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Abstract 10 

Despite intensive research efforts and significant advances in the understanding of subduction and 11 

obduction processes that affected several units which at the present day compose the Western Alps, 12 

the paleogeographic evolution of the Alpine Tethys represents a debated topic in Alpine geology. The 13 

role of the opposing continental margins (passive European margin and active Adriatic margin) as 14 

source regions for Cretaceous siliciclastic turbidites bordering the convergent system remains 15 

disputed. To address this question along the Ligurian Alps transect, a multi-proxy provenance analysis 16 

is applied to the two terrigenous superimposed units (Hauterivian-Campanian San Bartolomeo Fm. and 17 

Campanian-Maastrichtian Bordighera Sandstone) of the San Remo-Monte Saccarello Unit of the 18 

Western Ligurian Flysch complex. Petrographic analyses characterize the basal San Bartolomeo Fm. as 19 

quartz-rich mature sandstones. By contrast, the overlying Bordighera Sandstone represents texturally 20 

and compositionally immature first-cycle arkosic arenites. This change records the evolution of the 21 

sediment provenance from a stable craton into a continental basement uplift setting, reflecting erosion 22 

of granitoid plutons and the low-grade metamorphic basement. Geochronological data (U-Pb detrital 23 

zircon ages) indicate that virtually the same source terranes provided the source for both formations. 24 

The detrital age spectra display age peaks are compatible with well-documented magmatic and 25 

metamorphic pulses that affected the Southern Variscides in the Paleo-European margin. The strong 26 
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affinity of clastic detritus with the Paleo-European margin basement rocks underlines the importance 27 

of the lower plate passive continental margin in supplying sand-rich turbidite systems prior to the 28 

arrival of the passive margin in the subduction zone. 29 

 30 

Keywords: Sandstone provenance; (U-Pb) detrital zircon chronology; Piedmont-Ligurian ocean; 31 

Tethyan continental margins; subduction; impending collision.  32 

 33 

1 Introduction 34 

The geodynamic evolution of the Western Tethys during the Alpine subduction remains debated, with 35 

various models emphasizing on opposite subduction polarities and the presence of continental 36 

fragments and their role in the context of the pre-collisional geodynamic evolution of the Piedmont-37 

Ligurian oceanic domain (e.g., Froitzheim and Manatschal, 1996; Dal-Piaz et al., 2003; Froitzheim et al., 38 

2008; Molli, 2008; Alvarez and Shimabukuro, 2009; Viti et al., 2009; Handy et al., 2010, 2014; Marroni 39 

et al., 2010; Molli and Malavieleille, 2011; Decarlis et al., 2013; Malusà et al., 2015; Lin et al., 2018). 40 

Owing to crustal shortening and subduction, oceanic units became displaced, so that the 41 

reconstruction of their original positions remains uncertain. To this end, Upper Cretaceous to 42 

Paleogene turbiditic sequences scraped off in front of the Alpine subduction zone provide key evidence 43 

for Alpine convergence, predating continental collision after the closure of the Piedmont-Ligurian 44 

ocean in the early Cenozoic (e.g., Lanteaume, 1962; Sagri and Marri, 1980; Caron et al., 1981). The 45 

detrital signatures of these pre-collisional sequences that crop out along the entire Alpine belt allow 46 

insights into the plate-tectonic setting of the continental areas bordering the ocean and providing the 47 

source of the clastic detritus (e.g., Valloni and Zuffa, 1984; Fontana et al., 1994; Bracciali et al., 2014).  48 

According to classical provenance models, the relative proportions of distinct types of terrigenous sand 49 

grains mirror the nature of the parent rocks of the clastic detritus, and in turn also provide information 50 

of the geodynamic setting of source to sink systems (e.g., Dickinson and Suczek, 1979; Bhatia, 1983; 51 

Dickinson et al., 1983; Dickinson, 1985; Garzanti et al., 2007; 2014). Moreover, the relationship 52 
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between hinterland tectonics and associated sediment dispersal pathways towards the final 53 

depositional environments of the siliciclastic detritus can be reconstructed. Even though sandstone 54 

petrography depicts the most feasible link to reconstruct hinterland tectonics, the quantification of 55 

detrital components does not provide insights into the age of the parent rocks and the thermal history 56 

they underwent (Fedo et al., 2003; Andersen, 2005; Najman, 2006). Accordingly, additional data are 57 

required to pass from a generic definition of the source region to a paleogeographic picture where 58 

those areas are regionally constrained. Provenance studies increasingly highlight the advantage of 59 

combining sandstone petrography with geo-thermochronological analysis of detrital minerals and 60 

hence elaborate a “multi-proxy” source discrimination (e.g., Dunkl et al., 2001; Dickinson and Gehrels, 61 

2009; Beltrán-Triviño et al., 2013; Bracciali et al., 2014; Di Giulio et al., 2017).  62 

Here we apply this approach to the San Remo-Monte Saccarello Unit, the stratigraphically oldest and 63 

tectonically topmost unit of the Western Ligurian Flysch cropping out in NW Italy. The unit is 64 

interpreted to represent trench-fill successions that were scraped off from their oceanic substratum 65 

and became incorporated into the Alpine accretionary prism along the Ligurian Alps transect (Di Giulio, 66 

1992). An integrated sediment provenance analysis that comprises modal framework analysis, detrital 67 

zircon U-Pb geochronology and the study of sediment dispersal patterns of the two terrigenous 68 

members of the unit is undertaken. The results validate the debated hypothesis that the detrital source 69 

was provided by the passive European continental margin approaching the subduction zone instead of 70 

the active Adriatic margin. Additionally, they show that activation of the studied deep marine clastic 71 

systems records the arrival of a passive continental margin in the subduction zone, immediately 72 

predating the transition from an oceanic subduction setting to that of a continental collision zone. 73 

 74 

2 Background tectonics and stratigraphy 75 

2.1 Tectonics 76 
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The study addresses the structurally topmost unit of the Cretaceous-Paleocene Western Ligurian 77 

Helminthoid Flysch Complex of the Ligurian Alps (Fig. 1). The Helminthoid Flysch Nappe represents the 78 

uppermost part of the Upper Penninic Nappe pile. During the late Eocene-early Oligocene the 79 

Helminthoid Flysch Units of the Ligurian Alps were thrusted over the more proximal domains of the 80 

European foreland and at the present day rest on the Mesozoic Dauphinois-Provençal succession (e.g., 81 

Vanossi et al., 1986; Di Giulio, 1992; Seno et al., 2005; Maino et al., 2015). They represent the 82 

accretionary wedge formed by the cover of the Piedmont-Ligurian ocean that was scraped off along 83 

the Ligurian Alps transect of the Alpine subduction system (Lanteaume, 1962; Vanossi et al., 1986; Di 84 

Giulio, 1992). The Western Ligurian Flysch Complex comprises four main subduction flysch units that 85 

from oldest to youngest are: the San Remo-Monte Saccarello Unit, the Moglio-Testico Unit, the 86 

