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Finite-resource teleportation 
stretching for continuous-variable 
systems
Riccardo Laurenza, Samuel L. Braunstein   & Stefano Pirandola  

We show how adaptive protocols of quantum and private communication through bosonic Gaussian 

channels can be simplifed into much easier block versions that involve resource states with finite 
energy. This is achieved by combining an adaptive-to-block reduction technique devised earlier, 

based on teleportation stretching and relative entropy of entanglement, with a recent finite-resource 
simulation of Gaussian channels. In this way, we derive weak converse upper bounds for the secret-key 

capacity of phase-insensitive Gaussian channels which approximate the optimal limit for infinite energy. 
Our results apply to both point-to-point and repeater-assisted private communications.

Establishing the ultimate limits of quantum and private communications is important1,2, not only to explore the 
boundary of quantum mechanics but also to provide benchmarks for testing the practical performance of exper-
imental and technological implementations. This problem is important for quantum systems of any dimension3,4 
and, in particular, for infinite-dimensional ones, also known as continuous-variable (CV) systems5–8. In quantum 
information and quantum optics, the most important CV systems are the bosonic modes of the electromagnetic 
field6, which are typically used at the optical or telecom wavelengths. In any protocol of quantum communication, 
such modes are subject to loss and noise, and the most typical and basic model for such kind of decoherence is 
the single-mode Gaussian channel.

It is known that protocols of private communication and quantum key distribution (QKD) are limited in both 
rate and distance due to decoherence, no matter if the communication line is a free-space link or a fiber connec-
tion. This limitation is perhaps best simplified by the rate-loss scaling of ideal single-photon BB84 protocol9 
whose optimal rate scales as η/2 secret bits per channel use, where η is the transmissivity of the channel. Recently, 
this fundamental rate-loss limit has been fully characterized. By optimizing over the most general key-generation 
protocols, Pirandola-Laurenza-Ottaviani-Banchi10 have established the secret-key capacity of the lossy channel to 
be η η= − −K( ) log (1 )

2
, which is about 1.44η secret bits per channel use at long distances (η  0). This result 

sets a general benchmark for quantum repeaters11–24 and completes a long-standing investigation started back in 
200925,26, when the best known lower bound was discovered.

The main technique that led to establishing the previous capacity is based on a suitable combination of two 
ingredients, the relative entropy of entanglement (REE)27–29 suitably extended from states to channels (using 
results from refs30–32), and teleportation stretching, which reduces any adaptive (feedback-assisted) quantum 
protocol over an arbitrary channel into a much simpler block version. This latter technique is a full extension and 
generalization of previous approaches33–35 that only worked for specific classes of channels and were designed to 
reduce quantum error correcting code protocols into entanglement distillation. Without doubts, the generaliza-
tion to an arbitrary task over an arbitrary quantum channel has been one of the key insights of ref.10, and this has 
been widely exploited in recent literature, with a number of follow-up papers in the area of quantum Shannon 
theory4, e.g., on strong converse rates, broadcast capacities, etc. See ref.36 for a recent review on these topics and 
refs36,37 for rigorous proofs of some related claims.

The core of teleportation stretching is the idea of channel simulation, where an arbitrary quantum channel is 
replaced by local operations and classical communication (LOCC) applied to the input and a suitable resource 
state10. This powerful idea is rooted in the protocol of teleportation38,39 and first proposed in ref.33, despite origi-
nally limited to the simulation of Pauli channels40 (see also ref.41). Later, this core idea was extended to generalized 
teleportation protocols35,42 and CV teleportation43 in refs34,44. The final and more general form involves a simu-
lation via arbitrary LOCCs, as formulated in ref.10. In particular, the simulation of bosonic channels is typically 
asymptotic, which means that they need a suitable limit over sequences of resource states, which comes from the 
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fact that the Choi matrices of such channels are asymptotic states10. Most importantly, such a simulation needs 
a careful control of the simulation error as first considered in ref.10, otherwise technical divergences may appear 
in the results. This crucial aspect is discussed in detail in ref.36, which also provides a direct comparison of the 
various simulation techniques appeared in the literature.

Here we consider a different type of simulation for bosonic Gaussian channels, which is based on finite-energy 
two-mode Gaussian states as recently introduced in ref.45. We use this particular simulation at the core of tele-
portation stretching in order to simplify adaptive protocols. This not only represents an interesting design (with 
potential applications beyond this work) but also allows us to derive upper bounds for the secret-key capacities of 
phase-insensitive Gaussian channels which approximate well the asymptotic results of ref.10.

