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Tweetable abstract 

Fungi and plant traits drive fertile island formation in global drylands 

 

SUMMARY  

1. Dryland vegetation is characterised by discrete plant patches that accumulate and capture 

soil resources under their canopies. These “fertile islands” are major drivers of dryland 

ecosystem structure and functioning, yet we lack an integrated understanding of the factors 

controlling their magnitude and variability at the global scale.  

2. We conducted a standardized field survey across two hundred and thirty-six drylands from 

five continents. At each site, we measured the composition, diversity and cover of perennial 

plants. Fertile island effects were estimated at each site by comparing composite soil samples 

obtained under the canopy of the dominant plants and in open areas devoid of perennial 

vegetation. For each sample, we measured fifteen soil variables (functions) associated with 

carbon, nitrogen and phosphorus cycling and used the Relative Interaction Index to quantify 

the magnitude of the fertile island effect for each function. In eighty sites, we also measured 

fungal and bacterial abundance (quantitative PCR) and diversity (Illumina MiSeq).  

3. The most fertile islands, i.e. those where a higher number of functions were simultaneously 

enhanced, were found at lower-elevation sites with greater soil pH values and sand content 

under semiarid climates, particularly at locations where the presence of tall woody species 

with a low specific leaf area increased fungal abundance beneath plant canopies, the main 

direct biotic controller of the fertile island effect in the drylands studied. Positive effects of 
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fungal abundance were particularly associated with greater nutrient contents and microbial 

activity (soil extracellular enzymes) under plant canopies.  

4. Synthesis. Our results show that the formation of fertile islands in global drylands largely 

depends on: (i) local climatic, topographic and edaphic characteristics, (ii) the structure and 

traits of local plant communities and (iii) soil microbial communities. Our study also has 

broad implications for the management and restoration of dryland ecosystems worldwide, 

where woody plants are commonly used as nurse plants to enhance the establishment and 

survival of beneficiary species. Finally, our results suggest that forecasted increases in aridity 

may enhance the formation of fertile islands in drylands worldwide.         

 

KEY-WORDS 

Aridity; Drylands; Fertile islands; Fungal abundance; Multiple threshold approach; Plant 

functional traits; Relative interaction index; Soil properties  

 

Introduction 

Dryland ecosystems occupy about 45% of Earth’s land surface, store approximately 20% of 

the global soil carbon (C) pool, and contribute up to 30-35% of terrestrial net primary 

production (Millennium Ecosystem Assessment 2005; Huang et al. 2016; Prăvălie 2016). 

These ecosystems are characterised by discontinuous vegetation cover, with discrete 

vegetation patches dispersed within a matrix of bare soil, communities of annual plants 

and/or biological soil crusts (biocrusts, Eldridge 1999; Valentin et al. 1999). Dryland 

vegetation patches enhance dust capture, intercept water and nutrients from surface run-off 

after rainfall events, and have greater biological activity compared to adjacent areas, leading 

to the formation of the so-called fertile islands under them (Reynolds et al. 1999; Okin et al. 

2004; de Graaff et al. 2014). These fertile islands have been described in drylands from all 
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continents (e.g., Pausas et al. 2006; Butterfield & Briggs 2009; Allington & Valone 2014; 

Elliott et al. 2014), where they are a key determinant of ecosystem functioning (Whitford & 

Wade 2002). Factors such as soil texture, slope and rainfall patterns are known to determine 

the amount of run-off generated and, therefore, could plausibly account for the magnitude of 

the fertile island effect, defined as the relative difference between plant canopies and open 

areas devoid of vascular vegetation (Allington & Valone 2014). However, we do not know 

how ubiquitous the formation of fertile islands is globally, nor which are the main biotic and 

abiotic factors controlling their magnitude. Since dryland structure and function is 

inextricably tied to the fertile island phenomenon, a better understanding of these factors is 

essential to improve our ability to predict the ecological consequences of the climate change-

induced expansion of drylands forecasted for the second half of this century (Huang et al. 

2016).  

Multiple properties of plant communities and individuals could also plausibly account 

for the degree of fertile island formation and their distribution among drylands. Plant 

community attributes such as total cover, relative woody plant cover and diversity, and plant 

functional traits such as height and specific leaf area (SLA, defined as the ratio of leaf area to 

dry mass), are frequently correlated with climatic conditions and soil properties as a 

consequence of a functional adaptation of plants to cope with their local environments (Jager 

et al. 2015; Le Bagousse-Pinguet et al. 2017). However, top-down effects of plant 

community attributes and functional traits on soil properties are also well documented as a 

consequence of variations in the quantity and quality of litter inputs (Cleveland et al. 2014; 

Valencia et al. 2015), differences in canopy shading (Breshears et al. 1997; Linstädter et al. 

