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A B S T R A C T

Mapping tropical tree species at landscape scales to provide information for ecologists and forest managers is a
new challenge for the remote sensing community. For this purpose, detection and delineation of individual tree
crowns (ITCs) is a prerequisite. Here, we present a new method of automatic tree crown delineation based only
on very high resolution images from WorldView-2 satellite and apply it to a region of the Atlantic rain forest with
highly heterogeneous tropical canopy cover – the Santa Genebra forest reserve in Brazil. The method works in
successive steps that involve pre-processing, selection of forested pixels, enhancement of borders, detection of
pixels in the crown borders, correction of shade in large trees and, finally, segmentation of the tree crowns.
Principally, the method uses four techniques: rolling ball algorithm and mathematical morphological operations
to enhance the crown borders and ease the extraction of tree crowns; bimodal distribution parameters estima-
tions to identify the shaded pixels in the gaps, borders, and crowns; and focal statistics for the analysis of
neighbouring pixels. Crown detection is validated by comparing the delineated ITCs with a sample of ITCs
delineated manually by visual interpretation. In addition, to test if the spectra of individual species are conserved
in the automatic delineated crowns, we compare the accuracy of species prediction with automatic and manual
delineated crowns with known species. We find that our method permits detection of up to 80% of ITCs. The
seven species with over 10 crowns identified in the field were mapped with reasonable accuracy (30.5–96%)
given that only WorldView-2 bands and texture features were used. Similar classification accuracies were ob-
tained using both automatic and manual delineation, thereby confirming that species’ spectral responses are
preserved in the automatic method and thus permitting the recognition of species at the landscape scale. Our
method might support tropical forest applications, such as mapping species and canopy characteristics at the
landscape scale.

1. Introduction

The world’s forests play key roles in maintaining environmental
processes, such as the water cycle, soil conservation, carbon seques-
tration and habitat protection (FAO, 2016). In particular, tropical for-
ests host the overwhelming proportion of global tree diversity, with as
many as 53,000 tree species or more, in contrast to only 124 across
temperate Europe (Slik et al., 2015), and provide critical ecosystem
services to mitigate climate change. One of the most documented roles

of tropical forests is their potential to act as a carbon sink, which ac-
counts for approximately half (1.19 ± 0.41 PgC yr−1) of the global
sink of established forests (Pan et al., 2011; Baccini et al., 2012). This
carbon sink service is significant, for example, the mature Amazon
forests alone mitigated the carbon emissions of all the Amazon coun-
tries between 1980 and 2010 (Phillips and Brienen, 2017). Due to the
importance of these forests, it is crucial to build a reliable forest in-
ventory at the individual tree level – with information on key para-
meters such as tree species, tree diameter and height, crown size and
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location – for a range of scientific and applied purposes including re-
source management, biodiversity assessment, ecosystem services as-
sessment and conservation.

Conventional field inventory of individual trees is a challenging task
in tropical environments in terms of time, effort and cost. Consequently,
tree ecological field surveys in tropical forests typically cover areas of

1 ha (Mitchard et al., 2014), with a very few up to 50 ha, such as Barro
Colorado Island (BCI, Panama) or Pasoh (Malaysia) (Condit et al.,
1999). Consequently, the total area of the field plots surveyed since the
1950s in the Amazon forests likely represents less than 0.0001% of the
total area of this biome (Saatchi et al., 2015), and for the Atlantic forest,
an estimated 0.01% of the total area has been surveyed (de Lima et al.,
2015). A re-census of the tropical forest permanent plots is typically
made every 1–5 years, with a mean time of 3 years (Mitchard et al.,
2014). While mortality rates have increased across the Amazon forest
plots (Phillips et al., 2009; Brienen et al., 2015), the time between the
censuses hinders the analysis of the potential annual or intra-annual
climate drivers of mortality.

Thus, forest inventory at the landscape scale remains a major
challenge, and one likely to be best tackled by a combination of remote
sensing information and ground truth. In this context, airborne and
satellite sensors can now acquire images with sub-metric spatial re-
solution, thereby enabling the detection of individual tree crowns
(ITCs). They also provide spectral and structural information which can
be used to identify canopy species, extract tree metrics such as crown
size, and estimate stand characteristics such as canopy structure or
biomass (Palace et al., 2008; Ferreira et al., 2016; Singh et al., 2015;
Laurin et al., 2014). Furthermore, frequent satellite image acquisitions
can enable annual or inter-annual surveys.

The detection and delineation of ITCs is a prerequisite for individual
tree inventory over large spatial extents (Clark et al., 2005). Such ITCs
can be used in object-oriented image analysis and provide information
such as tree count, location, crown size, distance between individuals,
and tree species. Accurate ITC delineation improves spectral signature
characterization (by reducing the number of pixels outside of the actual
crown) and is a requirement in majority voting approaches for spectral
species recognition (Fassnacht et al., 2016). Another advantage of this
approach is that additional attributes can be obtained for each object,
here defined as tree crown, such as reflectance value distributions or
textural information. Information at the tree crown level can improve
the classification of tree species (Clark et al., 2005; Feret and Asner,
2013; Warner et al., 2006; Fassnacht et al., 2016; Ferreira et al., 2016).
In contrast, pixel-wise analysis, which does not require the identifica-
tion of crowns, is unsuitable for individual tree inventory, but can be
used to map whole stand characteristics such as species composition
(Vaglio Laurin et al., 2014; Cho et al., 2015), canopy biochemical
contents (Asner et al., 2017), biodiversity (Feret and Asner, 2014),
species invasion (Amaral et al., 2015), and biomass (Laurin et al., 2014;
Mutanga et al., 2012).

Advances in hyperspectral and Light detection and ranging (LiDAR)
remote sensing imagery allow automatic and accurate ITC detection
(mostly above 60% of the canopy trees), in both temperate and tropical
forest ecosystems (Lee et al., 2016; Tochon et al., 2015; Ferreira et al.,
2016; Singh et al., 2015; Dalponte et al., 2014; Feret and Asner, 2013).
However, these methods are expensive due to data collection (mostly
with a sensor mounted on an airborne platform) and are becoming
increasingly complex and data demanding, thereby limiting their re-
producibility (Tochon et al., 2015; Lee et al., 2016). In comparison to
both field surveys and airborne campaigns, very high spatial resolution
imagery acquired by satellite sensors is an affordable alternative ( 30
US$ for one km2 of WorldView-2 images) and users can access forest
information with multispectral resolution. For example, WorldView-2
(WV-2) images provided to the users have 8 multispectral bands and
one panchromatic band with a spatial resolution of 2 m and 0.5 m, re-
spectively (DigitalGlobe, 2017). The WorldView-2 waveband combi-
nation is suitable for assessing vegetation characteristics that vary

between species and, hence, might be adequate for species dis-
crimination in tropical forests (Cho et al., 2012, 2015; Latif et al., 2012;
Heenkenda et al., 2014). WorldView-2 also offers a large archive, en-
abling users to select the images with the best angular characteristics
for detecting ITCs and also providing them time series for the studied
areas. The automatic delineation of tree crowns in tropical forests using
only WV-2 images is theoretically feasible but remains as an open
challenge due to the complexity of the canopy, that is, very dense ve-
getation, different crown sizes, overlapping tree crowns, and absence of
clear boundaries between individuals (Latif et al., 2012; Feret and
Asner, 2013).

