distinct

categories. The first category is field lines that are both linearly and nonlinearly stable

in which there is only one equilibrium state, the stable unperturbed state with E = 0–

see Figure (4.a). The second category is linear and nonlinearly stable field lines where

there are three equilibrium states: a stable unperturbed state with E = 0, an unstable

displaced equilibrium state with E = E1 > 0 and, a linearly stable displaced equilibrium

state with E = E2 > 0 and E1 > E2 > 0 – see Figure (4.b). The third category

is metastable field lines where there are three equilibrium states: a linearly stable

unperturbed state with E = 0, an unstable displaced equilibrium state with E = E1 > 0

and, a stable displaced equilibrium state with E = E2 < 0 – see Figure (4.c). Finally

the fourth category is linearly unstable field lines where there are three equilibrium

states: a unstable unperturbed state with E = 0, a metastable displaced equilibrium

state with E = E1 < 0 and, a stable displaced equilibrium state with E = E2 < E1 – see

Figure (4d). In some profiles field lines from different r0 are in different categories and a

flux tube perturbation may contain field lines from several categories. Finding the field

line equilibria is considerably faster than the time dependent method used in [14] and

so we focus on it here. We have looked at the convergence with respect to the truncated

domain length (i.e. θmax) and we have picked a value of the θmax (a typical value is

θmax = 300 radians) such that the results (r = req(θ, r0) and E) are well converged yet

the run takes a reasonable time.

5.3. First category profiles

In this section we find profiles for which all field lines (r0) are in the first category,

i.e. they have only one equilibrium state, the unperturbed state, and it is stable –

see Figure (4.a). We call such profiles first category profiles. Profiles are visualised by

plotting the trajectory of s(r0) and α(r0) in ‘s−α’ space as r0 varies from 0 to 1. In Fig.

5 and in Fig. 6 we plot eight trajectories (dashed-dotted lines) that are first category

profiles. We also show the well known linear stability boundary for the ‘s−α’ model [15].

These profiles were chosen by first fixing the values of s0 and s1, which amounts to

specifying the magnetic shear profile. Then we varied the pressure profile (α0) until

we found the largest possible α0 for a first category profile with the given shear profile.

Therefore profiles with larger α0 must be in either the second third or fourth category.

If there is no space between the profile trajectory and the linear stability boundary

then there are no second or third category field lines (see Figures (4.b) and (4.c)) for

that magnetic shear profile. A large space between the profile and the linear stability

boundary means that displaced filamentary states (second or third category field lines)

are available in that region. These plots therefore give an indication of the boundaries of

the region in ‘s−α’ space where nonlinear displaced states are available. However, these

are not necessarily lower energy states with third category field lines (metastability).
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Figure 4: Schematic visualisation of field line energy surfaces for the four categories.

The horizontal axes “represents” displacement – strictly speaking energy is a functional

of r(θ, r0) and therefore the energy surface is in a infinite dimensional function space not

the one dimensional line plotted here. In a) (the first category) the field line is stable

to linear and nonlinear perturbations. In b) (the second category) the field line is also

stable to linear and nonlinear perturbations – although it would be possible for a field

line to be caught in the metastable displaced state with energy E2. Field lines in the

third category are metastable and are illustrated in c) – an energy greater than E1 is

needed to destabilise the unperturbed state. In d) the field lines are linearly unstable

(category four). Drag evolution will take an arbitrary field line perturbation to an

energy minimum equilibrium – see equation (35).

The results in Fig. 5 show that there are more displaced states available at lower shear.

5.4. Profiles with second and third category field lines

Next, we look at a set of profiles which are stable throughout but have regions of

second and third category field lines – displaced equilibrium states. Figures 7, 8

and 9 show three such profiles. Figure 7 has the largest pressure and the profile

is close to the linear stability boundary. There are displaced equilibrium field line

states for a broad range 0.6 < r0 < 0.7 – outside this range all field lines are in the
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Figure 5: Trajectories (dashed-dotted lines) in the ‘s − α’ diagram for first category

profiles, see Subsection (5.3), and the linear stability boundary (solid line). The profile

starts with the lower value of magnetic shear at the magnetic axis of the plasma and

ends at the higher value of shear at the plasma edge. These plots are calculated by fixing

the values of s0 and s1 and then varying α0 to find the highest value of α0 for a first

category profile with the given shear profile. The region between the profile trajectory,

dashed-dotted line, and the ballooning stability boundary, solid line, indicates the region

where nonlinear displaced states are available. The values of shear profiles for each plot

are: (a) s0 = 0.6, s1 = 0.8; (b) s0 = 0.4, s1 = 0.6; (c) s0 = 0.2, s1 = 0.4; and (d)

s0 = 0.1, s1 = 0.3.

first category. For 0.6 < r0 < 0.64 the field lines are in the second category, i.e.

