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Abstract 32 

Eight Atmospheric General Circulation Models (AGCMs) are forced with observed historical 33 

(1871-2010) monthly sea-surface-temperature (SST) and sea-ice variations using the AMIP 34 

II dataset.  The AGCMs therefore have a similar temperature pattern and trend to that of 35 

observed historical climate change. The AGCMs simulate a spread in climate feedback 36 

similar to that seen in coupled simulations of the response to CO2 quadrupling. However the 37 

feedbacks are robustly more stabilizing and the effective climate sensitivity (EffCS) smaller.  38 

This is due to a ‘pattern effect’ whereby the pattern of observed historical SST change gives 39 

rise to more negative cloud and LW clear-sky feedbacks.  Assuming the patterns of long-40 

term temperature change simulated by models, and the radiative response to them, are 41 

credible, this implies that existing constraints on EffCS from historical energy budget 42 

variations give values that are too low and overly constrained, particularly at the upper end. 43 

For example, the pattern effect increases the long-term Otto et al. (2013) EffCS median and 44 

5-95% confidence interval from 1.9K (0.9-5.0K) to 3.2K (1.5-8.1K). 45 

Plain text summary 46 

Recent decades have seen cooling over the eastern tropical Pacific and Southern Ocean 47 

while temperatures rise globally.  Climate models indicate that these regional features, and 48 

others, are not expected to continue into the future under sustained forcing from atmospheric 49 

carbon dioxide increases.  This matters, because climate sensitivity depends on the pattern 50 

of warming, so if the past has warmed differently from what we expect in the future then 51 

climate sensitivity estimated from the historical record may not apply to the future. We 52 

investigate this with a suite of climate models and show that climate sensitivity simulated for 53 

observed historical climate change is smaller than for long-term carbon dioxide increases.  54 

The results imply that historical energy budget changes only weakly constrain climate 55 

sensitivity.  56 
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1. Introduction 57 

The relationship between global surface temperature change and the Earth’s radiative 58 

response - a measure of the radiative feedbacks in the system and a key determinant of the 59 

Earth’s climate sensitivity - can vary on timescales of decades to millennia. Thus feedbacks 60 

governing warming over the observed historical record may be different from those acting on 61 

the Earth’s long-term climate sensitivity to rising greenhouse gas concentrations (e.g. 62 

Gregory and Andrews 2016; Zhou et al., 2016; Armour 2017; Proistosescu and Huybers 63 

2017; Silvers et al., 2018; Marvel et al., 2018).  This is in contrast to decades of studies that 64 

explicitly or implicitly assume that the relationship between historical temperature change 65 

and energy budget variations provides a direct constraint on long-term climate sensitivity 66 

(e.g. Gregory et al., 2002; Otto et al., 2013). 67 

 68 

The primary reason why radiative feedback and sensitivity is not constant is because climate 69 

feedback depends on the spatial structure of surface temperature change (Armour et al. 70 

2013; Rose et al., 2014; Andrews et al., 2015; Zhou et al. 2016; 2017; Haugstad et al., 2017; 71 

Ceppi and Gregory, 2017; Andrews and Webb, 2018; Silvers et al., 2018). This evolves on 72 

annual to decadal timescales with modes of unforced coupled atmosphere-ocean variability 73 

(e.g. Xie et al., 2016) and spatiotemporal variations in anthropogenic or natural forcings (e.g. 74 

Takahashi and Watanabe, 2016; Smith et al., 2016).   It also evolves on decadal to 75 

centennial timescales in response to sustained anthropogenic forcing due to the intrinsic 76 

timescales of the climate response (such as delayed warming in the eastern tropical Pacific 77 

and Southern Ocean) (e.g. Senior and Mitchell, 2000; Andrews et al., 2015; Armour et al., 78 

2016). Thus the pattern of historical temperature change, and thus radiative feedback, is 79 

expected to be different from that in response to long-term CO2 increases (see Discussion). 80 

We refer to the dependency of radiative feedbacks on the evolving pattern of surface 81 

temperature change as a ‘pattern effect’ (Stevens et al., 2016). 82 

 83 

Most previous estimates of climate sensitivity based upon historical observations of Earth’s 84 

energy budget have not allowed for a pattern effect between historical climate change and 85 

the long-term response to CO2 (e.g. Otto et al., 2013). Armour (2017) found that the 86 

equilibrium climate sensitivity (ECS) (the equilibrium near surface-air-temperature change in 87 

response to a CO2 doubling) of Atmosphere-Ocean General Circulation Models (AOGCMs) 88 