The delineation of ITCs can be done manually or automatically.
Manual crown delineation from images has been used in recent litera-
ture on tropical tree species recognition in small areas (Clark et al.,
2005; Caughlin et al., 2016), but is not suitable to study areas above

100 ha. Numerous algorithms exist for automatic delineation, but
most of them have been developed for temperate forest stands (Ke and
Quackenbush, 2011; Duncanson et al., 2014) and their application to
deciduous and tropical forests has proven to be much more challenging,
but not impossible (Feret and Asner, 2013; Bunting et al., 2009; Leckie
et al., 2003; Ferreira et al., 2016; Warner et al., 2006). The automatic
methods for ITC delineation from passive remote sensing assume that
the tree crowns have the shape of a mountain, with bright peaks at the
treetops and dark pixels at the border of the crown (Ke and
Quackenbush, 2011). The methods of automatic ITC delineation can be
classified into two groups, based on tree border (valley following, wa-
tershed segmentation) or based on the spectral characteristics (region
growing, template matching) (reviewed in Ke and Quackenbush
(2011)). While using the brightest point as the top of the trees is a
reasonable approach in many temperate forests, particularly in con-
iferous stands, this is likely to be overly simplistic for tropical forest
environments due to the variety of architectures and crown sizes ex-
hibited. For example, for a large rounded crown, the bright pixels may
appear not at the point of maximum height but rather on the border
exposed to the Sun, while for flat crowns there could be no difference in
brightness at all. On the other hand, identifying ITCs from the spectral
signature has three major limitations in a tropical forest: (i) trees may
be partially covered by lianas, thereby altering the spectral response of
species (Kalacska et al., 2007), (ii) a tree can have new leaves only on a
part of its crown, which results in markedly different spectral responses
in the same crown (Lopes et al., 2016) and (iii) due to the diverse ar-
chitecture and leaf characteristics of tropical trees, the intra-crown
spectral variability among different species is also likely to be highly
diverse (Ferreira et al., 2016). All these challenges make it difficult to
select a single, unique forest-wide threshold for the spectrum-based
methods for ITC detection, such as the region-growing algorithms
(Culvenor, 2002; Erickson, 2004).

Based on these identified limitations in tropical forests, we explored
a method of automatic tree crown delineation based only on border
detection. Our main assumptions are that the border of trees contains
more shade than the tree crowns, that the shade in the large tree crowns
can be identified and corrected and that the resulting shade of the edge
can be contrasted by numerical methods to enable the extraction of tree
crowns. Our method belongs to the first group of methods to delineate
ITCs, which is based on tree border identifications.

Species identification with remote sensing in tropical forests is a
current topic, with less than 20 studies published before 2015 for this
ecosystem (Fassnacht et al., 2016). WorldView-2 is amongst the pro-
mising very high resolution (VHR) multispectral satellite sensors for
species identification. This sensor was successfully used to discriminate
and map tree species in temperate forests (Immitzer et al., 2012; Waser
et al., 2014), urban areas (Pu and Landry, 2012; Pu et al., 2015),
mangrove areas (Heenkenda et al., 2014), forest plantations (Peerbhay
et al., 2014) and sub-tropical forests (Cho et al., 2015). However, in
these studies, species recognition is made at the pixel level and not at
the crown level, thereby limiting the information for species
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classification to pixel reflectance. For WorldView-2 images, accurate
ITC delineation should improve tree species identification, as observed
with remote sensed images from other sources (Clark et al., 2005;
Ferreira et al., 2016; Dalponte et al., 2014; Fassnacht et al., 2016).

For complex ecosystems such as tropical forests, accurate ITC deli-
neations might be used to extract not only pixel reflectance but also
crown characteristics that are useful for species identification
(Fassnacht et al., 2016). For example, in addition to the multispectral
bands, WV-2 features a sub-metric panchromatic band that can be used
to detect texture attributes of the tree crowns, which is related to
crown-internal shadows, branching and foliage properties among spe-
cies (Fassnacht et al., 2016). Furthermore, with the ITCs, the distribu-
tion of reflectances per crown or per species can be accessed. All this
information on the optical properties of species at the crown level might
improve classification accuracy. However, little is known yet about the
utility of the optical properties (reflectance and texture) at the crown
level for tree species mapping in tropical forests. Our assumption is that
species can be discriminated in tropical forests with Worldview-2 image
by using species classification based on ITCs.

The objectives of this work are (i) to provide a simple, automatic
and reproducible method to detect and delineate canopy tree crowns in
highly diverse tropical forests, taking advantage of commercial very
high resolution WorldView-2 imagery and (ii) to test if the spectral
signature of the species is conserved in the delineated crown, and, if so,
produce forest inventory maps of seven selected tree species based on
field and spectral data and automatic delineated tree crowns.

2. Materials

2.1. Study site

The study site is the Santa Genebra Forest Reserve, a remnant of the
Atlantic Forest biome, located in the municipality of Campinas (São
Paulo State - Brazil) and centered at 22°49′13.46″S and 47°06′38.47″W,
as shown in Fig. 1. The elevation of the study area ranges from 580 to
610 m. The terrain consists of a relatively smooth relief with forest
located on the higher elevation and occupying 85% of the reserve (Leito
Filho and Morellato, 1995). The reserve comprises 237.6 ha of a well-
preserved submontane semi-deciduous forest formation (Oliveira-Filho
and Ratterf, 1995). The site receives approximately 1500 mm of pre-
cipitation per year and is subject to a dry season that lasts for
4–5 months between April and September, during which rainfall is less
than 100 mm.month−1 (CRU TS3.21, 2014). The mean annual tem-
perature is 20.5 °C and ranges from 11.0 to 28.5 °C. Floristic surveys

performed in the area found 100 woody species within one hectare
(Farah et al., 2014; Guaratini et al., 2008). The forest canopy is highly
heterogeneous and comprises both deciduous and evergreen species
(Farah et al., 2014).

2.2. WorldView-2 images and pre-processing

The WorldView-2 image (DigitalGlobe, Inc., USA) over the forest of
Santa Genebra was acquired on 11 December 2014, under clear sky
conditions and at an average off nadir view angle of 2.4°. The spatial
resolution of the bands is 0.5 m for the panchromatic band
(464–801 nm) and 2 m for the multispectral bands: Red (629–689 nm),
Green (511–581 nm) and Blue (447–508 nm). The bands were scaled
from raw image digital numbers (11 bit) to 0–255 (8 bit). The Red-
Green-Blue (RGB) bands were then pan-sharpened, that is, merged with
the high-resolution panchromatic image to create a single high-re-
solution RGB image at 0.5 m resolution. The RGB bands were pan-
sharpened with the panchromatic band using the High Pass Filter
Additive (HPFA) fusion technique (Gangkofner et al., 2008) provided
by the GRASS GIS addon i.fusion.hpf (GRASS Development Team,
2017). For WorldView-2 images, the HPFA method has been recently
shown to be among the best pan-sharpening algorithms for the con-
servation of spectral responses (Nikolakopoulos and Oikonomidis,
2015). We used GRASS GIS version 7.3.svn.