Borghetto d´Arroscia Unit, and the Colla Domenica-Leverone Unit. These units are divided by 87 

southward dipping thrusts and are tectonically arranged in inverted chronostratigraphic order, with 88 

the oldest unit resting on top of the nappe pile, following the typical tectonic inversion of accretionary 89 

wedges (Di Giulio, 1992; Gasinski et al., 1997). The three lowermost and younger units underwent 90 

multi-phase ductile-brittle deformation, whereas the oldest and topmost San Remo-Monte Saccarello 91 

Unit is characterized by a rather simple structural setting, with relatively large-scale, open SW-verging 92 

kink folds (e.g., Di Giulio, 1992; Seno et al., 2005; Maino and Seno, 2016).  93 

 94 

2.2 Stratigraphy 95 

The San Remo-Monte Saccarello Unit consists of calcareous and mixed siliciclastic-calcareous 96 

successions that were deposited in abyssal environments in the Piedmont-Ligurian oceanic basin 97 

(Sagri, 1984; Di Giulio, 1992). This basin represents a branch of the Western Tethys that developed 98 

between the European and the Adria continental margins as a result of sequential rifting and spreading 99 

stages from early to late Jurassic (e.g., Marroni and Pandolfi, 2007 and references therein). The San 100 

Remo-Monte Saccarello Unit is divided in three lithostratigraphic units (Fig. 2A, B). The base of the unit 101 

is made up of the San Bartolomeo Formation, a succession of laterally extensive, thin-bedded and very 102 
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fine-grained turbidites. This unit is interpreted as representing the abyssal plain deposits which form 103 

the allochthonous "basal complex" of the overlying turbidites (Vanossi et al., 1986). Varicolored Mn-104 

rich shales at the base of the unit are overlain by more sandy shales and thin-bedded turbiditic 105 

limestones with minor intercalations of fine-grained sandstones towards the top of the formation (Di 106 

Giulio and Galbiati, 1985). Based on foraminiferal faunas, the age of the San Bartolomeo Fm. can be 107 

constrained to late Hauterivian to Campanian (Cobianchi et al., 1991; Galbiati and Cobianchi, 1998). 108 

The San Bartolomeo Fm. reaches an overall thickness of 200 – 300 m (Giammarino et al., 2010) and is 109 

conformably superimposed by both the Bordighera Sandstone and the San Remo Flysch (Di Giulio, 110 

1992). Owing to a scarcity of microfaunas, the depositional ages of these younger formations are not 111 

well defined but can be attributed to the Campanian-Maastrichtian (Di Giulio, 1992; Giammarino et 112 

al., 2010). The Bordighera Sandstone mainly consists of medium- to thick-bedded, microconglomeratic 113 

to medium-grained siliciclastic turbiditic beds and reaches a thickness of more than 250 m 114 

(Giammarino et al., 2010). A general south to north, proximal to distal facies trend defines the sand-115 

rich turbidite system (Sagri, 1980; Mueller et al., 2017). The San Remo Flysch is primarily made up of 116 

medium- to thick-bedded, fine-grained calcareous turbiditic sediments and ranges in thickness 117 

between 100 m and 650 m (Giammarino et al., 2010). These formations are interpreted to have been 118 

deposited in an abyssal domain below the carbonate compensation depth, presumably in a trench 119 

environment (Sagri, 1980; Di Giulio, 1992).  120 

 121 

3 Samples and methodology 122 

The sampling strategy intended to provide full coverage of the vertical stratigraphic expression of the 123 

San Bartolomeo Fm. succession and of the Bordighera Sandstone turbidite system. Sample locations 124 

are illustrated in Fig. 2A. Twelve samples from the San Bartolomeo Fm. were acquired from outcrops 125 

located in immediate vicinity to the type locality in the Valle Argentina (Fig. 3A, B). Samples from two 126 

continuously exposed stratigraphic sections of the Bordighera Sandstones were selected: (i) nineteen 127 

samples from the Monte Frontè section (Fig. 3C), in the axial domain, and (ii) eleven samples from the 128 
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Cima di Velega section (Fig. 3D), representative of the more distal preserved part of the system (see 129 

Mueller et al., 2017). The two sampled sections of the Bordighera Sandstones were selected because 130 

they both include a stratigraphically conformable basal contact with the San Bartolomeo Formation. 131 

Subsequently, thin-sections of 42 medium- to very fine-grained rock samples were prepared and 132 

analyzed by optical microscopy. 133 

Petrographic analysis was conducted by a standard point-counting at the optical microscope according 134 

to guidelines provided by Di Giulio and Valloni (1992), following the Gazzi-Dickinson approach in order 135 

to reduce bias in modal composition due to sample size effects (cf., Ingersoll et al., 1984; Dickinson, 136 

1985). Modal analysis was performed by counting a minimum of 250 framework grains per thin-section 137 

under both plane-parallel polarized and cross-polarized light. Framework parameters and full modal 138 

analysis results are reported in Supplementary data file 1. The degree of grain roundness was 139 

evaluated by visual comparison of the counted grains. Compositional maturity of sandstones was 140 

appraised by calculating the maturity index (MI), i.e., the ratios of total quartz grains over the sum of 141 

all feldspar grains and lithic fragments: MI = 
ொሺிା௅ሻ (Pettijohn, 1975). 142 

Sandstone petrography analysis was supplemented by U-Pb detrital zircon chronology (e.g., Fedo et 143 

al., 2003; Andersen, 2005; Dickinson and Gehrels, 2009). Six samples for detrital zircon age 144 

determinations were collected from stratigraphic intervals identical to those sampled for petrographic 145 

analysis (see Fig. 2B). Of these, three samples from different stratigraphic intervals of the San 146 

Bartolomeo Fm. were collected out of which only two yielded suitable quantities of detrital zircons. 147 

The other three samples come from the Bordighera Sandstone, one from the medial Monte Frontè 148 

section and two samples from the base and top of the more distal Cima di Velega section. The samples 149 

were processed for heavy mineral and detrital zircon separation by grinding, hydrodynamic 150 

procedures, magnetic isodynamic and heavy liquid separation (performed at the University of Padova). 151 

Separated zircons were hand-picked, placed into epoxy resin and polished to expose the zircon cores. 152 

For the purpose of revealing morphologies and internal structures of analyzed grains, micro-scale 153 

cathodoluminescence imaging was performed at the University of Genova and ENI SpA Laboratories. 154 
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U-Pb detrital zircon ages were determined at the LA-ICP-MS lab at the CNR - Istituto di Geoscienze e 155 

Georisorse, Unità di Pavia, Italy. Analytical procedures of detrital zircon U-Pb age determinations and 156 

analytical setups are presented in Supplementary data file 2. Only U-Pb ages with a discordance smaller 157 

than 10% were considered as reliable (206Pb/238U ratios for grains younger and 206Pb/207Pb data for 158 

grains older than 1.2 Ga; cf., Gehrels et al., 2009). Discordant data were rejected. U-Pb precision 159 

estimations referred to in the text and figures are reported as 2ʍ values. Probability density plots 160 

