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Main points: 11 

1. We use interannual variability to estimate equilibrium climate sensitivity (ECS).  We 12 

estimate ECS is likely 2.4-4.6 K (17-83% confidence interval), with a mode and median 13 

value of 2.9 and 3.3 K, respectively.   14 

2. We see no evidence to support low ECS (values less than 2K) suggested by other 15 

analyses.  16 

3. This work shows the value of alternate energy balance frameworks for understanding 17 

climate change. 18 

  19 



Abstract 20 

Estimating the equilibrium climate sensitivity (ECS; the equilibrium warming in response to a 21 

doubling of CO2) from observations is one of the big problems in climate science. Using 22 

observations of interannual climate variations covering the period 2000 to 2017 and a model-23 

derived relationship between interannual variations and forced climate change, we estimate 24 

ECS is likely 2.4-4.6 K (17-83% confidence interval), with a mode and median value of 2.9 and 25 

3.3 K, respectively.  This analysis provides no support for low values of ECS (below 2 K) 26 

suggested by other analyses.  The main uncertainty in our estimate is not observational 27 

uncertainty, but rather uncertainty in converting observations of short-term, mainly unforced 28 

climate variability to an estimate of the response of the climate system to long-term forced 29 

warming.   30 

Plain language summary 31 

Equilibrium climate sensitivity (ECS) is the amount of warming resulting from doubling carbon 32 

dioxide. It is one of the important metrics in climate science because it is a primary determinant 33 

of how much warming we will experience in the future.  Despite decades of work, this quantity 34 

remains uncertain: the last IPCC report stated a range for ECS of 1.5-4.5 deg. Celsius.  Using 35 

observations of interannual climate variations covering the period 2000 to 2017, we estimate 36 

ECS is likely 2.4-4.6 K.  Thus, our analysis provides no support for the bottom of the IPCC's 37 

range. 38 

  39 



Introduction 40 

The response of the climate system to the imposition of a climate forcing is frequently 41 

described using the linearized energy balance equation: 42 

R = F + l Ts        (1) 43 

where forcing F is an imposed top-of-atmosphere (TOA) energy imbalance, TS is the global 44 

average surface temperature, and l is the change in TOA flux per unit change in TS [Sherwood 45 

et al., 2014].  R is the resulting TOA flux imbalance from the combined forcing and response.  All 46 

quantities are anomalies, i.e., departures from a base state. Equilibrium climate sensitivity 47 

(hereafter ECS, the equilibrium warming in response to a doubling of CO2) can be calculated as: 48 

ECS = -F2xCO2/l        (2) 49 

where F2xCO2 is the forcing from doubled CO2.   50 

Equation 1 is a workhorse of climate science and it has been used many times to estimate l and 51 

ECS.  Many of these [e.g., Gregory et al., 2002; Annan and Hargreaves, 2006; Otto et al., 2013; 52 

Lewis and Curry, 2015; Aldrin et al., 2012; Skeie et al., 2014; Forster, 2016] combine Eq. 1 with 53 

estimates of R, F, and Ts over the 19th and 20th centuries to infer l and ECS.  These calculations 54 

suggest l is near -2 W/m2/K and appear to rule out an ECS larger than ~4 K [Stevens et al., 55 

2016].  The increased likelihood of an ECS below 2 K implied by these calculations led the IPCC 56 

Fifth Assessment Report (AR5) to extend their likely ECS range downward to include 1.5 K 57 

[Collins et al., 2013].  58 

However, since AR5 a number of problems with this approach have been identified. These 59 

include questions about the impact of internal variability [e.g., Dessler et al., 2018], arguments 60 

that ECS inferred from historical energy budget produces an underestimate of the true value 61 

[e.g., Armour, 2017; Gregory and Andrews, 2016; Zhou et al., 2016; Andrews and Webb, 2018; 62 

Proistosescu and Huybers, 2017; Marvel et al., 2018], the large and evolving uncertainty in 63 

forcing over the 20th century [e.g., Forster, 2016], different forcing efficacies of greenhouse 64 

gases and aerosols [Shindell, 2014; Kummer and Dessler, 2014], and geographically incomplete 65 

or inhomogeneous observations [Richardson et al., 2016].   66 



For robust estimates of ECS, multiple lines of evidence are needed and care needs to be taken 67 

in relating the inferred ECS from any method to other estimates.  Thus, there is great value in 68 

finding alternate ways to approach the problem.  Relatively few papers have attempted use 69 

short-term interannual variability to estimate ECS [e.g., Forster, 2016; Tsushima et al., 2005; 70 

Forster and Gregory, 2006; Chung et al., 2010; Tsushima and Manabe, 2013; Dessler, 2013; 71 

Donohoe et al., 2014].  Papers that do typically yield estimates of ECS consistent with the IPCC’s 72 

canonical ECS range of 1.5-4.5°C, but their uncertainty is so large as to provide no meaningful 73 

constraint of the range.  In this paper, we present a new methodology that uses interannual 74 

fluctuations to help constrain the ECS range. 75 

Results  76 

Traditional energy-balance framework 77 

Per Eq. 2, ECS requires estimates of F2xCO2 and l.  We use estimates of F2xCO2 from fixed sea 78 

surface temperature and sea-ice experiments from ten global climate models that submitted 79 

output to the Precipitation Driver Response Model Intercomparison Project [Myhre et al., 80 

2017b].  They estimate F2xCO2 to be normally distributed with a mean of 3.69 W/m2 and a 81 

standard deviation of 0.13 W/m2. 82 

We estimate l from observations of R and TS. Observations of R come from the Clouds and the 83 

Earth’s Radiant Energy System (CERES) Energy Balanced and Filled product (ed. 4) [Loeb et al., 84 

2018] and cover the period March 2000 to July 2017.  Estimates of TS come from the European 85 

Centre for Medium Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERAi) [Dee et al., 86 

