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ABSTRACT: Extensive studies on traditional and novel engineering materials and the increasing
demands by growing traffic have led to tremendous changes of the function of roads. Raads, as
important part of the human living environment, have evolved from structures that were designed
and built for passing vehicles, to ecological assets with significant economic importance. In
additionto structural stability and durability, functions such as noise reduction, urban heat island
mitigation, de-icing and exhaust gas absorption, are also expected. This study focused on
stae-of-the-art research on the performance, applications and challenges of six
environment-friendly functional road materials, namely the permeable asphalt concrete,
noise-reducing pavement materials, low heat-absorbing pavement materials, exhaust
gas-decomposing pavement materials, de-icing pavement materials, and energy harvesting
pavement materials. With this study, we aim to provide references to the latest riilenzntes

of the design and development of environment-friendly functional paveraetht,promote
innovationin materials sciencand pavement design principles. For this purpose, this review
compiled extensive knowledge in modern road construction and related disciplines, in order to
promote the development of modern pavement engineering technologies.

Keywords: Road materialdrunctional pavement,de-friendly, Sustainable construction

1. Introduction

Road is an important infrastructure that resulted from transport activities anuidnasted
human civilization and development. Road construction has a long history; infticerQry BC,
the Arab Republic of Egypt built roads to transport large amounts of rocks from qi@sitss
where the rocks were used to build pyramids and the Great Sphinx [1,2]. In ancienpRophe,
constructedan advanced road network centered in Rome, which played a significant role in the
prosperity of the ancient Roman Empire and the proverb hé&dllitroads lead to Rome” [3].
Moreover, the‘Silk Road’, which was in existence from thé4Zentury BC to the T3and 14
centuries, greatly promoted the economic, cultural, and technological exchanges between the east
and the west of the Asian continent, making a great contribution to the world’s economic
development and social progress [4]. Currently, the total mileage of roads has reachea@0 milli
kilometers globay [5,6], which is equivalent to 1,700 times the circumference ofEtheh’s
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equator.

Along with human civilization and development of civil engineering, road construction
materials have also been continuously upgraded. From times before the Christ untifthe 19
century AD, rocks, pebbles, gravels, wood and pottery fragments were the main forms of
pavement materials [3]. People also explored the use of other types of materials faveradnt.

In 615s BC, asphalt was recorded as a material to build road in ancient Babyloriié] 1500s,

the Peruvian Incas used materials similar to modern bituminous macadam to pave their highway
system [8,9]. In 1848, the first road with asphalt Macadam pavement was paved outside of
Nottingham, UK, using coal tar as the binder [10]. In 1865, the first road with cement concrete
was built in Inverness, Scotlandl[12]. Later in the 19 century, cement concrete and asphalt
mixture became the main types of high-grade pavement materials. Continuous improvement on
material performance has provided lower pavement roughness and higher skid resistance, meeting
people’s growing needs for fast and safe travel. Th& 28ntury witnessed extensive studies on
polymer material science and consequently, a significant boost in pavement service life and
stability, with the use of various modified asphalt materials and high-performance cement.

People’s requirements for ecological sustainability became increasingly high when the
industrial civilization reached a certain levehd people realized that roads are not only a means
for transporting people and goods but also an important component of the environment. A road is
expected to play a role in infiltrating rainwater, reducing tire noise, de-icing, and purifying tailpipe
exhaust gas, in addition to its basic functions (i.e. load bearing, evenness, durability and comfort).
Since the beginning of the 2Icentury, the emergence of new functional materials and the
development of interdisciplinary science have made the design and construction of
environmentally friendly functional pavements possible, which have subsequently resulted in the
expansion of research in pavement materials. To improve on ecological and environmental
performance of road infrastructure, the development of environmentally friendly functional
pavement materials, poses challenges as well as opportunities to road engineers and researchers.

This study focused on state-of-the-art research on the performance, applications and
challenges of six environmentally friendly functional pavement materials, namely thegie
asphalt concrete (section 2), noise-reducing pavement materials (section 3), low heat-absorbing
pavement materials (section 4), exhaust gas-decomposing pavement materials (section 5), de-icing
pavement materials (section 6), and energy harvesting pavement materials (sectith fRisW
paper, we aim to provide an abundance of referemsethe design and development of
environmentally friendly functional pavement materials.