(PDPs) and kernel density estimated (KDEs) were plotted with the DensityPlotter 8.1 software 161 

(Vermeesch, 2012). Statistical evaluation of detrital zircon age spectra similarities was conducted 162 

utilizing the DZStats 2.2 software (Saylor and Sundell, 2016). 163 

 164 

4 Results from modal framework analysis 165 

4.1 Detrital petrology of the San Bartolomeo Formation (basal complex) 166 

Average grain size of the analyzed samples of the San Bartolomeo Formation ranges from very fine to 167 

fine sand. Sorting is predominantly well to moderate (Fig. 4A-C). Grains are typically sub-rounded to 168 

rounded (Fig. 4B). Sandstone grains are relatively loosely packed, with an average content of 169 

intergranular constituents (matrix and cements) of ca. 19% of total rock volume. Quartz represents the 170 

dominant constituent of the basal complex sands. Among the quartz grains, monocrystalline quartz is 171 

the by far most abundant quartz component (mean Qm/Qp ratio: 6.14). Alkali feldspar proportions are 172 

higher than those of plagioclase (mean P/K-ratio: 0.48). Lithic fragments occur in very small quantities, 173 

with metamorphic fragments slightly dominating over volcanic and sedimentary rock fragments. The 174 

samples show high compositional maturity, with maturity index values ranging from 1.46 to 3.73 (mean 175 

MI = 2.32). Accessory constituents are micas, siliciclastic mudclasts and heavy minerals, with zircons 176 

representing the most widespread heavy mineral variety. 177 

4.2 Detrital petrology of the Bordighera Sandstone 178 
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The mean grain size of the analyzed Bordighera Sandstone samples is medium sand, associated with a 179 

poor degree of sorting. Framework grains are typically angular to sub-angular (Fig. 4D-F). Minor 180 

occurrences of sub-rounded grains are generally limited to samples of the uppermost parts of the 181 

stratigraphic sections. The samples are characterized by relatively loose packing as the average matrix 182 

content is 10% of total rock volume (see also Fig. 4D, E). Among the main framework components, 183 

detrital quartz grains make up the majority. Monocrystalline quartz dominates over polycrystalline 184 

quartz varieties (mean Qm/Qp ratio: 1.92). Polycrystalline quartz varieties exhibit both straight and 185 

sutured grain boundaries. Alkali feldspar concentrations exceed those of plagioclase (mean P/K-ratio: 186 

0.56). Lithic fragments represent a recalculated average of 2%. Despite sedimentary, volcanic and 187 

metamorphic lithic fragments account for roughly equal shares, a dominance of metamorphic 188 

fragments is observable. Maturity index values vary between 0.6 and 1.37 (mean MI medial section: 189 

1.08; mean MI distal section: 0.89). Among the accessory minerals, micas represent the most abundant 190 

constituent (mean share of 2.3% of total rock volume), with minor amounts of heavy minerals. 191 

Authigenic minerals are mainly represented by calcite cement which locally also fills the pore spaces 192 

derived from partial dissolution of altered plagioclase (Fig. 4F, G).  193 

4.3 Interpretation of the detrital petrology data set 194 

Modal framework compositions of both the San Bartolomeo basal complex and the Bordighera 195 

turbidite system suggest a continental block origin (Fig. 5A) according to the classical QtFL tectonic 196 

field discrimination plots (cf., Dickinson et al., 1983; Dickinson, 1985). The dominance of 197 

monocrystalline quartz over polycrystalline quartz varieties characterizing both units points towards 198 

dominantly plutonic parent rocks (e.g., Palomares and Arribas, 1993; Di Giulio et al., 1999; Datta, 199 

2005). Minor proportions of polycrystalline quartz characterized by sutured domain boundaries and 200 

metamorphic lithic fragments indicate that – albeit to a lesser extent - low-grade metamorphic source 201 

rocks contributed to the clastic detritus (Das Gupta and Pickering, 2008). The fact that plagioclase is 202 

generally subordinate to alkali feldspar and the low percentages of micas further support the inferred 203 

dominant contribution from plutonic source rocks, specifically granitoids (e.g., Palomares and Arribas, 204 
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1993; McCann and Arbues, 2012). The QmPK ternary plots (Fig. 5B) reveal no major differences in 205 

feldspar varieties´ proportions between the two units. In contrast, the ratios between quartz and 206 

feldspar components show a significant up-section shift from the San Bartolomeo Formation to the 207 

Bordighera Sandstone (Figs 5A, 6). The San Bartolomeo Fm. samples are characterized by higher quartz 208 

proportions and a high degree of sorting, considerably differing from those of the Bordighera 209 

Sandstone:  210 

Detrital petrology of the San Bartolomeo Formation samples allows their classification as quartz-rich 211 

sandstones to subarkoses (Folk, 1980), with an enhanced textural and compositional maturity (mean 212 

maturity index = 2.32; see Fig. 6). This mature character could reflect that these sediments experienced 213 

extended transport along continental surfaces characterized by low paleo-relief. The sediments were 214 

apparently subjected to prolonged exposure in depositional environments along their pathway from 215 

the source area to the final deep-marine sink (e.g., Boggs, 2009; Garzanti et al., 2014). Higher quartz 216 

contents in the San Bartolomeo Formation samples moreover imply intense weathering of the less 217 

stable grains along relatively low-relief continental land masses (Dickinson and Suczek, 1979). 218 

By contrast, the Bordighera Sandstone samples show balanced proportions of quartz and feldspar and 219 

a scarcity of lithic fragments and can thus be classified as “classic” arkosic sandstones (Folk, 1980). 220 

Mainly angular to sub-angular grain morphologies and the poor degree of sorting reveal their textural 221 

immaturity. The relatively high feldspar content mirrors compositional immaturity (cf., Ghazi and 222 

Mountney, 2011). The lower maturity indexes of the Bordighera Sandstone samples (Monte Frontè 223 

section: MI = 1.08; Cima di Velega section: MI = 0.89; see Fig. 6), with respect to the underlying San 224 

Bartolomeo Fm., indicate shorter transport distances and rapid transportation rates, in a scenario in 225 

which sediments were almost directly shed into the deep-marine realm (cf., Zhang et al., 2016). Due 226 

to rapid denudation of the source area, no significant reworking that promoted unstable grains to 227 

dissolve occurred (e.g., Shanmugam and Moiola, 1988; Mattern, 2005). The observed low degree of 228 

both textural and compositional maturity would moreover suggest the dominance of physical 229 

weathering processes over chemical weathering (Diekmann and Wopfner, 1996). A first-cycle origin 230 
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from crystalline source rocks can be inferred, as the greater abundance of chemically and mechanically 231 

less stable feldspar grains together with the negligible proportions of sedimentary rock fragments 232 

reasonably rule out a recycled provenance from quartz-rich clastic sediments (e.g., Dickinson et al., 233 