Results
Preliminaries on the simulation of bosonic channels. As discussed in ref.10 an arbitrary quantum 
channel   can be simulated by a trace-preserving LOCC   and a suitable resource state σ, i.e.

ρ ρ σ= ⊗ .( ) ( ) (1)E T

A channel is called σ-stretchable if it has σ as a resource state via some LOCC simulation as in Eq. (1). An 
important case is when the channel is Choi-stretchable, which means that the resource state can be chosen to be 
its Choi matrix σ ρ= = ⊗ ΦI: ( ) , with Φ being a maximally entangled state. For a bosonic channel, the max-
imally entangled state is an Einstein-Podolsky-Rosen (EPR) state with infinite energy, so that the Choi matrix of 
a bosonic channel is energy-unbounded. For this reason one has to work with a sequence of two-mode squeezed 
vacuum states5 Φµ with variance µ = +n 1/2, where n is the average number of thermal photons in each mode. 
By definition, the EPR state is defined as Φ = Φ

µ

µ: lim  and the Choi matrix of a bosonic channel   is defined by

I E
E E E
ρ ρ ρ= = ⊗ Φ .

µ

µ µ µ: lim , ( )
(2)

This means that the simulation needs to be asymptotic, i.e., of the type

E T
E

ρ ρ ρ= ⊗ .
µ

µ( ) lim ( )
(3)

(More generally, one also needs to consider sequences of LOCCs µ , so that the asymptotic simulation reads 

E T
E

ρ ρ ρ= ⊗µ
µ µ( ) lim ( ). For simplicity we omit this technicality, referring the reader to ref.10 for more details.)

In ref.10, we identified a simple sufficient condition for a quantum channel to be Choi-stretchable, even asymp-
totically as in Eq. (3): teleportation covariance. In the bosonic case, a channel   is teleportation-covariant if, for 
any random displacement D (as induced by CV teleportation)39,43, we may write

ρ ρ=† †D D V V( ) ( ) , (4) 

for some unitary V. It is clear that bosonic Gaussian channels are teleportation covariant and, therefore, 
Choi-stretchable, with asymptotic simulation as in Eq. (3).

Simulation of Gaussian channels with finite-energy resource states. Recently, ref.45 proposed a 
variant of Gaussian channel simulation10, where single-mode phase-insensitive Gaussian channels are simulated 
by applying CV teleportation to a particular class of finite-energy Gaussian states as the resource. Consider a 
single-mode Gaussian state with mean value x  and covariance matrix (CM) V5. The action of a single-mode 
Gaussian channel can be expressed in terms of the statistical moments as

→ → +x xT V TVT N, , (5)T

where T and =N NT are 2 × 2 real matrices satisfying suitable conditions5. In particular, the channel is called 
phase-insensitive if these two matrices take the specific diagonal forms

η ν= =T I N I, (6)

where η ∈  is a transmissivity parameter, while ν ≥ 0 represents added noise.
According to ref.45, a phase-insensitive Gaussian channel η ν,  can be simulated as follows

ρ ρ σ= ⊗η ν η ν( ) ( ), (7),E T

where η  is the Braunstein-Kimble protocol with gain η  43,46, and σv is a zero-mean two-mode Gaussian state 
with CM

σ =ν ( )a c
c b

V I Z
Z I

( ) ,
(8)

where45

η

η η
=

+ −
=

−− −

a
b e

c
b e2 ( 1)

2
,

2

2
,

(9)

r r2 2
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η η

η η
=
− − + +

− − + +

−

b
e e

e

1

2[ 1 1]
,

(10)

r r

r

2 2

2

and the entanglement parameter r ≥ 0 is connected to the channel parameter via the relation

ν η= + .
−e

2
( 1)

(11)

r2

Note that, with respect to the fomulas of ref.45, we have an extra 1/2 factor in Eqs (8) and (11). This is due to the 
different notation we adopt here. We set the quadrature variance of the vacuum state to be 1/2, while it was equal 
to 1 in ref.45. Also note that, in the simulation of Eq. (7), one uses a Braunstein-Kimble protocol with an ideal 
CV Bell detection. The latter is an asymptotic measurement defined in the limit of infinite squeezing, i.e., infinite 
energy. For this reason, the finite-energy aspect of the simulation in Eq. (7) only refers to the resource state.