2. Permeable asphalt pavement material
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2.1. Functional requirements for pavement permeability

The pores on the ground surface enable rainwater to seep into the ground, which helps to
restore moisture in the natural soil, regulate atmosphere humidity, facilitate plati,gr@intain
surface water pressure, and replenish the groundwater. When pavement materials, such as asphalt
concrete or cement concrete, are paved and compacted, rainwater is impeded from direct
infiltration and the moisture cycle between the underground and aboveground spaces is blocked.
These effects, together with the exploitation and excessive use of groundwater in some regions,
have led to a series of problems, including considerable reduction in rainwateatioviltr
ecological imbalance, and ground subsidence [13-15]. In addition, the impermeable pavement
surface contributes to the formation of water films, or accumulation of water, on teegayv
surface [16], which leads to vehicle drifting and water splash, thus causing &edfaents
[17,18]. Moreover, traditional impermeable pavement surfaces can cause an abrupt rise in surface
runoff in the event of storms, resulting in urban inundation [J9Rfr these reasons, permeable
pavement materials have attracted wide interest.

2.2. Permeable asphalt concrete

Permeable asphalt concrete is a type of gap-graded mix material with a porosity of 16% to
25%. The porosity is achieved by increasing the proportion of coarse aggregates with a nominal
size of > 4.75 mm and reducing the proportion of aggregates sized betweam?aB@l4.75 mm
[21, 22]

Unlike traditional compact pavement materials which have full-face contact between
aggregates, aggregates in permeable asphalt concrete form only point contact between each other
as shown in Fig. 1. Due to the contact area being substantially reduced, the requirements for
mixture design and component materials are higher, in order to maintain the strengtly, atebilit
durability of the mixture. In terms of binder selection, modified asphalt is usualtl; wstn
variations in the type and content in different regions due to varying environraedtahffic
conditions [23,24]Styrene-butadiene-styrene (SB8odified asphalt or rubber asphalt are often
used in the United States and Europ&26]. Hydrated lime, taking up to 1% aggregate weight
andcellulose fibers, at a rate of 0.3% by total weight of the mixture [27,28], are added to reduce
stripping and improve water stability [29,21]. In Asian countries, such as China, Japan, and
Singapore, high-viscosity bitumen (viscosity >20000slP&s commonly used [30-32]. Epoxy
asphalt and Trinidad NAF 501 natural asphalt have also been used for permeable asphalt concretes

in some studies [33,34].
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Fig.
To improve durability and anti-stripping property of the mix, permeable asphalt concrete is
often produced with excessive asphalt binder (typically 4.5-6.0% or even more) to generate a
12um to 14um thick asphalt binder film, while the film thickness in a dense-graded asphalt
concrete is abowum to 10um [21]. In addition, a decreased inter-aggregate contact area leads to
increased contact stress, calling for mixture stability and aggregate strength; [B&s8Bhntly
basalt and diabase with high strength are commonly used [37]. Moreover, the content of elongated
aggregate particles in permeable asphalt concrete should be strictly controlled, usually no more
than 10% to 15%, to reduce fine grading and porosity caused by aggregate breakdown [32].
Wheel tracking test was used to evaluate the high temperature stability of permeable asphalt
concrete. The evaluation index was Dynamic Stability. As a result of the use of moditiedt as
and skeleton structure, permeable asphalt concrete usually shows excellent high temperature
stability. The rutting dynamic stability usually reaches 5000 times/mm when theibigisity
asphalt is used [22], far exceeding the requirements of 3000 times/mm for dense-graded modified
asphalt mixture, in accordance with the standard [38]. Furthermore, the coating of thick asphalt
binder film and the use of additives such as lime, have provided the concrete with adequate water
stability. Freeze-thaw split test was used to evaluate the moisture susceptfbpigynteable
asphalt concrete. The evaluation index was Tensile Strength Ratio (TSR). Generalgndite T
Strength Ratio (TSR) can reach 80% for dense graded modified asphalt mi@turée other
hand, pores and limited inter-aggregate contact have adverse effects on the anti-fatigue
performance and crack resistan2g|[ Findings from fatigue test under submerged condition (Fig.
2) suggesd that withanincrease of porosity, anti-fatigue performance of the permeable asphalt
concrete decreases, and the sensitivity of fatigue lidhamgein stress level increases; however
water immersion does not have a significant influence on the fatigue performance [39]. When
permeable asphalt concrete is used in low temperature, the crack resistance can be improved in
several ways, such as by reducing porosity, increasing the amount of asphalt and modifier, and

adding fiber [37,40].