1983; Johnsson et al., 1988; Di Giulio et al., 2003; Garzanti et al., 2006). 234 

Summarizing, the bulk of the San Bartolomeo Fm. samples fit in the transitional continental-block 235 

provenance field, whereas the Bordighera Sandstone samples largely plot in the basement-uplift 236 

provenance field. Nonetheless, minor overlapping between the San Bartolomeo Fm. and the 237 

Bordighera Sandstone samples is evident in the provenance discrimination field (Fig. 5A) which would 238 

imply a somewhat gradual provenance evolution. Notably, the San Bartolomeo Fm. samples 239 

accounting for minor overlapping with the Bordighera Sandstone’s compositional field were collected 240 

from the uppermost part of the formation. Consequently, a fundamentally inverse tectonic stability 241 

trend (i.e., from relatively stable to unstable source areas) in between the two units is recorded by 242 

detrital petrology (e.g., Dickinson et al., 1983; Garzanti et al., 2014). The possible interpretation of the 243 

observed detrital signature evolution is twofold: (1) a different source for clastic sediments forming 244 

respectively the San Bartolomeo Fm. and the Bordighera Sandstone, or (2) a common source for both 245 

formations that was subjected to a gradual change of regional tectonics resulting in differences in 246 

terms of weathering and the depositional setting of the two terrigenous formations. To solve this 247 

problem, and at the same time aiming to acquire more precise information about the possible source 248 

region for the studied units, U-Pb geochronological study of detrital zircons was undertaken. 249 

5 Results from detrital zircon chronology 250 

5.1 Age determinations and qualitative comparison of detrital age spectra 251 

LA-ICP-MS age determinations of 108 single grains of the San Bartolomeo Fm. yielded 83 detrital ages 252 

(within ±10% of discordance). The analysis of 225 single grains of the Bordighera Sandstone yielded 253 

186 concordant ages. Representative cathodoluminescence images are illustrated in Fig. 7, and full 254 

isotopic U-Pb analytical data is presented in Supplementary data file 3. Qualitative comparison of the 255 
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obtained detrital spectra (normalized probability density plots in Fig. 8) reveals marked similarities in 256 

between the analyzed samples. For all the samples, > 85% of the ages younger than 1 Ga fall into the 257 

interval between 250 Ma and ca. 650 Ma. All detrital spectra display the most prominent broader peaks 258 

of Carboniferous ages around 360 Ma and 300 Ma which account for more than one third of all 259 

obtained ages. Additionally, there are significant populations of Silurian and Ordovician ages around 260 

450 Ma and 480 Ma and one distinct Ediacaran peak around 560 Ma. Notably, narrow early- to mid-261 

Permian peaks between ca. 270 Ma and 305 Ma are limited to samples SBF_4, CdV_1 and CdV_3. 262 

Significant Cambrian ages have only been determined in samples SBF_4 and CdV_1. Paleo- and 263 

Mesoproterozoic ages make up accessory peaks. With respect to their very broad distributions and the 264 

fact that these ages do not occur at a comparable magnitude than younger detrital ages, these old 265 

populations provide inadequate direct provenance information. The oldest dated grain corresponds to 266 

a 206Pb/207Pb crystallization age of 3028.5 ±49.9 Ma (SBF_4 sample), whereas the youngest grain 267 

reveals a reliable 206Pb/238U age of 259.4 ±5.2 Ma (CdV_3 sample). 268 

5.2 Statistical comparison of detrital age spectra 269 

For the purpose of providing a quantitative evaluation of whether the detrital age distributions of the 270 

samples from the two formations originated from the same parent rocks, a Kolmogorov-Smirnov test 271 

(K-S test) was conducted (e.g., Satkoski et al., 2013; Saylor and Sundell, 2016). In terms of detrital zircon 272 

age spectra analysis, the probability calculated (K-S test p-value) represents the probability that two 273 

or more randomly selected populations have originated from the same parent population. This degree 274 

of dissimilarity between compared age distributions is calculated by the maximum distance in between 275 

cumulative probability functions. KS-test p-values >0.05 confirm with a 95% confidence that the 276 

compared samples were derived from the same source (e.g., DeGraaff-Surpless et al., 2002; Dickinson 277 

and Gehrels, 2009; Satksoski et al., 2013). Cumulative probability functions are shown in Fig. 9A, and 278 

the results of the statistical evaluation of age spectra similarities (K-S test p-values) are shown in Fig. 279 

9B. With the single exception of the direct comparison between the MF_1 and CdV_3 samples (p-value 280 

of 0.034), all combinations of detrital samples passed the K-S test p-value threshold. Accordingly, based 281 
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on the integrated results from modal framework analysis and detrital geochronology, the inference is 282 

that the terrigenous successions were derived from the same source terrane.  283 

5.3 Provenance significance of detrital age spectra and relation to potential source areas 284 

With regards to the geochronologically well-defined geodynamic framework of Central and Western 285 

Europe (e.g., von Raumer et al., 2003; Linnemann et al., 2004; Dallagiovanna et al., 2009; Handy et al., 286 

2010; Oggiano et al., 2010), the determined detrital zircon age spectra reveal several similarities with 287 

age peaks of geochronologically well-defined magmatic and metamorphic events that affected pre-288 

Alpine basement successions. On that premise, the fit between clusters of detrital age populations and 289 

regional-scale geodynamic events provides further understanding of the regional paleogeography and 290 

the geodynamic setting of the sediment source. The peaks in the detrital zircon age spectra of the San 291 

Bartolomeo Fm. and the Bordighera Sandstone directly correspond to geological events recorded in 292 

pre-Alpine basement rocks. These age clusters embrace: 293 

- Ages older than 600 Ma. This age group comprises Archean ages ranging from ca. 3 Ga to 2.55 294 

Ga that are interpreted to reflect the first event of craton accretion (Cawood et al., 1999). 295 

Proterozoic ages spanning an interval from ca. 2000 Ma until 1600 Ma are interpreted as 296 

representing the assembly of Laurentia and accretion along its eastern margin (Cawood et al., 297 

1999). Ages related to the assembly of the Rodinia supercontinent, the Greenville orogeny, 298 

span an interval from ca. 1200 Ma to 1000 Ma (Li et al., 2008; Meinhold et al., 2013), whereas 299 

ages ranging from 1 Ga to ca. 600 Ma can be assigned to the onset of the breakup of Rodinia. 300 

Magmatic activity related to preceding rifting occurred from ca. 850 to 750 Ma (e.g., von 301 

Raumer et al., 2014). 302 

- Ages related to the Pan-African / Cadomian orogenic cycles: This age cluster comprises 303 

radiometric ages related to the Cadomian events. These widespread events occurred from ca. 304 

600 Ma to 450 Ma (von Raumer et al., 2014) and represent a series of continental accretions 305 

at the margins of Gondwana which were to become involved into the formation of the 306 
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supercontinent Pangea. Extensive granitoid emplacement affected the pre-Variscan basement 307 