2.3. Field data

Individual Tree Crowns were manually delineated using the pan-
sharpened WorldView-2 image and a previous ITC reference dataset for
the study area (Ferreira et al., 2016). Only crowns that were clearly
seen by visual interpretation were selected and manually delineated on
the image. Then the selected trees were identified at the species level in
the field with the aid of a GPS device coupled to an external antenna
(Garmin 65CSx ©). The GPS accuracy during the field work was ap-
proximately 3 m. The presence of lianas over the crowns was carefully
inspected to avoid liana-dominated trees. A total of 370 suitable ITCs
were identified, corresponding to 34 species. Most of the located trees
exhibited a large crown and a large diameter at breast height (DBH)
with values ranging from 19 to 111 cm and with a mean of 58.7 cm
(Ferreira et al., 2016) and thus could be easily found in the field. For
classification purposes, we selected 7 species from among the 34 sam-
pled, with more than 10 trees visited in the field, Table 1.

Fig. 1. Geographical locations of the Atlantic forest biome in green and of the forest of Santa Genebra in red (a); WorldView-2 image used in this study with the limits
of the Santa Genebra forest in red (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3. Methods

3.1. Image processing algorithms

In our algorithm, we mainly used three methods to process the
image, one statistical method based on the characteristics of the
grayscale values distribution of the forest image to determine if a given
pixel is in a tree or in a border, and two image processing algorithms:
the rolling ball algorithm and mathematical morphological operation.
These two latter algorithms have been used to enhance the tree border
and ease the segmentation of the tree crowns. The details of these
methods are provided below.

3.1.1. Estimation of bimodal distribution parameters
To determine if a pixel is in the shade or in a tree crown, our first

approach is based on the grayscale values of the pixels. In our method,
the grayscale scale images were produced by converting the RGB image
to a hue, saturation, and lightness (HSL) image and keeping only the L
channel. In all the following text, grayscale values refer to the value of
the L channel. The distribution of the grayscale values of the forest
image can be considered as a mixture distribution of two ecological
features, Fig. 2. The first (blue distribution) is the natural variation of
illuminated vegetation pixels in the tree crowns, while the second (red
distribution) represents the variation of the shaded pixels in the forest
gaps, similar to what is observed with height measured by LiDAR over
tropical forests (Goulamoussène et al., 2017), see Fig. 6a. To determine
the parameters of the two underlying normal distributions and their
overlap, we used an Expectation-Maximization algorithm (EM algo-
rithm) for mixtures of univariate normals (Benaglia et al., 2009). Then,
different thresholds have been set depending on the purpose, that is, to
eliminate or to keep dark pixels. This method has also been used on the
distribution of distance to dark pixels. In the following text, we refer to
the distribution with lower grayscale values as grayscale values in gaps
and to the higher distribution as grayscale values in the forest. Details
of the thresholds are provided in the algorithm description.

3.1.2. Rolling ball algorithm
The rolling ball algorithm (Stanley R Sternberg and CytoSystems

Corporation, 1983; Kneen and Annegarn, 1996), Eqs. (1)–(4), is used to
contrast images in order to enhance the shade of the tree crowns border
and also to remove/extract objects in images, for example, to extract
tree crowns above the minimum defined tree crown size. A local
background value (the baseline, bi, Eq. (3)) is determined for every
pixel by averaging over a very large ball of radius r around the pixel,
Fig. 3. This value can be subtracted from the original image to remove
large spatial variation of the background intensities (the radius of the
rolling ball is selection to be at least the size of the largest object).

Otherwise, the image resulting from the baseline, Eq. (3), can be re-
tained if the objective is to eliminate small objects with a radius that is
smaller than that of the rolling ball:

f min imx imx imx( , , , , )i i r i i r= … … + (1)

F max f f f( , , , , )i i r i i r= … … + (2)

b mean F F F( , , , , )i i r i i r= … … + (3)

imx imx bcorrected i i i, = (4)

Where i is the position of the pixel in the vector of grayscale values of a
row of the image imx and r is the radius of the rolling ball, Fig. 3. The
baseline (bi, Eq. (3)) is derived as a combination of firstly acquiring the
minimum value for each pixel within the rolling ball radius r ( fi , Eq.
(1)), from which the maximum value within the defined radius (Fi, Eq.
(2)) is determined for each pixel, and then finally this information is
incorporated in Eq. (3) (baseline) in which the mean value for each
pixel is calculated within the defined radius. Then, the baseline is
subtracted from the original image (Eq. (4)). An example of the rolling
ball results for a simulated image is provided in Fig. 4. The rolling ball
algorithm is implemented in the R package baseline (Liland and Mevik,
2015).

3.1.3. Mathematical morphological operations
Mathematical morphological operators top hat and bottom hat

transforms (Serra, 1982) can be used to enhance the contrast of an
image based on a structural element (for example a square of n × n
pixels). Here, these techniques were used to contrast the shade at the
border of the tree crowns and further determine if a pixel was in a tree
crown or in the shade between the trees. Considering that I x y( , ) is the
grayscale image matrix and M u v( , ) is the structural element matrix,
then erosion and dilation operators are defined as in Eqs. (5) and (6):

I M min I x u y v M u v{ ( , ) ( , )}u v,= + + (5)

I M max I x u y v M u v{ ( , ) ( , )}u v,= + + (6)

The opening operator, Eq. (7), is the application of erosion followed by
dilation and the closing operator, Eq. (8), is the application of dilation

Table 1
Description of the trees with crowns manually delineated in the WV-2 image
and identified in the field: species list, species code, number of ITCs, mean ITC
size (pixels), minimum crown size (pixels), maximum crown size (pixels) and
total pixels of the species.

Species Code ITCs Mean
crown size

Min
crown

size

Max
crown size

Pixels

Aspidosperma
polyneuron

AP 23 386 157 846 8888

Astronium
graveolens

AG 56 363 78 1608 20,350

Cariniana legalis CL 50 954 220 1980 47,719
Cecropia hololeuca CH 54 117 5 272 6335
Croton piptocalyx CP 63 252 46 624 15,895
Diatenopteryx

sorbifolia
DS 18 83 33 136 1500

Hymenaea courbaril HC 18 626 188 1640 11,270

Fig. 2. Distribution of grayscale values of the Santa Genebra forest WV-2 image.
The bimodal distribution of grayscale values is considered as a mixture dis-
tribution of (i) the natural variation in illuminated crowns pixels (blue dis-
tribution) and of (ii) the variation of the shaded pixels in the forest gaps and
border (red distribution). Both are modeled as normal distributions. (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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followed by erosion:

I M I M M( )= (7)

I M I M M· ( )= (8)

Then, top hat transform (Ith) is defined as the original image minus the
image resulting of the opening, Eq. (9) and Fig. 5c, and bottom hat
transform (Ibh) is defined as the image resulting from the closing minus
the original image, Eq. (10) and Fig. 5b:

I I I M( )th = (9)

I I M I( · )bh = (10)

The top and bottom hats can be combined to enhance the contrast of the
original image, Eq. (11) and Fig. 5d.:

I I I Ifiltered th bh= + (11)

These transformations are implemented in the R package imager
(Barthelme, 2017).