130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153
154
155
156

= .-____;.a,,. ES—————
Fig. 2 Permeable asphalt concrete fatigue test u

—

nder submerged condition

The rainfall intensityis considered in the design of air void for permeable asphalt concrete.
Generally, an air voids content of about 20% was used, so that the permeability coefficient can
reach 0.4-0.5 cms which can meet the permeability demand of roads during heavy rain. When
permeable asphalt concrete is used for surface layer, the thickness is usually 40-50 mmen a sing|
layer and 70-100 mm in a double layer. Drainage is provided by the road side of permeable asphalt
pavementAs for pavement surface mixture, NCAT (National Center for Asphalt Technadogy)
ASTM (American Society for Testing and Materials) International (D 7064-04) suggasted
minimum permeability coefficient of 100 m/day [41]. In permeable asphalt concrete, there is a
good correlation between permeability and porosity, especially with interconnected pores [22]. In
addition, there is a mathematical relationship between porosity and the composition of concrete.
For example, for permeable asphalt concrete with a nominal maximum aggregate size (NMAS) of
13mm, the relationship between permeability coefficients and concrete composiiobe
established via the constant head permeability test [22], by setting different sieve porg passi
rates (4.75 mm, 2.36 mm, and 0.075 mm) and limiting the content of aggregates sizath1ol8
2.36 mm, as shown in the following equation.

K = 0.008@ 233878 0.008,75~ 085, 35- 0,090 142350549 Poods 1)
where k is the permeability coefficient (cm/s).7B P2.3s andPg o7s are the 4.751m, 2.36mmand
0.075 mm sieve pore passing raf@s), respectively. Pis-236iS the mass percentageo) of
aggregates with particle size between 1.18anah2.36mm.

2.3. Engineering applications and challenges

Permeable asphalt concrete has been widely used in European countries in recent years
including the Netherlands, Germany, Denmark, Switzerland and Austria [37]. Over 90% of major
highways in the Netherlands are paved with permeable asphalt concrete [26]. The material is

known as open-graded friction course (OGFC) and used in various states of the United States,
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such as Texs Virginia, Georgia, Alabama, North Carolina, New Mexiégizona, Tennessee,
Louisiana, Californiaand Florida [24,27,21]. Permeable asphalt concrete has also been widely
used in road construction in Asian countries including China, Japan, South Korea and Singapore.
In particular, Japan has requirement for the use of permeable asphalt concrete in all expressways
to improve road safety since the release of “Guide for porous asphalt pavenieim November

1996 [42]. Moreover, permeable asphalt concrete is is@dvement surface in many Chinese
provinces, especially in coastal (eastern) and southern regions, to improve skid resistance and
reduce surface water spray in wet conditions [32].

In the long-term use, with the repeated wheel load and the aging of asphalt binder, the
accumulation of particles and contaminants on the pavement surface cause the pore clogging and
other main problems of permeable asphalt concrete such as ravadisgalling, which shortens
the PAC’s service life compared with dense-graded asphalt pavement [26]. To tackle the problem
of pore clogging, some research institutions have developed a special maintenance truck for
permeable asphalt pavement to maintain the permeability function of the pavement. The main
principle of such maintenance truck is to use high pressure water jet with concurriemt guct
rush out the clogging from the pore [43]. This specialized maintenance causes an increase in costs.
As a result, studies on raw materials, especially on asphalt binder’s properties and maintenance
techniques, are of great importance for the improvement of road performance, durability, and
reduction of the life-cycle cost of permeable asphalt concrete.

3. Noise-reducing pavement material
3.1. Functional requirements for reducing pavement noise

The growing number of vehicles has led to a serious problem of traffic tmisgban
residents and roadway ecology. Traffic noise is mainly generated by the interaction betgeen t
and road surface [44-46]. The factors affecting tyre/road noise mainly include: pavement
characteristics (aggregates properties, texture depth, air voids content, etc.), tire characteristics
(tread pattern and depth, tire type and pressure, etc.), environmental factors (temperature,
pavement moisture, dust, etc.) and human factors of the drivers (e.g. spebti). Résearch
findings have suggested that the noise produced by tire/road surface contact is the predominant
source of noise when the vehicle speed exceeds 40 km/h to/BQ3&h Soundproof structures,
such as sound barriers, can prevent noise from horizontal propagation, but are found less capable
of restricting the reflection of noise; also, they take up limited urban space and affettepav
lighting [53]. As a result, reducing tire/road noise by using adequate pavement materials has
become an important means to reducing traffic noise.

3.2. Porous noise-reducing asphalt concrete

6
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The use of porous asphalt concrete (PAC) can reduce pavement noise thanks to the principle
of noise reduction by pores. Porous pavement materials contain a large number of pores that are
connected. Therefore, the “air pumping action” between a tire and the pavement is significantly
weakened [54]. A porous structure aksthanceshe acoustic impedance of pavement materials,
leading to the transmission and interference of tire/pavement noise within the pavement, which
helps with energy dissipation, reduction of noise generated at the source, and pavement noise
impedance [55].

Similar to the water infiltration, pavement noise reduction can be achieved by using PAC
However, there is a difference in the pore structure design between low noise asphalt cashcrete an
permeable asphalt concrete. As mentioned above, the permeability of asphalt concrete depends
mainly on interconnected porosity; whereas for low noise asphalt concrete, the noise reducing
ability of concreteis affected by various parameters other than porosity, such as the number
spatial distribution and dimension of the pores [56,57].