E2 > 0. There is also a region of third category (metastable) field lines where energy

is released in a displacement from the unperturbed state to the displaced equilibrium

state, r0 = 0.64− 0.7, i.e. E2 < 0. The critical amplitude for the metastable field lines

to exceed the potential barrier (rmax for the E = E1 state, the dashed line in figure 7.b)

varies with the starting radius, r0, but for this profile the critical amplitude is small

especially near r0 = 0.69. This means that only a small perturbation is required for

the filament to reach the lower energy E = E2 displaced state. In Figure 8, we take a

lower value of maximum pressure, however the region where there are third category
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Figure 6: As for Figure 5. The values of shear profiles for each plot are: (a) s0 = 0.4,

s1 = 0.8; (b) s0 = 0.2, s1 = 0.6; (c) s0 = 0.1, s1 = 0.5; and (d) s0 = 0.2, s1 = 0.8.

(metastable) field lines is similar r0 = 0.65 − 0.69 to the case in Figure 7. The critical

perturbation to reach the lower energy states is larger and the energy released is slightly

lower. Finally, Figure 9 uses a yet lower value of α0. Here the displacement rmax values

are similar to the previous cases but the range of r0 where a displaced states exist

is smaller r0 = 0.62 − 0.68 and all these field lines are second category – there is no

metastability in this profile.

Note that in these calculations there is a region where lower flux tubes end up in

saturated states further out than flux tubes starting further up, i.e. for two flux tubes

where r0,1 < r0,2, we have rmax,1 > rmax,2, i.e. the flux tubes overtake.

5.5. Linearly unstable profile

Figure 10 shows a case where the profile crosses the marginal linear stability boundary.

For r0 = 0.54 to r0 = 0.72 displaced equilibrium states exist. From r0 = 0.54 to r0 = 0.63

the field lines are in the second category; from r0 = 0.63 to r0 = 0.67 the field lines

are in the third category; from r0 = 0.67 to r0 = 0.72 the field lines are in the fourth

category (the unperturbed state is linearly unstable); from r0 = 0.72 to r0 = 0.723

the field lines are in the third category but both displaced states have rmax < r0 (i.e.
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Figure 7: Plot of: (a) trajectory (dashed-dotted line) of the profile in ‘s− α’ space; (b)

plot of the location of the maximum rmax = req(0, r0) of the displaced states (solid line

is the E = E2 state and the dashed line is the E = E1 state) against starting flux surface

r0; (c) the energy change of the displaced states versus the initial position (again solid

line is E = E2 and the dashed line is E = E1). Here the trajectory approaches the linear

ballooning boundary. The region of third category metastable field lines is for starting

locations from r0 = 0.64 to r0 = 0.7.
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Figure 8: Plot of: (a) trajectory (dashed-dotted line) of the profile in ‘s− α’ space; (b)

plot of the location of the maximum req(0, r0) of the displaced states (solid line is the

E = E2 state and the dashed line is the E = E1 state) against starting flux surface r0;

(c) the energy change of the displaced states versus the initial position (again solid line

is E = E2 and the dashed line is E = E1). Here the trajectory is further from the linear

ballooning boundary than figure (7). The region of third category (metastable) field

lines is for starting radii from r0 = 0.65 to r0 = 0.69.

they are displaced inwards) and; from r0 = 0.723 to r0 = 0.724 field lines are in the

second category but both displaced states have rmax < r0. We see that in the region

where the profile is linearly unstable there is no critical perturbation required to access

a displaced state and one state, E = E2, is displaced outwards and the other, E = E1, is

displaced inwards. The energy change of the outward displaced state −E2 is significantly

higher (by several orders of magnitude) than the energy −E1 of the one that is displaced

inwards, although both have a lower energy level than the initial state.
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Figure 9: Plot of: (a) trajectory (dashed-dotted line) of the profile in ‘s− α’ space; (b)

plot of the location of the maximum rmax = req(0, r0) of the displaced states (the upper

solid line is the E = E2 state and the lower dashed line is the E = E1 state) against

starting flux surface r0; (c) the energy change of the displaced states versus the initial

position (again solid line is E = E2 and the dashed line is E = E1). Here the trajectory is

further still from the linear ballooning boundary. There is no region where the displaced

states have lower energy – i.e. all field lines from r0 = 0.62 to r0 = 0.68 are in the second

category.
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Figure 10: Plot of: (a) trajectory (dashed-dotted line) of the profile in ‘s − α’ space.