2016), and/or modifications in soil resource dynamics through nutrient redistribution and 

hydraulic lift (Prieto et al. 2011). Therefore, clear associations between community structure, 

functional traits of the focal plant (i.e., the plant under which the fertile island forms) and the 
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properties of its associated fertile island are equally expected (Bonanomi, Incerti & 

Mazzoleni 2011). The efficiency in the capture of airborne particles and nutrients is also 

determined by canopy architecture, including the degree of contact with the ground and 

height (Coble & Hart 2013). Similarly, the ability to form symbiotic associations with 

rhizobacteria, and therefore to fix atmospheric N, as well as the functional type (herbs, shrubs 

and trees) have been documented as relevant traits in the formation of fertile islands 

(Bonanomi et al. 2011).  

The abundance, diversity and composition of soil microbial communities largely 

control nutrient cycling and litter decomposition rates in drylands worldwide (Cleveland et 

al. 2014; Delgado-Baquerizo et al. 2016b). These attributes have been found to vary between 

vegetated and non-vegetated microsites in drylands, as they depend upon the quantity and 

quality of litter inputs and on the microclimatic conditions provided by plant patches (Elliott 

et al. 2014; Cleveland et al. 2014). For example, a greater abundance of both fungi and 

bacteria under plant canopies compared to adjacent open areas devoid of vascular vegetation 

is typically reported in drylands (Delgado-Baquerizo et al. 2013b; Elliott et al. 2014). Thus, 

the attributes of microbial communities could affect the ability of plant patches to capture and 

cycle nutrients, both directly (e.g., through nutrient fixation, litter decomposition and organic 

matter mineralization) and indirectly (e.g., through nutrient redistribution via fungal networks 

[Barto et al. 2011; Behie & Bidochka 2017]), enhancing the fertile island effect. Moreover, 

recent studies indicate that increasing aridity will reduce the diversity and abundance of soil 

fungal and bacterial communities in global drylands (Maestre et al. 2015), resulting in 

negative consequences for key ecosystem functions such as nutrient cycling and plant 

production (Delgado-Baquerizo et al. 2016). However, the implications of reductions in the 

abundance and diversity of soil microbes under increasing aridity scenarios for the formation 

of fertile islands remain largely unexplored.  
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In this study, we aimed at evaluating the role and the relative importance of plant and 

microbial community attributes, plant functional traits, and environmental variables on the 

magnitude of the fertile island effect in drylands worldwide. To do so, we used data from 236 

dryland ecosystems from all continents except Antarctica (Supplementary Figure 1). We 

hypothesized that: (i) plant community attributes, such as plant diversity, total plant cover, 

and relative woody cover, (ii) plant functional traits, such as SLA and height, and (iii) soil 

microbial communities are the main direct drivers controlling the magnitude of the fertile 

island effect. In contrast, we predicted that climatic, topographic and edaphic conditions 

(aridity, altitude, slope, sand content and soil pH) exert a predominantly indirect role through 

their direct control on these biotic attributes. We specifically hypothesized that the fertile 

island effect is enhanced in dense, species-rich shrublands and woodlands dominated by 

woody species with low-SLA leaves (Valencia et al. 2015). These conditions are known to 

promote the deposition of greater amounts of less decomposable litter (Santiago 2007), which 

would result in greater organic matter accumulation rates. Greater amounts of less 

decomposable litter, together with greater soil pH, are known to enhance the presence of a 

well-developed network of fungal hyphae beneath focal plants, which is key to maximise 

nutrient cycling and sequestration rates (Collins et al. 2008). We also hypothesized that the 

presence of N fixers and plants with canopies touching the soil, thus favouring aeolian and 

water-transported sediment capture and retention, will increase the magnitude of the fertile 

island effect (Knops, Bradley & Wedin 2002; Coble & Hart 2013).  

 

Material and methods 

STUDY SITES 

Soil samples were collected from 236 sites in 19 countries from five continents (Argentina, 

Australia, Botswana, Brazil, Burkina Faso, Chile, China, Ecuador, Ghana, Iran, Israel, Kenya, 
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Mexico, Morocco, Peru, Spain, Tunisia, USA and Venezuela). These sites include the 224 

sites used in Maestre et al. (2012) plus 12 additional sites in Botswana, Ghana and Burkina 

Faso surveyed in 2012 and 2013 (Supplementary Figure 1). Sites were chosen to cover a wide 

spectrum of abiotic (climatic, soil type, slope) and biotic (type of vegetation, total cover, 

species richness) features characterizing drylands worldwide. In order to test for the 

consequences of increasing aridity levels (arid, semiarid and dry-subhumid) on the magnitude 

of fertile islands, we calculated the Aridity Index (AI, defined as precipitation/potential 

evapotranspiration) of each site as described in Zomer et al. (2008), who used data 

interpolation obtained from WorldClim (Hijmans et al. 2005). Since higher values of AI 

correspond with more mesic sites (less arid), we used 1-AI (hereafter ‘aridity’) as a surrogate 

of aridity to ease the interpretation of our results (Delgado-Baquerizo et al. 2013a).  