Finite-resource teleportation stretching of an adaptive protocol. Here we plug the previous 
finite-resource simulation into the tool of teleportation stretching. We start by providing some necessary defi-
nitions on adaptive protocols and secret-key capacity. Then, we review a general upper bound (weak converse) 
based on the REE. Finally, following the recipe of refs10,47. we show how to use the finite-resource simulation to 
simplify an adaptive protocol and reduce the REE bound to a single-letter quantity.

Adaptive protocols and secret-key capacity. The most general protocol for key generation is based on 
adaptive LOCCs, i.e., local operations assisted by unlimited and two-way classical communication. Each trans-
mission through the quantum channel is interleaved by two of such LOCCs. The general formalism can be found 
in ref.10 and goes as follows. Assume that two remote users, Alice and Bob, have two local registers of quantum 
systems (modes), a and b, which are in some fundamental state ρ ρ⊗

a b
. The two parties applies an adaptive 

LOCC Λ0 before the first transmission.
In the first use of the channel, Alice picks a mode a1 from her register a and sends it through the channel  . 

Bob gets the output mode b1 which is included in his local register b. The parties apply another adaptive LOCC 
Λ1. Then, there is the second transmission and so on. After n uses, we have a sequence of LOCCs Λ Λ … Λ{ , , , }n0 1  
characterizing the protocol  and an output state ρn

ab
 which is ε-close to a target private state48 with nRn bits. 

Taking the limit of large n and optimizing over the protocols, we define the secret-key capacity of the channel

= .K R( ) sup lim
(12)n

nE

L

General upper bound. According to Theorem 1 (weak converse) in ref.10, a general upper bound for K( )  is 
given in terms of the REE of the output state ρn

ab

ρ
≤ = .⁎K E

E

n
( ) ( ): sup lim

( )

(13)
R

n

R
n

ab
E E

L

Recall that the REE of a state ρ is defined as ρ ρ σ= ||σE S( ) inf ( )R sepsep
, where σsep is a separable state and the relative 

entropy is defined by ρ σ ρ ρ σ|| = −S( ): Tr[ (log log )]sep 2 2 sep . These definitions can be easily adapted for asymptotic 
states of bosonic systems.

Note that the first and simplest proof of Eq. (13) can be found in ref.49 (the second arxiv version of ref.10). To 
avoid potential misunderstandings or misinterpretations of this proof, we report here the main points. For any 
protocol whose output ρn

ab
 is ε-close (in trace norm) to target private state with rate Rn and dimension d, we may 

write

ρ ε ε≤ + +nR E d H( ) 4 log 2 ( ), (14)n R
n

ab 2 2

where H2 is the binary Shannon entropy. For distribution through a discrete variable (DV) channel, whose output 
is a DV state, we may write

α≤d nRlog , (15)n2

for some constant α [see also Eq. (21) of ref.49]. The exponential scaling in Eq. (15) comes from previous results 
in refs31,32. The latter showed that, for any adaptive protocol with rate Rn, there is another protocol with the same 
asymptotic rate while having an exponential scaling for d.

The extension to a CV channel is achieved by a standard argument of truncation of the output Hilbert space. 
After the last LOCC Λn, Alice and Bob apply a truncation LOCC d which maps the output state ρn

ab
 into a trun-

cated version ρ ρ= ( )n d
d

n
ab ab

,  with total dimension d. The total protocol  = Λ Λ Λ� ⋯{ , , , , }d n d0 1  generates 
an output that is ε-close to a DV private state with nRn,d bits. Therefore, we may directly re-write Eq. (14) as

ρ ε ε≤ + + .nR E d H( ) 4 log 2 ( ) (16)n d R
n d

ab,
,

2 2

Both the output and the target are DV states, so that we may again write Eq. (15). In fact, since the Hilbert 
space is finite-dimensional, the proof of refs31,32 automatically applies, i.e., the protocol can be stopped after n0 
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uses, and then repeated m times in an i.i.d. fashion, with n = n0m. Key distillation applied to the m DV output 
copies implies a number of bits of CCs which is linear in m which, in turn, leads to an exponential scaling of d in n.