The trajectory crosses the linear ballooning boundary and therefore part of the plasma

is linearly unstable. (b) plot of the location of the maximum rmax = req(0, r0) of the

displaced states (the lower line is the E = E2 state and the upper line is the E = E1 state)

against starting flux surface r0. The dotted line shows rmax = r0. Field lines are in the

second category from r0 = 0.54 to r0 = 0.63 and the third category from r0 = 0.63 to

r0 = 0.67. From r0 = 0.67 to r0 = 0.72 the unperturbed state is linearly unstable (the

fourth category) and one displaced state has rmax > r0 and the other displaced state

has rmax < r0; (c) the energy change of the displaced states versus the initial position

(lower line is E = E2 and the upper line is E = E1). From r0 = 0.67 to r0 = 0.72 both

displaced states have negative energy 0 > E1, E2 – this is shown by making both lines

solid. From r0 = 0.72 to r0 = 0.723 both displacements are inward and field lines are in

the third category. From r0 = 0.723 to r0 = 0.724 field lines are in the second category.
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6. Discussion and Conclusions

6.1. Discussion

There is ample evidence of filament states in experiments, for example ELM filaments [4]

are ubiquitous in tokamak H-mode plasmas and in [14] we discussed the results of

Fredrickson [5] where a ballooning mode is responsible for the disruption of an internal

transport barrier. More recently core plasma limits have been observed at LHD [6].

These may be driven by a three dimensional version of the phenomena presented here.

KSTAR [24] has looked at ELM filament dynamics in more detail experimentally using

an ECEI diagnostic. That work shows the emergence of filament structures at the edge

of the plasma that saturate and persist for a period of time before the final ELM crash

occurs. This at least has qualitative similarity to the saturation phase of the model

presented here. We hope to investigate these experimental cases more quantitatively in

future work.

It has been suggested [25] that pressure profiles in edge transport barriers

(pedestals) are limited by some soft limit from the kinetic ballooning mode (KBM).

If this is the case then the profile will sit near the linear ballooning stability boundary.

Clearly, in this scenario, the kinetic ballooning modes are assumed to have no explosive

behaviour – no access to finitely displaced equilibrium states. However such profiles

do develop filamentary eruptions – perhaps when sufficiently large filaments (perhaps

arising from low n number instabilities associated with the peeling modes) become

unstable. The EPED model [25] predicts that a broad region of the profile should be

at the marginal stability boundary. This qualitatively agrees with observed ELMing

profiles. The analysis in this paper shows that profiles with a broad region close to the

linear stability boundary can have finitely displaced filament equilibria. In future work

we will calculate displaced equilibrium states in pedestals with experimental profiles to

determine when and how such profiles exhibit explosive instability – ELMs.

Numerical simulations have investigated the eruption of flux tubes, for example

[27,28] where a nonlinear plasma model examined a 2/1 mode in a hybrid scenario and

demonstrated that explosive filament growth was possible. Myers et al [29] used an

ideal MHD model to look at a slab version of the model presented here. They found

a time where the simulation first settled down to the linear eigenmode shape, then a

linear growth phase followed by a nonlinear growth, and finally an explosive final phase.

It is likely that the explosive phase was under resolved and an extended physics model

would almost certainly be necessary in this phase.

The two key approximations of the present model are: the unperturbed equilibrium

is large aspect ratio and the filaments have an elliptical shape. The large aspect ratio

approximation can be relaxed and the metric quantities in Equation (18) can instead be

taken from a numerical equilibrium code. Indeed this work is underway. The assumption

of the elliptical filaments is more fundamental it is justified by the linear [1] and weakly

nonlinear calculations of the expected structure [7,8] and by the results from numerical

investigations [26–29]. The elliptical shape can also be justified from physical intuition.



Nonlinear ballooning 20

It is energetically favourable for the erupting flux tube to perturb the ambient external

field as little as possible and this is achieved with an elliptic flux tube – this is discussed

in Appendix A.

Full nonlinear simulations of the process described in this paper are challenging.

[27,28] The spatial resolution required to capture for an isolated flux tube is made harder

by the discontinuities (current sheets and contact discontinuities) that develop between

the tube and its surroundings [10, 26, 29]. Also the temporal resolution requirements

to resolve the slow unperturbed equilibrium evolution and the rapid motion of the flux

tube are demanding. Nonetheless full understanding of the eruption must surely require

extensive numerical investigation.