(Linnemann et al., 2008). 308 

- Ages related to Cambrian rifting stages date from ca. 530-490 Ma. These crystallization ages 309 

are associated with magmatism at the onset of the collapse of the Cadomian orogeny that 310 

gave rise to multiple rifting and subduction episodes which marked the evolution of the Rheic 311 

ocean (Linnemann et al., 2004; Rossi et al., 2009; Maino et al., 2018). Stampfli et al. (2012) 312 

propose the drifting of pre-Variscan blocks away from Gondwana to form the European Hun 313 

terranes in the late Cambrian. The assemblage of these continental fragments was 314 

accompanied by magmatic pulses along the North African margin. 315 

- Ages related to Ordovician-Silurian magmatism. Detrital ages ranging from ca. 490 to 440 Ma 316 

are assignable to the continuation of the collapse of the Cadomian orogeny that lead to the 317 

opening of the Paleo-Tethys rift and the progressive rifting of the Hun terrane in the Silurian 318 

(von Raumer et al., 2003). These early Paleozoic extensional tectonics gave rise to magmatic 319 

episodes that are documented to have extensively occurred along the Northern Gondwana 320 

margin. Magmatic activity is documented from Sardinia (Oggiano et al., 2010) as well as from 321 

the future External massifs (Argentera massif; cf., Rubatto et al., 2001, 2011). Gaggero et al. 322 

(2007) reported three distinct phases of magmatism in Sardinia that can be divided into events 323 

related to an early Ordovician rifting stage, Middle Ordovician arc volcanism and a late 324 

Ordovician to Silurian stage of volcanism resultant from continental drifting. 325 

- Ages representing events linked to the Variscan orogeny. Ages spanning from ca. 390 to ca. 326 

320 Ma are interpreted to reflect the continental collision of Gondwana, Laurussia and 327 

numerous microcontinental fragments in the Carboniferous. Related magmatic events 328 

represent the most widespread zircon age signature among both Tethyan margins (e.g., von 329 

Raumer et al., 2003; Beltrán-Triviño et al., 2013) and are represented by a series of granite 330 

emplacements (e.g., Calabria: Williams et al., 2012; Fornelli et al., 2016; Sardinia: Pavanetto et 331 

al., 2012; Corsica: Giacomini et al., 2006; Casini et al., 2012; Li et al., 2014; Ligurian Alps: 332 
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Dallagiovanna et al., 2009; Maino et al., 2012; Internal Western Alps massifs: Dora Maira: 333 

Sandrone et al., 1993; Manzotti et al., 2016; External massifs: Mont Blanc, Argentera: Ménot 334 

et al., 1994; Rubatto et al., 2001, 2011). Importantly, Variscan magmatic episodes are 335 

preferably recorded in the paleo-European basement in comparison to that of the Southern 336 

Alps (Linnemann et al., 2008; cf., Beltrán-Triviño et al., 2013). 337 

- Ages associated with post-Variscan magmatism (ca. 300-280 Ma) are attributable to 338 

gravitational collapse of the thickened Variscan orogenic crust (McCann et al., 2006). 339 

Alternating transpressional and transtensional tectonic regimes promoted the development 340 

of continental basins in Central and Western Europe. Characteristic graben and half-graben 341 

structures are typically associated with syntectonic volcanic activity. Magmatic activity related 342 

to the initial orogen collapse is mostly documented from Calabria (Liotta et al., 2008), Sardinia 343 

(Ronca et al., 1999; Gaggero et al., 2017), and Corsica (Cabanis et al., 1990) as well as from the 344 

Southern Alps (e.g., Quick et al., 2009; Berra et al., 2014). 345 

- Ages attributed to mid-Permian to Lower Triassic magmatism range from ca. 270 Ma to 240 346 

Ma. Recent research documents a later stage of volcanism restricted to the Southern Alps 347 

(Beltrán-Triviño et al., 2013), Calabria (Fornelli et al., 2011), Sardinia and Corsica (Traversa et 348 

al., 2003; Gaggero et al., 2007), as well as to the Ligurian Alps (Dallagiovanna et al., 2009; 349 

Maino et al., 2012). These latter events are related to intense magmatic activity interpreted to 350 

reflect the onset of drifting since the Middle Triassic and might therewith epitomize the 351 

beginning of the Alpine cycle (cf., Beltrán-Triviño et al., 2013). It should be noted that these 352 

later-stage volcanic episodes can be separated from the post-Variscan magmatic events by a 353 

period of strike-slip activity and intermittent granite emplacement (cf., McCann et al., 2006). 354 

6 Source area inference  355 

Detrital modal assemblages of both the basal complex (San Bartolomeo Formation) and the coarse-356 

clastic turbidite system (Bordighera Sandstone) indicate that predominantly upper crustal rocks – 357 

mainly granitoid plutons - provided the source rocks. Minor contributions by low-grade metamorphic 358 
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rocks are recorded by very minor proportions of metamorphic lithic fragments. Owing to dissimilar 359 

architectures of the bounding margins of the Piedmont-Ligurian ocean, different levels of the 360 

continental crust were exposed (e.g., Müntener and Hermann, 2001; Bracciali et al., 2007; Malusà et 361 

al., 2015; Decarlis et al., 2017). According to Froitzheim and Manatschal (1996), the opening of the 362 

Piedmont-Ligurian ocean occurred in two stages. The initial rifting stage, assigned to the late Triassic 363 

to early Jurassic, was typified by the development of listric fault systems which represent symmetric 364 

lithosperic stretching. Contrastingly, in the early-middle Jurassic, lithosperic-scale detachment faults 365 

developed that facilitated passive asymmetric extension. The paleo-European margin comprised a 366 

crustal section mostly composed of granitoids and low-grade metamorphic rocks, whereas the Adriatic 367 

margin exposed a full crustal lithospheric section that also included high-grade metamorphic rocks (cf., 368 

Bracciali et al., 2007).  369 

The sandstone detrital modes of the two successions reveal the dominance of plutonic constituents 370 

and for that reason suggest a paleo-European provenance. The integration of the results from detrital 371 

zircon chronology confirms the presumption that the paleo-European (i.e., the Northern Tethyan) 372 

margin provided the bulk of the clastic detritus. Essentially the dominant peaks related to the onset of 373 

the Variscan cycle that typify the detrital spectra allow to rule out a source terrane located in the 374 

Adriatic margin (cf., Bütler et al., 2011; Beltrán-Triviño et al., 2013). In particular, the distinct peaks of 375 

Mississippian ages (ca. 330 to 355 Ma) are absent in crystalline suites of the Adriatic margin (i.e., in the 376 

Sesia microfragment; e.g., Klötzli et al., 2014; Malusà et al., 2015). Moreover, the occurrence of 377 

Cambrian detrital zircons provides further evidence for a source terrane located in the European 378 

margin (Rossi et al., 2009; see also Thomas et al., 2010 and Fornelli et al., 2015 for discussions on 379 