3.2. Tree crown delineation algorithm development

The inputs of the tree crown delineation algorithm are the RGB
WorldView-2 image pan-sharpened at a 0.5 m spatial resolution with
values in 8 bits (0–255) and the shapefile of the forest border. In the
following text, we detail the steps of the algorithm.

3.2.1. Image pre-processing
First, the pan-sharpened RGB image was cropped to the forest ex-

tent. Then, a 100 m buffer was added to the image and filled with zero
values (Fig. 3). This buffer is necessary for the computation of focal
statistics and for the segmentation algorithm. Then, a grayscale image
was produced by converting the RGB to an HSL image and keeping only
the L channel, Fig. 6a. In the Santa Genebra reserve, the elevation is
relatively smooth and it was not necessary to correct for variation in
illumination. In case of large variation in illumination, we suggest to
correct the image at this step with a pseudo flat field correction (see
Supplementary Fig. S1).

3.2.2. Eliminating area without shade
The Santa Genebra reserve contains areas with no or only very few

trees and also some dense forest patches around the river with a
structure that is different from that of the main forest. In the grayscale
image, both areas are characterized by the relative absence of shade.
Shaded pixels were identified as the 99th percentile of the distribution of
grayscale values in gaps with the EM algorithm (Section 3.1.1). To
exclude these areas in the image (areas with few shaded pixels), we
count the number of shaded pixels around each pixel in a square of
101 × 101 pixels (50.5 m × 50.5 m). We use this 50.5 m threshold to
avoid removing large trees, as some large crowns present very few
shaded pixels and because the maximum crown diameter at Santa
Genebra is 25 m. Non-shaded areas were identified as pixels below the
first percentile of the distribution of the occurrence of shaded pixels in
forest (EM algorithm, Section 3.1.1). 887,016 pixels were identified in
non-shaded area ( 22.175 ha) and were removed from the image by
setting these pixels to zero (Fig. 3). This step is unnecessary in cases of
homogeneous canopy cover.

3.2.3. First dark object identification
The objective of this step is to begin identifying pixels in the shade

of the tree border and set them to zero. The dark pixels were defined as
grayscale pixels below the mean of the distribution of grayscale values
in gaps (EM-algorithm, Section 3.1.1) and set to zero, Fig. 6b. The mean
was used here because some large trees can present holes (shade) in
their crown due to tree architecture or crown fragmentation
(Rutishauser et al., 2011), and these values have to be retained for
further completion.

3.2.4. Filling shade in large tree crowns
This step yields the production of a smoothed image of the max-

imum grayscale values that will be used to fill the holes in the top of the
trees after the next step of identification of large trees. The image was
converted to grayscale by first converting the RGB image to HSL and
then retaining only the L channel. This grayscale image was inverted,
that is, the original grayscale image is multiplied by −1 and the
maximum value of the grayscale image is added. This compare to a
negative image. We computed two baseline images from a rolling ball
filter (see Section 3.1.2) with a radius of 3 pixels following x and y axis,

Fig. 3. Rolling ball correction for a row imx of a
simulated grayscale image. Each graphic pre-
sents the signal values in the upper portion and
the visual rendering in grayscale values in the
lower portion. The original signal is presented in
(a). In the baseline (b), only objects with a size
larger the ball diameter are preserved. In the
corrected image (c), the borders are enhanced
and spatial variation of the background in-
tensities with size larger than the ball diameter
are eliminated.
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then the obtained images were inverted again and the maximum
grayscale values of these two last images were used to produce the final
image smoothed image, Fig. 6c. This resulting image can be interpreted
as the topline image which links all the highest grayscale values with
respect to the rolling ball radius.

3.2.5. Identify and filling gaps in large trees
The crowns with a diameter of over 15 pixels (7.5 m) were identi-

fied with a top hat transform (see Section 3.1.3) by a circular struc-
turing element with a diameter of 15 pixels, Fig. 6d. The result of the
top hat transform is a binary mask containing only the tree crowns that
are over 15 pixels in diameter with value 1. The threshold was de-
termined based on the image, that is, not too small because small trees
already have homogeneous crown but also not too large because large
trees would be underestimated as they present holes (darker area) in
the crown, Fig. 6a. The darker areas in the large crowns can be due to
tree architecture, large tropical trees can be structured with different
crown units (the main branches), or crown fragmentation (Rutishauser
et al., 2011). In our image, the threshold of 7.5 m enables the identi-
fication of most of the large tree tops, Fig. 6d. The top of the trees were
then filled by the grayscale values obtained in the previous step. This
step enables the homogenization of the grayscale values in crown
structures above 7.5 m in diameter and eliminates most of the shade in
the large crowns, which is necessary for the segmentation of the
crowns, Fig. 6e.

3.2.6. Second identification of dark objects
After the correction of the shaded pixels in large trees, a final

identification of the dark pixels was made, assuming that most of the
crown shade has been removed. Here, the dark objects were defined as
grayscale pixels below the 99th percentile of the grayscale values dis-
tribution in gaps (see Section 3.1.1) and set to zero, Fig. 6f.

3.2.7. Finding small holes in large trees
The large crowns contain isolated pixels of shade that must be filled

to further compute the distance of the crown pixel to the edge of the
crown (dark pixels outside crowns). These isolated pixels are char-
acterized by the absence or low frequency of pixels with zero values in
the neighbouring cells. To find and fill these isolated pixels, we com-
pute the occurrence of non-zero values in a square window of 7 × 7
pixels around each pixel. The occurrence of non-zero values have a
bimodal distribution. The smallest distribution (with smallest mean of
non-zero values in the neighborhood) corresponds to the pixels in the
crown borders while the highest distribution corresponds to the pixels
in the crowns (see Section 3.1.1). Here we define the holes in crowns as
pixels with occurrence of non-zero values >75th percentile of occur-
rence distribution in forest, Fig. 6g. At the end of this step, three classes
of pixels are identified: pixels of shade between the trees, non-shaded
pixels in the crowns and isolated pixels of shade in the crowns. With
these classes, a binary mask was generated, with 0 indicating pixels
outside crowns (pixels of shade between the trees) and 1 indicating
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Fig. 4. Example of image contrasted with the rolling ball algorithm, with a ball of 6 pixels in diameter. The original image was simulated to present characteristics of
the grayscale image of the tree crowns.
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pixels inside crowns (non-shaded pixels in the crowns and isolated
pixels of shade in the crowns).

