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Stochastic phenomena in magnetic nanowires based on domain wall (DW) motion

is scientifically important thus to understand and control such behaviors are very

meaningful. Here we report on the investigation of pinning and depinning of DWs

in permalloy nanowires with six types of longitudinally asymmetric notches using

focused magneto-optic Kerr effect (FMOKE) magnetometer and magnetic force

microscopy (MFM). The hysteresis loops obtained by FMOKE indicate the gener-

ation of one or two distinct depinning fields by creating one notch close to the edge

of the nanowires, in comparison multiple depinning processes occur in the nanowires

with two identical notches symmetrically placed along the transverse direction, indi-

cating more remarkable stochastic DW depinning phenomena. The MFM images

verify the existence of DW in each type of nanowires and the DW sizes in the latter

kind of nanowires are generally larger than those in the former ones. These observa-

tions can be explained by considering the thermal perturbation and edge or surface

roughness effects in nanowires. © 2016 Author(s). All article content, except where

otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4973647]

INTRODUCTION

Precise and effective control of the domain wall (DW) motion in ferromagnetic nanostructures

can have important impacts on developing next generation magnetic devices, including magnetic

memory1 and logic components.2,3 Propagation and depinning of DW in magnetic nanowires can

be achieved using external magnetic field4,5 or spin-polarized current.6–8 In these nanostructures,

artificial defects, such as notches or protrusions9–12 can become potential pinning sites for DW

trapping. For soft magnetic nanowires, magnetic moments lie in-plane due to shape anisotropy. Thus

two basic types of DWs13,14 are identified, namely, the vortex and transverse DWs. The vortex DW

(VDW) is energetically favored in the thicker and wider magnetic nanowires,2,4 while the transverse

DW (TDW) is preferred in thinner and narrower magnetic nanowires,3 a result of the competition

between the exchange energy and the demagnetizing energy. Configuration and chiralities of DWs

aAuthors to whom correspondence should be addressed. Electronic addresses: youbiao@nju.edu.cn and jdu@nju.edu.cn
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will have a profound effect on DW dynamics, and influence the pinning and/or depinning behaviors

of DWs in response to external magnetic fields and electric currents.15–18

However, these two types domain wall structure only describes the most simplified magnetic

moment configurations. Even in well-defined magnetic nanowires or other nanostructures, there

also exist stochastic DW motion during DW nucleation, propagation, pinning and depinning pro-

cesses,5,17–19 which greatly affects the exquisite control of DW dynamics and thus DW related

spintronic devices. While the detailed mechanism of the stochastic phenomena still remains unknown,

it is suspected that they are partially due to the intrinsic nature of the travelling DW at a non-zero tem-

perature and partly due to the unavoidable defects in material, introduced during the nano-fabrication

process,18,20,21 and at surface and interface. Recently, many experimental attempts have been made to

visualize the stochastic phenomena of DW pinning-depinning by direct characterization using mag-

netic transmission soft x-ray microscopy (MTXM) techniques and so on19,22,23 or indirect probes such

as hysteresis loops and/or magnetoresistance measurements.4,5,9–11,17,24 In the literature, M. Y. Im

et al19,23 reported on the direct observation of stochastic DW depinning in permalloy nanowires with

a symmetric triangular notch along the wire (longitudinal) direction using MTXM and found that the

stochasticity depends on the wire width and the notch depth. Both W. W. Zhu et al17 and J. Brandão

et al5 observed two distinct depinning fields with a random nature using focused magneto-optic Kerr

effect (FMOKE) magnetometer in permalloy nanowires with an asymmetric triangular notch along

the longitudinal direction. In addition, Brandão et al5 further found that the occurrence probabilities

of these two depinning fields depended strongly on the degree of notch asymmetry, which can be

modified by the outgoing angle (see the definition in Ref. 5) of the notch, and one of the depinning

field is found to dominate over the other when the notch shape becomes more asymmetric. These

studies hint that purposely introducing notch shape asymmetry may reduce the selectivity of the DW

pinned around the notch and thus effectively suppress the stochasticity of DW depinning.

In this work, we investigated the pinning and depinning processes of DWs in permalloy nanowires

with pre-fabricated six different types of notches by FMOKE and magnetic force microscopy (MFM).

All of the notches are asymmetric in the longitudinal direction, in addition half of them are also

asymmetric in the transverse direction (perpendicular to the nanowire and in-plane as well). By

comparing the FMOKE and MFM results in these nanowires, we show the influence of the transverse

asymmetry of the notch on the DW depinning behavior and identify which type of notch is most

suitable to suppress the stochasticity of DW depinning.