(estimated from simulations of abrupt CO2 quadrupling (abrupt-4xCO2)) was about 26% 89 

larger than climate sensitivity inferred from transient warming (1%CO2 simulations, taken to 90 

be an analogue for historical climate change) due to pattern effects.  Armour (2017) 91 
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therefore concluded that energy budget estimates of Earth’s ECS from the historical record 92 

should be increased by this amount. Lewis and Curry (2018) argue for a smaller pattern 93 

effect, highlighting ambiguities in the methodology when using idealised CO2 experiments as 94 

an analogue for historical climate change. However, as noted in Armour (2017), the use of 95 

1%CO2 simulations as an analogue for historical climate change has important limitations in 96 

that it neglects the impact from non-CO2 forcings and unforced climate variability that could 97 

have had a significant impact on the pattern of historical temperature change. In particular, 98 

under 1%CO2, AOGCMs do not show cooling of the tropical eastern Pacific Ocean and 99 

Southern Ocean – features that have been observed over recent decades but are not 100 

expected in the long-term response to increased CO2 (Zhou et al., 2016).  These are regions 101 

where atmospheric feedbacks (in particular clouds) are sensitive to the patterns of surface 102 

temperature change due to their impact on local and remote atmospheric stability (e.g. Zhou 103 

et al., 2017; Andrews and Webb, 2018). This suggests that the magnitude of the pattern 104 

effect reported in Armour (2017) may be too low relative to historical climate change.  This is 105 

an outstanding issue that we aim to address and quantify here. 106 

 107 

Here we will show that a suite of Atmospheric General Circulation Models (AGCMs) forced 108 

with historical (post 1870) sea-surface-temperatures (SSTs) and sea-ice changes are ideal 109 

simulations for quantifying the relationship between historical climate sensitivity and 110 

idealised long-term model derived ECS.  They allow us, for the first time, to quantify the 111 

pattern effect associated with observed temperature patterns, and so provide improved 112 

updates to estimates of climate sensitivity derived from historical energy budget constraints.  113 

The work builds upon individual studies (Andrews, 2014; Gregory and Andrews 2016; Zhou 114 

et al., 2016; Silvers et al., 2018).  Our aim is to: (i) bring together these individual model 115 

results for an intercomparison of AGCMs forced with historical SST and sea-ice variations; 116 

(ii) explore the dependence of the experimental design to the underlying SST and sea-ice 117 

dataset; (iii) explore how historical feedbacks in the AGCMs relate to feedbacks diagnosed 118 

from their parent AOGCM forced by abrupt-4xCO2; (iv) quantify the pattern effect causing 119 

the difference between climate sensitivity under historical climate change and long-term CO2 120 

changes; (v) use this pattern effect to update observed energy budget constraints on Earth’s 121 

climate sensitivity. 122 

2. Simulations, Models and Data 123 

Eight AGCMs (Table 1) are forced with monthly time-varying observationally derived fields of 124 

SST and sea-ice from 1871 to 2010 using the Atmospheric Model Intercomparison Project 125 
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(AMIP) II boundary condition data set (Gates et al., 1999; Taylor et al., 2000; Hurrell et al., 126 

2008).  All simulations have natural and anthropogenic forcings (e.g. greenhouse gases, 127 

aerosols, solar radiation etc.) held constant at assumed pre-industrial conditions (except 128 

CAM4 which used assumed constant present-day conditions; we assume the level of 129 

background forcing has no impact on the diagnosed feedback of the model).  With constant 130 

forcings the variation in radiative fluxes comes about solely from the changing SST and sea-131 

ice boundary conditions, allowing radiative feedbacks to be accurately diagnosed directly 132 

from top-of-atmosphere (TOA) radiation fields (e.g. Haugstad et al., 2017). For details of 133 

individual simulations see Gregory and Andrews (2016) for HadGEM2 and HadAM3, Silvers 134 

et al. (2017) for GFDL-AM2.1, GFDL-AM3 and GFDL-AM4.0, Zhou et al. (2016) for CAM4 135 

and CAM5.3, and Mauritsen et al. (2018) for ECHAM6.3. This experiment, referred to here 136 

as amip-piForcing (Gregory and Andrews, 2016), is included in the Cloud Feedback Model 137 

Intercomparison Project (CFMIP) contribution to CMIP6 (Webb et al. 2017).  The sensitivity 138 

of the results to the AMIP II boundary condition dataset is explored with analogous 139 

experiments using the HadISST2.1 SST and sea-ice dataset (Titchner and Rayner, 2014) 140 