If we accept that the saturated filament states exist, then it will be important to

understand the next steps in the dynamics. It may be that the field lines in the flux

tube reconnect with the ambient magnetic field at some location, but it is not obvious

where this location is. It maybe that there is significant cross field transport out of the

ballooned filament, given there will be a strong temperature gradient as suggested in

the ‘Leaky hosepipe’ model [30]. These issues will be addressed in future work.

6.2. Conclusions

The results shown here exhibit a rich dynamics. The key result is that linearly

stable flux tubes can erupt to saturated ballooning states, i.e. they are metastable.

The experimental transport barrier profiles are likely to sit near the ballooning mode

marginal stability boundary and so these modes are likely to appear if a critical

perturbation is available. We conjecture that hard stability limits arise when the plasma

is in a metastable state with a large energy difference between the unperturbed and

perturbed equilibria. The closer the profile is to marginal stability, the larger the region

of the plasma that has saturated states available and the more favourable the energy

change associated with the saturated states. The current model uses a large aspect ratio

‘s − α’ model equilibrium but we fully expect that the key qualitative results will also

appear when we use realistic experimental geometry in future work. The model may

be able to explain key elements of ITB distruption and ELM dynamics when applied to

realistic geometry.
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Appendix A. Perturbation of the field outside the filament.

In this paper we have assumed that the perturbations of the field outside the filament

have a negligible effect on the filament. Here we estimate the effect of such perturbations.

From Fig. 2 the perturbation of the field outside the filament δBout ∼ B0(
δ1
l‖
)n̂ ∼

B0(
δ1
δ2
) sin θ n̂ where n̂ = ∇S/|∇S| and B0 · Bin = B0Bin cos θ. Thus the curvature

force on one side of the filament in the ∇S direction is

1

µ0
(Bout · ∇Bout) · n̂ ∼

1

µ0
B2

0

δ1
δ22

sin2 θ. (A.1)

For a symmetric filament the net force from the external curvature forces on the two

sides cancel. A shift of the filament by a distance of order δ1 in the n̂ direction changes

the curvature forces by a factor of order one. Thus an asymmetric filament can adjust

its position by a negligible shift to achieve net force balance. However the curvature

forces squeeze the filament from both sides and change the pressure balance. Thus there

is a perturbation of the total internal pressure:

δ(µ0pin +
B2

2
) ∼ B2

0

δ21
δ22

sin2 θ. (A.2)

This pressure perturbation varies finitely in the filament – it will try to elongate (flatten)

the filament in the e⊥ direction. The extra elongating force in the e⊥ direction is

δF · e⊥ = δF⊥ ∼
1

µ0

δ(µ0pin +
B2

2
)

rδ2
∼

1

µ0
B2

0

δ21
rδ32

sin2 θ. (A.3)

Note that sin θ ∼ ∆r
qR0

where ∆r is the radial displacement of the filament. Estimating

the force on a perturbed filament ignoring the external perturbations we get:

F⊥ ∼
B2

0

µ0qR2
0r
∆r ∼

B2
0

µ0R0r
sin θ (A.4)

Thus the external perturbations can be ignored if:

δF⊥ ≪ F⊥ →
δ21R0

δ32
sin θ ≪ 1. (A.5)

This provides a condition on the ellipticity of the filament for our treatment to be correct.

In linear theory, [1], the eigenfunction across the field is elongated (δ1 ∼ R0

n
, δ2 ∼ R0√

n

with n ≫ 1) – thus in this case δF⊥ ∼ n−1/2 sin θF⊥ ≪ F⊥. In the weakly nonlinear

theory [7, 8, 12, 13] the linear eigenfunction evolves into an even narrower elliptical

flux tube. The weakly nonlinear theory includes the external perturbations and the

interaction of filaments because the displacement is ordered to be small ∆r ∼ δ1 ∼ R0

n

and the system is assumed to be close to marginal stability so that δF⊥ ∼ F⊥. However

as the filaments evolve in the weakly nonlinear theory they evolve into the isolated tubes

considered here [11, 13].

As shown above elliptical tubes that originate as perturbations of the linear

eigenfunction shape are expected to be unaffected by the perturbation of the external

field. The external forces will, however, often change the shape of the filament –
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specifically flattening the ellipse – detailed calculation of this flattening is beyond

the scope of this paper. Nonetheless we can estimate the flattening of the displaced

equilibrium filament. To lowest order the displaced equilibrium field lines satisfy

F⊥(r, θ, r0) = 0 giving r = rsat(θ, r0) – solutions of equations (17), (6) and (12). For small

displacements about this lowest order solutions we can write r = δr(θ, r0) + rsat(θ, r0)

and linearise the force operator F⊥ ∼ Lsat(δr). Thus equilibrium is modified

δF⊥ + F⊥ ∼ δF⊥ + Lsat(δr) = 0. (A.6)

Estimating δr we obtain:

δr

qR0

∼
δ21R0

δ32
sin2 θ. (A.7)

For the linear eigenfunction shape δr ∼ δ2 sin
2 θ. Thus when the displacement is finite

(sin θ ∼ 1) the filament is flattened by order the elongation i.e. r = rsat +O(δ2). This

is a finite change in the shape but a small change in the filament position. We hope to

develop a asymptotic solution of the equilibrium shape in future work.