2011].  In these calculations, monthly and globally averaged anomalies are used, where 87 

anomalies are deviations from the mean annual cycle of the data. 88 

Given these data, we calculate l two ways, both based on Eq. 1.  First, we use estimates of 89 

effective radiative forcing F over the CERES period and calculate l as the slope of the regression 90 

of R-F vs. TS.  We use standard regressions in this paper — an ordinary least-squares fit, with R-F 91 

as the dependent variable and TS as the independent variable [Murphy et al., 2009].  The 92 

forcing is based on the IPCC AR5 forcing time series, revised and extended in the following 93 



ways. Forcing from CO2, N2O and CH4 have been replaced by calculating new forcing timeseries 94 

using concentrations from NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/) with updated 95 

formula to convert mixing ratios to forcing [Etminan et al., 2016]. Other forcing components 96 

match IPCC AR5 through 2011 and have been extended to July 2017. For aerosols and ozone, 97 

the multi-model mean forcing from Myhre et al. [2017a] is used.   For volcanoes, the forcing 98 

from Andersson et al. [2015] is taken from their Figure 4, beginning in 2008. Solar forcing after 99 

2011 is derived from SORCE data [Lean et al., 2005]. Other minor forcing terms are estimated 100 

using the relative change in forcing from 2011-2017 from the RCP4.5 scenario [Meinshausen et 101 

al., 2011]. 102 

Uncertainty is estimated using radiative forcing uncertainties from 2015. We take the 5%-95% 103 

range for each of the 14 different forcing terms in 2015 and turn this into a fractional range by 104 

dividing by the median 1750-2015 forcing estimate. This fractional uncertainty is Monte Carlo 105 

sampled for each forcing term independently. These fractions are then multiplied by the 106 

relevant forcing time series and summed to create 10,000 different realizations of the time 107 

series of total radiative forcing.  The average forcing time series during the CERES period is 108 

plotted in Fig. S1. 109 

We then estimate a distribution of l using Monte Carlo sampling.  We start by subtracting the 110 

10,000 forcing time series from the observed R time series to generate 10,000 estimates of R-F.   111 

Then we repeat the following process 500,000 times: 1) randomly select an R-F time series, 2) 112 

randomly subsample it and the observed TS time series, with replacement, 3) regress the 113 

sampled R-F and TS data sets to obtain an estimate of l.  The number of samples taken is set by 114 

the number of independent pieces of information in the time series, as estimated by Eq. 6 of 115 

Santer et al. [2000] (the original data set contains 209 months; we estimate there are ~100-120 116 

independent samples due to autocorrelation in the time series).   117 

In the second approach, we assume forcing changes linearly over the CERES time period and 118 

account for it by detrending R and TS time series.  We do this by subtracting off the linear trend 119 

of each time series estimated using a least-squares regression.  We then assume that  120 

Rdetrended = l TS,detrended and we calculate l by regression.  The distribution of l is estimated by 121 



randomly sampling 500,000 times (with replacement) the detrended R and TS time series, with 122 

each resampled data set providing one estimate l.  As with the previous estimate, we account 123 

for autocorrelation by reducing the number of samples taken, using Eq. 6 of Santer et al. 124 

[2000].  Plots of R, TS, and F can be found in Section S1 of the supplement. 125 

Distributions of l for the two approaches are both quite wide (Fig. 1a), with values of  126 

-0.51±0.64 and -0.81±0.65 W/m2/K for the R-F and detrended calculations, respectively 127 

(uncertainties are 5-95% confidence intervals).  The two estimates of l reflect different ways of 128 

handing forcing and they show that different approaches yield similar distributions for l.  These 129 

distributions are similar to those estimated as the uncertainty of ordinary least-squares 130 

regressions of R-F vs. TS (-0.52±0.56 W/m2) and detrended R vs. detrended TS (-0.82±0.64 131 

W/m2).  Our sign convention is that fluxes are downward positive, so a negative l means that a 132 

warmer planet radiates more energy to space, a necessary requirement for a stable climate.   133 

The extreme width of the l distributions is a consequence of scatter in the relationship 134 

between R-F and TS (Fig. 1b) [Spencer and Braswell, 2010; Xie et al., 2016], which is due to both 135 

weak coupling between the surface and ∆R [Dessler et al., 2018] and weather noise.  This 136 

means that our observational estimate of l is quite uncertain, with almost all of the uncertainty 137 

coming from month-to-month variability in the R time series.  Switching to another 138 

temperature data set, such as MERRA2 [Gelaro et al., 2017], or using only the median forcing, 139 

yields very similar distributions.  Systematic errors in the CERES time series are small; the data 140 

are stable to better than 0.5 W/m2/decade (stability of the shortwave is 0.3 W/m2/decade 141 

[Loeb et al., 2007], and longwave is 0.15 W/m2/decade [Susskind et al., 2012]).  Because we are 142 

regressing R vs. temperature, spurious trends in the data have little impact on our analysis 143 

[Dessler, 2010]. 144 

The distributions of l plotted in Fig. 1a are derived mainly from the response to interannual 145 

variability (Fig. S3), so we will refer to them hereafter as liv.  The l in Eq. 2, however, is the 146 

climate system’s response to forcing from doubled CO2 (hereafter l2xCO2), so we cannot simply 147 

plug liv into Eq. 2 to derive ECS.  In fact, this disconnect between what we can measure (liv) 148 



and what is required to calculate ECS (l2xCO2) is one reason scientists have largely avoided using 149 

interannual variability to infer ECS. 150 

We therefore modify Eq. 2 to account for this: 151 

 ECS= −
&'×CO2

+,-,/01

+,-

+'×23'
      (3) 152 

where liv,obs is the observed value (from Fig. 1a), mainly the response to interannual variability, 153 

while the ratio liv/l2xCO2 is a transfer function that converts liv,obs into the required value l2xCO2.  154 

We estimate this transfer function using models that submitted required output to the 5th 155 

phase of the Coupled Model Intercomparison Project (CMIP5) [Taylor et al., 2012].  The 156 

numerator liv is derived from the models’ control runs, in which climate variations arise 157 

naturally from internal variability.  To facilitate comparison with the observations, as well as 158 

avoid any issues with long-term drift, we first break each control run into 16-year segments and 159 

calculate monthly anomalies of ∆R and ∆TS during each segment, where anomalies are 160 

deviations from the average annual cycle of each 16-year period.  We expect these model 161 

segments to contain the same types of climate variations that are in the observations (e.g., 162 

weather noise, ENSO).  Then, we calculate liv for each segment as the slope of the regression of 163 

