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Finite-resource teleportation stretching for continuous-variable systems

Riccardo Laurenza, Samuel L. Braunstein, and Stefano Pirandola
Computer Science and York Centre for Quantum Technologies,

University of York, York YO10 5GH, United Kingdom

We show how adaptive protocols of quantum and private communication through bosonic Gaus-
sian channels can be simplified into much easier block versions that involve resource states with
finite energy. This is achieved by combining the adaptive-to-block reduction technique devised
in [Pirandola et al., arXiv:1510.08863], based on teleportation stretching and relative entropy
of entanglement, with the simulation of Gaussian channels introduced by [Liuzzo-Scorpo et al.,
arXiv:1705.03017]. In this way, we derive weak converse upper bounds for the secret-key capacity of
phase-insensitive Gaussian channels, which closely approximate the optimal limit for infinite energy.
Our results apply to both point-to-point and repeater-assisted private communications.

I. INTRODUCTION

Establishing the ultimate limits of quantum and pri-
vate communications is important [1, 2], not only to ex-
plore the boundary of quantum mechanics but also to
provide benchmarks for testing the practical performance
of experimental and technological implementations. This
problem is important for quantum systems of any di-
mension [3, 4] and, in particular, for infinite-dimensional
ones, also known as continuous-variable (CV) systems [5–
8]. In quantum information and quantum optics, the
most important CV systems are the bosonic modes of
the electromagnetic field [6], which are typically used at
the optical or telecom wavelengths. In any protocol of
quantum communication, such modes are subject to loss
and noise, and the most typical and basic model for such
kind of decoherence is the single-mode Gaussian channel.

It is known that protocol of private communication and
quantum key distribution (QKD) are limited in both rate
and distance due to decoherence, no matter if the com-
munication line is a free-space link or a fiber connection.
This limitation is perhaps best simplified by the rate-loss
scaling of ideal single-photon BB84 protocol [9] whose
optimal rate scales as η/2 secret bits per channel use,
where η is the transmissivity of the channel. Recently,
this fundamental rate-loss limit has been fully character-
ized. By optimizing over the most general protocols for
key generation over a lossy channel, Ref. [10] established
its secret-key capacity to be K(η) = − log2(1− η) which
is about 1.44η secret bits per channel use at long dis-
tances (η ≃ 0). This result sets a general benchmark for
quantum repeaters [11–33] and completes a long-standing
investigation started back in 2009 [34, 35], with the dis-
covery of the best known lower bound.

The main technique that led to establish the previous
capacity is based on a suitable combination of two ingre-
dients, the relative entropy of entanglement (REE) [36–
38] suitable extended from states to channels (using re-
sults from Refs. [39–41]), and teleportation stretching,
which reduces any adaptive (feedback-assisted) quantum
protocol over an arbitrary channel into a much sim-
pler block version. This latter technique is a full ex-
tension and generalization of previous approaches [42–

45] that only worked for specific classes of channels and
were designed to reduce quantum error correcting code
(QECC) protocols into entanglement distillation. With-
out doubts, the generalization to an arbitrary task over
an arbitrary quantum channel has been one of the key
insights of Ref. [10], and this has been widely exploited
in recent literature, with a number of follow-up papers in
the area of quantum Shannon theory [4] (e.g., on strong
converse rates, broadcast capacities etc.)

The core of teleportation stretching is the idea of chan-
nel simulation, where an arbitrary quantum channel is
replaced by local operations and classical communica-
tion (LOCC) applied to the input and a suitable resource
state [10, 54]. This powerful idea is rooted in the protocol
of teleportation [46, 47] and first proposed in Ref. [42],
despite originally limited to the simulation of Pauli chan-
nels [48] (see also Ref. [49]). Later, this core idea was ex-
tended to generalized teleportation protocols [44, 50] and
CV teleportation [51] in Refs. [43, 45]. The final and more
general form involves a simulation via arbitrary LOCCs,
as formulated in Ref. [10]. In particular, the simulation
of bosonic channels is typically asymptotic, which means
that they need a suitable limit over sequences of resource
states, which comes from the fact that the Choi matrices
of such channels are asymptotic states [10].