We have focussed on perturbations shaped like the linear eigenfunctions since these

will be easier to destabilise (even in metastable situations). It is possible that in

some meta-stable cases a finite perturbation with a shape that violates the condition

in equation (A.5) can be destabilised. We cannot treat such cases with the method

developed in this paper.

Appendix B. Model equilibrium

In these notes we calculate the large aspect ratio (ǫ = r/R ≪ 1) equilibrium with two

regions; an Outer Region where the pressure gradient is small (rp′/B2 ∼ O(ǫ2)) and

a narrow (∆r ∼ ǫr) Transport Barrier around r = rTB where the pressure gradient

is close to the ballooning threshold (rp′/B2 ∼ O(ǫ)). Note that the plasma beta is

everywhere small i.e. p/B2 ∼ O(ǫ2). We shall take the safety factor, q, and the global

magnetic shear, rq′, to be finite in the transport barrier – however r2q′′ can be large in

the transport barrier. All symbols have their usual meaning!

Appendix B.1. Inverse Equilibrium

We use the usual inverse equilibrium approach of Weimer, Greene and Johnson. The

radial variable r labels flux surfaces, θ is a poloidal angle and φ is the usual cylindrical

toroidal angle. In axisymmetry the cylindrical coordinates (R, φ, Z) are functions of

the flux coordinates (r, θ) – i.e. R = R(r, θ) and Z = Z(r, θ).

The magnetic field is given by:

B = B̄0R0{f(r)∇φ×∇r + g(r)∇φ} (B.1)

where B̄0 is a normalising field so that g ∼ O(1) and R0 is the radius of the magnetic

axis. The equilibrium Grad-Shafranov equation in flux coordinates is:

1

r

∂

∂r
(rf |∇r|2) + f

∂

∂θ
(∇r · ∇θ) +

1

f
(gg′ +

R2

R2
0B

2
0

p′) = 0. (B.2)
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The jacobian of the transformation to the flux coordinates (r, θ, φ) is chosen to keep

the field lines straight in θ − φ space on a flux surface:

J = (∇r ×∇θ ·∇φ)−1 =
rR2

R0
= R

(

∂R

∂θ

∂Z

∂r
−
∂R

∂r

∂Z

∂θ

)

(B.3)

and then the safety factor is q(r) = rg
R0f

. Note that:

(∇r ×∇θ) =
R0

r
∇φ (B.4)

We expand R and Z as:

R = R0 + r cos θ + R̃1(r) cos 2θ + R̄1(r) +O(ǫ2r).....

Z = −r sin θ + Z̃1(r) sin 2θ +O(ǫ2r)..... (B.5)

where R̃1, R̄1 and Z̃1 are O(ǫr). We have chosen θ = 0 to be the outer (larger R)

mid-plane of each flux surface – this differs from the choice in [16] where θ = 0 is on the

inner R mid-plane. We define B̄0 so that:

g = 1 + g2 +O(ǫ3), g2 ∼ O(ǫ2) (B.6)

and q is finite so that f = f1 =
r

R0q
+O(ǫ2). To denote order we write p(r) = p2(r).

We seek expanded expressions as functions of r and θ of the metric elements:

|∇r|2 =
R2

0

r2R2

[

(

∂R

∂θ

)2

+

(

∂Z

∂θ

)2
]

∇r · ∇θ = −
R2

0

r2R2

[

∂R

∂θ

∂R

∂r
+
∂Z

∂r

∂Z

∂θ

]

|∇θ|2 =
R2

0

r2R2

[

(

∂R

∂r

)2

+

(

∂Z

∂r

)2
]

(B.7)

to substitute into the ballooning equations of Section 2.

The regions are:

Outer Region where |r − rTB| ≫ ǫr and all radial derivatives are finite i.e.