European and “African” provenance signatures).  380 

In combination with the prominent Carboniferous to lower Permian detrital age peaks, the data 381 

discussed above suggests that dominantly plutonic source terranes distributed along the margins of 382 

the composite crystalline Southern Variscan belt margins represent potential source areas. According 383 

to paleogeographic maps (e.g., von Raumer et al., 2002; Casini et al., 2015), the Variscan and pre-384 
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Variscan continental basement assemblages of the Briançonnais, the Dora-Maira Massif (as part of the 385 

internal massifs of the proximal European margin), the Argentera Massif of the External Massifs, as 386 

well as the Corsica-Sardinia Batholith and the Calabrian granitoid massifs need to be taken into 387 

consideration. Although no paleocurrent indicators for the San Bartolomeo Fm. could be identified, 388 

analysis of paleocurrent indicators for the Bordighera Sandstones reveals a reasonably unidirectional 389 

(present-day) N-NE orientation of the main sediment flux. This is also confirmed by the distinct South-390 

North directed facies trend characterizing the Bordighera Sandstone (see paleocurrent rose in Fig. 2A 391 

and Mueller et al., 2017, for details on facies distribution). Therefore, the source terrane must have 392 

been located in the SSW of the Bordighera turbidite system and candidate source areas can thus be 393 

narrowed to the Corsica-Sardinia block and the Calabrian massifs. Both terranes record 394 

geochronologically well-constrained evidence of magmatic and metamorphic pulses which are readily 395 

compatible with peaks of the detrital spectra (e.g., Giacomini et al., 2006, 2007; Gaggero et al., 2007, 396 

2017; Liotta et al., 2008; Rossi et al., 2009; Oggiano et al., 2010; Casini et al., 2012; Pavanetto et al., 397 

2012; Williams et al., 2012; Langone et al., 2014; Li et al., 2014; Fornelli et al, 2016). However, taking 398 

the abundant late Neoproterozoic ages of the detrital spectra into account, the Calabrian massifs can 399 

be ruled out, since the occurrence of late Ediacaran (pronounced peak around 650 Ma) magmatic 400 

activity or metamorphic phases have not been documented from Calabria (cf., Liotta et al., 2008; 401 

Williams et al., 2012; Fornelli et al., 2016). In particular, the marked similarity between Devonian to 402 

early Permian detrital zircon age peaks of the investigated sediments (see synthetic probability density 403 

plots of all obtained detrital ages in Fig 10) and pulses of crystallization ages that define the Sardo-404 

Corsican batholiths (i.e., ca. 345-337 Ma “Durbachites” from NW Corsica of Paquette et al., 2003, and 405 

the ca. 325-285 Ma U2 and U3 suites of Casini et al., 2012, 2015) suggest that the Corsica-Sardinia 406 

block is the primary source area for both terrigenous formations of the San Remo-Monte Saccarello 407 

Unit. Such a scenario has previously been proposed solely based on paleocurrent analysis and 408 

observations on grain composition (e.g., Vanossi, 1965; Sestini, 1970; Sagri, 1980, 1984) and is 409 

herewith confirmed by means of coupling petrographic analysis with U-Pb detrital zircon chronology.   410 
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 411 

7. Discussion 412 

7.1 Comparison to proposed provenance models for flysch successions of the Piemont-Ligurian 413 

ocean 414 

Numerous provenance studies addressed pre-collisional flysch successions of the Northern Apennines 415 

(e.g., Sagri and Marri, 1980; Valloni and Zuffa, 1984; Wildi, 1985, 1987; Rowan, 1990; Fontana et al., 416 

1994; van de Kamp and Leake, 1995; Argnani et al., 2006; Bracciali et al., 2007). Flysch sedimentation 417 

occurred in two distinct paleogeographic domains, the Internal and the External Ligurian Units 418 

(Marroni et al., 2001). The Internal Ligurian Units represent a continuous succession ranging from the 419 

Jurassic ophiolites through Cretaceous and Paleocene turbidite successions, whereas in the External 420 

Ligurian Units the sedimentary succession became detached from their underlying oceanic crust 421 

substrate. Siliciclastic successions of the Internal Ligurian Units have generally been attributed to a 422 

European provenance (e.g., Fontana et al., 1994; Bracciali et al., 2007). By contrast, the External 423 

Ligurian Units have been interpreted as representing the distal Adriatic margin and the transition 424 

towards the Piemont-Ligurian ocean and are hence associated to an Adriatic provenance. Among the 425 

Upper Cretaceous to Paleocene Internal Ligurian successions, Valloni and Zuffa (1984) report quartzo-426 

feldspathic arkoses from the “Arenarie Superiori” (i.e., the Gottero Sandstone) and the Monghidoro 427 

Formation which are defined by similar primary modal parameters to the ones documented in the 428 

present study (Gottero Sandstones: mean Qt51F39L10; Monghidoro Formation: mean Qt59F38L3). 429 

Supplementary petrographic studies by Van de Kamp and Leake (1995) and Pandolfi (1996) 430 

documented similar compositions (mean Qt42F55L3 and Qt50F33L17, respectively) for the Gottero 431 

Sandstone. These compositions are reasonably similar to the results derived from the Bordighera 432 

Sandstones (mean Qt49F48L3). Wildi (1985) defined a zircon-tourmaline-rutile dominated heavy 433 

mineral association as being characteristic for the Paleo-European margin and consequently claimed 434 

the European margin source for the Upper Cretaceous Flysch Units deposited in the Piemont-Ligurian 435 
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ocean. Wildi (1987) also questioned the “passive” margin configuration of the European Tethyan 436 

margin and proposed a late Cretaceous inversion of the European margin that provided a Corsica-437 

derived source for siliciclastic successions intercalated into Helminthoid Flysch sequences, among 438 

which the San Remo-Monte Saccarello Unit (i.e., the Bordighera Sandstone) was positioned.  439 

Available datasets from recent studies on detrital zircon assemblages of Upper Penninic flysch 440 

successions (Chu et al., 2016; Lin et al., 2018) allow a comparison of the detrital suites of this study. 441 

No overlap can be identified with allochthonous successions of Internal Liguride affinity (e.g., Pandolfi 442 

et al., 2016; Marroni et al., 2017) which were incorporated into both the Piedmont Nappe and the 443 

Balagne Nappe (Fig. 11). In contrast, the qualitative comparison reveals a striking similarity with the 444 

Eocene Annunciata Fm. that is now overthrust onto Corsica (cf., Lin et al., 2018). Notably, the 445 

Annunciata Fm., although treated as allochthonous (Egal, 1992), has more recently been considered 446 

as having undergone minor displacement and being positioned in proximity to its original depositional 447 

location (cf. Marroni et al., 2001; Lin et al., 2018). In addition, the detrital chronology signature of the 448 

pre-collisional Upper Cretaceous Schistes Lustrès presented by Chu et al. (2016) displays strong 449 

similarities as the major detrital age population peaks around 330 Ma. Either way, based on the 450 

presence of Proterozoic age peaks, Chu et al. (2016) do not clearly assign the Schistes Lustrès to either 451 

a European or an Adriatic provenance, as these old detrital ages might reflect a complex inheritance 452 

of the detrital zircon grains or the detrital zircons could be polycyclic.  453 

7.2 Control mechanism for re-activation of the paleo-European margin  454 

The documentation of major sand supply from a source area located along the lower European plate 455 

requires an explanation. Evidence for emersion of the Sardo-Corsican block is provided by the presence 456 

of Albian bauxite deposits superimposing Oxfordian to Aptian shallow to transitional marine 457 

carbonates that imply subaerial exposure (Mameli et al., 2007). Mameli et al. (2007) follow the 458 

interpretation of a transpressive tectonic regime development suggested by Puigdefabregas and 459 