Here we consider a different type of simulation for
bosonic Gaussian channels, which is based on finite-
energy two-mode Gaussian states as recently introduced
in Ref. [52]. We use this particular simulation at the core
of teleportation stretching in order to simplify adaptive
protocols. Not only this represents an interesting novel
design (with potential applications beyond this work) but
also allows us to derive upper bounds for the secret-key
capacities of phase-insensitive Gaussian channels which
well approximate the asymptotic results of Ref. [10].

The paper is organized as follows. In Sec. II, we review
the tool of channel simulation. In Sec. III we use this tool
with teleportation stretching, deriving a new single-letter
bound for single-mode Gaussian channels. This bound is
explicitly computed in Sec. IV, where it is also compared
with the infinite-energy one of Ref. [10]. Theory is then
extended to chain of quantum repeaters in Sec. V. Fi-
nally, Sec. VI is for conclusions.
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II. SIMULATION OF BOSONIC CHANNELS

A. Preliminaries

As discussed in Ref. [10] an arbitrary quantum channel
E can be simulated by a trace-preserving LOCC T and
a suitable resource state σ, i.e.

E(ρ) = T (ρ⊗ σ) . (1)

A channel is called σ-stretchable if it has σ as a re-
source state via some LOCC simulation as in Eq. (1). An
important case is when the channel is Choi-stretchable,
which means that the resource state can be chosen to
be its Choi matrix σ = ρE := I ⊗ E(Φ), with Φ be-
ing a maximally entangled state. For a bosonic channel,
the maximally entangled state is an EPR state with infi-
nite energy, so that the Choi matrix of a bosonic channel
is energy-unbounded. For this reason one has to work
with a sequence of two-mode squeezed vacuum (TMSV)
states [5] Φµ with variance µ = n̄ + 1/2, where n̄ is the
average number of thermal photons in each mode. By
definition, the EPR state is defined as Φ := limµ Φ

µ and
the Choi matrix of a bosonic channel E is defined by

ρE := lim
µ

ρµE , ρµE = I ⊗ E(Φµ) . (2)

This means that the simulation needs to be asymptotic,
i.e., of the type

E(ρ) = lim
µ

T (ρ⊗ ρµE) . (3)

Ref. [10] identified a simple sufficient condition for a
quantum channel to be Choi-stretchable, even asymp-
totically as in Eq. (3): teleportation covariance. In the
bosonic case, a channel E is teleportation-covariant if, for
any random displacement D (as induced by CV telepor-
tation [47, 51]), we may write

E(DρD†) = V E(ρ)V †, (4)

for some unitary V . It is clear that bosonic Gaussian
channels are teleportation covariant and, therefore, Choi-
stretchable, with asymptotic simulation as in Eq. (3).

B. Simulation of Gaussian channels with

finite-energy resource states

Recently, Ref. [52] has shown that all single-mode
phase-insensitive Gaussian channels can be simulated by
applying CV teleportation to a particular class of Gaus-
sian states as resource. Consider a single-mode Gaussian
state with mean value x̄ and covariance matrix (CM)
V [5]. The action of a single-mode Gaussian channel
can be expressed in terms of the statistical moments as
follows

x̄ → Tx̄, V → TVTT +N, (5)

where T and N = NT are 2 × 2 real matrices satisfying
the conditions [5]

N = NT ≥ 0 , detN ≥ (detT− 1)2. (6)

In particular, the previous channel is called phase-
insensitive if the two matrices take the specific diagonal
forms

T =
√
ηI, N = νI (7)

where η ∈ R is a transmissivity parameter, while ν ≥ 0
represents added noise.
According to Ref. [52], a phase-insensitive Gaussian

channel Eη,ν can be simulated as follows

Eη,ν(ρ) = Tη(ρ⊗ σν), (8)

where Tη is the Braunstein-Kimble protocol with gain√
η [51, 53], and σν is a zero-mean two-mode Gaussian

state with CM

V(σν) =

(

aI cZ
cZ bI

)

, (9)

where [52]

a =
e2r − 1 + η(1 + e−2r)

e2r(η − 1) + η + 1
, b = e−2r + (1 + a) tanh r,

c = e−2r[(1 + a)(e2ra− 1) tanh r]1/2, (10)

and the entanglement parameter r ≥ 0 is connected to
the channel parameter via the relation

ν = e−2r(η + 1). (11)

III. FINITE-RESOURCE TELEPORTATION

STRETCHING OF AN ADAPTIVE PROTOCOL

Here we plug the previous finite-resource simulation
into the tool of teleportation stretching. We start by pro-
viding some necessary definitions on adaptive protocols
and secret-key capacity. Then, we review a general upper
bound (weak converse) based on the REE. Finally, fol-
lowing the recipe of Ref. [10, 54] we show how to use the
finite-resource simulation to simplify an adaptive proto-
col and reduce the REE bound to a single-letter quantity.