∂

∂r
∼ O(

1

r
),

∂R̃1

∂r
,
∂Z̃1

∂r
,
∂R̄1

∂r
∼ O(ǫ), (B.8)

rp′/B2
0 ∼ O(ǫ2), rg′2 ∼ O(ǫ2) and f, rf ′ ∼ O(ǫ)

Transport Barrier where |r − rTB| ∼ ǫr and radial derivatives are large:

∂

∂r
∼ O(

1

ǫr
),

∂R̃1

∂r
,
∂Z̃1

∂r
,
∂R̄1

∂r
∼ O(

1

ǫ
), (B.9)

rp′/B2
0 ∼ O(ǫ), rg′2 ∼ O(ǫ) and f, rf ′ ∼ O(ǫ) but r2f ′′, r2g′′ ∼ O(1)
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Appendix B.2. Outer Region

Substituting expressions from Eq. (B.5) into Eq. (B.3) we obtain:

r2 cos θ

R0

= 2R̃1 sin θ sin 2θ − 2Z̃1 cos θ cos 2θ − r sin θ sin 2θ
∂Z̃1

∂r

+r cos θ cos 2θ
∂R̃1

∂r
+ r cos θ

∂R̄1

∂r
+O(rǫ2) (B.10)

which yields:

Z̃1 = −R̃1

r
∂R̄1

∂r
=

r2

R0

− 2R̃1 − r
∂R̃1

∂r
(B.11)

From Eq. (B.7) we define ∆′ so that:

|∇r|2 = 1 + 2∆′ cos θ......

→ R̃1 =
r2

2R0
+
r∆′

2

R̄1 =
r2

2R0
−
r∆′

2
−∆ (B.12)

and

∇r · ∇θ = −
1

r

(

r∆′′ +∆′ +
r

R0

)

sin θ. (B.13)

We will need:

R2

R2
0

= 1 +
2r

R0

cos θ −

[

r2

2R2
0

+
2∆

R0

+
r∆′

R0

]

+

[

r∆′

R0

+
3r2

2R2
0

]

cos 2θ. (B.14)

and

|∇θ|2 =
1

r2

[

1 + 2(
r

R0
−∆′) cos θ + (r∆′′ sin θ)2....O(ǫ2)

]

(B.15)

We have kept the terms that become large in the transport barrier – where r∆′′ ∼ 1.

The equilibrium relation, Eq. (B.2), becomes to O(ǫ2):

1

r

d

dr
(rf1) +

1

f1

[

g′2 +
p′2
B̄2

0

]

= 0 (B.16)

∆′′ =
1

R0
−

2R0q
2

r

p′2
B̄2

0

−

[

3

r
− 2

2

q

dq

dr

]

∆′ (B.17)
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Appendix B.3. Transport barrier

The equations derived in the previous section, Eqs. (B.12) - (B.17), remain valid to the

order we need. Since q and r are roughly constant across the Transport barrier we can

integrate Eq. (B.16) for g′2 and Eq. (B.17) for ∆′ in the layer.

g2 = −
p2
B̄2

0

+ constant (B.18)

∆′′ ∼ −
2R0q

2

r

p′2
B̄2

0

∼ O(
1

r
) → ∆′ = −

2R0q
2

r

p2
B̄2

0

+ constant (B.19)

Note the constants are slowly varying functions of r so they are effectively constant

across the transport barrier. The magnetic shear is taken to be finite and finitely

varying across the barrier, so that:

f1 = f1(r) + f2(
r − r0
ǫ

)

q′ =
d

dr

(

R0f1
r

)

+
R0f

′
2

r
... (B.20)

We introduce the s and α parameters of Connor, Hastie, Taylor [1]:

s =
rq′

q

α = −2R0q
2 p

′
2

B̄2
0

(B.21)

Note that both these parameters are finite and vary finitely over the transport barrier

so that s′ ∼ O(1
ǫ
) and α′ ∼ O(1

ǫ
). Then ∆′′ = α

r
. To lowest (finite) order the metric

coefficients are

|∇r|2 = 1

∇r · ∇θ =

(

2R0q
2

r

p′2
B̄2

0

)

sin θ = −
α

r
sin θ (B.22)

|∇θ|2 =
1

r2

[

1 + (2R0q
2 p

′
2

B̄2
0

sin θ)2....O(ǫ)

]

=
1

r2
[

1 + (α sin θ)2....O(ǫ)
]

We shall also need the derivatives of R.

∂R

∂r
= cos θ − α sin2 θ +O(ǫ)....