3.2.8. Homogenization of grayscale values in large trees
In order to homogenize the grayscale values in the large tree crowns

(crowns which concentrated pixels with distance to the border >3.5 m),
we first compute the minimum distance between non zero values and
zero value with the previous mask. Then, all the pixels with distance >7
pixels of zero values (border) were identified as pixels in large trees.
These pixels were filled with the mean of the four highest grayscale
values within a square window of 7 × 7 pixels, Fig. 6h.

3.2.9. Extraction of the tree crowns before segmentation
The tree crowns with diameter over 3 m were extracted with a top

bottom hat filter with a squared structural element of 6 × 6 pixels (see
Section 3.1.3). For the transformed image, we set a threshold at
>0.001th percentile (conservative) of the top bottom hat filter to ex-
tract tree crowns, Fig. 6i.

3.2.10. Delineation of individual tree crowns
Our segmentation algorithm works with the distance between non-

zero and zero value pixels, that is, the distance of the crown pixels to
the identified edge. Each identified crown or group of crowns in the
pre-segmentation (Fig. 6i) were processed separately. For each crown
pixel, the distance to the edge in pixels was computed. Then, local
maxima were found within a squared window of the maximum distance

to the edge of the segment. For each local maximum, we created an
image by dilating around its location with a square of side twice its
value ( diameter) and attributed 1 to each pixel. Next, we summed the
obtained images and removed pixels with zero values. Remaining pixel
values equalling one indicate a tree crown, while values greater than
one indicate a intersection between the crowns to be removed. Finally,
the tree crown polygons were extracted and labeled, Fig. 6j.

This algorithm is computationally demanding and the segmentation
part has not been optimized for use in parallel computing systems.
Santa Genebra’s image (3.1 × 2.4 km) was processed with 32 cores
(CPUs) and 64-GB RAM in 14 h, 1 h for the pre-segmentation and 13 h
for the segmentation. In the pre-segmentation, 30% of the time was
consumed by the focal computation. During the segmentation, each
segment was processed separately, 7 min for 100 segments. The al-
gorithm is written in R language (R Core Team, 2016).

3.3. Algorithm validation

To assess the quality of the individual tree delineation, a validation
sample of 1001 points was randomly generated over the forest of Santa
Genebra, Fig. 6k. After removing the random points falling in the areas
without shade (see Section 3.2.2), the validation sample was con-
stituted of 989 random points. Then, each point was visually inter-
preted using the pan-sharpened WorldView-2 images, Fig. 6k. If the
point fell in a crown, the value 1 was attributed (true crown) to the
point and the crown was manually delineated, else a null value (no
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Fig. 5. Synthetic example of image contrasted with the top-bottom hat transform with a squared structural of 6 × 6 pixels. The image in (a) was simulated to present
characteristics of the grayscale image of tree crowns. To facilitate visualization, the range of values in (b) and (c) are different than of (a) and (d).
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crown) was attributed to the point (border of tree crowns or gaps).
From this visual interpretation, 428 true crowns were found and deli-
neated, and 561 random points were marked as no crown. Then, the
confusion matrix between the segmentation results and the random
validation sample was generated. The confusion matrix is a table with
two rows and two columns that reports the number of true positives
(true crowns identified by the algorithm), false positives (crown

identified where there was no crown), false negatives (no crown iden-
tified where there were true crowns), and true negatives (no crown
identified where there was no crown). From the confusion matrix, the
Kappa index and overall accuracy were computed (Cohen, 1968; Foody,
2002). The false negatives were estimated in this step, which are field
measured crowns which do not intersect with any crowns from the
segmentation, and the false positive, which are the segmented crown
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Fig. 6. Details of the algorithm steps for a subset image of the Santa Genebra forest. Grayscale image obtained by converting the RGB bands to an HSL image and
retaining only the L channel (a). First dark object identification, grayscale pixels below the mean of the distribution of grayscale values in gaps are set to zero (b).
Baseline images from a rolling ball filter with a moving window of 6 pixels to fill the top of the trees after identification of large trees (c). The top of the crowns with a
diameter of over 15 pixels identified with a top hat transform (d). Image after removing most of the shaded area in the large crowns with the two previous step (e).
Second Dark object identification, grayscale pixels below the 99th percentile of the grayscale values distribution in gaps are set to zero (f). Holes in crowns (in red)
identified as pixels with occurrence of non-zero values in the neighbouring cells >75th percentile of occurrence distribution in forest (g). Image after filling the holes
in the crowns with the mean of the four highest grayscale values within a square window of 7 × 7 pixels (h). Pre-segmentation, the top of the trees with diameter of
over 3 m were extracted with a top bottom hat filter with a squared structural element of 6 × 6 pixels (i). Results of the ITC segmentation (j), where segmented
crowns are represented in red. Visual interpretation of the random points (in red) when the point felt in a crown, the crown was manually delineated (in blue) (k).
Representation of true (in blue) and segmented crowns (in red) (l). Satellite image courtesy of the . (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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without intersection with visual interpreted crown. Over-segmentation
(subdivision of a tree crown into multiple segments) and under-seg-
mentation (segments that contain more than one field measured crown)
were described. For each identified crown, pixel excess (number of
pixels of the segmented crown outside the true crown) and pixel deficit
(number of pixels inside the true crown missing in the segmented
crown) were computed. Then, the associations between true crown
areas versus pixels deficit or excess were visually assessed by fitting a
cubic smooth spline. In addition, the crown size validation was con-
ducted by comparing crown size from the segmented and manual (true)
crown delineation with a linear model. Finally, a non-parametric Wil-
coxon signed-rank test was used to test for a difference between the
crown size distributions of the manually delineated and automatic
segmented crowns.

3.4. Spectral validation and tree species mapping

We conducted a spectral validation of the segmentation method by
comparing the species classification results between manual and auto-
matic ITC delineation. For classification purposes, we used the eight
bands of WorldView-2: Coastal (400–450 nm); Blue (450–510 nm);
Green (510–580 nm); Yellow (585–625 nm); Red (630–690 nm); Red
Edge (705–745 nm); Near Infrared-1 (770–895 nm) and Near Infrared-2
(860–1040 nm). The image was atmospherically corrected and pan-
sharpened using the Fast Line-of-Sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) algorithm (Felde et al., 2003; Solutions, 2009)
and the Gram-Schmidt fusion technique (Aiazzi et al., 2009), respec-
tively. In FLAASH, we selected a tropical atmospheric, rural aerosol
model and the scene-average visibility was set to 40 km. The Gram-
Schmidt spectral sharpening method was selected because it preserves
the spectral characteristics of tree species in WorldView-2 images (Cho
et al., 2015). The resulting eight pan-sharpened multispectral bands
were used for classification.

