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Abstract 

We recently reported the photodynamic inactivation (PDI) of bacteriophage MS2 with a 

photosensitiser- 5, 10, 15, 20-tetrakis (1-methyl-4-pyridinio) porphyrin- tetra- p-toluene 

sulfonate (TMPyP) in solution and concluded that the A-protein of the virus is the main 

target of inactivation. Here, we have extended these studies and carried out PDI of 

bacteriophage Qɴ, bovine enterovirus 2 (BEV-2) and type 1 murine norovirus (MNV-1). The 

rate of inactivation observed was in the order M“Ϯ х Qɴ х MNV-1 > BEV-2.  Data suggested 

that TMPyP-treatment could also target the viral genome as well as result in 

disintegration/disassembly of viral particles. Although emergence of viral drug resistance is 

a well-documented phenomenon, it was not possible to generate PDI-resistant MS2. 

However, emergence of a mutation in the lysis protein was detected after serial exposure to 

PDI. 
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1. Introduction  

Photodynamic inactivation (PDI) of viruses has been shown to be a promising alternative 

antiviral strategy  (Casteel et al., 2004, Pecson et al., 2012, Silverman et al., 2013, Wainwright, 

2004, Costa et al., 2009, Costa et al., 2008, Costa et al., 2010). It is believed that Singlet oxygen 

and related reactive oxygen species (ROS) are responsible for the photodynamic inactivation 

of viruses (Costa et al., 2013). Among biomolecules, proteins have the highest bimolecular 

rate constant of singlet oxygen mediated oxidation (105 to 109 M-1 S-1) followed by RNA (104 

to 106 M-1 S-1) (Davies, 2003, Cho et al., 2010). Singlet oxygen and other ROS can only cause 

damage to molecules in close proximity because of their high reactivity and short half-life 

(Costa et al., 2013). Therefore, capsid proteins including host recognition proteins are 

immediate targets of singlet oxygen mediated oxidation in non-enveloped viruses, while 

envelope glycoproteins, including host-recognition proteins, are potential targets of singlet 

oxygen oxidation in enveloped viruses. In some cases, these proteins also act as host-

recognition proteins. However, capsid breathing of some non-enveloped viruses could allow 

small molecules into the capsid  (Dedeo et al., 2010, Valegård et al., 1990, Adeyemi et al., 

2017, Bothner et al., 2005, Jaegle et al., 1988, Jimenez-Clavero et al., 2000, Lewis et al., 1998, 

Pulli et al., 1998). This means that the viral genome could also be a target of PDI. Singlet 

oxygen can interact with potential targets either by physical quenching (which is only 

observed in tryptophan) and/or by chemical modification, which is observed in almost all 

amino acids. The chemical modification usually results in irreversible changes in amino acids 

with tryptophan, histidine, methionine, cysteine and tyrosine being most susceptible to 

singlet oxygen oxidation (Davies, 2003). 
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RNA viruses have high mutation rates that increases diversity within their populations and 

provides an enabling environment for adaptation (Duffy et al., 2008, Lauring et al., 2013, 

Domingo et al., 1996, Sanjuan et al., 2010, Irwin et al., 2016). Studies have reported on the 

emergence of resistant viruses upon continuous administration of antiviral drugs and 

exposure to common water disinfectants e.g. resistance of HIV to antiretroviral drugs (Hué et 

al., 2009), influenza virus to oseltamivir (Foll et al., 2014), hepatitis C virus to ribavirin 

(Feigelstock et al., 2011), bacteriophage MS2 and human echovirus 11 to chlorine dioxide 

(ClO2) (Zhong et al., 2016, Zhong et al., 2017), poliovirus and bacteriophage F116 to free 

chlorine (Bates et al., 1977b, Payment et al., 1985) and human echovirus 11 to Ultraviolet C 

(UVC) (Carratalà et al., 2017).  

Previously, we reported that a minimum dose of 0.2 µM TMPyP in solution under light (32 

mW cm-2) inactivated MS2 within one minute (Majiya et al., 2017). We also showed that the 

A-protein of MS2 was the PDI target and aggregation of the viral particles after sixty minutes 

of PDI treatment (Majiya et al., 2018). Although MS2 remains a useful and relevant virus for 

study, it is also necessary to investigate human (or closely related animal) viruses to accurately 

model inactivation of human viruses under relevant experimental conditions. A total of four 

non-enveloped, single strand positive sense RNA viruses were studied here (i.e. 