∂R

∂θ
= − r sin θ +O(ǫ).... (B.23)

Appendix C. Weak Nonlinearity – with Inertia

Here we investigate the weakly nonlinear case with inertia. The dynamics is interesting

because the mode spreads along the field lines as it evolves explosively. With inertia
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and r − r0 ∼ ǫr equation (32) becomes:

τ 2A

(

∂2r

∂t2

)

[

1 + (α sin θ − sθ)2)
]

=

(βN(r0)− βN(r)) [cos θ + sin θ(sθ − α sin θ)]

+

(

∂

∂θ

)

r0

(

[

1 + (α sin θ − sθ)2
]

(

∂r

∂θ

)

r0

)

−
1

2

(

∂r

∂θ

)2

r0

(

∂

∂r

)

θ

(α sin θ − sθ)2 (C.1)

where τ 2A =
µ0ρ0q2R2

0

B̄2

0

. If x = r− r0 ∼ O(δ r) ≪ ǫr and we are close to marginal stability

τ 2A

(

∂2x
∂t2

)

∼ O( δ
2x
ǫ2
), Eq. (C.1) can be expanded in powers of x. We define the linear

operator:

L(x) = α0 [cos θ + sin θ(s0θ − α0 sin θ)] x

+

(

∂

∂θ

)

r0

(

[

1 + (α0 sin θ − s0θ)
2
]

(

∂x

∂θ

)

r0

)

(C.2)

where s0 = s(r0) and α0 = α(r0). The expanded nonlinear operator is:

N (x, x) =

[

α′
0

2
cos θ + θ sin θ(

α′
0s0
2

+ s′0α0) +
3α′

0α0

2
sin2 θ

]

x2

+

(

∂

∂θ

)

r0

(

(α′
0 sin θ − s′0θ)(α0 sin θ − s0θ)x

(

∂x

∂θ

)

r0

)

−

(

∂x

∂θ

)2

r0

(α′
0 sin θ − s′0θ)(α0 sin θ − s0θ) (C.3)

and s′0 = ds0
dr0

∼ 1
ǫr

and α′
0 = dα0

dr0
∼ 1

ǫr
. The equation of motion, to the order we need

becomes

τ 2A

(

∂2x

∂t2

)

[

1 + (α sin θ − sθ)2)
]

= L(x) +N (x, x) (C.4)

The solution has two regions: an inner region where θ ∼ O(1) and inertia is unimportant

and an outer region where θ ∼ O(ǫ/δ) and nonlinearity is unimportant. This is similar

to the treatment in [8].

Appendix C.1. Inner region

In the region x ∼ O(δ) the left hand side of Eq. (C.4) (inertia) is ∼ O(δ3/ǫ2). The

nonlinear term is of order ∼ O(δ2/ǫ). To order δ we have:

0 = L(x) +O(δ2) (C.5)



Nonlinear ballooning 27

Then we can write:

x(θ, t) = A(t)xL(θ) + δx(θ, t) (C.6)

where xL(θ) is the linear solution to L(xL) = 0 that is even in θ and normalised so that

xL(0) = 1 – thus A ∼ O(δ). δx(θ, t) ∼ O(δ2/ǫ) is driven by the nonlinear term. As we

will see below, the solution as |θ| → ∞ consists of the ”small” and ”large” solutions:

xL(θ) → xLL +
xSL
θ

= xSL

(

1

θ
+

1

∆′

)

(C.7)

where xSL xLL and ∆′ = xSL/xSL are constants. To be consistent we need to be

sufficiently close to marginal stability ( 1
∆′ = 0) such that 1

∆′ ∼ O(δ/ǫ). Thus the “large”

solution is the same size as δx(θ, t) ∼ O(δ2/ǫ) and we must calculate the corrections due

to the nonlinear term to get the correct asymptotic behaviour when θ ≫ 1. To order

O(δ2/ǫ) the inner region solution satisfies:

0 = L(x) + A2N (xL, xL) (C.8)

Multiplying Eq. (C.8)by xL(θ) and integrating from θ = 0 to θ = θm (in the matching

region where 1 ≪ θm ≪ ǫ/δ) we obtain:

s20θ
2
m

[

x(θm, t)
∂xL
∂θm

− xL(θm)
∂x

∂θm

]

=

A2

∫ θm

0

dθ

([

α′
0

2
cos θ + θ sin θ(

α′
0s0
2

+ s′0α0) +
3α′

0α0

2
sin2 θ

]

x3L

)

−3A2

∫ θm

0

dθxL

(

(

∂xL
∂θ

)2

r0

2(α′
0 sin θ − s′0θ)(α0 sin θ − s0θ)

)

= cNLA
2. (C.9)

The constant cNL defined by Eq. (C.9) is O(1) and insensitive to the choice of θm as long

as it is in the range 1 ≪ θm ≪ ǫ/δ – the particular choice makes a difference to cNL of

order δ2/ǫ2. Since the nonlinear terms in Eq. (C.8) die away rapidly for asymptotically

large θ (see next subsection) we can write:

x(θm) → A(t)
xSL
θm

+ xLarge(t) (C.10)

Substituting into Eq. (C.9) we obtain the relation

−
xLarge(t)

xSL
= −

A

∆′ + c′NLA
2. (C.11)

where c′NL = cNL

s2
0
x2

SL

.