Pixels from the manually delineated ITCs, Table 1, were extracted
from the pan-sharpened WorldView-2 image to compose a dataset with
19 variables, from which eight are spectral band values and 11 are
texture features. To obtain texture attributes we first computed basic
descriptive statistics of each crown using the panchromatic band (mean,
trimmed mean, standard deviation, median, median absolute deviation,
minimum, maximum, skew, kurtosis and standard error). Then, we
compared the panchromatic band pixel values of each ITC to the re-
spective descriptive statistics. This comparison was conducted in terms
of absolute difference. The reasoning of this approach is to explore
textural variations arising for species-specific differences in the crown
structure. We used the ‘psych’ R package (Revelle, 2016) to calculate
the descriptive statistics. To compare the automatic ITC delineation
results with manual ones, we selected only segmented ITCs that pre-
sented an overlay area 50% with manual ITCs.

The manual and segmented datasets were randomly partitioned into
70% for training and 30% for testing. During this process, testing and
training pixels of the same species were selected from different ITCs, as
violations of the ITC identities lead to unrealistic classification ac-
curacies (Baldeck and Asner, 2014). We repeated this procedure 100
times, randomly selecting ITCs to train and test the classifier at each
realization and saving the respective reference crowns for accuracy
assessment. Systematic changes in the selection of training and testing
crowns enable the assessment of the robustness of the classification
models and their ability to predict species of unknown samples.

Classification was performed by the support vector machine (SVM)
classifier implemented in the ‘liquidSVM’ R package (Steinwart and
Thomann, 2017). SVM is a non-parametric method that separates
samples of different classes by constructing hyperplanes in a multi-
dimensional space (Vapnik, 1995). Here, we used the Radial Basis
Function (RBF-SVM) kernel formulation that has previously showed
good results for tree species discrimination in tropical forests (Ferreira
et al., 2016; Feret and Asner, 2013; Baldeck and Asner, 2014). RBF-

SVM requires setting the parameters C and , which controls, respec-
tively, the trade-off between the complexity and proportion of non-se-
parable samples and the radius of influence of samples selected by the
model as support vectors (Cherkassky and Mulier, 2007). The best
combination of C and for each realization was selected using 5-fold
cross validation in the training set. We used a majority-voting rule to
assign classes to ITCs, that is, firstly all pixels within a given ITC are
classified and thereafter that the most frequent class is assigned to it.

The segmentation method proposed in this work was also tested for
the production of a species map. We trained the RBF-SVM classifier
using all pixels from the manual delineated ITCs and employed the
resulting model to assign classes to the segmented ITCs. This naturally
labeled all segments to a given class, leading to a high degree of un-
certainty because the forest canopy is composed with hundreds of
species. To overcome such a limitation, pixels within segmented ITCs
were labeled according to their class probabilities, following Ferreira
et al. (2016). Thus, a given pixel x is assigned to a class i if the fol-
lowing condition is satisfied:

x if p x max p( | ) ( ( ))i i i× (12)

where p x( | )i is the probability that i is the correct class for the pixel
x, and is the percentage of the maximum probability value of the class

p, ( )i i . We set to 70%, expecting that only pixels with high prob-
abilities that belonged to a given class were labeled.

4. Results

4.1. Detection accuracy

The number of tree crowns correctly detected as a percentage of
crowns in the validation dataset was 79.2% (339 out of 428 trees) while
20.8% were not detected (89 false negatives), as shown in Table 2.
From the confusion matrix, an overall accuracy of 85.3% and a Kappa
index of 0.70 were obtained. 14.2 % of the segmented crowns were
detected erroneously (56 false positives). Among the detected trees,
23% were over-segmentated (78 crowns, Table 3), that is, more than
one segmented crowns intersect with the manually delineated crown
(true crown). Among the true crowns, merely 4 (0.9%) were under-
segmentated. A representation of true and segmented crowns is pre-
sented for a subset image in Fig. 6l.

The mean pixel deficit is of 34.5%, and the mean pixel excess is of
36.8%. While there is no association between pixel deficit and true
crown size, as depicted in Fig. 7a, an association exists between pixel
excess and true crown size, as depicted in Fig. 7b. Trees with a true
crown that is below 100 pixels (5 m2) have a pixel excess of above 40%.

The association between true and segmented crown size has a
coefficient of determination of 0.64, Fig. 7c. The distribution of the
difference between the true and segmented crown areas presents a
normal shape with a mean of −35.35 pixels and a standard deviation of
188.03 pixels, Fig. 7d.

The crown size distribution of true crowns is significantly different
from the segmented crowns, Fig. 8a. After eliminating those tree crowns
with less than 100 pixels, no significant difference was found in the
distribution of crown size of the segmented and true crown samples,
Fig. 8b.

A total of 23,278 crowns were delineated by the algorithm in the

Table 2
Confusion matrix of tree crowns detected by our algorithm intersecting with the
manual delineations from the random validation sample (see Section 3.3).

Segmented crown

N = 989 NO YES

True crown NO 505 56
YES 89 339
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canopy of the Santa Genebra forest (Supplementary Fig. S2).

4.2. Species classification

The average accuracies for species classification were 65.9% and
62.9% for manual and automatic crown delineation, respectively
(Table 4). With the manual crown delineation, two species were clas-
sified with an accuracy of above 90%, Cecropia hololeuca and Diate-
nopteryx sorbifolia, and two below 60%, Astronium graveolens and Hy-
menaea courbaril. With automatic delineation, the accuracy standard
deviation was higher except for Croton piptocalyx. However, three
species were more accurately classified with the automatic delineation,
Cecropia hololeuca (96.6%), Cariniana legalis (62.9%), and Croton pip-
tocalyx (80.8%). For Diatenopteryx sorbifolia, the automatic delineation
accuracy was not reliable, as only 4 crowns were delineated. For

Aspidosperma polyneuron and Astronium graveolens, the accuracy using
the automatic delineation were both lower than 10%. For Hymenaea
courbaril, the classification accuracy was comparable between the two
delineation methods – close to 40%.

4.3. Species mapping

Of the 23,278 automatically delineated crowns, 6,355 (27.3%) were
identified by the classifier as one of the seven studied species, Fig. 9. For
the species with an accuracy of species classification above 80% with
automatic tree crown delineation, the classifier identified 1404 Croton
piptocalyx, 165 Diatenopteryx sorbifolia and 152 Cecropia hololeuca. For
the other species, the classifier identified 514 Aspidosperma polyneuron,
1186 Astronium graveolens, 2835 Cariniana legalis and 99 Hymenaea
courbaril.

5. Discussion

5.1. Delineation of ITCs

With an estimated accuracy of 80% (Table 2), our method proved
useful for crown detection and delineation in tropical forests. As com-
pared to recent studies that employed optical image data to delineate
tree crowns, our algorithm yielded results in the range of accuracy re-
ported (68% (Tochon et al., 2015), 88.8% (Dalponte et al., 2014) and
69.2% (Singh et al., 2015)).

Previous studies reported that large and small crown density tends
to be underestimated when optical images are used to delineate ITCs

Table 3
Number of segments intersecting with a single true crown and their frequencies.
A number of segments of 2 and a frequency of 5 indicates that 2 true crowns
detected by our algorithm are intersecting with 5 segmented crowns.