A. Adaptive protocols and secret-key capacity

The most general protocol for key generation is based
on adaptive LOCCs, i.e., local operations assisted by
unlimited and two-way classical communication. Each
transmission through the quantum channel is interleaved
by two of such LOCCs. The general formalism can be
found in Ref. [10] and goes as follows. Assume that two
remote users, Alice and Bob, have two local registers of
quantum systems (modes), a and b, which are in some
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fundamental state ρa ⊗ ρb. The two parties applies an
adaptive LOCC Λ0 before the first transmission.
In the first use of the channel, Alice picks a mode a1

from her register a and sends it through the channel E .
Bob gets the output mode b1 which is included in his local
register b. The parties apply another adaptive LOCC Λ1.
Then, there is the second transmission and so on. After
n uses, we have a sequence of LOCCs {Λ1,Λ1, . . . ,Λn}
characterizing the protocol L and an output state ρn

ab

which is ε-close to a target private state [56] with nRn

bits. Taking the limit of large n and optimizing over
the protocols, we define the secret-key capacity of the
channel

K(E) = sup
L

lim
n

Rn . (12)

B. General upper bound

According to Theorem 1 (weak converse) in Ref. [10],
a general upper bound for K(E) is given in terms of the
REE of the output state ρn

ab

K(E) ≤ E⋆
R(E) := sup

L
lim
n

ER(ρ
n
ab
)

n
. (13)

Recall that the REE of a state ρ is defined as ER(ρ) =
infσsep

S(ρ||σsep), where σsep is a separable state and the
relative entropy is defined by S(ρ||σsep) := Tr[ρ(log2 ρ−
log2 σsep)]. These definitions can be easily adapted for
asymptotic states of bosonic systems.
Note that the first and simplest proof of Eq. (13) can be

found in Ref. [55] (second arxiv version of Ref. [10]). In
order to avoid potential misunderstandings or misinter-
pretations of this proof, we report here the main points.
For any protocol whose output ρn

ab
is ε-close (in trace

norm) to target private with rate Rn and dimension d,
we may write

nRn ≤ ER(ρ
n
ab
) + 4ε log2 d+ 2H2(ε), (14)

whereH2 is the binary Shannon entropy. For distribution
through a discrete variable (DV) channel, whose output
is a DV state, we may write

log2 d ≤ αnRn, (15)

for some constant α (see also Eq. (21) of Ref. [55]). The
exponential scaling in Eq. (15) comes from previous re-
sults in Refs. [40, 41]. The latter showed that, for any
adaptive protocol with rate Rn, there is another protocol
with the same asymptotic rate while having an exponen-
tial scaling for d.
The extension to a CV channel is achieved by a stan-

dard argument of truncation of the output Hilbert space.
After the last LOCC Λn, Alice and Bob apply a trunca-
tion LOCC Td which maps the output state ρn

ab
into a

truncated version ρn,d
ab

= Td(ρ
n
ab
) with total dimension d.

The total protocol Td ◦ L = {Λ0,Λ1, · · · ,Λn,Td} gener-
ates an output that is ε-close to a DV private state with
nRn,d bits. Therefore, we may directly re-write Eq. (14)
as

nRn,d ≤ ER(ρ
n,d
ab

) + 4ε log2 d+ 2H2(ε). (16)

Both the output and the target are DV states, so that
we may again write Eq. (15) [57]. Because Td is a trace-
preserving LOCC, we exploit the monotonicity of the

REE ER(ρ
n,d
ab

) ≤ ER(ρ
n
ab
) and rewrite Eq. (16) as

Rn,d ≤ ER(ρ
n
ab
) + 2H2(ε)

n(1− 4αε)
. (17)

Taking the limit for large n and small ε (weak converse),
this leads to

lim
n

Rn,d ≤ lim
n

n−1ER(ρ
n
ab
). (18)