Appendix C.2. Outer Solution

Now let us expand Eq. (C.4) in powers of δ with ∂
∂t

∼ O(δ/ǫ), θ ∼ O(ǫ/δ) and

x ∼ O(δ2/ǫ). We treat the θ variation as having two scales: the fast periodic scale
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∂
∂θf

∼ O(1) and the slow scale ∂
∂θs

∼ O(δ/ǫ); then ∂
∂θ

= ∂
∂θf

+ ∂
∂θs

and θs ∼ O(ǫ/δ) – thus

x(θf , θs, t). We write x = x2 + x3 + x4.... where xn ∼ O(δn/ǫn−1). To O(ǫ) we obtain:

0 = θ2s

(

∂2x2
∂θ2f

)

→ x2 = x2(θs, t) (C.12)

In O(δ) we obtain:

0 = s20θ
2
s

(

∂2x3
∂θ2f

)

+ α0s0 sin θfθsx2 → x3 = x2
α0

s0

sin θf
θs

(C.13)

In O(δ2/ǫ) we obtain:

τ 2As
2
0θ

2
s

(

∂2x2
∂t2

)

= α0 cos θfx2 + s20
∂

∂θs

(

θ2s
∂x2
∂θs

)

+
∂

∂θf

(

2s20θ
2
s

∂x3
∂θs

− 2α0s0(sin θf )θs(
∂x3
∂θf

+
∂x2
∂θs

) + s20θ
2
s

∂x4
∂θf

)

(C.14)

Note the largest nonlinear term is O(δ3/ǫ) and is therefore ignored to this order.

We average Eq. (C.14) over the fast scale θf to obtain the evolution equation for x2:

τ 2Aθ
2
s

(

∂2x2
∂t2

)

=
∂

∂θs

(

θ2s
∂x2
∂θs

)

(C.15)

Since x2 only depends on the one, slow, scale we drop the subscript s on θ and write

x2 =
f(θ,t)

θ
. Then Eq. (C.15) becomes the wave equation:

τ 2A
∂2f

∂t2
=
∂2f

∂θ2
(C.16)

To satisfy the boundary conditions we take outgoing waves:

f(θ, t) = f(t− τAθ). (C.17)

Now we match our solution to the inner solution: The outer solution for 1 ≪ θ ≪ ǫ/δ

matches Eq. (C.10), so expanding x2 for small θ we find:

x2 =
f(t− τAθ)

θ
→

f(t)

θ
− τA

df(t)

dt
= A(t)

xSL
θ

+ xLarge(t) (C.18)

Thus:

f(t) = A(t)xSL and xLarge(t) = −τA
df(t)

dt
= −xSLτA

dA

dt
(C.19)

Then Eq. (C.11) becomes:

τA
dA

dt
= −

A

∆′ + c′NLA
2. (C.20)

Note this equation is only valid close to the marginal point where ∆′ ∼ O(ǫ/δ). The

solution for A(t = 0) = A0 is:

A(t) = A0e
γt 1

1 + cA0(eγt − 1)
(C.21)
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where τAγ = −∆′−1 and c = c′NL∆
′. The potential energy for this system is:

V (A) = −
1

τAγ

(

A2

2
− c

A3

3

)

(C.22)

For linearly damped modes (γ < 0) the energy has a local minimum (V = 0) at A = 0

and a local maximum (V = 1/(6c2τA|γ|) at A = 1/c. If the initial condition cA0 < 1

then as t → ∞ then A → 0. When cA0 > 1 the solution grows explosively and reaches

a finite time singularity when t = (1/γ) ln (1− 1
cA0

) (see [7]). In this case the field line

is in the third category see Figure (4.c). Clearly the weak nonlinear assumption will be

violated before the tube reaches infinite amplitude – a full nonlinear solution is needed

in these cases to find the final equilibrium with energy E2. When γ > 0 the field line is

in the fourth category see Figure (4.d) but again the lowest energy equilibrium state is

outside the amplitude expansion. In [7] and [8] the weak nonlinear dynamics close to

linear marginal stability is treated without the assumption of isolated flux tubes – this

is a more complete treatment than this appendix since it includes the evolution of the

flux tube cross section. Zhu et. al. [9, 10] have explored an expansion which extends

the weakly nonlinear analysis from amplitudes of order δ1 to amplitudes of order δ2.

To determine the equilibria the finite amplitude treatment explored in this paper is

required.
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