Because d is a trace-preserving LOCC, we exploit the monotonicity of the REE ρ ρ≤E E( ) ( )R
n d

R
n

ab ab
,  and rewrite 

Eq. (16) as

ρ ε

αε
≤

+

−
.R

E H

n

( ) 2 ( )

(1 4 ) (17)
n d

R
n

ab
,

2

Taking the limit for large n and small ε (weak converse), this leads to

ρ≤ .−R n Elim lim ( )
(18)n

n d
n

R
n

ab,
1

The crucial observation is that in the right-hand side of the latter expression, there is no longer dependence on the 
truncation d. Therefore, in the optimization of Rn,d over all protocols  d  we can implicitly remove the trunca-
tion. Pedantically, we may write

E E

L L
ρ= ≤ = .

−


⁎

K R n E E( ) sup sup lim sup lim ( ): ( )
(19)d n

n d
n

R

n

Rab,
1

d

Remark 1 Note that the truncation argument was explicitly used in ref.49 to extend the bound to CV channels. See 
discussion after Eq. (23) of ref.49. There a cut-off was introduced for the total CV Hilbert space at the output. Under 
this cutoff, the derivation for DV systems was repeated, finding an upper bound which does not depend on the trun-
cated dimension (this was done by using the monotonicity of the REE exactly as here). The cutoff was then relaxed in 
the final expression as above. The published version10 includes other equivalent proofs but they have been just given 
for completeness.

Simplification via teleportation stretching. One of the key insights of ref.10 has been the simplification 
of the general bound in Eq. (13) to a single-letter quantity. For bosonic Gaussian channels, this was achieved 
by using teleportation stretching with asymptotic simulations, where a channel is reproduced by CV telepor-
tation over a sequence of Choi-approximating resource states. Here we repeat the procedure but we adopt the 
finite-resource simulation of ref.45. Recall that, differently from previous approaches33–35, teleportation stretch-
ing does not reduce a protocol into entanglement distillation but maintains the task of the original protocol, so 
that adaptive key generation is reduced to block (non-adaptive) key generation. See ref.36 for comparisons and 
clarifications.

Assume that the adaptive protocol is performed over a phase-insensitive Gaussian channel η ν, , so that we may 
use the simulation in Eq. (7), where η is the Braunstein-Kimble protocol with gain η  and σν is a zero-mean 
two-mode Gaussian state, specified by Eqs (8–11). We may re-organize an adaptive protocol in such a way that 
each transmission through η ν,  is replaced by its resource state σν. At the same time, each teleportation-LOCC η  
is included in the adaptive LOCCs of the protocol, which are all collapsed into a single LOCC Λη (trace-preserving 
after averaging over all measurements). In this way, we may decompose the output state ρ ρ= η ν

⊗: ( )n n
ab ab ,  as

ρ σ= Λ .η ν
⊗( ) (20)

n n
ab

The computation of ρE ( )R
n

ab
 can now be remarkably simplified. In fact, we may write

ρ ρ σ σ σ σ σ σ= || ≤ Λ ||Λ ≤ || =
σ σ

η ν η
σ

ν ν
⊗ ⊗ ⊗E S S S E( ) inf ( ) inf [ ( ) ( )] inf ( ) ( ),

(21)
R

n n n n
R

n
ab ab sep

(1)

sep

(2)

sep
sep sep sep

where: (1) we consider the fact that σΛη( )sep  form a subset of specific separable states, and (2) we use the mono-
tonicity of the relative entropy under the trace-preserving LOCC Λη. Therefore, by replacing in Eq. (13), we get 
rid of the optimization over the protocol (disappearing with Λη) and we may write

σ
σ σ≤ = ≤η ν

ν
ν ν

⊗
∞K

E

n
E E( ) lim

( )
: ( ) ( ),

(22)n

R
n

R R,

where we use the fact that the regularized REE is less than or equal to the REE. Thus, we may write the following 
theorem:

Theorem 2 Consider a phase-insensitive bosonic Gaussian channel η ν, , which is stretchable into a two-mode 
Gaussian state σν as given in Eqs (8–11). Its secret-key capacity must satisfy the bound

 σ σ σ≤ = || .η ν ν
σ

νK E S( ) ( ): inf ( )
(23)

R, sep
sep

Note that the new bound in Eq. (23) cannot beat the asymptotic bound established by ref.10 for bosonic chan-
nels, i.e.,
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 ρ σ≤ ||η ν
σ µ

µ µ

→+∞µ η ν( )K S( ) inf liminf ,
(24)