The crucial observation is that in the right-hand side of
the latter expression, there is no longer dependence on
the truncation d. Therefore, in the optimization of Rn,d

over all protocols Td ◦ L we can implicitly remove the
truncation. Pedantically, we may write

K(E) = sup
d

sup
Td◦L

lim
n

Rn,d

≤ sup
L

lim
n

n−1ER(ρ
n
ab
) := E⋆

R(E). (19)

Remark 1 Note that the truncation argument was ex-
plicitly used in Ref. [55] to extend the bound to CV chan-
nels. See discussion after Eq. (23) of Ref. [55]. There
a cut-off was introduced for the total CV Hilbert space
at the output. Under this cutoff, the derivation for DV
systems was repeated finding an upper bound which does
not depend on the truncated dimension (this was done
by using the monotonicity of the REE exactly as here).
The cutoff was then relaxed in the final expression as
above. The published version [10] includes other equiva-
lent proofs but they have been just given for completeness.

C. Simplification via teleportation stretching

One of the key insights of Ref. [10] has been the sim-
plification of the general bound in Eq. (13) to a single-
letter quantity. For bosonic Gaussian channels, this was
achieved by using teleportation stretching with asymp-
totic simulations, where a channel is reproduced by CV
teleportation over a sequence of Choi-approximating re-
source states. Here we repeat the procedure but adopt-
ing the finite-resource simulation of Ref. [52]. Recall
that, more generally and differently from previous ap-
proaches [42–45], teleportation stretching does not re-
duce a protocol into entanglement distillation but main-
tains the task of the original protocol, so that adaptive
key generation is reduced to block (non-adaptive) key
generation.
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Assume that the adaptive protocol is performed over a
phase-insensitive Gaussian channel Eη,ν , so that we may
use the simulation in Eq. (8), where Tη is the Braunstein-
Kimble protocol with gain

√
η and σν is a zero-mean

two-mode Gaussian state, specified by Eqs. (9)-(11). We
may re-organize an adaptive protocol in such a way that
each transmission through Eη,ν is replaced by its resource
state σν . At the same time, each teleportation-LOCC Tη
is included in the adaptive LOCCs of the protocol, which
are all collapsed into a single LOCC Λ̄η (trace-preserving
after averaging over all measurements). In this way, we
may decompose the output state ρn

ab
:= ρab(E⊗n

η,ν ) as

ρn
ab

:= Λ̄η(σ
⊗n
ν ) . (20)

The computation of ER(ρ
n
ab
) can now be remarkably

simplified. In fact, we may write

ER(ρ
n
ab
) = inf

σsep

S(ρn
ab
||σsep)

(1)

≤ inf
Λ̄µ(σsep)

S[Λ̄η(σ
⊗n
ν )||Λ̄η(σsep)]

(2)

≤ inf
σsep

S(σ⊗n
ν ||σsep) = ER(σ

⊗n
ν ), (21)

where: (1) we consider the fact that Λ̄η(σsep) form a sub-
set of specific separable states, and (2) we use the mono-
tonicity of the relative entropy under the trace-preserving
LOCC Λ̄η. Therefore, by replacing in Eq. (13), we get
rid of the optimization over the protocol (disappearing
with Λ̄η) and we may write

K(Eη,ν) ≤ lim
n

ER(σ
⊗n
ν )

n
:= E∞

R (σν) ≤ ER(σν) , (22)

where we use the fact that the regularized REE is less
than or equal the REE. Thus, we may write the following

Theorem 2 Consider a phase-insensitive Gaussian
channel Eη,ν , which is stretchable into a two-mode Gaus-
sian state σν as given in Eqs. (9)-(11). Its secret-key
capacity must satisfy the bound

K(Eη,ν) ≤ ER(σν) := inf
σsep

S(σν ||σsep) . (23)

Note that the new bound in Eq. (23) cannot beat the
asymptotic bound established by Ref. [10] for bosonic
channels, i.e.,

K(Eη,ν) ≤ inf
σµ
sep

lim inf
µ→+∞

S(ρµEη,ν
||σµ

sep), (24)

where ρµEη,ν
is a Choi-approximating sequence as in

Eq. (2), and σµ
sep is an arbitrary sequence of separable

states converging in trace norm. This can be seen from a
quite simple argument [60]. In fact, according to Eqs. (2)
and (8), we may write

ρµEη,ν
= I ⊗ Eη,ν(Φµ)

= I ⊗ Tη(Φµ ⊗ σν) = ∆(σν), (25)

where ∆ is a trace-preserving LOCC. Therefore,
ER(ρ

µ
Eη,ν

) ≤ ER(σν) and this relation is inherited by the

bounds above. Notwithstanding this no go for the finite-
resource simulation, we show that its performance is ex-
tremely good and well approximate the infinite-energy
bounds found via Eq. (24).