Souquet (1986) as the key control on continental block uplift. However, according to the observations 460 
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presented in this study, the stratigraphic evolution linked to sediment maturity implies that the 461 

reactivation of the margin of the lower European plate occurred in a craton-ward prograding 462 

orientation. 463 

According to our interpretation, the development of a flexural forebulge due to lithospheric flexure 464 

caused by the tectonic loading of the overthrust wedge is considered as better explaining the key 465 

tectonic control on re-activating the hyper-extended paleo-European margin (e.g., Stockmal et al., 466 

1987; Barbieri et al., 2004). The craton-ward migration of its hinge line (e.g., DeCelles and Giles, 1996; 467 

Einsele, 2000) is mirrored by a gradual provenance evolution from the highly mature sediments of the 468 

San Bartolomeo Formation towards the highly immature Bordighera Sandstone (see conceptual 469 

models in Fig. 12) within a framework similar to the one proposed by Stockmal et al. (1987) for a 470 

passive continental margin arriving in a subduction zone.  471 

Specifically, during the Hauterivian to Santonian, the craton-ward passing hinge line of the flexural 472 

bulge affected the distal European margin, and this is interpreted to have resulted in the tectonic 473 

instability along the shelfal areas of the passive margin, where terrigenous sediments were subjected 474 

to reworking processes before being re-sedimented into the trench. Such reworking can explain the 475 

textural maturity of the sediments of the San Bartolomeo Fm. Afterwards, during the Campanian to 476 

Maastrichtian, the NNW-prograding hinge line of the flexural bulge arrived in the hinterland part of 477 

the margin and triggered the uplift of crustal blocks promoting rapid sedimentation of the first-cycle 478 

coarse-clastic detritus of the Bordighera Sandstone into the trench. 479 

The migration of the flexural bulge parallel to the Frontal Penninic Thrust can straightforwardly be 480 

integrated into paleogeographic and tectonic models that address the reconstruction of the evolution 481 

of the Western Alps. These models demonstrate that deformation and metamorphism stepwise 482 

migrated in a NW-ward directed orientation (e.g., Schmid et al. 1996; Lister et al., 2001; Rosenbaum 483 

and Lister 2005; Handy et al. 2010). However, it should be noted that the spatial and temporal 484 

magnitudes of the deformation remain poorly constrained (Lister et al., 2001; Ford et al., 2006). Based 485 
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on tectonostratigraphic relationships of sedimentary cover successions of the Briançonnais domain, a 486 

flexural forebulge development has previously been proposed (Michard and Martinotti, 2002). 487 

Michard and Martinotti (2002) suggest that late Cretaceous to Eocene disconformities mirror the 488 

passage of a flexural bulge through the distal European margin and propose a bulge amplitude of ca. 489 

800-1000 m which resulted in extensional faulting of the uplifted continental blocks and an enhanced 490 

sediment supply. Such a scenario can readily explain the reciprocal trend in sediment maturity from 491 

passive margin-fed quartz-rich sandstones of the basal complex towards the immature Bordighera 492 

Sandstone arkoses that is documented in this study. 493 

8. Conclusions 494 

The multi-proxy sediment provenance study of the two terrigenous members of the pre-collisional San 495 

Remo-Monte Saccarello Unit of the Western Ligurian Flysch complex gains a better understanding of 496 

the pre-collisional evolution of the Piedmont-Ligurian ocean and its bounding continental margins. The 497 

main conclusions are summarized as follows: 498 

 499 

- Petrographic analyses of the terrigenous sediments reveal an upsection transition from 500 

mature, fine-grained, quartz-rich basin plain turbidite sandstones (San Bartolomeo Formation) 501 

towards first-cycle coarse-grained arkoses (Bordighera Sandstone). The onset of coarse-clastic 502 

sedimentation is interpreted to mark a substantial modification of the geodynamic regime. 503 

Increased sediment yield and sediment caliber result from the increased slope gradient caused 504 

by rapid basement uplift (Dickinson et al., 1983). Albeit the comparison of the textural 505 

character of the two members documents a marked difference in terms of sediment maturity, 506 

average modal framework compositions suggest a more gradual provenance evolution which 507 

is interpreted to mirror the exhumation of a crystalline basement terrane during the pre-508 

collisional stage of the Alpine convergence.  509 

- Geochronological data (U-Pb detrital zircon ages) provide evidence that, despite the observed 510 

compositional change, the terrigenous successions were derived from the same source 511 
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terrane. In combination with results from detrital petrography, these observations document 512 

that the source area underwent significant tectonic modification from a relatively stable craton 513 

to a basement uplift setting. 514 

- Peaks in the detrital age spectra fit with well-documented magmatic and metamorphic pulses 515 

that affected the pre-Alpine basements and allow for the identification of the lower plate 516 

passive European continental margin as the primary source of the clastic detritus. More 517 

specifically, integrating geochronological ages with paleocurrent indicators shows that the 518 

proposed provenance from the Corsica-Sardinian block is confirmed. 519 

- In the context of the Alpine subduction, this evidence argues for tectonic activity along the 520 

passive continental margin of the subducted plate that provided the major sand supply area 521 

for the clastic sediment delivered into the subduction zone.  522 

The craton-ward migration of the flexural bulge developed in response to the tectonic loading 523 

of the advancing Alpine accretionary wedge and explains the re-activation and tectonic 524 

inversion of the passive paleo-European margin. This implies that the detrital evolution 525 

documented in this work reflects the activation of the passive continental margin arriving in 526 

the subduction zone. 527 

In a broad geodynamic context, based on the present study, we suggest that the tectonic inversion of 528 

a passive continental margin arriving in a subduction zone results in a recognizable petrographic 529 

signature in the detrital record of deep-sea sequences. Therefore, this signature provides a potential 530 

though often overlooked record of the imminent transition from subduction to collision of ancient 531 

collisional systems.  532 
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Figure captions:  935 

Fig. 1. Simplified geological map of the Western Alps denoting the main paleogeographic units. 936 

Modified after Schmid et al. (2004) and Bousquet et al. (2008). Location of the study area is indicated 937 

in the black rectangle. 938 

 939 

Fig. 2. (A) Geological map of the study area (box in Fig. 1). Modified after Lanteaume et al. (1990) and 940 

Di Giulio and Galbiati (1991). Rose diagram of palaocurrent measurements (n = 107) for the Bordighera 941 

Sandstone delineates the predominantly NNE-directed orientation of sediment flux. (B) Tentative 942 

chronostratigraphic framework of the San Remo-Monte-Saccarello Unit and approximate stratigraphic 943 

positions of the studied detrital zircon samples. Modified after Cobianchi et al. (1991), Galbiati and 944 