, sep
sep

,

where ρ µ
η ν,

 is a Choi-approximating sequence as in Eq. (2), and σµsep is an arbitrary sequence of separable states converg-

ing in trace norm. This can be seen from a quite simple argument50. In fact, according to Eqs (2) and (7), we may write

I E I T
E
ρ σ σ= ⊗ Φ = ⊗ Φ ⊗ = ∆µ

η ν
µ

η
µ

ν ν
η ν

( ) ( ) ( ),
(25),

,

where ∆ is a trace-preserving LOCC. Therefore, 
ρ σ≤µ

ν
η ν

E E( ) ( )R R
,

 and this relation is inherited by the bounds 

above. Notwithstanding this no go for the finite-resource simulation, we show that its performance is good and 
reasonably approximates the infinite-energy bounds that are found via Eq. (24).

Finite-resource bounds for phase insensitive Gaussian channels. We now proceed by computing 
the REE in Eq. (23) for the class of single-mode phase-insensitive Gaussian channels. For this, we exploit the 
closed formula for the quantum relative entropy between Gaussian states which has been derived in ref.10 by using 
the Gibbs representation for Gaussian states51. Given two Gaussian states ρ u V( , )

1 1 1  and ρ u V( , )
2 2 2 , with respec-

tive statistical moments ui and Vi, their relative entropy is

ρ ρ|| = −Σ + ΣS V V V V( ) ( , ) ( , ), (26)1 2 1 1 1 2

where we have defined

δ δ
Σ =

+ + +
Ω( )

V V
V VG G

( , ):
lndet Tr( )

2 ln2 (27)

i T

1 2

2 2 1 2 2

with δ = −u u1 2 and = Ω Ω−G i iV2 coth (2 )2
1

2  51, where the matrix Ω is the symplectic form.
The computation of the REE involves an optimization over the set of separable states. Following the recipe of 

ref.10 we may construct a good candidate directly starting from the CM in Eq. (8). This separable state has CM 
with the same diagonal blocks as in Eq. (8), but where the off-diagonal term is replaced as follows

→ = − − .c c a b: ( 1/2)( 1/2) (28)sep

By using this separable state σsep we may write the further upper bound

σ σ σ≤ Ψ = || .ν ν E S( ) ( ): ( ) (29)R sep

In the following, we compute this bound for the various types of phase-insensitive Gaussian channels.

Thermal-loss channel. This channel can be modelled as a beam splitter of transmissivity η where the input 
signals are combined with a thermal environment such that the quadratures transform according to 

η η→ + −ˆ ˆ ˆx x x1 th, where x̂ th is in a thermal state with n photons. In terms of the statistical moments, the 
action of the thermal-loss channel η n,  can be described by the matrices in Eq. (6) with parameter 

ν η= − +n(1 )( 1/2). This means that the squeezing parameter r of the resource state now reads

η

η
=








+

+ −







.r

n

1

2
ln

1

(2 1)(1 ) (30)

By combining this relation with the ones in Eq. (10) and computing the relative entropy, we find the finite-resource 
bound Ψ η( )n,  which is plotted in Fig. 1 and therein compared with the infinite-energy bound Φ η( )n,  derived in 
ref.10. The latter is given by10

η ηΦ = − − −η h n( ) log [(1 ) ] ( ), (31)n
n

, 2


for η η< −n /(1 ) and zero otherwise, and we set = + + −h x x x x x( ): ( 1) log ( 1) log
2 2

. It is clear that we have

≤ Φ ≤ Ψη η ηK( ) ( ) ( ), (32)n n n, , ,  

but the two upper bounds are reasonably close.

Noisy amplifier channel. A noisy quantum amplifier is described by η η→ + −ˆ ˆ ˆx x x1 th, where η > 1 
is the gain and x̂ th is in a thermal state with n photons. This channel η n,  is described by the matrices in Eq. (6) 
with parameter ν η= − +n( 1)( 1/2). By repeating the previous calculations, we find the finite-resource bound 

Ψ η( )n,  plotted in Fig. 2 and where it is compared with the infinite-energy bound10

 η

η
Φ =




 −






−η

+

h n( ) log
1

( ),
(33)

n

n

, 2

1

for η< − −n ( 1) 1 and zero otherwise.
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Additive-noise Gaussian channel. Another important channel is represented by the additive-noise 
Gaussian channel, which is the simplest model of bosonic decoherence. In terms of the input-output transforma-
tions, the quadratures transforms according to → +ˆ ˆ z zx x ( , )T where z is a classical Gaussian variable with zero 
mean and variance ξ ≥ 0. This channel ξ  is described by the matrices in Eq. (6) with η = 1 and ν = ξ. The 
finite-resource bound Ψ ξ( )  on the secret key capacity is plotted in Fig. 3 and compared with the infinite-energy 
bound10

ξ
ξΦ =

−
−ξ( )

1

ln2
log ,

(34)2


for ξ < 1, while zero otherwise.