∆R vs. ∆TS for that segment.  Finally, we average the segments’ values of liv to come up with a 164 

single value of liv for each model (Table S1). 165 

The CMIP5 archive does not include doubled CO2 runs, but it does have abrupt 4xCO2 runs from 166 

which we can estimate l4xCO2.  l4xCO2 is calculated from these runs using the Gregory et al. 167 

[Gregory et al., 2004] method: we regress all 150 years of annual R vs. annual average TS, and 168 

take the resulting slope as an estimate of l4xCO2, where R and TS are deviations from the pre-169 

industrial control run. 170 

If we assume that l2xCO2 ≈ l4xCO2, so we can re-write Eq. 3 as: 171 

 ECS≈ −
&'×CO2

+,-,/01

+,-

+5×23'
      (4) 172 



Recent work suggests that l4xCO2 is less negative (i.e., implying a higher ECS) than l2xCO2 173 

[Armour, 2017; Proistosescu and Huybers, 2017]. On the other hand, we use all 150 years of the 174 

4xCO2 runs to estimate l4xCO2, which tends to produce values that are too negative [Andrews et 175 

al., 2015; Rugenstein et al., 2016; Rose and Rayborn, 2016; Armour, 2017].  These two errors 176 

tend to cancel, but how much of a bias is left — and in which direction — remains an 177 

uncertainty in this analysis.  The CMIP5 ensemble’s distribution of liv/l4xCO2 is plotted in Fig. 2; 178 

it has an average of 0.81 and a standard deviation of 0.34.  179 

We then use a Monte Carlo approach to estimate ECS.  We produce 500,000 estimates of ECS 180 

by randomly sampling the distributions of F2xCO2, liv,obs (Fig. 1a), and liv/l4xCO2 (Fig. 2) and 181 

plugging them into Eq. 3; negative ECS values or values greater than 10 K are viewed as 182 

physically implausible and thrown out (sensitivity to the 10-K threshold is shown in Table 1). We 183 

produce two ECS distributions — one using liv,obs from the R-F calculation and one using liv,obs 184 

from the detrended calculation. The ECS distributions (Fig. 3) have 17-83% confidence intervals 185 

(corresponding to the IPCC’s likely range) of 2.5-7.0 K and 2.0-5.7 K for the R-F and detrended 186 

calculations, respectively.  The modes are 3.0 and 2.4 K, while the medians are 4.2 and 3.3 K.   187 

Overall, our calculated ECS distributions overlap substantially with the IPCC’s range, although 188 

our distributions are shifted to higher values: we see a ~30% chance that ECS exceeds 4.5 K, 189 

while the IPCC assigns that a 17% chance.  And we see less support for low values of ECS: the 190 

chance of an ECS below 2 K is 6-15%, while the IPCC assigns a 17% chance it is below 1.5 K.   191 

Table 1 lists the statistics of these distributions, as well as a number of sensitivity tests to 192 

determine the robustness of the calculation.  For example, we have done ECS calculations using 193 

a F2xCO2 distribution derived from the CMIP5 abrupt 4xCO2 runs instead of the distribution from 194 

the PDRMIP (see Sect. S2 for more about this).  All of the ECS distributions are similar to those 195 

shown in Fig. 3, leading us to conclude that our conclusions are robust with respect to the many 196 

choices in how the calculation is done. 197 

Modified energy-balance framework 198 



Recently, Dessler et al. [2018] suggested a revision of Eq. 1, where the TOA flux is 199 

parameterized in terms of tropical atmospheric temperature, not global surface temperature: 200 

 R = F + Q TA        (5) 201 

where TA is the tropical average (30°N-30°S) 500-hPa temperature and Q converts this quantity 202 

to TOA flux. R and F are the same global average quantities they were in equation 1.  They 203 

demonstrated that TA correlated better with R-F than TS does (Fig. 1c), thereby providing a 204 

superior way to describe global energy balance. 205 

In this framework, the equilibrium warming of the tropical atmosphere ∆TA in response to 206 

doubled CO2 is equal to -F2xCO2/Q2xCO2.  ECS can therefore be written 207 

ECS= −
&'×CO2

6,-,/01

6,-

6'×23'

789

78:
≈ −

&'×CO2

6,-,/01

6,-

65×23'

789

78:
   (6) 208 

where Qiv,obs is the analog to liv,obs, Qiv/Q2xCO2 is the transfer function that allows us to use 209 

short-term variability to estimate ECS, and ∆TS/∆TA is the ratio of the temperature changes at 210 

equilibrium in response to doubled CO2. As we did previously, we will further assume that 211 

Q4xCO2 ≈ Q2xCO2.  212 

We use the same forcing F2xCO2 that was used in the previous section.  The distributions of the 213 

scaling factor Qiv/Q4xCO2 (Fig. 4a) come from the CMIP5 ensemble. These are calculated the 214 

same way as the liv/l4xCO2 ratios were, except atmospheric temperatures are substituted for 215 

surface temperatures.  Just as we did for liv,obs, we calculate Qiv,obs two ways: by regressing R-F 216 

vs. TA and by regressing detrended R vs. detrended TA .  Distributions of Qiv,obs for the two 217 

approaches are similar (Fig. 1a), with values of -0.98±0.32 and -1.09±0.29 W/m2/K for the R-F 218 

and detrended calculations, respectively (uncertainties are 5-95% confidence intervals).  219 

Because of their similarities, in the rest of this section we will show results using the detrended 220 

calculation, although results for both distributions can be found in Table 2.   221 

Finally, the distribution of the temperature ratio ∆TS/∆TA is also estimated from the CMIP5 222 

ensemble.  For each model, ∆TS and ∆TA are estimated as the average difference of the first and 223 



last decades of the abrupt 4xCO2 runs; we then take the ratio of these values.  Comparisons of 224 

the models to observations show that models do well at simulating this ratio (Sect. S3). The 225 

resulting distribution of ∆TS/∆TA constructed by the CMIP5 models (Fig. 5a) has an ensemble 226 

average and standard deviation of 0.86±0.10.   227 

Long forced runs of the MPI-ESM1.1, GFDL CM3, and ESM2M models all show this ratio 228 

increases as the climate continues to warm beyond year 150.  In runs of the GFDL CM3 and 229 