Fig. 3 shows four typical cross-sections of PAC obtained by X-ray equipment, thieere
black color represents air voids. While the air voids contents of the four mixturesimiles
(20% + 0.3%), the number and dimension of pameoss-section are significantly different. Fig.

4 shows the acoustic absorption curve of the four mixtures obtained by an impedance tube [58] at
different frequencies. Among them, PAC-10 exhibits the best noise reduction effect across all
frequencies, followed by PAC-13c2, PAC-13c3, and PAC-13c1. It can be concluded that the effect
of noise reduction is not the same for the PAC with similar air voids content, bélcausmatial
distribution, number and dimension of pores inside the mixtures are different, which changes the
acoustic impedance of the material [22,3%].analysis of the influence of air voids content on the
noise absorbing performance of the PAC shows that the peak value of the absorpticiergoeff
increases as the air voids content increases. With a constant air voids content, the peak absorption

coefficient decreases as the dimension of pores increages [55
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Fig. 3 Typical cross sections of PAC



218
219

220
221
222
223
224
225
226
227
228
229
230

231
232
233
234
235
236
237
238
239
240

241

242
243

1.0

C)
t PAC-13cl
@ 0.8
T PAC-13c2
=
g PAC-13¢3
o 0.6
c PAC-10
°
=]
o
s 04
wi
¥
[}
o
2 02
=1
o
<

0.0

0 400 800 1200 1600 2000

Frequency (Hz)

Fig. 4 Acoustic absorption coefficients for different PAC mixtures

As demonstrated in previous study [22], the noise reductiorbe effectively improved by
adopting fine gradations of the aggregaamsl reducing the NMAS, given the same air voids
content of the PAC mixes. Therefore, when noise reduction is the primary camg@awvement
design, PAC with smaller NMAS, such as PAC-10 or even PAC-8, can be used. In addtiain, t
voids content of PAC is generally designed to be large, often about 23%, to form a voidestructur
that is suitable for dissipating acoustic energy.

The noise reduction effect is also related to vehicle speed. The higher the speed, the greater
reduction in noise can be achieved [55,59]. In general, the noise levels of porous asphalt
pavements measured by statistical pass-by method are alBub & dB lower than that of dense
asphalt pavement [60].

3.3. Engineering Applications and Challenges

In Asia and the United States, porous asphalt pavements are designed for effective skid
resistance and drainage; whereas in Europe noise reduction is the priority where porous asphalt
pavement materials are used [61]. According to the European design expénerager of PAG
which consists of a 2Bim-thick upper layer with coarse aggregates sized betweam &nd 8
mm, and a 45nm-thick lower layer with coarse aggregates sized betweenmiand 16 mm, is
found to have a better noise reduction effect [26]. The noise reduction measured by statistical
pass-by methodanbe 5 dBto 6 dB [62]. Similar to permeable asphalt concrete, raveling, spalling
andloss of noise reduction effect over time remain the major issues for porous noise-reducing
asphalt concrete [55].

4. Low heat-absorbing pavement material
4.1. Functional requirements for low heat absorption by pavement

Currently, large cities in the world suffer from the urban heat island effect (i.e. the

temperatures in downtown areas are significantly higher than in the suburbs) and the moblem i

8
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becoming increasingly serious [63,64]. Heat island brings adverse effects on the urban
environmenin various aspects, such as an increase of energy demand for cooling, which leads to
more air pollutants and greenhouse gas emissions, lowered groundwater quality, and
endangerment afrban biodiversity and human health [65,66].

Urban heat island is a combined effect of human activities and local meteorological
conditions during urbanization. The causes of urban heat island effect include the characteristics
of urban ground surface, greenhouse gas emissions, concentration of heat sources, and air
pollution. Roads are a major cause of urban heat island effect [67,68]. Pavement surfacéyjn the ci
especially asphalt pavement, has changed the original thermal properties of the natural ground
surface. The temperature of asphalt pavement surface rises rapidly under solar radiation to
65-70°C, a temperature that is significantly higher than that of natural ground surface.[69,70]
Furthermore, the pavement surface absorbs and stores heat during the day and releagas it at
which aggravates the urban heat island effect [69]. Thus, changing the thermal properties of
pavement materials is a crucial measure of alleviating the urban heat island effestafple,
using pavement materials with a large thermal resistance coefficient, applying light-colored or
heat-reflective coating materials on road surfaces, as well as using pavement materials with good
capacity of absorbingndretaining water are common measures [71]. By reducing the capacity of
heat storage, the amount of heat released from the road can be reduced, and the comfort of
pedestrians and residents nearhy be improved. Besides, this will also hielpeduce permanent
deformation of asphalt pavement caused by high temperatures and thus, prolong pavement service
life [72,73].