Cobianchi (1997) and Giammarino et al. (2010). 945 

 946 

Fig.3. Outcrop examples of the stratigraphic members of the San Remo-Monte Saccarello Unit. (A) 947 

Sample location of the lowermost terrigenous lithozone of the San Bartolomeo Fm. (variegated shales 948 

with locally intercalated very fine-grained sandstones) at the type location north of the town of 949 

͞BĂĚĂůƵĐĐŽ͟ ;ƐĞĞ ĂůƐŽ FŝŐ͘ ϮAͿ͘ GP“ 43°55'15.47"N, 7°50'31.79"E. (B) Sample location of the uppermost 950 

analyzed terrigenous lithozone of the San Bartolomeo Fm. (fine- to medium quartzarenites that exhibit 951 

normal grading) in the Valle Argentina. GPS 43°55'32.57"N, 7°50'35.75"E; (C) Panoramic view of the 952 

San Remo-Monte Saccarello Unit comprising the conformably superimposing San Bartolomeo Fm. 953 

(SBF), the Bordighera Sandstone (BGS) and the calcareous San Remo Flysch (SRF) cropping out in an 954 

ĂŶƚŝĐůŝŶĂů ƐƚƌƵĐƚƵƌĞ Ăƚ ƐĂŵƉůĞ ůŽĐĂƚŝŽŶ ͞MŽŶƚĞ FƌŽŶƚğ͘͟ Sampling location: GPS 44° 2'44.45"N, 955 

7°45'10.48"E.  D) Outcrop image of the coarse-clastic Bordighera Sandstone at the distalmost sample 956 

ůŽĐĂƚŝŽŶ ͞CŝŵĂ Ěŝ VĞůĞŐĂ͘͟ GP“ 44° 7'46.55"N, 7°40'33.45"E. Note that strata are overturned. 957 

 958 
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Fig. 4. Representative thin section microphotographs for samples of the San Bartolomeo Fm. (SBF; A-959 

C) and the Bordighera Sandstone (BGS; D-I). (A) Typical appearance of relatively well-sorted, tightly 960 

packed SBF samples. Note the textural and compositional maturity of the sandstone. (B) Characteristic 961 

quartz-dominated nature of fine-grained SBF thin-sections. Note the sub-rounded to occasionally 962 

rounded grain shapes. (C) Uppermost SBF sample illustrating lithic fragment examples: chert fragment 963 

(Ls) and volcanic fragment (Lv). (D) Characteristic poorly mature BGS sample, showing poor degree of 964 

sorting, angular grains and an arkosic composition. (E) Typical constituents of the coarse detritus 965 

represented by monocrystalline quartz (Qm), alkali feldspar (K-F) and mica (m). (F) Typical alteration 966 

of plagioclase in association with monocrystalline quartz in tightly packed framework almost devoid of 967 

matrix. (G) Examples of lithic fragments: arkosic fragment (Ls) and volcanic fragment (Lv) in association 968 

with Qm and plagioclase (Plg). Note the abundant pinkish calcite cement (c_c). (H) Representative 969 

arkosic composition comprising quartz and feldspars (in granitic fragment), and low-grade 970 

metamorphic lithic grain (Lm). (I) Fine- and microcrystalline polycrystalline quartz grains (Qp) in 971 

metamorphic fragment in association with a chert sedimentary lithic fragment (Ls). 972 

 973 

Fig. 5. Sandstone modal compositions of the San Bartolomeo Fm. and the Bordighera Sandstone. (A) 974 

QtFL modal analysis (cf., Dickinson et al., 1983) and (B) QmPK modal analysis ternary plots (cf., 975 

Dickinson and Suczek, 1979). Note the consistent dominance of K-feldspar over plagioclase in all the 976 

studied samples in the QmPK plots.  977 

 978 

Fig. 6. Maturity indexes (whisker plots) for samples from the three analyzed sections. Monte Frontè = 979 

medial domain of the Bordighera Sandstone; Cima di Velega = distalmost domain of the Bordighera 980 

Sandstone. 981 

 982 
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Fig. 7. Cathodoluminescence images of representative detrital zircon grains from samples SBF_1 (A), 983 

SBF_4 (B), MF_1 (C), CdV_1 (D) and CdV_3 (E). 984 

 985 

Fig. 8. Qualitative comparison of detrital age frequency distributions (probability density plots) of the 986 

analyzed samples for A) the time interval from 0-3500 Ma and B) for the time interval from 200-1200 987 

Ma. Geological time-scale according to the International Commission on Stratigraphy. 988 

 989 

Fig. 9. (A) Qualitative confrontation of the detrital age spectra (cumulative distribution functions) for 990 

the time span from 0-3500 Ma and (B) Statistical evaluation of similarity (K-S test p-values) between 991 

the detrital samples cumulative distribution functions. Green-shaded boxes indicate p-values > 0.05, 992 

whereas red-shaded boxes indicate that confrontations did not pass the threshold value of 0.05.    993 

 994 

Fig. 10. Histograms (bin size 5 Ma) and synthetic probability density curves of all concordant ages of 995 

samples of the Bordighera Sandstone (BGS) and the San Bartolomeo Fm. (SBF): (A) Age spectrum from 996 

200 Ma to 800 Ma; (B) Age spectrum from 200 to 450 Ma. 997 

 998 

Fig. 11. Kernel Density Estimation (KDE) plots of detrital zircon ages (200-1200 Ma) of the San 999 

Bartolomeo Fm. and the Bordighera Sandstone and of some published detrital zircon age data from 1000 

Corsican (?) para-autochthonous flysch units (Eocene Annunciata flysch; samples 11CO68 and 11CO87 1001 

from Lin et al. (2017) and from the allochthonous successions of the Piedmont Nappe (Late Cretaceous 1002 

Narbinco Fm. and Coniacian-Maastrichtian Tralonca Fm.) and the Albian-CĞŶŽŵĂŶŝĂŶ ͞LǇĚŝĞŶŶĞ 1003 

ĨůǇƐĐŚ͟ ŽĨ ƚŚĞ BĂůagne Nappe (Lin et al., 2018). 1004 
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Fig. 12. Models for the evolution of the provenance of the investigated successions (not to scale), 1006 

illustrating the effect of the inferred craton-ward (i.e., NNW-directed) shift of the flexural bulge hinge 1007 

line. (A) During the Hauterivian to Santonian the flexural bulge was located in the extensive shelfal 1008 

area of the distal European margin. (B) During the Campanian to Maastrichtian the flexural bulge 1009 

arrived in the more proximal part of the margin. Resultant rapid uplift of crustal blocks promoted rapid 1010 

sedimentation of the first-cycle Bordighera Sandstone arkoses which were shed into the trench 1011 

without significant surface processes (physical and chemical) coming into effect. 1012 
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Fig. 6 1088 

 1089 

 1090 

 1091 

 1092 

 1093 

 1094 

 1095 

 1096 

 1097 

 1098 



49 
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Fig. 10 1128 
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