ESM2M, in which CO2 increases at 1% per year until doubling and then remains fixed, the ratio 230 

increases from 0.79 and 0.70, 300 years after CO2 doubles, to 0.86 and 0.76 at equilibrium 231 

(GFDL values are personal communication, David Paynter, 2018, based on runs described in 232 

[Paynter et al., 2018]).  The ratio in an abrupt 4xCO2 run of the MPI model increases from 0.79 233 

in years 140-150 to 0.87 in years 2400-2500.  Thus, we conclude that values of this ratio 234 

obtained from the 150-year CMIP5 4xCO2 simulations may be low biased, which would lead our 235 

ECS to also be low biased.   236 

As in the previous section, we use a Monte Carlo approach and produce 500,000 estimates of 237 

ECS by randomly sampling the distributions of F2xCO2, Qiv,obs, Qiv/Q4xCO2, and ∆TS/∆TA, and then 238 

plugging the values into Eq. 6.  The resulting ECS distribution (Fig. 6a) shows a similar structure 239 

to the l-based distributions in Fig. 3: a broad maximum between 2 and 3 K and a tail towards 240 

higher ECS values.    241 

There is also a puzzling peak below 1°C.  The only way for an ECS estimate to be close to zero is 242 

if Qiv,obs is very large or one of the other factors in Eq. 6 is close to zero.  Analysis of the terms in 243 

Eq. 6 suggests that the term causing the low ECS values is Qiv/Q4xCO2, whose distribution 244 

approaches zero (Fig. 4a). These low values come from the GISS models (Fig. 7a, Table S1) and if 245 

they are removed from the ensemble, the bump below 1 K disappears (Fig. 6b), although the 246 

statistics of the distribution do not change much.  247 

This result emphasizes that the scaling factor Qiv/Q4xCO2 is unconstrained by observations and 248 

has not been previously studied.  That doesn’t mean, however, that we know nothing about it 249 

— we do have observations of Qiv and can compare those to each model’s value of Qiv.  We find 250 



that 15 of the 25 CMIP5 models produce estimates of Qiv in agreement with the CERES 251 

observations (Fig. 7b).  If we construct distributions of Qiv/Q4xCO2 and ∆TS/∆TA from just those 252 

models (Figs. 4b and 5b), we obtain the ECS distribution in Fig. 6c (hereafter referred to as the 253 

“good-Q” distribution).   254 

We consider the “good-Q” ECS distributions to be the best estimates of ECS from this analysis. 255 

Those ECS distributions have 17-83% confidence intervals (corresponding to the IPCC’s likely 256 

range) of 2.4-4.7 K and 2.4-4.4 K for the R-F and detrended calculations, respectively.  Averaging 257 

these gives us our single best estimate for the likely range, 2.4-4.6 K, and 5-95% range, 1.9-5.7 258 

K.  The modes are 2.6 and 3.1 K (average 2.9 K), and the medians of both are 3.3 K.   259 

These distributions suggest a 15-20% chance ECS exceeds 4.5 K and a 6% chance of an ECS 260 

below 2 K.  We therefore conclude that the IPCC’s upper end of the likely ECS range is about 261 

right, but that the low end is too low.  We would conclude that, in the parlance of the IPCC, ECS 262 

is very unlikely to be below 2 K. 263 

We have also performed corresponding “good-l” ECS calculations in which the liv/l4xCO2 264 

distribution in Eq. 4 is constructed using only those models whose liv agrees with liv,obs.  The 265 

ECS distributions obtained from these calculations (Table 1) are similar to distributions from the 266 

l calculations using all models.   267 

Discussion  268 

There are several reasons why ECS estimated from the revised energy balance framework (Eq. 269 

6) should be considered more reliable than that estimated from the traditional framework (Eq. 270 

4) used in previous papers [e.g., Forster, 2016; Tsushima et al., 2005; Forster and Gregory, 271 

2006; Chung et al., 2010; Tsushima and Manabe, 2013; Dessler, 2013; Donohoe et al., 2014]. 272 

Fig. 1 shows the main advantage — that Qiv,obs is better constrained than liv,obs This is what 273 

leads to the narrower distributions of ECS in Fig. 6 than in Fig. 3.  Of particular note, the liv,obs 274 

distributions have non-zero probabilities of values close to zero; since ECS is proportional to 275 

1/liv,obs, this generates a large tail towards unrealistically large ECS values.   276 



There are additional reasons that lead us to conclude that the estimates from the revised 277 

framework are superior.  It has been suggested that liv,obs exhibits significant decadal variability 278 

in models [Andrews et al., 2015; Gregory and Andrews, 2016; Zhou et al., 2016; Dessler et al., 279 

2018].  This opens the possibility that the observed liv,obs, based on 16 years of data, is biased 280 

with respect to the long-term average; if so, then ECS estimated from these observations would 281 

also be biased.  Model simulations suggest that Qiv,obs exhibits smaller decadal variability 282 

[Dessler et al., 2018], making Qiv estimated from CERES data a more robust estimate of the 283 

climate system’s actual long-term value.  There is also evidence that Q changes less than l 284 

during transient climate change [Dessler et al., 2018], making the assumption that Q2xCO2 ≈ 285 

Q4xCO2 a far better one than the assumption that l4xCO2 ≈ l2xCO2.  286 

It is also worth stepping back and asking what could cause our calculation to be seriously in 287 

error.  It seems unlikely that forcing from doubled CO2 is wrong given our good understanding 288 

of the physics of CO2 forcing [e.g., Feldman et al., 2015].  Estimates of liv,obs and Qiv,obs are 289 

derived from observations we view to be reliable, so our judgment is that they are also unlikely 290 

to be significantly wrong.  The ∆TS/∆TA factor comes from climate model simulations, but 291 

models have long been able to accurately reproduce the observed pattern of surface warming 292 