Number of segmented crown intersections with a single true
crown

Frequency (%)

1 261 (76.99)
2 55 (16.22)
3 15 (4.42)
4 6 (1.77)
5 2 (0.59)
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Fig. 7. Association between the true crown
area and the pixels deficit per segmented
crown (a); between the true crown area and
the pixel excess per segmented crown (b);
between the true crown area and the seg-
mented crown area (c); and the residuals
distribution of the difference between true
and segmented crown area (d). The x-axis is
in logarithmic scale in (a), (b) and (c).
Pixels have an area of 0.25 m2. In (a) and
(b) the red dashed line is a tendency line
fitted by a smooth spline and in (c) the red
dashed line is the identity line 1:1. (For
interpretation of the references to color in
this figure legend, the reader is referred to
the web version of this article.)
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(Dalponte et al., 2014). Our proposed method does not tend to under-
estimate the size of large crowns. These crowns show similar pixel
deficit and lower pixel excess if compared to the overall samples,
Fig. 7a–b, and the segmented crown area shows a good association with
the true crown area, Fig. 7c. Emergent trees featuring large crowns such
as the species Cariniana legalis and Hymenaea courbaril tend to have gaps
within the crown caused by the shade of thick branches emerging from
the main tree stem or dead branches. Such gaps divide the tree crown
into two or more parts, thereby increasing the amount of internal-
crown shadows and creating boundaries within the crown. Our method
is less sensitive to the effects of shade in large tree crowns because it
removes shaded pixels and performs a homogenization of the grayscale
values within these crowns (Sections 3.2.7 and 3.2.8).

However, our method overestimated the size of small crowns
(<5 m2) and tended to underestimate their density, Figs. 7b and 8a. By
removing these trees in the manual and automatic delineation, the
actual crown distribution of the study area can be estimated, Fig. 8.
Over-segmentation is present in 23% of the delineated crowns. While
this is a limitation for tree counting, its impact in species recognition is
minimal, as classification accuracy of the species derived from auto-
matic and manual delineated crowns were similar, as depicted in

Table 4.
Another important aspect impacting tree crown delineation in tro-

pical forests using optical images is the effect of shade. It is worth
noting that our method is unable to detect understorey trees and trees
located in shadowed areas due to other trees or terrain shade, thereby
underestimating the total number of trees in the forest stand. Detection
of understorey trees and shadowed areas may only be feasible using
airborne LiDAR data (Dalponte et al., 2014), but even here the spectral
information required to identify the species would remain missing. For
a boreal forest, the trees on the ground have been successfully mapped
with optical images at a rate of 42.4% and 28.4% using manual and
automatic ITC delineation, respectively (Dalponte et al., 2014). To our
knowledge, for tropical forests, the relation between the number of
trees on the ground and the number of trees detected in images has not
yet been documented. Shade effects arising from terrain elevation
might be corrected with a pseudo flat field correction (Supplementary
Fig. S1); however in case of steep slopes not exposed to the sun, this
method will not work.

Viewing and illumination angles of image acquisition may influence
ITC delineation with the proposed method. The effects of the bi-direc-
tional reflectance distribution function (BRDF) needs further research
because it could affect the shade in the image and our algorithm is
based on the detection of shade patterns that create tree crown
boundaries. The method is not suitable for open forests, as illuminated
pixels from the forest floor will be detected as tree crowns. Moreover,
non-forested areas must be removed prior to the image segmentation.

Accounting for local tree phenology is important before selecting
the date of the image in order to have the least shade possible in the
crown due to leaf fall (de Moura et al., 2017). In seasonal semi-decid-
uous forests, such as the forest of Santa Genebra, the percentage of
overstorey trees that present total leaf loss varies from 20% to 50%
during the dry season (Ferreira et al., 2016). Our image was taken
during the wet season (December), when all the crowns are likely fo-
liated. If a tree crown is not foliated, more shade is present within the
crown and the delineation of the tree crown becomes more difficult.

5.2. Algorithm requirements

The proposed algorithm is relatively parsimonious and we make an
effort to make it reproducible (code available upon request to the au-
thors). It works with parameters that are mostly based on biological
assumptions (distribution of grayscale values in trees and gaps such as
observed with LiDAR (Goulamoussène et al., 2017)) and the thresholds
can be estimated by using the algorithm or through observations from
the image (maximum tree crown for example). However, the initial
parameters of the bimodal normal mixture were determined visually

Fig. 8. Segmented and true crown size distribution for all trees (a), and only for trees with a crown area above 100 pixels (b). Statistics of the Wilcoxon signed-rank
test are given (U and P values).

Table 4
Accuracy of species classification with manual and automatic tree crown deli-
neation. Crown number indicates the number of crown per species in the
manual and in the automatic segmentation. The mean and standard deviation
(SD) of classification accuracy were obtained by running SVM classifier 100
times the on the datasets randomly partitioned into 70% for training and 30%
for testing (detailed in Section 3.4).

Manual delineation Automatic delineation

Species Accuracy
(mean ± SD, %)

Crowns
number

Accuracy
(mean ± SD, %)

Crowns
number

Aspidosperma
polyneuron

60.3 ± 15.8 23 49.8 ± 24.6 17

Astronium
graveolens

40.9 ± 10.6 56 30.5 ± 12.6 48

Cariniana legalis 63.8 ± 12.7 50 62.9 ± 15.3 45
Cecropia

hololeuca
93.3 ± 6.6 54 96 ± 7.6 29

Croton piptocalyx 68.2 ± 11.6 63 80.8 ± 11.3 51
Diatenopteryx

sorbifolia
96.8 ± 5.1 18 80 ± 40.2 4

Hymenaea
courbaril

38.2 ± 19.6 18 40.1 ± 25.6 16

Average 65.9 ± 11.7 62.9 ± 19.6
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with the histogram of grayscale values and set up manually to facilitate
EM algorithm convergence.

Our algorithm requires less data than recently developed ITC deli-
neation methods, which need at least aerial VHR image with 0.08 m
spatial resolution (Singh et al., 2015), hyperspectral images with 0.4 to
2 m spatial resolution (Tochon et al., 2015; Ferreira et al., 2016;
Dalponte et al., 2014) or hyperspectral and LiDAR images with 1.2 m
spatial resolution (Lee et al., 2016). Further tests are now needed to
determine the accuracy of tree crown delineation with RGB bands from
hyperspectral images or using sensors with higher spatial resolution.

The algorithm can be run on forest stands larger than 100 ha on a
laptop. However, it is not suitable for small forest stands (<1 ha). Due to
the computation of focal statistics, dependent on the size of the moving
windows, a border effect could occur. For small forest plots, manual
delineation is likely to be more efficient.