(Supporting Information). 141 

 142 

All simulations ran for 140yrs from Jan 1871 through to Dec 2010, except for GFDL-AM2.1 143 

and GFDL-AM3 which finished in Dec 2004.  All data is global-annual-mean and anomalies 144 

are presented relative to an 1871-1900 baseline. CAM4 and CAM5.3 results are single 145 

realisations, HadGEM2 and HadAM3 simulations are ensembles of 4 realisations each, 146 

ECHAM6.3, GFDL-AM2.1 and GFDL-AM4.0 have 5 realisations each, while GFDL-AM3 has 147 

6 realisations. The HadGEM2 results are not identical to those presented in Gregory and 148 

Andrews (2016) because it has been discovered that land-cover change was included in 149 

their HadGEM2 simulations.  We have confirmed that the updated simulations used here, 150 

which have constant land-cover, do not affect the main conclusions of Gregory and Andrews 151 

(2016). In fact the multi-decadal variability in feedback in HadGEM2 is now found to be more 152 

consistent with their HadAM3 results (Section 3). 153 

 154 

For comparison to long-term climate sensitivity and feedback parameters we make use of an 155 

abrupt-4xCO2 simulation of each AGCM’s parent AOGCM.  For CAM4, GFDL-AM2.1, 156 

GFDL-AM3 and HadGEM2 we use the CCSM4, GFDL-ESM2M, GFDL-CM3 and HadGEM2-157 

ES CMIP5 abrupt-4xCO2 simulations respectively (Taylor et al., 2012).  Feedbacks and 158 

associated effective climate sensitivity (EffCS) (the equilibrium near surface-air-temperature 159 

change in response to a CO2 doubling assuming constant feedback strength) are derived 160 

from the regression of global-annual-mean change in radiative flux dN against surface-air-161 

temperature change dT for the 150yrs of the simulation, according to  EffCS=-F2x/Ȝ, where 162 
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F2x, the forcing from a doubling of CO2, is equal to the dN-axis intercept divided by two (to 163 

convert 4xCO2 to 2xCO2) and Ȝ, the feedback parameter, is equal to the slope of the 164 

regression line (Andrews et al., 2012).  We have similar simulations for ECHAM6.3 and 165 

HadAM3 using the MPI-ESM1.1 and HadCM3 models respectively, though these are not in 166 

the CMIP5 archive.  The HadCM3 simulation is only 100yrs long but is a mean of 7 167 

realisations. CAM5.3 and GFDL-AM4.0 do not yet have equivalent coupled 4xCO2 168 

simulations.  We choose to use EffCS rather than the ‘true’ equilibrium climate sensitivity 169 

(ECS) since few AOGCMs are run to equilibrium and thus the true ECS is not generally 170 

known.  Paynter et al. (2018) showed that the actual ECS from multimillennial GFDL-171 

ESM2M and GFDL-CM3 simulations was nearly 1K higher than the EffCS we use here from 172 

abrupt-4xCO2.   Hence the values we report for EffCS might be viewed as a lower bound on 173 

ECS if other models behave in a similar way. 174 

3. Radiative feedbacks and sensitivities 175 

Figure 1a shows the global-annual-mean near-surface-air-temperature change (dT) of the 176 

eight individual AGCM amip-piForcing simulations in comparison to HadCRUT4 (Morice et 177 

al., 2012). As expected the models capture the observed variability and trends in dT well (the 178 

correlation coefficient, r, between observed and simulated dT is >0.95 for every model).  179 

However the AGCMs omit the small part of the recent warming trend over land that arises as 180 

a direct adjustment to changes in CO2 and other forcing agents (dT in HadCRUT4 averaged 181 

over 2000-2010 is 0.79K, whereas it ranges from 0.66-0.76K in the AGCMs) (see also, 182 

Andrews, 2014; Gregory and Andrews, 2016). Figure 1b shows the net TOA radiative flux 183 

change, dN. It is generally negative because as dT increases positively the planet loses heat 184 

to space. This relationship is shown in Figure 1c for the multi-model ensemble-mean. The 185 

slope of the regression line (ordinary least-squares, over the annual-mean 1871-2010 186 

timeseries data) measures the feedback parameter Ȝamip (in Wm-2 K-1), where subscript 187 

‘amip’ is used to indicate that the feedback parameter was derived from the amip-piForcing 188 

experiment. Individual model results are given in Table 1. 189 

 190 

The equivalent feedback parameters derived from six available parent AOGCM abrupt-191 