ďĂĐƚĞƌŝŽƉŚĂŐĞƐ M“Ϯ ĂŶĚ Qɴ͕ ďovine enterovirus type-2 (BEV-2) and type 1 murine norovirus 

(MNV-1)). Common among these viruses are 27-35 nm icosahedral capsids that include the 

most susceptible residues to ROS- mediated oxidation (Figure 1A), thereby making the viral 

capsids possible PDI targets. 

The MS2 capsid is made up of 178 copies of the coat protein (13.7 KDa) and one copy of the 

maturation or A-protein with which it binds the host bacterial pilus during infection (44 KDa) 
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(Dai et al., 2017, Koning et al., 2016). After-replication and assembly, the lysis protein allows 

the release of progeny virions from the infected cell (Walderich et al., 1988). TŚĞ ĐĂƉƐŝĚ ŽĨ Qɴ 

is also composed of 178 copies of coat protein (13.7 KDa) and one copy of maturation protein 

(referred to as the A2-protein) which participates in host bacteria cell recognition and 

attachment to the bacterial pilus during infection (Gorzelnik et al., 2016). However, unlike 

MS2, It has been shown that coat protein subunits of Qɴ are linked by disulphide bonds to 

form covalent pentamers and hexamers (Takamatsu and Iso, 1982). The capsid of BEV-2 

comprises 60 copies each of VP1 (34 KDa), VP2 (29 KDa), VP3 (27 KDa) and VP4 (7 KDa) (Smyth 

et al., 1995, Goens et al., 2004). VP1, VP2 and VP3 are exposed on the surface of the capsid 

while VP4 is internal and myristylated at its N-terminal residue (Kaminaka et al., 1999, Smyth 

et al., 1995). The host attachment sites of BEV-2 are on the surface ridge, analogous to the 

canyon described in polioviruses and rhinoviruses (Smyth et al., 1995). MNV-1 capsids are 

formed from 180 copies of VP1 together with a small, but uncharacterised number of VP2 

proteins. Each copy of VP1 is divided into an N-terminal arm (N), a shell (S), and C-terminal 

protruding (P) domain (Taube et al., 2010, Katpally et al., 2010). The S and P domains are 

connected by a short hinge. The P domain forms arch-like dimers protruding from the capsid 

surface. It is subdivided into P1 (stem of the arch) and P2 (top of the arch) domains (Taube et 

al., 2010).  

To date, although there are several studies on the adaptation of viruses to antiviral drugs and 

disinfectants as well as the adaptation of gram-positive and gram-negative bacteria to sub-

lethal PDI conditions (Amin et al., 2016, Cassidy et al., 2010, Giuliani et al., 2010, 

Pourhajibagher et al., 2016a, Pourhajibagher et al., 2016b, Tavares et al., 2010, Zhang et al., 

2014), there are few reports on viral adaptation to PDI-treatment (Costa et al., 2011). There 
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is therefore a need for investigations of viral adaptation to PDI to inform decision, choice and 

design of PDI as an alternative antiviral agent. 

In this work, PDI-treatment of Qɴ, MNV-1 and BEV-2 were investigated using TMPyP in 

solution, while adaptation of MS2 to PDI was investigated at sub-lethal doses. Additionally, 

effects of PDI-treatment on encapsidated viral RNA was investigated using MNV-1. 
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2. Material and methods 

2.1 Light source, photosensitiser-TMPyP and conditions for PDI 

A Schott KL 2500 LCD (Schott Ltd., Stafford, UK), which provides a cool white light in the visible 

region of the spectrum (Figure 1B) was applied as the light source for the PDI experiments. 

The spectral properties of the light source was determined using a QE Pro, high sensitivity 

spectrometer, (Ocean Optics, USA). Fluence rates of illumination during photoinactivation 

experiments were measured using a light meter (Clas Ohlson, UK). Photosensitiser-TMPyP 

which has peak absorption within the visible region of the spectrum (Figure 1C) was 

purchased without further purification from Sigma Aldrich. Absorption spectra of TMPyP in 

phosphate buffered saline (PBS) (10 mM Na2HPO4, 1.8 mM KH2PO4, 137 mM NaCl, and 2.7 

mM KCl) was determined using a NanoDrop 2000C micro-spectrometer (Thermo Scientific) at 

20-22 oC under aerobic conditions and a light intensity of 32 mW cm-2. 