[e.g., Stouffer and Manabe, 2017], and we have simple physical arguments explaining how the 293 

atmospheric and surface temperature should be connected [Xu and Emanuel, 1989].  Finally, 294 

we can compare the models to data [Compo et al., 2011; Poli et al., 2016] to validate their 295 

simulation of this ratio (Sect. S3).   296 

Thus, the transfer function Qiv/Q4xCO2 seems the most probable place for a significant error to 297 

occur.  That said, there are reasons to believe the models’ estimates of this ratio.  As mentioned 298 

above, we can directly compare Qiv in the models to observations, and find agreement in the 299 

majority of models (Fig. 7).  We also argue that while errors may exist in a model (i.e., in the 300 

cloud feedback), this will affect both the numerator and denominator and such errors will tend 301 

to cancel out.  As a preliminary test of this, we have analyzed three different versions of the 302 

MPI-ESM 1.2 model that have had their cloud feedbacks modified to produce different ECS 303 

[Thorsten Mauritsen and Diego Jimenez, personal communication, 2018].  The three versions 304 



are the standard model (ECS calculated from an abrupt 4xCO2 run using the Gregory method = 305 

3.0 K), an “iris” version [described in Mauritsen and Stevens, 2015] (ECS = 2.6 K), and a “high 306 

ECS” version, in which the convective parameterization has been tweaked to generate a large, 307 

positive cloud feedback (ECS = 5.2 K).  Despite large differences in the ECS, these three versions 308 

have similar values of liv/l4xCO2 of 1.17, 1.15, and 1.11 for the standard, iris, and high ECS 309 

versions, respectively.  The corresponding values of Qiv/Q4xCO2 are 1.06, 0.96, and 1.10.  While 310 

one must be careful about conclusions based on a single model, this nevertheless provides 311 

some support for the hypothesis that errors in Q4xCO2 will cancel errors in Qiv when the ratio is 312 

taken and that the ratio Q4xCO2/Qiv may well be more accurate than either Q4xCO2 or Qiv are 313 

individually. 314 

We have also constructed an error budget to determine which term contributes most to the 315 

width of the distributions in Fig. 6.  We do this by sequentially setting each term to have zero 316 

uncertainty by replacing that term’s distribution in the Monte Carlo calculation with a single 317 

number, the ensemble average.  This has little effect on the mean, median, or mode, but does 318 

change the width of the distribution (Table 3).  By comparing the widths of the resulting 319 

distributions (defined as the distance between the 17th and 83rd percentiles), Fig. 8 shows that 320 

the biggest contributor to ECS uncertainty is the uncertainty in Qiv/Q4xCO2. Eliminating the 321 

uncertainty in that reduces the 17-83% confidence interval to 2.8-4.0 K. Thus, developing a 322 

theoretical argument for the value of this ratio would be a key advance in climate science.  The 323 

next most important uncertainty is uncertainty in Qiv,obs, followed by the uncertainty in ∆TS/∆TA 324 

and then the uncertainty in F2xCO2. 325 

Conclusions 326 

Estimating ECS from observations remains one of the big problems in climate science.  Despite 327 

several decades of intense investigations, the uncertainty in this parameter remains stubbornly 328 

large, with the last IPCC assessment reporting a likely range of 1.5-4.5 K (17-83% confidence 329 

interval).  Because of this, there is great value in finding alternate ways to approach the 330 

problem.   331 



In this paper, we have used observations of interannual climate variations covering the period 332 

2000 to 2017 along with a model-derived relationship between interannual variations and 333 

forced climate change to estimate ECS.  We interpret the observations using a modified energy 334 

balance framework (Eq. 5) in which the response of TOA flux is proportional to the atmospheric 335 

temperature. We conclude ECS is likely 2.4-4.6 K (17-83% confidence interval), with a mode and 336 

median value of 2.9 and 3.3 K, respectively.  Overall, our analysis suggests that the upper end of 337 

the IPCC’s range is set about right, but this analysis provides little evidence to support estimates 338 

of ECS in the bottom third of the IPCC’s likely range.   339 

One of the key parts of our calculations is the use of CMIP5 climate models to convert the 340 

observations of interannual variability into an estimate of the response of the system to 341 

doubled CO2.  This is the main uncertainty in our analysis and future efforts to pin this transfer 342 

function down would be extremely valuable. 343 
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 514 

 515 

Table 1. ECS values from the l runs 516 

Summary of the statistics of the ECS distributions derived using Eq. 4.  “%<2” and “%>4.5” 517 

gives the percent of ECS values that are below 2 K or above 4.5 K.  Units are in K, except for 518 

“%<2” and “%>4.5”, which are in percent.   519 
run mean mode median 5-95% 17-83% %<2 %>4.5 

all-Lambda-1 4.63 2.98 4.22 1.7-8.8 2.5-7.0 6 32 

all-Lambda-1-f 4.43 2.85 3.99 1.6-8.7 2.3-6.8 8 30 

all-Lambda-1-f_20-150 4.59 2.98 4.19 1.6-8.9 2.4-7.0 7 31 

all-Lambda-1_8K 4.17 2.98 3.95 1.7-7.3 2.4-6.1 6 25 

all-Lambda-1_12K 5.00 2.98 4.41 1.8-10.2 2.6-7.7 6 36 

all-Lambda-2 3.78 2.44 3.29 1.4-8.0 2.0-5.7 15 26 

all-Lambda-2_8K 3.52 2.44 3.19 1.4-6.8 2.0-5.2 15 21 

all-Lambda-2_12K 3.97 2.44 3.35 1.4-8.8 2.0-6.0 15 28 

good-Lambda-1 4.20 2.71 3.73 1.6-8.4 2.3-6.3 9 28 

good-Lambda-2 3.66 2.31 3.19 1.4-7.7 1.9-5.4 16 24 

good-Lambda-1-f_20-150 4.18 2.71 3.72 1.4-8.5 2.2-6.4 10 28 

good-Lambda-1-f 3.98 2.44 3.48 1.4-8.3 2.1-6.0 12 25 

Names containing “all” or “good” include all models or just the ones whose liv agrees with the 520 

CERES observations, respectively.  The names with “-1” or “-2” use liv,obs derived using 521 

estimates of forcing (the R-F calculations) and the detrended calculations, respectively.  The 522 

names including “-f” use forcing from the CMIP5 abrupt 4x CO2 runs (see Sect. S2).  The names 523 

including “-f_20-150” calculate F2xCO2 and l4xCO2 from years 20-150 of the abrupt 4xCO2 runs 524 

(see Sect. S2).  Names with “-8K” and “-12K” change the plausibility threshold above which 525 