5.3. Perspectives for forest biomass and dynamics

In a recent pan-tropical study, the relationship between diameter at
breast height and crown area for individual trees has been shown to be
very stable, showing no significant inter-site variation (Blanchard et al.,
2016), thereby suggesting that diameter and subsequently biomass
could be estimated from inverse modeling of the crown size. Another
important aspect is that in tropical forests, biomass is concentrated in
large trees. For example, in the forest of Paracou (French Guiana), trees
with a DBH of above 40 cm comprised 50% of the total above-ground
biomass (see Table 1 in Rutishauser et al. (2010)) and similar dis-
tributions of the above-ground biomass among the DBH classes have
also been observed in the eastern Amazon (Sist et al., 2014). The large
trees are likely the ones that are visible in the image and for which our
algorithm works well. It is also known that biomass is concentrated in
relatively few species (Fauset et al., 2015), which could help to reduce
the number of species that must be sampled to derive biomass
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all the WorldView-2 bands and textural information. indicates species with an accuracy of species classification of above 80% with automatic tree crown deli-
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estimations from optical images. Furthermore, our delineation could
help to track mortality events within a smaller time scale than in the
current field inventory (1–5 years census, with a mean time of 3 years
(Mitchard et al., 2014)) and for a significantly larger area. More work is
needed to confirm these assumptions and to assess how our algorithm
can provide information to estimate biomass and biomass changes in
tropical forests. For example, there is potential to use field plot data to
help calibrate and validate methods such as ours, and then use
WorldView and other imagery to map mortality events at finer tem-
poral resolution and over larger spatial scales.

5.4. Perspectives for tree species mapping

The classification algorithm achieved relatively good accuracies for
the seven species, ranging from 38.2% to 96.8% with the manual de-
lineation and 30.5% to 96.0% with the automatic delineation, as in-
dicated in Table 4. This indicates that the spectral information is pre-
served in the delineated ITCs and that it can be suitable for recognition,
at least of some species. In Amazonia 227 (1.4%) of the estimated
16,000 species account for half of all individual trees, while an esti-
mated 11,000 species only account for 0.12% of the total of individuals
(ter Steege et al., 2013). Consequently, due to the huge number of
species and the rarity of some of them, the botanical determination at
the species levels is highly challenging and a large number of species
remain undetermined in the field. In Amazonia, some authors measured
that less than 70% to 80% of trees can correctly be identified at genus
level in field inventories (Guitet et al., 2014; Hawes et al., 2012), and
32% to 67% in Central Africa (Réjou-Méchain et al., 2011). For Ama-
zonia, this rate of identification decreases between 18% and 29% at the
species level (Guitet et al., 2014; Hawes et al., 2012). At the species
level, these field performances can be compared to the morpho-species
classification, commonly employed by botanists with sterile vouchers in
the laboratory, whose reliability is evaluated to be between 52% and
67% (Gomes et al., 2013). More work is needed to evaluate how species
identification from remote sensing can support species identification
operationally in tropical forests. However, it appears that this is likely
only feasible for the species with a known accurate determination in the
field, and with a high density of individuals per hectare, as a sample of
10 individuals or more are needed to train the algorithm of species
recognition. After training on a crown sample with reliable species
determination, our method can achieve reasonable species identifica-
tion, particularly for a large area (above 100 ha). We have to ac-
knowledge that multispectral imagery cannot replace hyperspectral
imagery for tropical tree species identification, which records mea-
surement of reflected radiation in hundreds of narrowbands that can
detect subtle variations in the chemical and structural attributes of the
forest canopy (Ferreira et al., 2016). However, our method is not re-
stricted to multispectral images, and further experiments will be con-
ducted to validate our method with hyperspectral images.

For the species that are well classified, species map like Fig. 9 could
help improving species distribution models (SDMs), as one of the pro-
minent limitations of these models are spatial biases in existing occur-
rence data (He et al., 2015). The species occurrence measurement by
satellites is amongst the 10 proposed biodiversity metrics to monitor the
progress towards the Aichi Biodiversity Targets (Skidmore et al., 2015);
moreover, biodiversity and species assessment to improve knowledge,
conservation and management practices is the recommended action to
reach the millennium goal 7: “Ensure environmental sustainability”
(United Nations, 2005). For conservation, the map of tree species oc-
currence can also improve estimations of animal resources. For example,
leaves and fruits of the genus Cecropia, which is identified with an ac-
curacy of above 95% in our species classification (Table 4), are known to
be amongst the main food resources of the sloth (Vaughan et al., 2007). If
an animal species is associated with a particular tree species, the map of
the occurrence of the tree species can help to predict habitat suitability
for this species to support the conservation strategy.

5.5. Perspectives for biodiversity mapping

The large areas covered by satellite images could allow the studying
of tree spectral diversity patterns and to map canopy diversity at the
landscape scale. In pioneering work using hyperspectral image and a
pixel based analysis, Feret and Asner (2014) have shown that - and

-diversity of the canopy could be estimated from an image. With re-
gard to functional diversity, for forests throughout the Andes to the
Amazon region in Peru, Asner et al. (2014) have shown that the spectra
were dominated by phylogeny within any given community, and
spectroscopy accurately classified 85–93% of Amazonian tree species.
Functional trait-based approaches offer a promising way to bypass
species by not considering the species independently but on a gradient
of leaf functional traits, such as leaf nitrogen content, leaf mass area
(LMA) or leaf defense compounds including phenols, tannins and lignin
(Asner et al., 2014; Asner et al., 2017; Omer et al., 2017). As accurate
ITCs delineation reduce the number of pixels outside of the actual
crown and improve spectral signatures (Fassnacht et al., 2016) as well
as tree species discrimination (Clark et al., 2005; Ferreira et al., 2016;
Dalponte et al., 2014), our method could be used to improve the
spectral signature of the crown. Further tests must be conducted to
describe how the functional and biological biodiversity of species can
be estimated with WorldView-2 image.

6. Conclusion

The aims of this work were (i) to develop and evaluate a metho-
dology to efficiently detect and delineate tree crowns in a highly diverse
tropical forest using a multispectral image of high-spatial resolution
recorded by WorldView-2 and (ii) to test if the spectral signature of the
species is conserved in the delineated crown, and if so, produce the
forest inventory of seven selected tree species based on field and
spectral data and automatic delineated tree crowns.

With regard to the first objective, it was shown that the proposed
method of ITC delineation achieved a high detection rate (80.0%),
while its main limitations were underestimating small trees and a slight
over-segmentation of the crown.

With regard to the second objective, the classification accuracy
confirms that the spectra of the species is conserved in the automatic
delineated ITC and seven species were classified with reasonable ac-
curacies (30.5–96%) considering that only a pan-sharpened multi-
spectral image was used. Worldview-2 images were shown to be useful
for species recognition and could support forest inventory and opera-
tional species-mapping at the landscape scale, at least for species such
as Cecropia hololeuca which the method identifies successfully.

The algorithm will now be tested with remote-sensed images of
different spatial and spectral resolutions (Worldview-3 and hyperspec-
tral images). If this validation is conclusive, it will be further used to
map species and biochemical leaf properties in tropical forests. First,
the automatic delineation will be used to locate trees for field identi-
fications and leaf sampling and, second, to apply the model calibrated
with field data (species or leaf characteristics) to all the detected
crowns. The consolidation of this methodology could assist large-scale
field inventories aiming to better estimate carbon and biodiversity
across tropical forests, including the precise mapping of economically,
ecologically, and culturally significant resources over large areas.
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