2.2 Virus strains and their host cells  

Stocks of bacteriophage MS2 and Qɴ and their E. coli host cells were a gift from Prof. P. 

Stockley University of Leeds, UK. Bovine enterovirus 2 (BEV-2) were provided by Prof. D. 

Rowlands, University of Leeds, UK. The murine norovirus (MNV-1), RAW 264.7 cells and rabbit 

anti-MNV capsid protein (VP1) polyclonal antibodies used in this study were kindly provided 

by Prof. I. Clarke (University of Southampton, UK). BL21 E. coli and BHK-21 cells were from 

standard laboratory stocks and rabbit anti-MS2 virus polyclonal antibodies were sourced 

commercially from Genscript, USA.  
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2.3 Propagation ĂŶĚ ƉƵƌŝĨŝĐĂƚŝŽŶ ŽĨ ďĂĐƚĞƌŝŽƉŚĂŐĞƐ MSϮ ĂŶĚ Qɴ 

The bacteriophages M“Ϯ ĂŶĚ Qɴ ǁĞƌĞ ƉƌŽƉĂŐĂƚĞĚ in E. coli and purified as previously 

described (Majiya et al., 2018). 

2.4 Propagation and purification of BEV-2 

BHK-21 cells were grown to 80-90% confluence according to standard procedures. Cells were 

infected with BEV-2 and incubated at 37 oC under 5% CO2 for 48 hours. Cells were lysed by 

freeze-thaw cycles and clarified by centrifugation at 1,431 xg for 10 minutes. Virus particles 

in the supernatant were precipitated using 50% (v/v) saturated ammonium sulphate at 4 oC 

overnight. The precipitate was pelleted by centrifugation at 1,430 xg for 30 minutes and re-

suspended in 10 ml PBS. Following a clarification step by centrifugation at 1,430 x g for 10 

minutes, supernatant was concentrated through a 30% (w/v) sucrose cushion by 

ultracentrifugation at 175,000x g for 3 hours using a Beckman SW 32 Ti rotor. The pellet was 

re-suspended in PBS and the virus purified through a 15ʹ45% (w/v) sucrose gradient by 

ultracentrifugation at 160,000 x g for 2 hours using a Beckman SW 40 Ti rotor. Gradient 

fractions were collected from top to bottom and virus peak fractions were determined by 

SDS-PAGE (Weber and Osborn, 1969) followed by western blotting (Liu et al., 2014) using 

standard protocols. 

2.5 Propagation and purification of MNV-1 

RAW 264.7 cells were grown to 70-80% confluence according to standard procedures. Cells 

were infected with MNV-1 and incubated at 37 oC under 5% CO2 for 72 hours. Cells were lysed 

by freeze-thaw cycles and clarified three times by centrifugation at 1,431 xg for 10 minutes. 

The supernatant was harvested and virus particles concentrated through a 30% (w/v) sucrose 

cushion by ultracentrifugation at 175,000 xg for 3 hours using a Beckmann SW 32 Ti rotor. 
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The supernatant was discarded and pellet re-suspended in PBS. Re-suspended pellet was 

clarified by centrifugation at 13,000 rpm for 10 minutes and purified through a 15-60% 

sucrose gradient by ultracentrifugation at 300,000 xg for 50 minutes using a Beckmann SW 

55 Ti rotor. Gradient fractions were collected from top to bottom and virus peak fractions 

were determined by SDS-PAGE (Weber and Osborn, 1969) followed by immunoblotting 

against anti-MNV-1 VP1 using standard protocols (Liu et al., 2014). 