ECS values are considered non-physical and are thrown out. 526 

 527 

Table 2.  ECS values from the Q runs 528 

Same as Table 1, but derived using Eq. 6. 529 
run mean mode median 5-95% 17-83% %<2 %>4.5 

all-Theta-1 3.33 2.58 3.14 0.7-6.2 2.1-4.6 15 19 

all-Theta-2 2.96 2.31 2.82 0.7-5.4 1.9-4.1 20 11 

all-Theta-1-corr 3.36 2.58 3.13 0.8-6.5 2.0-4.8 16 20 

all-Theta-1-f 3.11 2.44 2.91 0.7-6.0 1.9-4.4 21 16 

all-Theta-1-f_20_150 2.98 2.31 2.75 0.6-5.8 1.8-4.3 24 14 

good-Theta-1 3.56 2.58 3.33 2.0-5.9 2.4-4.7 6 20 

good-Theta-2 3.43 3.12 3.33 1.9-5.3 2.4-4.4 6 15 

good-Theta-1-corr 3.58 2.44 3.33 1.9-6.2 2.3-4.8 7 21 

good-Theta-1-f 2.81 2.17 2.65 0.5-5.1 1.8-3.9 25 10 

good-Theta-1-f_20-150 2.71 2.03 2.51 0.4-5.0 1.7-3.8 30 9 

noGISS-Theta-1 3.56 2.58 3.28 1.9-6.3 2.3-4.8 8 21 

noGISS-Theta-2 3.18 2.31 2.94 1.7-5.5 2.1-4.2 13 12 

Names follow the same convention as Table 1.  The names including “noGISS-” include all 530 

models except the two GISS models.  In the “-corr” calculations, each Monte Carlo value of ECS 531 

uses values of ∆TS/∆TA and Qiv/Q4xCO2 from the same model.   532 

 533 

  534 



Table 3.  Error budget calculations 535 

Summary of the statistics of the ECS distribution when one of the input distributions has no 536 

uncertainty. 537 
run mean mode median 5-95% 17-83% %<2 %>4.5 

error-all-Theta-2-noF 2.97 2.31 2.82 0.7-5.4 1.9-4.1 20 11 

error-all-Theta-2-noRat 2.97 2.71 2.90 2.1-4.1 2.4-3.5 3 2 

error-all-Theta-2-nodtdt 2.97 2.31 2.85 0.7-5.3 1.9-4.0 19 11 

error-all-Theta-2-noTheta 2.89 2.31 2.78 0.7-5.0 2.0-3.9 18 8 

error-good-Theta-2-noF 3.43 3.25 3.32 1.9-5.3 2.4-4.4 6 15 

error-good-Theta-2-noRat 3.43 3.25 3.35 2.4-4.7 2.8-4.0 0 7 

error-good-Theta-2-nodtdt 3.43 3.25 3.35 2.0-5.2 2.4-4.3 5 14 

error-good-Theta-2-noTheta 3.34 3.53 3.35 2.1-4.8 2.4-4.2 4 10 

Most name conventions Table 1.  For these calculations, we take the “all-Theta-2” or  “good-538 

Theta-2” calculation and sequentially set the uncertainty in one term to zero.  The “-noF”, “-539 

noRat”, “-nodtdt”, and “-noTheta” correspond to no uncertainty in F2xCO2, Qiv/Q4xCO2, ∆TS/∆TA, 540 

and Qiv, respectively.   541 

  542 



 543 

 544 
 545 

Figure 1. (a) Distribution of liv,obs and Qiv,obs (W/m2); (b) scatter plot of R-F (W/m2) vs. 546 

TS (K), the dashed line is a least-squares fit;  (c) same as panel (b), but the regression is 547 

against TA (K).  548 

 549 

 550 

 551 

 552 

 553 
Figure 2. Distribution of liv/l4xCO2 from 25 CMIP5 models; the black dashed line is the 554 

mean of the distribution.  See methods for description of how the value is calculated in 555 

each model. 556 

  557 
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 560 

 561 
Figure 3. Distributions of ECS using the traditional energy balance framework (Eq. 4).  562 

(a) Calculated using liv,obs from the R-F regression, (b) Calculated using liv,obs from the 563 

detrended regression.  “17th %ile” and “83rd %ile” are 17th and 83rd percentile, 564 

corresponding to the IPCC’s likely range. 565 

  566 



 567 
Figure 4. Distribution of Qiv/Q4xCO2 from (a) 25 CMIP5 models and (b) from those 15 568 

models whose Qiv agrees with observations.  The black dashed lines are the means of the 569 

distributions. 570 

 571 

 572 

 573 
Figure 5. Distribution of ∆TS/∆TA from (a) 25 CMIP5 models and (b) from those 15 574 

models whose Qiv agrees with observations.  The black dashed lines are the means of the 575 

distributions. 576 
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 578 
Figure 6. Distributions of ECS using the revised energy balance framework (Eq. 6).  579 

Panel (a) uses all models for the distributions of Qiv/Q4xCO2 and ∆TS/∆TA, (b) uses all 580 

models except for the two GISS models, (c) uses 15 models whose Qiv agrees with the 581 

value estimated from observations.  All calculations use Qiv,obs from the detrended 582 

calculation.  “17th %ile” and “83rd %ile” are 17th and 83rd percentile, corresponding to 583 

the IPCC’s likely range.   584 

 585 



 586 
Figure 7. CMIP5 model estimates of (a) Qiv/Q4xCO2 and (b) Qiv (W/m2).  The gray region 587 

in panel (b) shows the observational range (from the detrended calculation).  The black 588 

triangle symbols in panel a) indicate that the model’s Qiv agrees with observations; the 589 

gray cross symbols indicate that it does not. 590 

 591 

 592 

 593 
Figure 8. Error budget analysis of ECS estimates.  The “all” point is the width of the ECS 594 

distribution from the good-Theta-2 calculation (Table 3).  Then, from left to right, is the 595 

width when the uncertainty in forcing, Qiv/Q4xCO2, Qiv,obs, and ∆TS/∆TA distributions are 596 

sequentially set to zero.  For all points, “width” is the difference between the 17th and 83rd 597 

percentile of the ECS distribution. 598 
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S1. Data going into the calculations of liv,obs and Qiv,obs  

This section shows additional plots of the CERES, temperature, and forcing data.  Fig. S1 shows 

the CERES R time series, the median forcing F time series, and the R-F time series.  The CERES 

data are anomalies (deviations from the mean annual cycle); the forcing data are referenced to 

pre-industrial.  These data go into the R-F estimates of liv,obs and Q iv,obs.  Median forcing over 

the period analyzed in this paper, relative to preindustrial, is 2.2 W/m2, with 5-95% confidence 

interval of 1.1-3.1 W/m2.  While the forcing uncertainty is large, what’s important for this 

analysis is the uncertainty of the slope of the regression of forcing vs. temperature.  Regressing 

all 10,000 forcing time series vs. TS yields a median value of 0.62 W/m2/K and 5-95% confidence 

interval of ±0.16 W/m2/K.   