4.2. \\ater-retentive asphalt concrete

Water-retentive asphalt concrete is derived from porous asphalt concrete in which the pores
are stuffed with water-retentive slurry (Fig. 5). The slurry absorbs and storeisaftat curing
and hardening, enabling the pavement materials to store excessivéravateainfall or artificial
watering.At high temperature, the continuous moisture evaporation will help reduce the pavement
temperature, relieve local heat island effect, and maintain a comfortable road environment for

pedestrians and vehicles [74].
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Water-retentive slurry is prepared by using ground granulated blast furnace slag powder, fly
ash, alkali activator (which usually is hydrated lime) and water. Some addgives,as silica
fume, cement and water reducer, can also be added to improve the asphalt’sdinareiez
resistance, strength, and workability [75]. Apart from the inorganic materials that areoused f
slurry preparation, a certain amount of water-absorbent resin can also be added to absorb wate
continuously, and enhanake material’s water retention capacity. However, the difficulty in
dispersing the water-absorbent resin during blending needs to be addressed in practice.

To ensure that the slurry materials can be injected and retained in the pores of porous asphalt
concrete, the water-retentive slurry should have excellent liquidity: a liquidity ofd&sto 12 s
is required using the method of flow grout faeqplaced aggregate concrete (ASTM C 939 - 02)

[76]. Asphalt concrete with water-retentive slurry stuffed in the pores is coedidaperior to
porous asphalt concrete in strength, high and low-temperature performance, and moisture
susceptibility [74].

Fig. 6 shows the temperaturariation of water-retentive asphalt concrated porous asphalt
concrete slabs surface by outdoor test. The slab specimens were immersed in the water outdoor for
8 hours to obtain the same initial temperature (2Z)91t can be seen that the variatimnves of
the two mixtures were following the air temperature with a time delay. Haweempared to
porous asphalt concrete, water-retentive asphalt concrete had a much smaller tempsgature ri
alongwith the air temperature variation. The maximum temperature difference between the two

mixes was 13C at around 14:00.

10
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The cooling effect of water-retentive asphalt concrete is closely related to pavement surface
evaporation, water content, and surface reflectivity [77 ABhigh temperatures, water-retentive
asphalt concrete, in its full capacity, can reduce the temperature °Qyt@015C or more
compared with traditional asphalt concrete. Furthermore, water-retentive asphalt concrete can
reduce the pavement surface temperature°Byit8 the day and € at night. In addition, a layer
of 10 cm watetetentive asphalt concrete can maintain the pavement’s cooling ability for about
one week after absorbing rainwater [79,80].

4.3. Engineering applications and challenges

Currently, the uses of water-retentive asphalt concrete are limited to labora®anigsiled
trials. Reports on use in large-scale projects are rare, which is partly attribbtivedcomplicated
construction process. The cooling effect of water-retentive asphalt concrete on the surrounding
environment is achieved by evaporation of the retained water. As a result, water-retentivte asphal
concrete has potential for applications in regions with periodic rainfall and seasonal high
temperatures. Further research and development for water-retentive materials should focus on the
performance in water absorption, water retention, strength and stability; also worth fuotker w
are the methods for high-efficiency construction, and durability of water-retentive asphatteoncr
during freezing and thawing in cold regions.

5. Exhaust gas-decomposing pavement material
5.1. Demands for exhaust gas decomposition on pavement surface

Exhaust gass from automobile contain a large volume of Carbon Monoxide (CO),
Hydrocarbon (HC) and Nitrogen oxides (NQandare an important source of urban air pollution
[81]. The pavement surface is the initial contadth the exhaust gas aftégilpipe emission,

which suggests that should the decomposition and purification take place on pavementisurface,

11
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can be an effective way of reducing urban air pollution.

5.2. Exhaust gas-decomposing pavement material

Exhaust gas-decomposition by pavement materials can be achieved by using photocatalysis
technologies [82]. A photocatalyst is applied to the pavement surface to catalyze the oxidation (in
the presence of sunlight) of CO, HC, andNi2o carbonates and nitrates, which will be absorbed
by the pavement surface and then washed away by rainwater or artificial wateging)(H he
photocatalytic materials remain unchanged during this process. Materials that can be used as
photocatalysts include Titanium Oxide (B}Qzinc oxide (ZnO), zirconium dioxide (ZePand
cadmium sulfide (CdS), among which Bi®as attracted most attention due to its excellent
photocatalytic activity, chemical stability, and recyclability [83-86]. Over the feagtyears,
studies on exhaust gas decomposition using; Ti@ve focused on improving the catalytic
efficiency, especially under visible light. Variations of Ti® some studies include the nanometer
TiO2[87], modified TiQ by adding metal ions to prepare materials such as Fe{8&), and
modified TiG: by adding non-metal ions to prepare materials with high catalytic efficiency, such
as TiQ-xNx which has lattice oxygen in Tipartially replaced by non-metal nitrogen [89]. All
those materials have been found to enhance the photocatalytic activity and exhaust
gas-decomposing efficiency of Ti{90].
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There are two ways of using Tiih exhaust gas-decomposing pavement materials [85,91]