2.6 Photodynamic inactivation (PDI) of viruses  

A range of concentrations of TMPyP from 0.5 µM to 50 µM was applied at a light intensity of 

32 mW cm-2 for durations of illumination ranging from 10 seconds to 120 minutes. As controls, 

a dark experiment (D) was carried out in the presence of photosensitizer but without 

ŝůůƵŵŝŶĂƚŝŽŶ͕ ǁŚŝůĞ ͞nŽ ƐĞŶƐŝƚŝƐĞƌ͟ ;N“Ϳ ĞǆƉĞƌŝŵĞŶƚƐ ǁĞƌĞ ĞǆƉŽƐĞĚ ƚŽ ůŝŐŚƚ ďƵƚ ŝŶ ƚŚĞ ĂďƐĞŶĐĞ 

of photosensitiser. All experiments were repeated in triplicate. 

2.7 RNA transfection 

To assess the effect of PDI on the MNV genome, the RNA of TMPyP-treated MNV samples 

were extracted and purified using commercial Direct-Zol Miniprep Plus kits. Purified RNA was 

transfected into BHK-21 cells using Lipofectin reagent according to the recommended 

protocol. Transfected cells were incubated at 37oC under 5% CO2 for 48 hours. 

2.8 Virus titration assays 

To determine titre of ďĂĐƚĞƌŝŽƉŚĂŐĞƐ M“Ϯ ĂŶĚ Qɴ, double layer agar plaque assays were 

undertaken according to standard methods (Kropinski et al., 2009). To determine titre of BEV-

2, virus titres were determined by plaque assays were also used according to standard 



10 
 

procedures (Dulbecco and Vogt, 1954), while MNV titres were determined by TCID50 assays 

(Reed and Muench, 1938).  

2.9 Transmission electron microscopy 

TMPyP-treated and non-treated samples were each dialysed into buffer (10 mM Hepes, 100 

mM NaCl, 1.27 mM EDTA). Sample dialysates were negatively stained with 1% (w/v) uranium 

acetate and analysed by transmission electron microscopy according to standard methods 

(Humphrey, 2008, Stonehouse and Stockley, 1993). 

2.10 MS2 PDI and evolution experiment  

Our previously used and reported  PDI conditions of 0.5 µM TMPyP, 32 mW cm-2 and 30 sec 

illumination at 32 mW cm-2 which resulted to reductions of 4 log PFU/ml of MS2 from an initial 

titre of 9.6 log PFU/ml was used to select about 5 log PFU/ml of the MS2 populations still 

viable (Majiya et al., 2017). In order to test whether MS2 could evolve into PDI-resistant MS2, 

the viable populations were selected and then subjected to repeated cycles of same PDI 

conditions until the 10th cycle. After each treatment cycle, virus titres were determined by 

double layer agar plaque assays before and after TMPyP PDI-treatment.  

2.11 Viral genome extraction and sequencing 

In order to identify genetic changes, viral RNA was extracted and purified using Direct-Zol 

Miniprep Plus kits. Purified RNA genome was reverse-transcribed into cDNA using the 

SuperScript II commercial kit according to ŵĂŶƵĨĂĐƚƵƌĞƌ͛Ɛ protocol. The cDNA was amplified 

by PCR using high fidelity Phusion® DNA polymerase (New England Biolab, UK) with a set 

primer of forward and reverse primers that covered the full genome of MS2. PCR products 

were purified using a Qiagen DNA gel extraction kit according to manufacturer͛s protocol and 

sequenced using genomic primers. PCR products were cloned into transient vector, pCRBlunt 
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;TŚĞƌŵŽ ĨŝƐŚĞƌ “ĐŝĞŶƚŝĨŝĐ͕ U“AͿ ĂĐĐŽƌĚŝŶŐ ƚŽ ŵĂŶƵĨĂĐƚƵƌĞƌ͛Ɛ ƉƌŽƚŽĐŽů. Plasmid was 

transformed into DH5ɲ E. coli cells and propagated in the presence of kanamycin. Colonies 

were screened for inserts by diagnostic digest using restriction-enzyme, EcoRI (New England 

Biologicals #3101). Positive colonies that contained the cloned inserts were sequenced using 

genomic primers. Primer sequences are available on request. 