Fig. S2 shows the raw and detrended CERES and ERAi temperature data.  The detrended time 

series are used to estimate the detrended liv,obs and Q iv,obs.  These two plots show that both 

forcing and detrending are minor adjustments to the data.  The top panel in Fig. S2 also shows 

good agreement between ERAi and MERRA2.  This supports our analysis that most of the 

uncertainty in liv,obs and Q iv,obs comes from the scatter in CERES R measurements.  Fig. S3 

shows the correspondence between ∆TS and the Nino3 index, which demonstrates that most of 

the variability in ∆TS is due to interannual variability and not long-term climate change. 

 

Fig. S1. Time series of global average, monthly anomalies of CERES R (blue), median forcing F 

(green), and R-F (orange).   



  

Fig. S2. Time series of global average, monthly anomalies of CERES R and ERAi global average 

surface temperature and 500-hPa tropical average (30°N-30°S) temperature.  The raw time 

series is before detrending; the detrended time series has the linear trend, estimated using a 

least-squares fit, removed.  The top plot also shows the raw MERRA2 surface temperature for 

comparison to the ERAi data.   



 

Fig. S3. Time series of global average surface temperature anomaly ∆TS (K; left-hand axis) and 

Nino3 ENSO index (right-hand axis).  ENSO index downloaded from 

https://www.esrl.noaa.gov/psd/data/timeseries/monthly/NINO3/. 

S2. Alternate ways to calculate F2xCO2 and l4xCO2 and Q4xCO2  

One potential issue in our calculation is that the forcing we use is from fixed SST runs while the 

values of l4xCO2 and Q4xCO2 come from abrupt 4xCO2 runs.  To evaluate the impact of any 

possibly incompatibility, we have also calculated ECS using a distribution of F2xCO2 obtained from 

the 4xCO2 runs using the Gregory method [Gregory et al., 2004] (Fig. S4a, Table S1).  The ECS 

distributions obtained from this (all-Lambda-1-f, good-Lambda-1-f, all-Theta-1-f, good-Theta-1-

f) are summarized in Table 1 and 2.  ECS estimated using these forcing distributions are close to 

those using PDRMIP forcing, so we conclude that this is not a significant uncertainty in our 

analysis. 

Another potential issue is that we use of all 150 years of the CMIP5 abrupt 4xCO2 runs to 

estimate l4xCO2 and Q4xCO2.  It is well known that removal of the first few decades in the Gregory 

regression produces a less negative l4xCO2 [e.g., Andrews et al., 2015], which implies a higher 

ECS.  The effect of this on Q4xCO2 is smaller [Dessler et al., 2018].  To test the impact of this, we 

produce ECS estimates where l4xCO2 is calculated from years 20-150 (all-Lambda-1-f_20-150, 

good-Lambda-1-f_20-150, all-Theta-1-f_20-150, good-Theta-1-f_20-150).  For consistency in 

these calculations, we use a forcing distribution also derived using these years (Fig. S4b).  Note 

that we call this “quasi-F2xCO2” because it should really not be considered a forcing — it is 

instead just the y-intercept of the Gregory plot for a regression covering years 20-150, which 

we need to use in order to correctly estimate the x-intercept, the ECS.   



 

Fig. S4.  Distribution of F2xCO2 from CMIP5 abrupt 4xCO2 runs.  Panel (a) uses all 150 years of the 

run, while panel (b) uses years 20-150.  The dashed lines are the ensemble averages of 3.45 and 

2.94 W/m2.   

S3. Testing models’ ability to estimate ∆TS/∆TA  

To evaluate the accuracy of the CMIP5 ensemble’s estimate of ∆TS/∆TA, we re-write it as the 

product of two terms: 
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where ∆TS and ∆TA are the global average surface temperature and tropical average 

atmospheric temperature, respectively, and ∆TS,tropics is the tropical (30°N-30°S) average surface 

temperature.  The term ∆TS,tropics/∆TA is a measure of the tropical lapse rate, which is 

understood to be controlled by moist convective adjustment [Xu and Emanuel, 1989].  Fig. S5a 

plots monthly average anomalies of ∆TS,tropics vs. ∆TA from the ERAi and, as expected, there is a 

clear correlation between these variables.  The slope derived from this regression is 0.51±0.06 

(5-95% confidence interval).   

The ERAi data set, covering 1979-2016 (37 years), contains both long-term warming and 

interannual variability.  Because of this, we compare the ERAi results to what we consider to be 

the most analogous model period, the last 37 years of the CMIP5 ensemble’s 150-year abrupt 

4xCO2 runs.  Ensemble average ∆TS,tropics over this period is 1.07 K, similar to the warming in the 

ERAi from 1979-2016.  While a few models appear to have issues with this metric, there is 

generally good agreement between the models and from observations (Fig. S5b). 



 
Figure S5. Estimates of ∆TS,tropics/∆TA.  (a) Scatter plot of monthly ∆TS,tropics (K; tropical 

avg. surface temperature) anomalies vs. ∆TA (K) anomalies from ERAi reanalysis (1979-

2016).  The solid line is the best fit line.  (b) The slope of the same fit from the last 37 

years of the CMIP5 ensemble’s abrupt 4xCO2 runs. The black line and gray region shows 

the slope and uncertainty of the fit to observations in panel a. 