(1) TiO. is used in the preparation of water-based coating, which is directly coated on the surface
of asphalt concrete; (2) Tids used as a filler and added to asphalt concrete during the blending
process. TiQ s likely to be wrapped by the asphalt binder, therefore the distribution of TiO
particles is limited when added to the mixture during the blending; thus, direct coatiri@y b&gi

a higher photocatalytic efficiency comparseith the blending method.

The efficiency of TiQcan be affected by environmental conditions, such as temperature,
humidity, illumination intensity, and presence of contaminants on the pavement surface such as
dust and oil [92,93]. Exhaust gas-decomposing materials prepared by different researchers also
vary from one to another due to the use of different photocatalysts materials, experiment

conditions, and evaluation methods. By testing the photocatalytic efficiency of nanometer TiO
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coated onto the surface of asphalt concrete, Hassan et al. found that the degradation raite of NO
the air could reach 31% to 55% [85]. A report by Venturini and Bacchi found that the
decomposition efficiency of different types of i€anged from 20.4% to 57.4%, and that anatase
TiO, showed the best degradation effect [84]. Field tests on road sections conducted by Folli
Andrea et al. indicated that with ideal climate and light conditions, the daily average @énsity
NO within a road area can be reduced by 22% compared with the normal pavement [81].

5.3. Engineering Applications and Challenges

Tests on road sections paved with exhaust gas-decomposing material are seen in various
regions, including Milan (Italy), Copenhagen (Denmark), and Nanjing (China) [81,84,94]
However, exhaust gas-decomposing pavement materials have been used mainly in laboratory
studies and there is a lack of applications in large projects for the following reasons: 1) Exhaust
gas-decomposition efficiency is less satisfactory on actual pavement surfacetowlireglow
light intensity, environmental temperature, humidity, and wind. 2)-Tiating on the pavement
surface is found less durable due to abrasion by tires [81]88P&xhaust gas-decomposing
coating is usually applied at the cost of a decreased pavement texture depth, which reduces its skid
resistance. As a result, further studies on exhaust gas-decomposing pavement materials should
focus on improving the durability of the purification effect, and balance with skid resistaihee of
pavement surface. Furthermore, the development of standard test metmbdguipment for
construction and maintenance are also necessary.

It is worth noting that although titanium dioxide is odorless, and considered to be r@n-toxi
non-irritating, chemically and mechanically stable [95], it still poses potential heatfifrds.
According to the preliminary colladl list of carcinogens released by the International Agency for
Research on Cancer (IAC) of the World Health Organization, titanium dioxide is listad as
category 2B carcinogen [96]. Potential pollution of road surface runoff water, including threshold
value, concentration measurement and pathway modelling, should be considered in future
research.

6. De-icing pavement material
6.1. Demands for de-icing pavement surface

Snowy weather can lead to reduction in vehicle speed, which affects journey time and results
in an increase of fuel consumption and emissions. Snow and ice on the pavement surface also
result in a low friction coefficient and thus, a higher likelihood of traffic accidents $#gw and
ice can be removed by hand sweeping, mechanical sweeping or applying a melting agent [98]
However, these methods present the following disadvantages: hand sweeping has a low operation
speed and causes delays; mechanical sweeping is costly, and some machines may damage the
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pavement surface during operation; snow/ice-melting agents lead to pollution (of water, soil, and
air) and erosion of pavement materials, vehicles, and ancillary facilities [99]. In the odvent
extremely low temperature or excessive snowfall, snow/ice-melting agents may not be effective

a timely manner [100]. The aforementioned approaches are known as passive de-icing techniques
as they are applied externally in response to adverse climate incidents..

6.2. Active de-icing pavement materials

Researchers have conducted studies on the active de-icing pavement. The de-icing pavement
materials are roughly divided into three types, namely the anti-freezing pavemenalsjateri
energy-converting pavement materials, and salt de-icing pavement materials.

Anti-freezing pavement materials include elastic pavement materials and rough pavement
materials. The elastic is made by adding a certain amount of highly elastic materials to the
pavement surface to change the contact between the pavement and tire, and the deformation
characteristics of the pavement surface. By this method, ice and snow can be broken by the stress
on the pavement surface generated from traffic load, thus effectively preventing the accumulation
of snow and ice [101,102]. The most commonly used elastic materials are rubber fihaicdas
be obtained from recycled tires [103].