 

 Results  

 

3.1 Abundance of PDI-susceptible residues on viral capsids  

PDI is a promising alternative antiviral strategy against enveloped (Käsermann and Kempf, 

1997) and non-enveloped viruses (Silverman et al., 2013). Studies have suggested that 

amongst the amino acids, tryptophan, histidine, methionine, cysteine and tyrosine are most 

susceptible to singlet oxygen mediated oxidation under physiological pH conditions (Davies, 

2003, Wilkinson et al., 1995, Gracanin et al., 2007). However, the abundance of these amino 

acids varies among viral capsid proteins. We therefore speculated that virus susceptibility to 

TMPyP-PDI may be a function of the abundance of these residues on the viral capsid as well 

as the singlet oxygen-accessibility to these residues. Estimating the abundance of these 

susceptible residues on the capsids of the viruses studied here, showed that MNV-1, MS2, 

BEV-2 and bĂĐƚĞƌŝŽƉŚĂŐĞ Qɴ possessed these susceptible amino acids in varying abundance 

(Figure 1A). 
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Figure 1: Spectral properties of PDI light source and absorption spectra of TMPyP, and 

amino acids most susceptible to singlet oxygen mediated oxidation among model viruses.  
(A) Percentage of the capsid protein residues that are most susceptible to PDI among the 
icosahedral viruses studied. Reference sequences of bacteriophages MS2 (NC_001417.2), and 
Qɴ ;AYϬϵϵϭϭϰ͘ϭͿ͕ MNV-1 (KR349276.1) and BEV-2 (AY508697.1) were accessed from the NCBI 
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genebank and assessed for abundance of tryptophan, histidine, methionine, cysteine and 
tyrosine within the capsid region. Figure also shows the percentage abundance of a 
combination of all five amino acids susceptible to singlet oxygen mediated oxidation. (B), light 
spectra of our PDI light source (Schott KL 2500 LCD, Schott Ltd., UK). The PDI light source 
spectra (400 nm ʹ 786 nm) showed that this mainly emitted visible light including some near 
infrared. The spectral peak is between 641 nm - 661 nm; (C), absorption spectra of the 
photosensitiser-TMPyP used for PDI of the viruses. The absorption peak of TMPyP is 422 nm. 
The TMPyP chemical structure was from ChemACX.com, ChemDraw Pro 13.0.  
 

3.2 PDI-treatment of Phage Qɴ, BEV-2 and MNV-1  

Previously, we showed that 0.5 µM TMPyP solution under illumination with light intensity of 

32 mW cm-2 caused complete inactivation of MS2 within 1 min (Majiya et al., 2017). Using 

these and other PDI conditions, we investigated the PDI of representative icosahedral viruses 

of the families Leviviridae ;Qɴ), Picornaviridae (BEV-2) and Caliciviridae (MNV-1) as virus 

models to investigate mechanisms of PDI in non-enveloped viruses. Prior to PDI-treatment, 

the viruses were purified to prevent interference in PDI due to impurities that could quench 

the singlet oxygen (and other ROS) generated. In order to investigate PDI-inactivation of the 

viruses over time, purified virus samples were treated with up to 10 µM TMPyP and 32 mW 

cm-2 light. Our data suggested that the complete ŝŶĂĐƚŝǀĂƚŝŽŶ ŽĨ Qɴ ŽĐĐƵƌƌĞĚ ĂĨƚĞƌ ϴ ŵŝŶƵƚĞƐ 

(Figure 2A). Some reduction in titre of MNV and BEV was observed but with much higher 

concentrations of TMPyP and for longer time periods (up to 120 minutes) (Figure 2B and C).  
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Figure 2: PDI of icosahedral viruses over time. The samples were and illuminated at 32 mW 
cm-2. The figure shows PDI kinetics of (A), Qɴ Virus samples treated with 0.5 µM TMPyP; (B), 
MNV-1 treated with 5 µM and 10 µM TMPyP; (C), BEV-2 treated with 5 µM and 10 µM TMPyP.  
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The dark controls were treated with the concentration of photosensitiser shown but not 
illuminated whilst no photosensitiser controls (NS) were illuminated without photosensitiser 
present. n = 3 ± S.D.  