4xCO2 simulations (Ȝ4xCO2) are compared to Ȝamip in Figure 2 and Table 1.  We find that Ȝamip 192 

is more negative than Ȝ4xCO2 in all models. In other words, AGCMs forced with historical SST 193 

and sea-ice changes robustly simulate more stabilizing feedbacks (lower EffCS) than their 194 

parent AOGCM forced by long-term CO2 changes. On average, the difference in Ȝ between 195 
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amip-piForcing and abrupt-4xCO2 is ǻȜ=Ȝ4xCO2-Ȝamip=0.64 Wm-2 K-1, ranging from 0.29 to 196 

1.04 Wm-2 K-1 across the AGCMs (Table 1). 197 

 198 

The source of ǻȜ is shown in Figure 2.  The clear-sky feedback (Figure 1d,e) is slightly (but 199 

robustly) more negative in amip-piForcing compared to abrupt-4xCO2 (Figure 2b) due to 200 

differences in LW clear-sky feedback processes that are partly offset by SW clear-sky 201 

feedback differences (Figure 2d).  This difference in clear-sky alone explains the relatively 202 

small change in net sensitivity for the GFDL-AM2.1 model.  For the other models, differences 203 

in cloud feedback (Figure 1f) are a larger source of the reduced sensitivity in amip-piForcing 204 

(Figure 2c).  This mostly comes from SW cloud feedback processes, with historical LW cloud 205 

feedback processes generally being representative of that seen in abrupt-4xCO2 (Figure 206 

2e). These findings are consistent with process orientated studies that suggest lapse-rate 207 

(which affects LW clear-sky) and low-cloud (which affect SW and NET CRE) feedbacks vary 208 

the most with SST patterns, especially in the Pacific (see below and: Rose et al., 2014; 209 

Andrews et al., 2015; Zhou et al., 2016; 2017; Silvers et al., 2017; Ceppi and Gregory, 2017; 210 

Andrews and Webb, 2018). 211 

 212 

In amip-piForcing the model-mean EffCSamip=-F2x/Ȝamip is ~2K, ranging from 1.6 to 2.2K 213 

across the AGCMs (Table 1).  The narrowness of this EffCSamip range does not arise due to 214 

reduced uncertainty in Ȝamip relative to Ȝ4xCO2.  On the contrary, the spread (measured by 215 

1.645*ı) in Ȝamip is almost the same size as the spread in Ȝ4xCO2 (Table 1).  The spread in 216 

EffCSamip is narrower primarily because Ȝamip is on average more negative than Ȝ4xCO2.  Since 217 

EffCS depends on the reciprocal of Ȝ, the same spread in Ȝ, shifted to more negative 218 

numbers, will give rise to a narrower spread in EffCS (e.g., Roe, 2009).  A similar spread in 219 

in Ȝamip and Ȝ4xCO2 suggests that different patterns of SST change across AOGCMs do not 220 

contribute significantly to the spread in atmospheric feedbacks in abrupt-4xCO2 experiments 221 

(see also Ringer et al., 2014; Andrews and Webb, 2018), which must therefore come about 222 

due to differences in atmospheric physics and parameterisations. 223 

 224 

EffCS4xCO2 (of the parent AOGCM) is in all cases larger than EffCSamip, ranging from 2.4 to 225 

4.6K (Table 1).  In the multi-model-mean, EffCS4xCO2 is ~67% larger than that implied from 226 

EffCSamip.  This model-mean historical pattern effect is substantially larger than the 26% 227 

found by Armour (2017), supporting the hypothesis that the pattern effect is larger in the 228 

historical record than simulated in transient 1%CO2 AOGCM simulations because the later 229 

miss key features of the observed warming pattern.  This result is even more striking given 230 

that Armour (2017) used an EffCS definition from abrupt-4xCO2 that gives larger values than 231 

ours (they used years 21-150 of abrupt-4xCO2, whereas we use years 1-150). 232 
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 233 

It is also useful to study shorter time periods to help inform our understanding of the 234 

relationship between shorter term variations in temperature and radiative fluxes, as have 235 

been used by many studies to estimate EffCS particularly since the satellite era (e.g. Forster, 236 

2017).  Figure 2f shows the feedback parameter for 30yr moving windows over the historical 237 

period in the AGCM simulations (calculated as per Gregory and Andrews, 2016), in 238 

comparison to Ȝ4xCO2 (horizontal lines). There is substantial multi-decadal variability in the 239 

feedback parameter that is common to all models, with a peak in feedback parameter 240 

(higher EffCS) around the 1940s and a minimum (lower EffCS) in the most recent decades 241 