IV. FINITE-RESOURCE BOUNDS FOR PHASE

INSENSITIVE GAUSSIAN CHANNELS

We now proceed by computing the REE in Eq. (23)
for the class of phase-insensitive single-mode channels.
For this, we exploit the closed formula for the quan-
tum relative entropy between Gaussian states which has
been derived in Ref. [10] by using the Gibbs representa-
tion for Gaussian states [61]. Given two Gaussian states
ρ1(u1, V1) and ρ2(u2, V2), with respective statistical mo-
ments ui and Vi, their relative entropy is

S(ρ1||ρ2) = −Σ(V1, V1) + Σ(V1, V2) , (26)

where we have defined

Σ(V1, V2) =
ln det

(

V2 +
iΩ
2

)

+Tr(V1G2) + δTG2δ

2 ln 2
(27)

with δ = u1 − u2 and G2 = 2iΩcoth−1(2iV2Ω) [61].
The computation of the REE involves an optimization

over the set of separable states. Following the recipe
of Ref. [10] we may construct a good candidate directly
starting from the CM in Eq. (9). This separable state
has CM with the same diagonal blocks as in Eq. (9), but
where the off-diagonal term is replaced as follows

c → csep :=
√

(a− 1/2)(b− 1/2) . (28)

By using this separable state σ̃sep we may write the fur-
ther upper bound

ER(σν) ≤ Ψ(E) := S(σν ||σopt
sep ). (29)

In the following, we compute this bound for the various
types of phase-insensitive channels.

A. Thermal-loss channel

This channel can be modelled as a beam splitter of
transmissivity η where the input signals are combined
with a thermal environment such that the quadratures
transform according to x̂ → √

ηx̂ +
√
1− ηx̂th, where

x̂th are in a thermal state with n̄ photons. In terms of
the statistical moments, the action of the thermal-loss
channel Eη,n̄ can be described by the matrices in Eq. (7)
with parameter ν = (1−η)(n̄+1/2). This means that the
squeezing parameter r of the resource state now reads

r =
1

2
log

[

η + 1
(

n̄+ 1
2

)

(1− η)

]

. (30)
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By combining this relation with the ones in Eq. (10)
and computing the relative entropy, we find [63] the
finite-resource bound Ψ(Eη,n̄) which is plotted in Fig. 1
and therein compared with the infinite-energy bound
Φ(Eη,n̄) derived of Ref. [10]. The latter is given by [10]

Φ(Eη,n̄) = − log2[(1− η)ηn̄]− h(n̄), (31)

for n̄ < η/(1− η) and zero otherwise, and we set h(x) :=
(x+ 1) log2(x+ 1)− x log2 x. It is clear that we have

K(Eη,n̄) ≤ Φ(Eη,n̄) ≤ Ψ(Eη,n̄), (32)

but the two bounds are exceptionally close, especially at
high and low transmissivities.
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FIG. 1: Finite-resource bound Ψ(Eη,n̄) on the secret-key ca-
pacity of the thermal loss channel (light blue curve) as a func-
tion of the transmissivity η, compared with the infinite-energy
bound Φ(Eη,n̄) (orange curve) derived in Ref. [10]. The two
curves are plotted for n̄ = 1 thermal photons.

B. Amplifier channel

This channel is described by x̂ → √
ηx̂ +

√
η − 1x̂th,

where η > 1 is the gain and x̂th is in a thermal state
with n̄ photons. This channel Eη,n̄ is described by the
matrices in Eq. (7) with parameter ν = (η− 1)(n̄+1/2).
By repeating the previous calculations, we find [63] the
finite-resource bound Ψ(Eη,n̄) plotted in Fig. 2 and where
it is compared with the infinite-energy bound [10]

Φ(Eη,n̄) = − log2

(

ηn̄+1

η − 1

)

− h(n̄), (33)

for n̄ < (η − 1)−1 and zero otherwise. Approximation is
very good, especially at low and high gains.