 

3.3 Effects of TMPyP-PDI on capsid integrity 

Previously, we showed that TMPyP-PDI may affect the integrity of the MS2 capsid and may 

result in aggregation of viral particles (Majiya et al., 2018). We therefore sought to investigate 

the structural effects of TMPyP PDI-treatment on the capsid integrity of other viruses using 

negative stain electron microscopy. Purified samples of Qɴ͕ MNV-1 and BEV-2 were treated 

with 50 µM TMPyP for a range of durations from 1 minute to 60 minutes. Treated virus 

samples were negatively stained and viewed by TEM (Figure 3).  
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Figure 3: TEM of PDI treated model viruses with 50 µM TMPyP in solution.  Samples of Qɴ͕ 
MNV-1 and BEV-2 were purified through sucrose gradients and dialysed into TEM buffer as 
described in Methods. Dialysed virus samples were treated with 50 µM TMPyP and 
illuminated at 32 mW cm-2 for a range of durations from 1 minute to 60 minutes. As controls, 
͞DĂƌŬ ĞǆƉĞƌŝŵĞŶƚƐ͟ ǁĞƌĞ ĂůƐŽ ƚƌĞĂƚĞĚ ǁŝƚŚ 50 µM TMPyP but incubated for 60 minutes. 
Treated samples were immediately stained with 1% (w/v) uranyl acetate and visualised by 
TEM. Figure shows negatively stained TEM micrographs of Qɴ͕ BEV-2 and MNV-1, 
respectively. Sample treatments are indicated on the right-hand panel. Scale bars are shown 
underneath each micrograph column. 
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Unlike previously reported aggregation of MS2 (Majiya et al., 2018)͕ Qɴ ĂŶĚ BEV-2 did not 

show evidence of aggregation post- TMPyP PDI-treatment for up to 60 minutes. However, our 

data suggested some alterations to the appearance of the MNV-1 capsids following a short 

TMPyP PDI-treatment. Furthermore, no intact virions were detected after 30 minutes of PDI-

treatment and it is possible that the capsids had disassembled/disintegrated. 

3.4 Can the viral genome be affected by TMPyP-PDI? 

Owing to the capsid breathing phenomenon common to icosahedral viruses (Bothner et al., 

2005, Lewis et al., 1998, Jaegle et al., 1988, Witz and Brown, 2001), we previously suggested 

that there could be effects of PDI on inner residues of the viral capsid protein and the viral 

genome (Majiya et al., 2018). Here, using MNV-1 as a study model, we sought to investigate 

the effect of PDI on the encapsidated viral genome. Samples of MNV-1 were PDI-treated as 

previously described. Post-treatment, the viral genome was extracted and purified. For RNA 

viruses, the genome alone is infectious when introduced into susceptible cells. This 

phenomenon allows the analysis of the effects of PDI on the genome in the absence of the 

capsid. Here, the purified genomic RNA from PDI-treated viruses was transfected into 

susceptible cells and titrated for infectivity (Figure 4).   
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Figure 4: The effect of TMPyP-PDI treatment on RNA infectivity of MNV-1. Samples of MNV-1 were 
treated with 5 µM and 10 µM TMPyP and illuminated at 32 mW cm-2 for up to 20 minutes. Viral RNA 
was extracted from these samples and transfected into RAW 264.7 cells. Recovered viral infectivity 
titres were determined by TCID50 assays. AƐ ĐŽŶƚƌŽůƐ͕ ͞dark͟ samples were treated 10 µM TMPyP in 
the absence of light illumination, while ͞no sensitizer͟ samples (NS) were illuminated in the absence 
of TMPyP (n = 3 ± S.D.). 

 

The average titre of the viruses used here was approximately 7.3 log TCID50/ml (as shown in 

the data in Figure 2B). After RNA extraction, purification and transfection the titres were 

much reduced, as shown by the dark and no sensitizer control data in Figure 4. These loses 

were consistent throughout the experiment and suggest that the process viral RNA recovery, 
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as well as the transfection efficiency may have resulted to some loss of viral titres. However, 

RNA extracted from viruses that has been exposed to phototreatment with TMPyP yielded a 

further reduction in titre upon transfection. Furthermore, this decrease was dependent on 

both the TMPyP concentration and time of phototreatment (Figure 4). This demonstrates that 

PDI could also target the encapasidated viral genome of some viruses such as MNV-1. 