(post ~1980). Generally Ȝamip is always more negative than Ȝ4xCO2. There are only a few 242 

instances where the Ȝamip is similar to Ȝ4xCO2, for example ~1940 for HadGEM2 and GFDL-243 

AM2.1, but no instances where Ȝamip is substantially less negative than Ȝ4xCO2. The difference 244 

is greatest in the most recent decades, suggesting that energy budget constraints on ECS 245 

based on recent decades of satellite data will be most strongly biased low.  This is consistent 246 

with process understanding of the pattern effect, since recent decades have shown 247 

substantial cooling in the eastern Pacific and Southern Ocean while warming in the west 248 

Pacific warm pool (e.g. Zhou et al., 2016).  The cooling in the descent region of the tropical 249 

Pacific will favour increased cloudiness (a negative feedback), while warming in the west 250 

Pacific ascent region efficiently warms free tropospheric air (increasing the negative lapse-251 

rate feedback widely across the tropics and mid-latitudes) as well as further increasing the 252 

lower tropospheric stability and cloudiness in the marine low-cloud descent regions (Zhou et 253 

al., 2016; Ceppi and Gregory, 2017; Andrews and Webb, 2018). 254 

 255 

Most of the multi-decadal variation in feedback strength comes from changes in the strength 256 

of cloud feedback (the correlation between the Net and CRE feedback timeseries, calculated 257 

in a similar way, is >0.94 in each AGCM) while the clear-sky feedbacks show less variation 258 

(not shown). This, as well as atmospheric variability, helps explain why cloud feedback is not 259 

as linearly correlated to dT variations over the full historical period compared to clear-sky 260 

feedbacks (r=0.48 for CRE compared to 0.99 and 0.93 for the clear-sky fluxes, Figures 261 

1d,e,f). 262 

4. Constraints on observed estimates of climate 263 

sensitivity 264 

The pattern effect causing the difference between simulated EffCS under historical climate 265 

change and long-term CO2 increase implies that historical energy budget constraints on 266 
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EffCS do not directly apply to long-term ECS.  To account for this, we use the difference in Ȝ 267 

between amip-piForcing and abrupt-4xCO2 as a measure of the pattern effect to update 268 

historical energy budget estimates of Ȝ and EffCS.  This is in contrast to Armour (2017) who 269 

had to use 1%CO2 simulations as a surrogate for historical climate change. Here we are 270 

quantifying the pattern effect associated with patterns of temperature change that actually 271 

occurred in the real world, relative to those simulated by AOGCMs to long-term CO2 272 

increases.  The pattern effect therefore assumes that long-term warming patterns in 273 

AOGCMs not yet seen in the historical record, and the radiative response to them, are 274 

credible (see Discussion). 275 

 276 

To illustrate the impact of the pattern effect we use the Otto et al. (2013) historical energy 277 

budget constraints as our starting point, though other datasets exist (see Forster, 2017) and 278 

clearly the EffCS estimates presented below will depend on this. First, we reproduce the 279 

historical EffCS estimates reported in Otto et al. (2013) using their best estimate and 5-95% 280 

confidence intervals for the historical (denoted by subscript ‘hist’) change in temperature 281 

(dThist=0.48±0.2 K), heat uptake (dNhist=0.35±0.13 Wm-2) and radiative forcing 282 

(dFhist=1.21±0.52 Wm-2) for the 40 yr period 1970-2009 relative to pre-industrial (which they 283 

define as 1860-1879) (their Table S1, row 5). To be consistent with Otto et al. (2013) we also 284 

use their forcing and its uncertainty for a doubling of CO2 (F2x=3.44 (±10%) Wm-2).  We 285 

randomly sample (with replacement) 10 million times from the gaussian distributions of dThist, 286 

dNhist, dFhist and F2x to calculate Ȝhist= (dNhist-dFhist)/dThist and EffCShist=-F2x/Ȝhist.  We assume 287 

the uncertainty in F2x and the greenhouse gas component of dFhist are correlated as in Otto et 288 

al. (2013).  The resulting EffCS values are binned into intervals of 0.02 and normalised to 289 

produce a probability density function (PDF), excluding values less than zero and greater 290 

than twenty. The resulting PDF and percentiles (Figure 3, black lines) recovers the Otto et al. 291 

(2013) EffCShist median (1.9K) and 5-95% confidence interval (0.9-5.0K) to within 0.1K. 292 