EXPERIMENTS

A series of permalloy nanowires with various types of inward notches were fabricated on the

thermally oxidized Si substrates by electron-beam lithography followed by dc magnetron sputtering

and lift-off. The stacking structure of these nanowires is Ta(2 nm)/Fe19Ni81(25 nm)/Ta(3 nm). The

bottom Ta film is the seed layer to improve the permalloy crystalline quality and the top Ta film

is protective capping layer. Figure 1(a) show the scanning electron microscope (SEM) image of a

representative nanowire with a triangular notch roughly situated in the middle of the nanowire. The

length of the nanowire is about 23 µm. The elliptic part located at the left end of the nanowire is for

DW nucleation and injection, and the tip part located at the right end is used to prevent the formation

of undesired DWs.17 The widths of the left and right arms are 1 µm and 0.6 µm, respectively. The

other five nanowires were designed with identical nucleation pad, notch length, left and right arms but

different notches. All six types of nanowires were fabricated under identical conditions. Figure 1(b)

shows the enlarged pictures of all these six types of notches used in this experiment. Left column

contains the triangular, trapezoidal and irregularly-quadrangular notch patterned on one side of the

nanowire and close to the edge, while in right column each contains two identical notches patterned

on both sides of a nanowire and is transversely symmetric. Note that for the two patterns in the same

row as shown in Fig. 1(b), the notches have similar shape but the right one has smaller depth than

the left one. For simplicity, these notch types are denoted as type a, b and c for the left column, and

a′, b′ and c′ for the right column, respectively. It should also be noted that the lateral length and

width of the narrowest part for each type of notch are designed identically to be 2 µm and 0.2 µm,

respectively. Therefore, along the longitudinal direction, all the six types of notches are asymmetric
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FIG. 1. SEM images of (a) Entire permalloy nanowire with one triangular inward notch, and (b) enlarged six types of notch

structures.

in shape. Nevertheless, in the transverse direction, type a, b and c notches are asymmetric while type

a′, b′ and c′ notches are symmetric. These different shaped notches will have significant influences

on the pinning and depinning behaviors of DWs in the nanowires, which will be addressed in the

following.

Magnetic hysteresis (M-H) loops of all the nanowire samples were recorded at room temperature

by a high sensitive FMOKE (NanoMOKE III, Durham Magneto Optics Ltd.) with a focused laser

spot of 30 µm in diameter, which can cover the entire region of a single nanowire. During the loop

measurement, the magnetic field was applied in the film plane and parallel to the longitudinal direction.

Each loop is obtained by averaging over 100∼150 single-shot measurements to assure a high signal-

to-noise ratio. To confirm that the DW does exist in the nanowire and can be pinned at notches,

magnetic force microscopy (MFM, Bruker Dimension Icon) was operated at room temperature on

all the nanowires. Detailed description on the FMOKE and MFM measurements can be referred to

our previous reports.24

RESULTS AND DISCUSSION

Figure 2 are the measured M-H loops for all six nanowire samples with different types of

notches imaged as shown in Fig. 1(b). The loops match their notch type notations shown in Fig. 2.

From general comparison one can easily find out that the three hysteresis loops in the left column

have obvious jumps at the ascending or descending branch, while those in the right column have more

gradual changing branches. These contrastive results are originated from distinctly different reversal

processes in the nanowires with different types of notches, which will be explained in the following.

The M-H loop for a nanowire with ‘type a’ notch is shown in Fig. 2(a), in which two abrupt

jumps can be seen clearly in the ascending or the descending branch. Next we will use the descending

branch as example to discuss how the loop is formed. Firstly, all the magnetic moments in the nanowire

align in the positive direction under a saturation field of Ha = 320 Oe. Here Ha denotes the applied

magnetic field during the M-H loop measurement. When Ha decreases from maximum to zero and

then increases in magnitude along the negative direction, a DW initially nucleated at the elliptic

portion propagates along the left arm and then is pinned at the notch to create the first jump at

Ha = -68 Oe. With increasing Ha in the negative direction, the DW can remain being pinned close to

notch until Ha reaches -153 Oe, where the DW got depinned from the notch, displaying the second

abrupt jump in the loop descending branch. Similar reversal process can be also observed in the

ascending branch with slightly different pining or depinning fields, which may be caused by artificial

effects been discussed in our previous report.24 It is worth noting that the M-H loop is obtained by

averaging over 100∼150 single-shot loops, so the drastic jumps indicate that the pinning or depinning

fields achieved by single-shots have good repeatability. For this nanowire with the width of the right

arm around 600 nm, there is only one depinning field in the reversal process. When the width of right
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FIG. 2. The M-H loops obtained by FMOKE for all the nanowires with different types of notches. The arrows indicate the

pinning and/or the depinning fields.