C. Additive-noise Gaussian channel

Another important channel is represented by the
additive-noise Gaussian channel, which is the simplest
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FIG. 2: Finite-resource bound Ψ(Eη,n̄) on the secret-key ca-
pacity of the amplifier channel (light blue curve) as a function
of the gain η, compared with the optimal bound for infinite
energy Φ(Eη,n̄) (orange curve). The two curves are plotted
for n̄ = 1 thermal photons.

model of bosonic decoherence. In terms of the input-
output transformations, the quadratures transforms ac-
cording to x̂ → x̂+(z, z)T where z is a classical Gaussian
variable with zero mean and variance ξ ≥ 0. This channel
Eξ is described by the matrices in Eq. (7) with η = 1 and
ν = ξ. The finite-resource bound [63] Ψ(Eξ) on the secret
key capacity is plotted in Fig. 3 and compared with the
infinite-energy bound [10]

Φ(Eξ) =
ξ − 1

ln 2
− log2 ξ, (34)

for ξ < 1, while zero otherwise. As we can see the ap-
proximation is again excellent over all the range.
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FIG. 3: Finite-resource bound Ψ(Eξ) on the secret-key ca-
pacity of the additive noise channel (light blue curve) as a
function of the added noise ξ, compared with the optimal
bound for infinite energy Φ(Eξ) (orange curve).

D. Pure-loss channel

For the pure-loss channel, the upper bound derived
in the limit of infinite energy [10] coincides with the



6

lower bound computed with the reverse coherent infor-
mation [34, 35]. This means that we are able to fully char-
acterize the secret-key capacity for this specific bosonic
channel. This is also known as the Pirandola-Laurenza-
Ottaviani-Banchi (PLOB) bound [10]

K(η) = − log2(1− η) ≃ 1.44η for η ≃ 0 , (35)

and provides the fundamental rate-loss scaling of long-
distance repeaterless optical communications.
Consider now the finite-resource teleportation simula-

tion of a pure-loss channel. It is easy to check that we
cannot use the parametrization in Eq. (10). In fact, for
a pure-loss channel, we have ν = 1 − η so that Eq. (11)
provides e2r = (1 + η)/(1 − η). Replacing the latter in
Eq. (10), we easily see that we have divergences (e.g., the
denominator of a becomes zero). For the pure loss chan-
nel, we therefore use a different simulation, where the
resource state is a two-mode squeezed state with CM [62]

ση =

(

aI
√

a2 − 1/4Z
√

a2 − 1/4Z aI

)

, a =
η + 1

2(1− η)
.

(36)
By exploiting this resource state, we derive [63] the bound
Ψ(Eη) shown in Fig. 4, where it is compared with the
secret-key capacity K(η). We can see that, in this case,
the approximation is not very good.
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FIG. 4: Finite-resource bound Ψ(Eη) on the secret-key capac-
ity of the pure-loss channel (light blue curve) as a function of
the transmissivity η, compared with its secret key capacity or
PLOB bound K(η) = − log

2
(1− η) (orange curve).

V. EXTENSION TO REPEATER-ASSISTED

PRIVATE COMMUNICATION

Here we extend the previous treatment to repeater-
assisted private communication. We consider the basic
scenario where Alice a and Bob b are connected by a
chain of N quantum repeaters {r1, . . . , rN}, so that there
are a total ofN+1 quantum channels {Ei} between them.
Assume that these are phase-insensitive Gaussian chan-
nels Ei := Eηi,νi

with parameters (ηi, νi). The most gen-
eral adaptive protocol for key distribution through the
chain is described in Ref. [59] and goes as follows.