 293 

Following Armour (2017), we update the Otto et al. (2013) EffCS estimate for the pattern 294 

effect between historical climate change and abrupt-4xCO2 using two methods. We first 295 

scale the historical feedback parameter Ȝhist by the ratio of the feedbacks found in the amip-296 

piForcing and abrupt-4xCO2 simulations, so Ȝ=Ȝhist*S where S=Ȝ4xCO2/Ȝamip (Table 1). EffCS is 297 

then given by EffCS=-F2x/Ȝ=-F2x/(Ȝhist*S) (equivalent to Equation 4 in Armour 2017).  298 

Alternatively, we update Ȝhist by the difference in feedbacks, according to Ȝ=Ȝhist+ǻȜ, where 299 

ǻȜ=Ȝ4xCO2-Ȝamip.  EffCS is then given by EffCS=-F2x/Ȝ=-F2x/(Ȝhist+ǻȜ) (equivalent to Equation 5 300 

in Armour 2017).  We then calculate the EffCS PDF as above by randomly sampling from 301 

the F2x and Ȝhist distributions, along with S and ǻȜ chosen randomly with equal likelihood from 302 

the individual model results (Table 1). Note that using the difference (ǻȜ) approach 303 
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increases the likelihood of returning very large (or even negative) EffCS values, since 304 

Ȝ=Ȝhist+ǻȜ can result in Ȝ values close to zero or even with a changed sign when sampling 305 

Ȝhist values that are small.  Hence the results of this method are potentially sensitive to the 306 

assumption of excluding negative EffCS values or those greater than 20K. 307 

 308 

We compare the PDF of EffCShist (which is an approximation of Otto et al. (2013)) against its 309 

updated versions that accounts of the pattern effect in Figure 3.  The Otto et al. (2013) 310 

median and 5-95% confidence interval increases from 1.9K (0.9-5.0K) to 3.2K (1.5-8.1K) 311 

using the ratio (S) approach (Figure 3, red lines), or 2.7K (1.1-10.2K) if we use the difference 312 

(ǻȜ) approach (Figure 3, blue lines). Alternatively, if we take the Otto et al. (2013) data 313 

relating to their most recent decade (2000-2009) (their Table S1 row 4) then the Otto et al. 314 

(2013) estimate and 5-95% confidence interval increases from 2.0K (1.2-3.9K) to 3.3K (1.8-315 

6.8K) using the ratio approach or 3.0K (1.5-9.7K) using the difference approach. Thus, 316 

eitherway and for different time periods, the pattern effect from amip-piForcing to abrupt-317 

4xCO2 results in a substantial median ECS increase, while the lowest values of ECS 318 

become less likely, and higher ECS values become much harder to rule out. 319 

 320 

Another way of estimating the pattern effect is by comparing feedbacks in AOGCM historical 321 

simulations to abrupt-4xCO2 (e.g. Paynter and Frolicher, 2015; Marvel et al., 2018). 322 

However we believe amip-piForcing is superior, because (i) the diagnosed pattern effect in 323 

an AOGCM historical simulation will depend on its ability to correctly simulate the patterns of 324 

historical climate change, including the magnitude and timing of unforced variability, which 325 

they are not expected to simulate correctly (e.g. Zhou et al., 2016; Mauritsen, 2016) and (ii) 326 

determining feedbacks in AOGCM historical simulations requires knowledge of the time-327 

varying effective radiative forcing of the model, something which is not routinely diagnosed 328 

and is difficult to assume because of model diversity in forcing, particularly from aerosols 329 

(Forster, 2017). The amip-piForcing approach alleviates both of the above issues. 330 

 331 

Note that for simplicity in the above calculations we have assumed that Ȝamip (calculated via 332 

linear regression over the amip-piForcing simulations, Section 3) is appropriate to the time 333 

periods and methodology of Otto et al. (2013) (who use finite differences, rather than linear 334 

regression, between decades to calculate changes). To check this we recompute Ȝamip and 335 

the corresponding S and ǻȜ values using the same method and time-periods as Otto et al., 336 

i.e. Ȝamip=dN/dT, where dN and dT are averaged over the relevant decades (though for 2000-337 

2009 we use the 1995-2004 decade, since the GFDL runs finished in 2004). We cannot use 338 

an identical baseline as Otto et al. (2013) since our simulations begin in 1871 and their 339 

baseline begins in 1860. Regardless, for 1979-2009 or 2000-2009, the resulting updated 340 
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EffCS PDF has a median and 5-95% confidence interval to within ±15% of the regression 341 

methods used above. Hence in practice our conclusions are not sensitive on this 342 

assumption. 343 

5. Summary and discussion 344 

An intercomparison of AGCMs forced with historical (post 1870) sea-surface-temperatures 345 

and sea-ice from the AMIP II boundary condition dataset reveal some common results: 346 