Open-graded asphalt concrete, such as porous asphalt concrete, is often used to enhance the
pavement’s texture depth and roughness [104]. When the pavement is covered with ice,
non-uniform stress on the snowl/ice layer makes it difficult to form ice undemaffie tnad. With
this method, broken ice will be removed by horizontal force of the vehicles, a largee teajtin
is also benefitial to the skid resistance of the pavement surface.

Examples of energy-converting de-icing methods include the heating cable, solar heating,
terrestrial heat tube, heating wire, and infrared lamp heating. Energy storage and conversion
devices, such as pipes and cables, are laid within the pavement which enable the increase of
temperature by the heat generated from electricity, solar panels, thermal energy or natfmal gas
melting or preventingce [105-107].

Apart from the two active de-icing technologies, salt de-icing methods, such as adding rock
salts (NaCl or CaG) to the asphalt concrete are used to reduce the freezing point and prevent
icing formed on the pavement surface [108,109].

6.3. Engineering applications and challenges

Elastic pavement materials have not yet shown promising results in durabilityesseand
de-icing efficiency; therefore, it is currently used oiylaboratory and road trial tests. As the
de-icing effect is influenced by various factors, including environment temperature and traffic

flow, the elastic pavement material performs less effectively in breaking ice whemiheratue
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417  is lower than minus 12°C and the ice thickness exceeds 9 mm [110].

418 Energy-converting pavement materials have undergone long-term research and tests in
419 various countries, such as the United States, Japan, China and Europe including Switzerland,
420 Iceland, Norway and Poland. Example road projects include the Goleniow airport in Poland [111]
421  the A8 Express road in Switzerland [112,113], the Gardermoen parking apron in Norway [114],
422 and the Gaia system for highway and ramp in Japan [115,116]. Energy-converting de-icing
423 pavement is known for its cleanliness, being environmentally friendly, and high de-icing
424  efficiency [117,118]; however, construction of this type of pavement is very difficuéigitires

425 great initial investment and on-going maintenance during use [119-122]. As a result, this method
426 is more applicable to road sections for airports, bridges, bends and large-gradient longitudinal
427  slopes.

428 Salt de-icing pavement materials have been applied and tested on road sections in
429  Switzerland, Germany, Japan, China and the United States [108,109]. With a small amdunt of sa
430 added, the long-term de-icing effect on the pavement remains doubtful as the salt & releas
431  gradually. In addition, the effect of salts on pavement materials and the surroundingreemtron

432  such as corrosion, needs further investigation.

433 7. Energy harvesting pavement material
434  7.1. Demands for energy harvesting from pavement surface

435 A large amount of thermal energy and mechanical energy is generated within the pavement
436  when the road serves the traffic. For example, dark (i.e. asphalt) pavement absorbs sater radiat
437 and the thermal energy accumulates within the pavement; furthermore, mechanical energy is
438 generated from the dynamic load on the pavement when the vehicle tire passes [123-125]. In
439 recent years, energy harvesting from road pavement has become a research focus in the context of
440 global energy shortage, environmental pollution, and cliizaegd126-128].

441  7.2. Energy harvesting pavement materials

442 Studies on the use of kinetienggy focus on the following aspects: 1) Piezoelectric

443 pavement technologyFig. 8 a), i.e. embedding piezoelectric materials in the pavement and
444  converting part of the mechanical energy generated by the vehicle load into electric energy
445  [129,130]. 2) Photovoltaic (PV) power-generating pavement (Fig. 8 b), i.e. paving the road using
446  solar panels instead of traditional asphalt concrete or cement concrete to convert solar energy
447  absorbed by the PV panels into electric energy [131,132]. 3) Thermoelectric pavement technology
448 (Fig. 8c), i.e. converting the heat absorbed by the pavement, especially asphalt pavement, into
449  electric energy using the thermoelectric module (TEG) embedded in pavement structure [125]. Fig.

450 8 presents the schematic of the three types of energy harvesting pavements.
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Fig. 8 Schematic of energy harvesting pavements

A good number of laboratory tests and simulation studies have been carried out on the
piezoelectric pavement technology. For example, Bowen and Near have patented a piezoelectric
actuator for road pavements [133], which was developed recently [134]. The system developed by
Abramovich et al. was tested in a real road environment by Innowattech using a product called
Innowattech Piezo Electric Generator (IPEG) [135,136]

For the photovoltaic power-generating pavement technology, TNO in the Netherlands has
paved a solar energy powered bicycle lane using a 10tk glass as the top layer of the
pavement, underneath which crystalline silicon solar panels are laid [137]. Julie and Scott Brusaw
proposed a solar collector system to replace the upper layer of the road pavement, called Solar
Roadway, which consistl of a series of structurally engineered solar panelg[138

The principle of the thermoelectric pavement technology is that the temperature difference
between the two ends of the thermoelectric module is used to generate a voltage. The greater the
temperature difference, the hghvoltage is generated. However, making full use of the
temperature gradient within the pavement structure or between the pavement and the surroundings
remains a key challenge for this technology. Wu et al. improved the power generating efficiency
by connecting high thermal conducting materials to the subgrade and taking advantage of the
temperature difference between subgrade and pavement [139,140]. Hasebe et al. managed to
improve the thermoelectric efficiency of pavement by embedding water pipes in #ragravo
collect heat, i.e. cool water from a river nearby was introduced to increase the teraperatur
difference of the thermoelectric module [141].