arm decreases to be between 200 nm and 500 nm, two distinct depinning fields can be observed in a

random nature, showing the stochastic depinning phenomenon.24

In contrast to the ‘type a’ notch, the M-H loop will change significantly if the notch is ‘type a′’, as

displayed in Fig. 2(a′). The descending (ascending) branch in Fig. 2(a′) shows only one abrupt jump

at Ha = -75 Oe (75 Oe), followed by gradual changes until reaches saturation. Such a loop indicates

that during the reversal process the pining field is confined to be around 75 Oe, whereas the depinning

field can be distributed in between 75 Oe and 160 Oe. This dispersed distribution of depinning field

can be verified by the scattered single-shot loops observed in the FMOKE measurements (not shown

here), which demonstrates that the stochastic depinning is remarkable if the notch-shape becomes

symmetric in the transverse direction. Similar phenomena of stochastic DW depinning can be also

found by comparing the M-H loops for the nanowires with ‘types b’ and ‘type b′’ (or ‘types c’ and

‘type c′’), as shown in Figs. 2(b) and 2(b′) (or Figs. 2(c) and 2(c′)). In addition to the depinning

process, there are two other important phenomena needed to be emphasized here. First, Fig. 2(b)

shows a similar loop for the nanowire with one trapezoidal notch to that in Fig. 2(a). L. K. Bogart et

al4 has reported that the depinning field is insensitive to the notch geometry no matter that the notch

is triangular or rectangular in shape. Similar to their results, there is only slight difference (∼15 Oe) in

depinning field by comparing the loops in Fig. 2(a) and Fig. 2(b). As for the more obviously different

pinning fields for these two nanowires (the difference is 28 Oe and 39 Oe for the descending and

ascending branches, respectively), it may be due to structural defects, edges/surface roughness or

some other artificial effects.24 Secondly, as for the ‘types c’ notch, there are three abrupt jumps at

both the descending and the ascending branches, indicating the existence of one pinning field and two

depinning fields. The appearance of two depinning fields for the ‘types c’ notch may be due to the

fact that the clockwise VDW and the counter-clockwise VDW can be pinned stochastically around

the notch with different probabilities.2,4 However, if this kind of notch changes from a ‘types c’ to

‘types c′’ by removing the transverse asymmetry, the stochastic phenomena becomes more prominent

with a wider-range distribution of the depinning fields, similar to the comparative results between

‘types a’ and ‘type a′’ or between ‘types b’ and ‘type b′’.
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Up to now the spin structure of the DW pinned at the notch can be characterized via MFM,1,3,15,25

Lorentz microscopy4 or magnetic transmission soft x-ray microscopy.19,22,23 In the present work, in

order to understand the above phenomena deeper, MFM was performed on all the permalloy nanowire

samples at room temperature with a fine tip magnetized along its axis, which can illustrate the stray

field distribution of each nanowire through the contrast difference in the MFM image. For all the

measurements, the tip is perpendicular to the film plane and magnetized with a north pole at its

end. Under such circumstance, the bright (dark) contrast indicates that the detection region repulses

(attracts) the magnetic tip, suggesting north (south) pole-like.

Figure 3(a) shows the MFM image for the nanowire with one triangular notch (‘type a’) at

the remanence state after applying a positive saturation field (320 Oe) along the nanowire and then

removed shortly. The left and the right sides of the triangle notch are bright (north pole) and dark

(south pole) respectively, while the contrast for the right end of the nanowire is bright. These results

demonstrate that almost all the moments of the left and right arm are aligned along the positive direc-

tion and the different contrasts are resulted from stray fields produced by the notch, right end and

roughness/defects of the NW. According to the FMOKE results as shown in Fig. 2(a), if Ha is in the

range of the plateau, in between -68 Oe and -153 Oe, a DW will be pinned by the notch. Therefore,

to verify the existence of the pinned DW, a reversal magnetic field of -100 Oe was applied along the

nanowire and then removed after the total moments of the nanowire were positively saturated. Then

the MFM image was recorded as shown in Fig. 3(b), in which the contrast of the right arm keeps

unchanged while that of the notch left-side turns to dark. It indicates that the moments of the right

arm still align along the positive direction while those in the left arm reverse to the negative direc-

tion, meaning that a DW pinned around the notch left-side. From the contrastive images shown in

Figs. 3(a) and 3(b), it can be concluded that the MFM images taken under proper Ha can unam-

biguously demonstrate the existence of a pinned DW. Moreover, the DW’s position and size can be

also estimated from the contrast coverage around the notch left-side in the MFM image shown in

Fig. 3 (b).