 347 

1. When AGCMs are forced with historical SST and sea-ice changes the models agree 348 

on an effective climate sensitivity (EffCS) of ~2K, in line with best estimates from 349 

historical energy budget variations (e.g. Otto et al., 2013) but significantly lower than 350 

the EffCS of the corresponding parent AOGCMs when forced with abrupt-4xCO2 351 

(~2.4 - 4.6K for the corresponding set of models). 352 

 353 

2. The lower historical EffCS relative to abrupt-4xCO2 is predominantly because LW 354 

clear-sky and cloud radiative feedbacks are less positive in response to historical 355 

SST and sea-ice variations than in long-term climate sensitivity simulations.  This is 356 

an example of what is called a ‘pattern effect’ (Stevens et al., 2016), and is consistent 357 

with process understanding that suggests lapse-rate and low-cloud feedbacks vary 358 

most with SST patterns, especially those in the tropical Pacific ascent/descent 359 

regions which have large impacts on atmospheric stability (Zhou et al., 2016; Ceppi 360 

and Gregory, 2017, Andrews and Webb, 2018). 361 

 362 

3. The models agree that the most recent decades (e.g. 1980-2010) generally give rise 363 

to the most negative feedbacks (lowest EffCS).  Hence the pattern effect will be 364 

largest for estimates of feedbacks and EffCS based on the satellite era.  This is a 365 

period when the eastern tropical Pacific and Southern Ocean, regions important for 366 

the pattern effect, have been cooling, but are not expected to continue to do so in the 367 

long-term response to increased CO2 (e.g. Zhou et al., 2016). 368 

 369 

The pattern effect causing the difference between EffCS under historical climate change and 370 

long-term CO2 changes implies that current constraints on climate sensitivity that do not 371 

consider this give values that are too low and are overly constrained, particularly at the 372 

upper bound.  We present an approach to adjust historical energy budget derived EffCS 373 

estimates for the pattern effect.  For example, the historical (1860-1879 to 1970-2009) 374 



 
 

Confidential manuscript submitted to Geophysical Research Letters 
 

12 

observational EffCS estimate (median) and 5-95% confidence interval of Otto et al. (2013) 375 

increases from 1.9K (0.9-5.0K) to 3.2K (1.5-8.1K) using an approach that scales the 376 

historical feedback parameter by the ratio of the feedbacks found in amip-piForcing and 377 

abrupt-4xCO2.  Thus the pattern effect increases historical EffCS median values, reduces 378 

the likelihood of the lowest EffCS values, and makes higher values significantly harder to 379 

rule out.  Determining whether values towards the extremes of these bounds are plausible 380 

would require further understanding of the pattern effect or assessing and combining other 381 

lines of evidence, such as from process understanding (see Stevens et al., 2016).  This is 382 

important because a higher EffCS increases the risk of state-dependent feedbacks and large 383 

warmings (Bloch-Johnson et al., 2015). 384 

 385 

The pattern effect between historical climate change and long-term CO2 increase assumes 386 

that key aspects of long-term warming patterns simulated by AOGCMs not yet seen in the 387 

observational record, such as substantial warming of the Southern Ocean and eastern 388 

tropical Pacific, and the radiative response to them, are credible.  Such patterns are 389 

consistent with paleo records (e.g. Masson-Delmotte et al. 2013; Fedorov et al., 2015) and 390 

basic physical understanding of the behaviour and timescale of oceanic upwelling (e.g. 391 

Clement et al. 1996, Held et al., 2010; Armour et al., 2016), though they are difficult to 392 

observationally constrain (Mauritsen, 2016).  To argue for a negligible pattern effect (e.g. 393 

Lewis and Curry, 2018) would require that atmospheric feedbacks are insensitive to patterns 394 

of temperature change, or that the pattern of observed historical temperature change 395 

represents the equilibrated pattern response to increased CO2. This is at odds with basic 396 

physical understanding and bodies of work on the role for unforced variability, transient 397 

effects and non-CO2 forcings such as aerosols on the pattern of historical climate change 398 

(e.g. Held et al., 2010; Jones et al., 2013; Xie et al., 2016; Takahasi and Watanabe, 2016; 399 

Armour et al., 2016).  Further progress in constraining the pattern effect and EffCS will come 400 

from improved understanding of the causes and processes of surface temperature change 401 

patterns in observations and AOGCM projections, as well as the radiative response to them. 402 
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Tables 571 