Pure-loss channel. For the pure-loss channel, the upper bound derived in the limit of infinite energy10 
coincides with the lower bound computed with the reverse coherent information25,26. This means that we are 
able to fully characterize the secret-key capacity for this specific bosonic channel. This is also known as the 
Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound10

η η η η= − − . ( ) log (1 ) 1 44 for 0, (35)2


and fully characterizes the fundamental rate-loss scaling of point-to-point quantum optical communications.
Consider now the finite-resource teleportation simulation of a pure-loss channel. It is easy to check that we 

cannot use the parametrization in Eq. (10). In fact, for a pure-loss channel, we have ν η= −(1 )/2 so that Eq. (11) 
provides η η= + −e (1 )/(1 )r2 . Replacing the latter in Eq. (10), we easily see that we have divergences (e.g., the 

Figure 1. Finite-resource bound Ψ η( )n,  on the secret-key capacity of the thermal loss channel (red upper 
curve) as a function of the transmissivity η, compared with the infinite-energy bound Φ η( )n,  (blue lower curve) 
derived in ref.10. The curves are plotted for =n 1 thermal photons.

Figure 2. Finite-resource bound Ψ η( )n,  on the secret-key capacity of the noisy amplifier channel (red upper 
curve) as a function of the gain η, compared with the optimal bound for infinite energy Φ η( )n,  (blue lower 
curve). The two curves are plotted for =n 1 thermal photons.
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denominator of b becomes zero). For the pure loss channel, we therefore use a different simulation, where the 
resource state is a two-mode squeezed state with CM50

σ
η

η
=






−

−






=

+

−
.η

a a

a a
a

I Z

Z I

1/4

1/4
,

1

2(1 ) (36)

2

2

By exploiting this resource state, we derive the bound Ψ η( )  shown in Fig. 4, where it is compared with the 
secret-key capacity K(η).

Extension to repeater-assisted private communication. Here we extend the previous treatment to 
repeater-assisted private communication. We consider the basic scenario where Alice a and Bob b are connected 
by a chain of N quantum repeaters …r r{ , , }N1 , so that there are a total of N + 1 quantum channels { }i  between 
them. Assume that these are phase-insensitive Gaussian channels = η ν:i ,

i i
   with parameters η ν( , )

i i . The most 

general adaptive protocol for key distribution through the chain is described in ref.52 and goes as follows.
Alice, Bob and all the repeaters prepare their local registers …a r r b{ , , , , }N1  into a global initial state ρ0 by 

means of a network LOCC Λ0, where each node in the chain applies LOs assisted by unlimited and two-way CCs 
with all the other nodes. In the first transmission, Alice picks a system ∈a a1  and sends it to the first repeater; 
after another network LOCC Λ1, the first repeater communicates with the second repeater; then there is another 
network LOCC Λ2 and so on, until Bob is eventually reached, which terminates the first use of the chain.

Figure 3. Finite-resource bound Ψ ξ( ) on the secret-key capacity of the additive noise Gaussian channel (red 
upper curve) as a function of the added noise ξ, compared with the optimal bound for infinite energy Φ ξ( )  
(blue lower curve).

Figure 4. Finite-resource bound Ψ η( ) on the secret-key capacity of the pure-loss channel (red upper curve) as 
a function of the transmissivity η, compared with its secret key capacity or PLOB bound η η= − −K( ) log (1 )

2
 

(blue lower curve).
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After n uses of the chain, we have a sequence of network LOCCs  defining the protocol and an output state 

ρn
ab

 for Alice and Bob which approximates some target private state with nRn bits. By taking the limit for large n 
and optimizing over the protocols, we define the end-to-end or repeater-assisted secret-key capacity52

= .K R({ }) sup lim
(37)

i
n

nE

L

As shown in ref.52, we may extend the upper bound of Eq. (13). Then, we may use teleportation stretching and 
optimize over cuts of the chain, to simplify the bound to a single-letter quantity.