7.3. Engineering applications and challenges

The above pavement energy-harvesting technologies are mostly at a stage of laboratory
testing or field trial, because the many technical difficulties remain unsolved focplaste. The
main barriers to using piezoelectric pavement include the inadequate durability of piezoelectric
materials due to repeated load on the pavement, low compatibility with traditional pavement
materials, and the necessity afsecond energy conversion because of the electric power that
generate instant high voltage and low current cannot be used directly [130,142,143]. The

challenges for photovoltaic pavement includlg Development of new solar panels is needed to
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replace traditional pavement materials. 2) The durability and stability of a photoyatet must

be adequate to resist the effect of external factors, such as vehicle load, rainwatandicay 3)

The decreasing efficiency of solar panels after abrasion by vehicles and accumulation of dust
should be addressed, along with riding comfort, skid resistance, and reparability [123]. Currently,
the use of temperature gradient-based thermoelectric pavement technology is limitedbty it
power-generating efficiency [125,144,145].

8. Summary and conclusions

(1) With the growing traffic and demand for sustainability, the road that servesitsah cr
transport infrastructure is also changing its intrinsic functions, i.e. from struchakesvéere
designed and built for passing vehicles to ecological assets with significant economic importance
to the built environment. In addition to basic load bearing functions and durability, people now
have more expectations of the road, such as noise reduction, alleviation of urban heat island effect,
de-icing, and exhaust gas absorption, to provide road users and the public with a better transport
environment and travel experience.

(2) The above-mentioned pavement functions can be obtained in multiple ways. This paper
only exemplified a few engineering measures. For instance, in addition to the porous asphalt
concrete, rubber asphalt (containing elastic rubber paliplevements also found to have a
positive effect on noise reduction. Apart from water-retentive asphalt concrete, ligtgdcolor
pavement is also effective in reducing the pavement temperature and thus alleviating the urban
heat island effect, by means of sunlight reflection.

(3) Abundant pore structures make porous asphalt concrete effective in water permeation
and noise reduction. Porous asphalt is also in favor of additional functions, such as low heat
absorption (water-retentive pavement), de-icing, and exhaust gas decomposition. The material also
provides large texture depths and coating areas, which provide skid resistance and facilitate the
application of coating materials. Porous asphalt concrete pavements have attracted increasing
attention; however, there are fundamental differences between porous and conventional pavement
materials with regard to their composition, structure, and performance. As a result, furtiesr studi
are needed on the construction methods, maintenance techniques, mechanical modelsidesting a
evaluation methods.

(4) The different functions and performance requirements often contradict each other in
terms of material composition and behavior, and pavement design criteria. For instance, exhaust
gas-decomposing and de-icing functions can be achieved by applying coatings on the pavement
surface, at a cost of reduction in texture depth, which reduces its skid resistanceeWadation

and noise reduction of porous asphalt concrete is achieved by increasing porosity, at a cost of low
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temperatue performance, anti-stripping and durability. Therefore, keeping an adequate balance
between the functions fit fai specific use is a crucial challenge for engineers and researchers
when designing functional pavement.

(5) Researchers have carried out a considerable number of studies on different pavement
functions, but the majority of studies focused on achieving a single function. Further studies
should highlight the design of pavement materials with multiple function requireimetraffic
demand and environmental protection, i.e. de-icing with an energy harvesting ability and
meanwhile permeable, noise-reducing pavement.

(6) The functions of environmentally friendly pavement can be achieved generally in two
ways. One is to obtain the pavement function by means of structural design or performance
enhancementusing traditional engineering materials, e.g. porous asphalt concrete and
water-retentive asphalt concrete. The other way is to add novel materials to the asphalt concrete
mix, apply them onto the pavement surface, or embed them underneath a pavement structural layer.
It is foreseeable that, with the rapid development of material science and sensor technology,
findings from research on existing civil engineering materials will further extend and etiréech
environment-friendly functions of road pavement.

(7) Apart from pavement design and construction technologies, maintenance and recycling
technigues for existing asphalt concrete are also growing increasingly robust, which is an

important supplement to studies of material composition and structural design.
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