 

 

 
Figure S6. Estimates of polar amplification in the models, ∆TS/∆TS,tropics.  For the CMIP5 

ensemble, this is calculated by differencing the average of the first and last decades of 

the CMIP5 ensemble’s abrupt 4xCO2 runs.  The two dashed lines are observational 

estimates (see text). 

 

The second term on the right-hand side of Eq. S1, ∆TS/∆TS,tropics, is a measure of polar 

amplification in the pattern of surface warming.  We estimate this by differencing the averages 

of the first and last decade of observations or models.  The ECMWF 20th century reanalysis [Poli 

et al., 2016] produces a value of 1.20 over the years 1900-2010 while the NOAA 20th century 

reanalysis project [Compo et al., 2011] produces a value of 1.23 over the years 1851-2014.  We 

estimate this ratio in each CMIP5 abrupt 4xCO2 run and the ensemble agrees well with 

observations (Fig. S6), with a CMIP5 ensemble average of 1.18 and standard deviation of 0.11.  



Such good agreement is not surprising — climate models have long demonstrated considerable 

skill in simulating the large-scale patterns of surface warming [e.g., Stouffer and Manabe, 2017].   

S4. Estimating the distribution of l4xCO2 

In the main text, we focus on estimating the distributions of ECS.  However, we could also 

produce an observational estimate of the distribution of l4xCO2.  We do this with the following 

two equations: 
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We use the same Monte Carlo approach we did in the main text: distributions of Qiv,obs and 

liv,obs come from the observations and distributions of liv/l4xCO2, Qiv/Q4xCO2, and ∆TS/∆TA come 

from the CMIP5 models.  The resulting distributions are summarized in Tables S2 and S3.  We 

note that the Q calculations provide a consistent bound for l of -0.7 to -1.5 W/m2/K (17-83% 

confidence interval) 

 

  



Table S1. Values for individual models 
Model liv Qiv l4xCO2 Q4xCO2 ∆TS/∆TA F2xCO2 

ACCESS1-0 -0.69 -1.22 -0.75 -0.77 0.96 2.88 

ACCESS1-3 -0.66 -0.86 -0.82 -0.74 0.91 2.91 

BCC-CSM1-1 -0.74 -0.89 -1.21 -1.12 0.93 3.38 

BCC-CSM1-1-M -0.91 -0.94 -1.31 -1.23 0.92 3.69 

CCSM4 -1.26 -1.25 -1.24 -1.26 0.99 3.63 

CNRM-CM5 -1.14 -1.25 -1.11 -1.01 0.94 3.63 

CNRM-CM5-2 -1.01 -1.25 -1.06 -0.94 0.89 3.64 

CanESM2 -0.77 -0.73 -1.03 -0.90 0.88 3.80 

FGOALS-g2 -1.55 -1.25 -0.83 -0.85 1.00 2.82 

FGOALS-s2 -1.35 -1.60 -0.88 -0.77 0.87 3.75 

GFDL-CM3 -0.21 -0.63 -0.75 -0.63 0.80 2.94 

GFDL-ESM2G -0.80 -1.24 -1.42 -0.98 0.68 3.33 

GFDL-ESM2M -1.41 -1.12 -1.34 -0.92 0.74 3.26 

GISS-E2-H -1.48 -0.36 -1.57 -1.36 0.91 3.70 

GISS-E2-R -1.03 -0.16 -1.70 -1.35 0.77 3.64 

INMCM4 -0.65 -0.83 -1.51 -1.18 0.80 3.07 

IPSL-CM5A-LR -0.57 -0.61 -0.79 -0.54 0.71 3.19 

IPSL-CM5A-MR -0.46 -0.33 -0.81 -0.54 0.68 3.32 

IPSL-CM5B-LR -0.93 -0.94 -1.00 -0.87 0.91 2.61 

MIROC5 -1.18 -0.90 -1.58 -1.13 0.84 4.25 

MPI-ESM-LR -0.78 -0.72 -1.14 -0.91 0.81 4.11 

MPI-ESM-MR -0.69 -0.76 -1.18 -0.93 0.80 4.08 

MPI-ESM-P -0.72 -0.70 -1.25 -0.98 0.80 4.32 

MRI-CGCM3 -0.58 -1.29 -1.26 -1.11 0.88 3.27 

NorESM1-M -1.19 -1.13 -1.11 -1.15 1.02 3.10 

Units on l and Q are W/m2/K, ∆TS/∆TA is unitless; F2xCO2 is derived from that model’s abrupt 

4xCO2 run and has units of W/m2.   

 

  



Table S2. l4xCO2 estimated from Eq. S2 

run mean mode median 5-95% 17-83% 

all-Lambda-1 -0.73 -0.63 -0.64 -1.9 to +0.2 -1.3 to -0.2 

all-Lambda-2 -1.16 -0.95 -1.03 -2.6 to -0.2 -1.8 to -0.5 

good-Lambda-1 -0.85 -0.79 -0.78 -2.1 to +0.2 -1.5 to -0.2 

good-Lambda-2 -1.20 -0.95 -1.07 -2.6 to -0.2 -1.8 to -0.5 

See Table 1 for a description of the runs.  Units are W/m2/K. 

 

Table S3. l4xCO2 estimated from Eq. S3 

run mean mode median 5-95% 17-83% 

all-Theta-1 -1.41 -1.11 -1.00 -4.2 to -0.5 -1.5 to -0.7 

all-Theta-2 -1.56 -1.11 -1.11 -4.6 to -0.6 -1.6 to -0.8 

all-Theta-1-corr -1.41 -1.11 -1.00 -4.2 to -0.5 -1.5 to -0.7 

good-Theta-1 -1.01 -1.11 -0.96 -1.6 to -0.6 -1.3 to -0.7 

good-Theta-2 -1.05 -1.11 -0.99 -1.6 to -0.6 -1.4 to -0.8 

good-Theta-1-corr -1.01 -1.11 -0.96 -1.6 to -0.6 -1.3 to -0.7 

noGISS-Theta-1 -1.00 -1.11 -0.96 -1.6 to -0.5 -1.4 to -0.7 

noGISS-Theta-2 -1.11 -1.11 -1.07 -1.8 to -0.6 -1.5 to -0.8 

See Table 2 for a description of the runs.  Units are W/m2/K. 
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