3.5 Selecting for TMPyP-PDI -resistant MS2 

We have previously reported that 0.5 µM TMPyP under light intensity of 32 mW cm-2 for 1 

minute, resulted in total inactivation of MS2. Here, we attempted to select TMPyP PDI-

resistant MS2 variants at this concentration but with light illumination for 30 seconds, which 

resulted to over 99.99% loss in viral titre (Majiya et al., 2017). After TMPyP-PDI treatment for 

30 seconds, surviving MS2 virus populations were recovered by passage. Cycles of PDI-

treatment followed by virus recovery were repeated for a total of ten cycles, and pre- and 

post-treated virus titres were determined by double layer agar plaque assays (Figure 5A). Viral 

RNA extracts from selection cycles 6 and 10 were reverse-transcribed, cloned into a transient 

vector (pCR-Blunt) and sequenced (Figure 5B). 



20 
 

 

Figure 5. Selection of PDI-resistant MS2. (A) Figure shows infectivity titre of MS2 before and 
after TMPyP-PDI treatment. Each PDI cycle was subjected to 0.5 µM TMPyP and illuminated 
at 32 mW.cm-2 for 30 seconds. As a control, a sample of MS2 was passaged serially in the 
absence of TMPyP for 10 cycles (n = 3±S.D.). (B) Viral genomic RNA was extracted from 
recovered passages 0, 6 and 10. RNA was reverse-transcribed into cDNA and cloned into 
transient vector pCR-Blunt. Colony clones of individual genomes of wild-type, TMPyP-PDI 
treated and non-treated cycle passages 6 and 10 were purified and sequenced. Sequence 
reads were aligned against reference MS2 sequence (NC_001417.2). Figure shows a cartoon 
annotation of the MS2 (NC_001417.2) genome. The cartoon shows open reading frames 
(ORFs) of the A-protein (red), coat protein (blue), lysis protein (green) and replicase (black). 
Mutations identified are listed below respective open reading frames. The mutation at 
nucleotide 1,697 resulted to a synonymous coat protein mutation (S121S), and a non-
synonymous lysis protein mutation (Q7P). 
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Throughout the PDI cycles, we consistently observed reductions of ~4 log10 PFU/ml over the 

10 cycles which indicates that no significant resistance to PDI had emerged in the MS2 

population (Figure 5A). Following selection, no phenotypic changes were observed. Despite 

this, we sought to investigate the occurrence of mutations at the genomic level within the 

population under selection and control viruses, passaged in the presence and absence of 

TMPyP selection. The 3.6 kbp MS2 genome encodes for a maturation protein (A-protein), coat 

protein, lysis protein and replicase (Figure 5B). Nucleotide changes were observed in both 

populations of viruses, as expected for RNA viruses. We will focus on the mutations that 

resulted in amino acid changes here. One of the viruses serially passaged in the absence of 

TMPyP-PDI treatment had a mutation in the A-protein (R83C, at the 6th passage). A different 

A-protein mutation (I238V) was observed in one of the viruses at the 10th passage, with 

R328W observed in a second virus (Figure 5B). Mutations R9M, M319I and H221R, also 

resulting in coding changes in the A protein, were observed in the PDI-treated viruses. None 

of the viruses sequenced had coding changes in the coat protein. However, because the lysis 

protein is produced in frameshift, non-synonymous mutations in the coat protein gene can 

result in lysis protein mutations. Indeed, a Q7P mutation was detected for all of the PDI-

treated viruses. (Figure 5B). 

4. Discussion 

The viruses used in this study have structural and genomic similarities being lytic, non-

enveloped, positive sense and single stranded RNA viruses with 27-35 nm icosahedral capsids. 

They have been employed as model organisms for this group of viruses in general. 

Furthermore, being members of the same family Leviviridae, MS2 and Qɴ share host bacteria 
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for replication. Despite these similarities, the rates of inactivation and physical changes to 

capsids, as induced by PDI, varied.   