The network-reduction technique of ref.52 can be implemented by using the specific finite-resource simulation 
of Eq. (7), which leads to the following possible decompositions of the output state

ρ σ= Λ = …ν
⊗ i N( ), for any 1, , , (38)

n
i

n
ab i

where Λi is a trace-preserving LOCC and σνi
 is the resource state associated with the ith Gaussian channel. By 

repeating the derivation of ref.52, this leads to

σ σ σ≤ ≤ || = Ψν ν K E S({ }) min ( ) min ( ): ({ }) ,
(39)i

i
R

i
i i,sepi i

 

where Ψ is the upper bound coming from our choice of the separable state σi ,sep in the REE. This upper bound 
needs to be compared with the one Φ({ })i  obtained in the limit of infinite energy52. As an example, consider an 
additive-noise Gaussian channel with noise variance ξ. Let us split the communication line by using N “equidis-
tant” repeaters, in such a way that each link is an additive-noise Gaussian channel i with the same variance 

ξ ξ= +N/( 1)
i

. It is easy to check that this is the optimal configuration for the repeaters. From Eq. (39), we derive 

Ψ = Ψ ξ +({ }) ( )i N/( 1)  . This bound is plotted in Fig. 5 where we can se an acceptable approximation of the corre-
sponding infinite-energy bound Φ({ })i .

Discussion
In this work we have presented a design for the technique of teleportation stretching10 for single-mode bosonic 
Gaussian channels, where the core channel simulation45 is based on a finite-energy two-mode Gaussian state 
processed by the Braunstein-Kimble protocol43 with suitable gains. Such an approach removes the need for using 
an asymptotic simulation where the sequence of states approximates the energy-unbounded Choi matrix of a 
Gaussian channel, even though the infinite energy limit remains at the level of Alice’s quantum measurement 
which is ideally a CV Bell detection (i.e., a projection onto displaced EPR states). Using this approach we compute 
the weak converse bound for the secret key capacity of all phase-insensitive single-mode Gaussian channels, 
which include the thermal-loss channel, the quantum amplifier and the additive-noise Gaussian channel. We find 
that the bounds so derived are reasonably close to the tightest known bound established in ref.10 by using asymp-
totic Choi matrices. We have considered not only for point-to-point communication but also a repeater-assisted 
scenario where Alice and Bob are connected by a chain of quantum repeaters.

The tools developed here may have other applications. For instance, they may be applied to multi-point pro-
tocols53 and more complex quantum networks52. In an arbitrary multi-hop quantum communication network, 
the end-to-end capacities under single- and multi-path routing strategies may be expressed in terms of the REE 
of finite-energy resource states. In particular, these states can be identified by solving classical problems of net-
work information theory (widest path or maximum flow) following the same approach in ref.52. In the context 
of quantum metrology, a finite-resource simulation (different from the one employed in the present paper) has 

Figure 5. Secret-key capacity of a chain of N equidistant repeaters creating N + 1 additive-noise Gaussian 
channels with variances ξ ξ= +N/( 1)

i
. We compare the finite-resource upper bound Ψ({ })i  (solid lines) with 

the infinite-energy upper bound Φ({ })i  (dashed lines) for different values of N as a function of the overall added 
noise of the chain ξ.



www.nature.com/scientificreports/

9SCIENTIFIC REPORTS |  (2018) 8:15267  | DOI:10.1038/s41598-018-33332-y

been recently exploited in ref.54. The stretching strategy adopted therein allows one to simplify the most general 
adaptive protocol for quantum parameter estimation into a block scheme, so that one can write an upper bound 
for the quantum Fisher information in terms of a finite-energy resource state. This allows one to lower-bound the 
minimum variance of the error that affects the adaptive estimation of noise parameters in Gaussian channels, with 
good approximation of the optimal bounds established in ref.55 but based on asymptotic Choi matrices.

Note added. Our work first appeared on the arXiv in June 201756. It has been revised after an imprecision in 
ref.45 was fixed in ref.57. Independently and simultaneously, a related work58 also built on the techniques of ref.10, 
but its claims were restricted to a point-to-point thermal-loss channel in the non-asymptotic scenario.

Data Availability Statement
The datasets generated during the current study are available from the corresponding author on reasonable request.
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