 572 

 Ȝamip Ȝ4xCO2 S=Ȝ4xCO2/Ȝamip 
ǻȜ=Ȝ4xCO2 – 

Ȝamip 
EffCSamip EffCS4xCO2 

 (Wm-2 K-1) (Wm-2 K-1)  (Wm-2 K-1) (K) (K) 

CAM4 -2.27 -1.23 0.54 1.04 1.57 2.90 

CAM5.3 -1.71 n/a n/a n/a n/a n/a 

ECHAM6.3 -1.90 -1.36 0.72 0.54 2.17 3.01 

GFDL-AM2.1 -1.67 -1.38 0.83 0.29 2.01 2.43 

GFDL-AM3 -1.40 -0.75 0.53 0.65 2.13 3.99 

GFDL-AM4.0 -1.91 n/a n/a n/a n/a n/a 

HadAM3 -1.65 -1.04 0.63 0.61 2.14 3.38 

HadGEM2 -1.37 -0.64 0.47 0.73 2.14 4.58 

Mean(1.645*ı) -1.74(0.48) -1.07(0.52) 0.62(0.22) 0.64(0.40) 2.03(0.38) 3.38(1.29) 

 573 

Table 1: Feedback parameters in amip-piForcing (Ȝamip) and abrupt-4xCO2 (Ȝ4xCO2) 574 

AGCM and AOGCM experiments.  S and ǻȜ are the ratio and differences between 575 

Ȝ4xCO2 and Ȝamip respectively.  These are used to update feedback parameters derived 576 

from historical energy budget changes to account for the pattern effect between 577 

historical climate change and abrupt-4xCO2. EffCSamip=-F2x/Ȝamip and EffCS4xCO2=-578 

F2x/Ȝ4xCO2 are the effective climate sensitivities from the amip-piForcing and abrupt-579 

4xCO2 experiments, where F2x is the models effective radiative forcing for a doubling 580 

of CO2 (calculated from the abrupt-4xCO2 experiments using a linear regression 581 

technique as per Andrews et al., 2012).  582 
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Figures 583 

 584 

Figure 1: (a) Comparison of historical near-surface-air-temperature change (dT) 585 

simulated by the AGCMs in amip-piForcing (individual black lines) against observed 586 

(HadCRUT4) variations (red). (b) Timeseries of the change in net TOA radiative flux 587 

(dN) in the individual AGCM experiments. (c - f) The relationship and correlation 588 

coefficent (r) between the multi-model ensemble-mean (c) dN, (d) LW clear-sky 589 

radiative flux change, dLWcs, (e) SW clear-sky radiative flux change, dSWcs, and (f) 590 

cloud radiative effect change, dCRE, against dT.  All points are global-annual-means 591 

covering the historical period (1871-2010) and fluxes are positive downwards. 592 

Changes are relative to an 1871-1900 baseline.  593 
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 594 

Figure 2: Relationship between the feedback parameter evaluated by regression of dN 595 

against dT over the historical period (1871-2010) in amip-piForcing (Ȝamip) and 150yrs 596 

of abrupt-4xCO2 (Ȝ4xCO2) for (a) NET radiative feedback, (b) Clear-sky component, (c) 597 

CRE component, (d) LW and SW clear-sky components, (e) LW and SW CRE 598 

components. (f) Timeseries of Ȝamip for individual AGCMs evaluated by linear 599 

regression of dN against dT in a sliding 30 year window in the amip-piForcing 600 

experiments, the year represents the centre of the window. Coloured circles in (f) with 601 

horizontal lines show the feedback parameter values from abrupt-4xCO2.  602 
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 603 

Figure 3: Comparison of the EffCS probability distribution function from a historical 604 

energy budget constraint (Otto et al, 2013), before (black) and after (colours) 605 

accounting for the pattern effect between historical climate change and abrupt-606 

4xCO2.  ‘Red’ accounts for the pattern effect by scaling the historical feedback 607 

parameter Ȝhist by the ratio (S=Ȝ4xCO2/Ȝamip) of the feedbacks found in the amip-608 

piForcing and abrupt-4xCO2 simulations. ‘Blue’ accounts for the pattern effect by 609 

adding the difference in feedbacks (ǻȜ=Ȝ4xCO2-Ȝamip) to Ȝhist (see Section 4 and Table 1).  610 

Box plots show the 5-95% confidence interval (end bars), the 17-83% confidence 611 

interval (box ends) and the median (line in box). 612 