With the same operation as that performed on the nanowire with ‘type a’ notch, the existence of

a DW can be also verified for all of the other five nanowires by the MFM. In order to facilitate the

comparison of DW distribution for all the nanowires, the corresponding MFM images are lined up in

Fig. 4, which are recorded following the same protocol as that used to obtain the image in Fig. 3(b).

Figs. 4(a) and 4(a’) show that the dark contrast coverage around the notch left-side with ‘type a′’

notch is significantly larger than that with ‘type a’ notch. Similar phenomenon is also significant for

‘type c’ and ‘type c′’ notches and not too obvious for ‘type b’ and ‘type b′’ notches. From the above

comparison for the present nanowires, one can draw the conclusion that the size of the pinned DW

with symmetric notch is generally larger than that with asymmetric notch in the transverse direction

no matter that the notch shape is triangular, trapezoidal or irregularly-quadrangular.

According to the contrastive FMOKE and MFM results discussed above, one can conclude that

the stochastic DW depinning becomes more prominent with a wide-range distribution of depinning

fields and meantime the DW size increases with removing the transverse asymmetry of the notch.

These two interesting phenomena seem to be related to each other. T. J. Hayward18 reported that the

thermal perturbations could have significant influences on the DW’s magnetization dynamics and then

affect the structure and position of DW during the propagation and pinning processes. Furthermore,

FIG. 3. The MFM images obtained at the remanent states after saturation in the positive direction (a), and after applying a

reversal field of -100 Oe and removed shortly (b) by using the same magnetized tip on the nanowire with ‘type a’ notch.
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FIG. 4. The MFM images obtained under the same condition as that in Fig. 3(b) for all the nanowires with different types of

notches. The blue dash lines are guides to eyes.

the edge or surface roughness will enhance the thermally-induced uncertainty. Besides, C. Wuth et

al20 provided some experimental evidences that the configuration of a DW may become thermally

activated during depinning caused by the notches. Therefore, the stochastic phenomena occurring

at different stages of DW motion, especially at the DW depinning process, are affected inevitably

by the thermal perturbation, edge/surface roughness or defects along the nanowires and some other

extrinsic factors. According to the MFM images taken for the present nanowires, the DW size for the

transversely symmetric notch is generally larger than that for the asymmetric notch with the similar

notch shape. We speculate that the spin structure in the former is more complex than that in the latter,

which causes the DW depinning to depend more strongly on the extrinsic factors mentioned above

and results in more prominent stochasticity in the DW depinning process. Finally, it is noted that only

one depinning field could be observed for the permalloy nanowire with one triangular or trapezoidal

notch, which may be due to that only one type of DW (e.g. clockwise VDW) can survive during the

DW depinning process in these two cases. Therefore, after comparing the nanowires with other four

types of notches, it can be concluded that these two cases, i.e. the nanowire with one triangular or

trapezoidal notch, are the best choices for suppressing the stochastic DW depinning phenomenon.

CONCLUSIONS

In summary, we have performed FMOKE and MFM measurements on permalloy nanowires

with six types of notches to investigate the stochastic DW depinning phenomenon. Although all the

types of notches are asymmetric in the longitudinal direction, the experimental results unambiguously

demonstrate that the stochastic phenomena are more prominent in the nanowires with transversely

symmetric notches, accompanied with increased DW sizes. This may be resulted from more sensitive
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influence by the thermal perturbation, edge or surface roughness and some other extrinsic factors. It

is worth mentioning that two types of permalloy nanowires, the triangular or trapezoidal notch, close

to the edge can effectively suppress the stochasticity during DW depinning, which can greatly help

the designing of DW related spintronic devices with high stability and repeatability.
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22 G. Meier, M. Bolte, R. Eiselt, B. Krüger, D.-H. Kim, and P. Fischer, Phys. Rev. Lett. 98, 187202 (2007).
23 M. Y. Im, L. Bocklage, G. Meier, and P. Fischer, J. Phys. Condens. Matt. 24, 024203 (2012).
24 Y. Gao, B. You, X. Z. Ruan, M. Y. Liu, H. L. Yang, Q. F. Zhan, Z. Li, N. Lei, W. S. Zhao, D. F. Pan, J. G. Wan, J. Wu,

H. Q. Tu, J. Wang, W. Zhang, Y. B. Xu, and J. Du, Sci. Rep. 6, 32617 (2016).
25 S. Goolaup, M. Ramu, C. Murapaka, and W. S. Lew, Sci. Rep. 5, 9603 (2015).