Alice, Bob and all the repeaters prepare their local reg-
isters {a, r1, . . . , rN ,b} into a global initial state ρ0 by
means of a network LOCC Λ0, where each node in the
chain applies LOs assisted by unlimited and two-way CCs
with all the other nodes. In the first transmission, Alice
pick a system a1 ∈ a and sends it to the first repeater;
after another network LOCC Λ1, the first repeater com-
municates with the second repeater; then there is another
network LOCC Λ2 and so on, until Bob is eventually
reached, which terminates the fist use of the chain.
After n uses of the chain, we have a sequence of net-

work LOCCs L defining the protocol and an output state
ρn
ab

for Alice and Bob which approximates some target
private state with nRn bits. By taking the limit for large
n and optimizing over the protocols, we define the end-
to-end or repeater-assisted secret-key capacity [59]

K({Ei}) = sup
L

lim
n

Rn . (37)

As shown in Ref. [59], we may extend the upper bound of
Eq. (13). Then, we may use teleportation stretching and
optimize over cuts of the chain, to simplify the bound to
a single-letter quantity.
The network-reduction technique of Ref. [59] can be

implemented by using the specific finite-resource simu-
lation of Eq. (8), which leads to the following possible
decompositions of the output state

ρn
ab

= Λ̄i(σ
⊗n
νi

), for any i = 1, . . . , N, (38)

where Λ̄i is a trace-preserving LOCC and σνi
is the re-

source state associated with the ith Gaussian channel.
By repeating the derivation of Ref. [59], this leads to

K({Ei}) ≤ min
i

ER(σνi
) ≤ min

i
S(σνi

||σopt
i,sep) := Ψ({Ei}) ,

(39)
where Ψ is the upper bound coming from our choice of
the separable state σopt

i,sep in the REE. This upper bound

needs to be compared with the one Φ({Ei}) obtained in
the limit of infinite energy [59].
As an example consider an additive-noise Gaussian

channel with noise variance ξ. Let us split the commu-
nication line by using N “equidistant” repeaters [64], in
such a way that each link is an additive-noise Gaussian
channel Ei with the same variance ξi = ξ/(N +1). From
Eq. (39), we derive

Ψ({Ei}) = Ψ(Eξ/(N+1)), (40)

which is plotted in Fig. 5 and compared with the corre-
sponding infinite-energy bound. As we can see the ap-
proximation is extremely good.
Similarly, consider a fiber connection with total trans-

missivity η, so that the insertion of N equidistant re-
peaters [64] creates N + 1 pure-loss channels, each with
transmissivity ηi = N+1

√
η. From Eq. (39), we find

Ψ({Ei}) = Ψ(E N+1
√
η), (41)

which is plotted in Fig. 6 and compared with the infinite-
energy bound, with not so good approximation.
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FIG. 5: Secret-key capacity of a chain of N equidistant re-
peaters creating N +1 additive-noise Gaussian channels with
variances ξi = ξ/(N + 1). We compare the finite-resource
bound (dashed) with the infinite-energy bound (solid) for dif-
ferent values of N as a function of the overall added noise of
the chain ξ.
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FIG. 6: Secret-key capacity of a chain of N equidistant re-
peaters creating N+1 pure-loss channels with transmissivities
ηi = N+1

√
η. We compare the finite-resource bound (dashed)

with the infinite-energy bound (solid) for different values of
N as a function of the overall transmissivity of the chain η.

VI. CONCLUSION

In this work we have presented a novel design for the
technique of teleportation stretching [10] for single-mode
bosonic Gaussian channels, where the core channel simu-
lation [52] is based on a finite-energy two-mode Gaussian
state processed by the Braunstein-Kimble protocol [51]
with suitable gains. Such an approach removes the need
of using an asymptotic simulation where the sequence of
states approximates the energy-unbounded Choi matrix
of a Gaussian channel, even though the infinite energy
limit remains at the level of Alice’s quantum measure-
ment which is ideally a CV Bell detection (i.e., a projec-
tion onto displaced Einstein-Podolsky-Rosen states).

By using this approach we compute the weak con-
verse bound for the secret key capacity of all phase-
insensitive single-mode Gaussian channels, which include
the thermal-loss channel, the quantum amplifier and the
additive-noise Gaussian channel. With the exception of
the pure-loss channel, we show that the bounds so de-
rived are very close to the tightest known bound estab-
lished in Ref. [10] by using asymptotic Choi matrices.
We checked that this is true not only for point-to-point
private communication but also in repeater-assisted sce-
narios where Alice and Bob are connected by a chain of
quantum repeaters. The tools developed here may have
other applications; they may be applied to multi-point
protocols [65] or to quantum metrology, e.g., to approxi-
mate the bounds for the adaptive estimation of Gaussian
channels established in Ref. [66].
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