Studies have shown that the rate and extent of inactivation of microorganisms is dose-

dependent on photosensitiser and duration of exposure (Casteel et al., 2004, Costa et al., 

2008, Costa et al., 2010, Costa et al., 2012).  The leviviriruses (MS2 and Qɴ) were the most 

susceptible to TMPyP PDI, respectively, followed by the calicivirus (MNV-1), while the 

picornavirus (BEV-2) was least susceptible to the TMPyP PDI-treatment. It is noteworthy that 

unlike MS2, the capsids ŽĨ Qɴ ŚĂǀĞ ĚŝƐƵůphide linkages (Takamatsu and Iso, 1982) that could 

contribute to the slower rate of inactivation as compared to MS2. It is also possible that lack 

of aggregation and Žƌ ĚŝƐŝŶƚĞŐƌĂƚŝŽŶ ŽĨ Qɴ ƉĂƌƚŝĐůĞƐ ĞǀĞŶ ĂĨƚĞƌ ϲ0 minutes PDI-treatment 

could be due to the stability conferred on its capsid by the disulphide linkages. While MNV-1 

particles disintegrated under TMPyP-PDI treatment, we could not detect physical differences 

between the TMPyP-PDI treated and non-treated BEV-2 Žƌ Qɴ particles by the transmission 

electron microscopy here. Additionally, the abundance of TMPyP PDI-susceptible amino acids 

on the capsid may play contributory roles if readily accessible. The lack of aggregation or 

disintegration of Qɴ or BEV particles post-PDI treatment may have been influenced by their 

net surface charge. However, residues such as histidine, tryptophan and tyrosine are known 

to crosslink proteins when oxidised by singlet oxygen. (Davies, 2003, Shen et al., 2000b, Shen 

et al., 2000a, Carroll et al., 2017). Also, in some instances, secondary dark reactions have been 

implicated in the formation of protein crosslinks (Davies, 2003). 

RNA viruses rapidly evolve and therefore viruses with resistance to antiviral agents and 

disinfectants can arise when viruses are repeatedly exposed to sub-lethal doses of these 

agents (Carratalà et al., 2017, Bates et al., 1977a, Feigelstock et al., 2011, Foll et al., 2014, Hué 
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et al., 2009, Irwin et al., 2016, Zhong et al., 2016, Zhong et al., 2017). PDI is an efficient antiviral 

agent for viral control, with only one study reporting an attempt to select PDI-resistant viruses  

(Costa et al., 2011). Our unsuccessful attempt to select for TMPyP-PDI-resistant MS2 agrees 

with the previously reported study as to the lack of emergence of PDI-resistant viruses (Costa 

et al., 2011) and bacteria (Zhang et al., 2014, Tavares et al., 2010, Pourhajibagher et al., 2016b, 

Pourhajibagher et al., 2016a, Giuliani et al., 2010, Cassidy et al., 2010). However, within the 

quasi-species population of viruses sequenced in this study, some mutations identified within 

the A-protein (i.e. I238V, and R9M) as well as the lysis protein have been previously reported 

as conferring resistance against ClO2 following repeated exposure to this disinfectant (Zhong 

et al., 2016).  Since the MS2 lysis protein is essential to viral egress through the induction of 

host-cell lysis (Walderich et al., 1988), the emergence of the lysis protein mutation (Q7P) 

(Zhong et al., 2016) among TMPyP-PDI selected viruses suggests that sub-lethal doses of 

TMPyP in solution could target other stages of the viral life cycle. However, as no resistant 

viruses were selected, it is also possible that the mutations did not arise as a result of TMPyP 

treatment. 

5. Conclusion 

The results obtained in this work has shown that the chief determinant of rate and extent of 

PDI among viruses are the structure, amino acid composition and surface/solvent accessibility 

of their host attachment proteins/sites. This is at least true in non-enveloped viruses. Capsid 

proteins especially host attachment proteins/sites could be immediate targets of singlet 

oxygen oxidation in non-enveloped viruses such our model viruses. Therefore, the rate and 

ĞǆƚĞŶƚ ŽĨ PDI ŽĨ ŽƵƌ ŵŽĚĞů ǀŝƌƵƐĞƐ ǁŝƚŚ TMPǇP ŝŶ ƐŽůƵƚŝŽŶ ŝŶ ƚŚĞ ŽƌĚĞƌ M“Ϯ х Qɴ х MNV х 

BEV, could be attributable in part to the abundance of amino acids that are susceptible to 
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singlet oxygen mediated oxidation and the solvent accessibility to these amino acids, together 

with possible effects on the RNA genome. Although selection of adaptive mutations were 

observed in this study, it was encouraging to note that MS2 resistance to PDI was not 

observed throughout the 10 PDI cycles. However, further investigation would be required to 

confirm these observations. 
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