 

VEGETATION SURVEY 

All study sites were sampled following the same protocol. At each site, we surveyed 80 1.5 m 

× 1.5 m quadrats within one 30 m × 30 m plot. Quadrats were located along four 30-m long 

transects separated eight meters from each other. In each quadrat, we estimated the cover of 

all perennial plant species and used these data to estimate plant diversity (Shannon-Wiener 

index). In parallel, we calculated the relative coverage of woody plants along the transects 

using the line-intercept method (see Maestre et al. 2012 for methodological details). 

 

SOIL COLLECTION, PLANT FUNCTIONAL TRAITS AND LABORATORY ANALYSES 

Soils were sampled during the dry season using a stratified random procedure. At each plot, 

five 50 cm × 50 cm quadrats were randomly placed under the canopy of the dominant 

perennial vegetation patch type (i.e., tussock grasses, shrubs or trees, with one or two 

dominant patch types, depending on the site) and in open areas devoid of perennial vegetation 
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(hence generating 10 or 15 soil samples per plot). A composite sample consisting of five soil 

cores (0-7.5 cm depth) was collected from each individual quadrat, bulked and homogenized 

in the field. Samples were subsequently bulked at the plot level separately for each microsite. 

This resulted in a composite sample for open areas per site, and one or two composite 

samples underneath plant patches, depending on the dominant plant patches (grass, shrub or 

tree) present. In 80 of the 236 sites surveyed, about 5 g of soil were stored at -20 °C after 

field collection for microbial analyses. These analyses were conducted on composite samples 

for each microsite (open and vegetated areas) and site, which resulted in 160 composite 

samples (see Maestre et al. 2015 for details). To avoid problems associated with the use of 

multiple laboratories when analysing soils from different sites, and to facilitate the 

comparison of results between them, dried and frozen soil samples from all locations were 

shipped to Spain for laboratory analyses.  

We compiled a dataset of the functional traits of the dominant plant species beneath 

which soil samples had been collected from. These functional traits included: functional type 

(grass, shrub or tree), ability to fix atmospheric N (fixers vs. non-fixers), canopy in contact 

with the soil (a surrogate for canopy architecture, influencing, among others, the ability of 

plants to capture aeolian and water-transported sediments and their suitability for animal 

resting; yes, no), maximum height at maturity (hereafter referred to as height), and specific 

leaf area (SLA). We selected these traits because: (1) they are known to encapsulate plant 

form and functions globally (Díaz et al. 2016), (2) can be readily measured in the field or 

easily obtained from data available in the literature and, most importantly, (3) are known to 

influence soil fertility and nutrient cycling (Santiago 2007). We gathered on site trait data in 

some of our locations, but for most of them, data were obtained from literature searches (see 

Eldridge et al. [2011] and Supplementary Table 1 for detailed information on species-specific 

functional trait values and their source).  
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To quantify the fertile island effect, we measured fifteen relevant indicators of soil 

function (hereafter functions) associated with C, N and phosphorus (P) cycling (Maestre et al. 

2012). These included: (1) organic C, pentoses, hexoses, phenols, aromatic compounds, and 

β-glucosidase activity for the C cycle; (2) total N, extractable nitrate and ammonium, amino 

acids, proteins, and potential N mineralization for the N cycle; and (3) total P, available 

(Olsen) P and phosphatase activity for the P cycle. These variables were measured as 

described in Maestre et al. (2012) and Delgado-Baquerizo et al. (2013a).  

To test for the role of the abundance and diversity of microbial communities on the 

fertile island effect, DNA was extracted from 0.5 g of defrosted soil from the subset of sites 

for which frozen samples were available using the Powersoil® Isolation Kit (Mo Bio 

Laboratories, Carlsbad, CA, USA). Quantitative PCR (qPCR) reactions were carried out in 

triplicate on an ABI 7300 Real-Time PCR (Applied Biosystems, Foster City, CA, USA). The 

bacterial 16S-rRNA genes and fungal internal transcribed spacer (ITS) were amplified with 

the Eub 338-Eub 518 and ITS 1-5.8S primer sets (Evans & Wallenstein 2012). Amplicons 

targeting the bacterial 16S rRNA and fungal ITS genes were sequenced using the Illumina 

Miseq platform (Caporaso et al. 2012) and the 341F/805R (bacteria) and FITS7/ITS4 (fungi) 

primer sets (Herlemann et al. 2011; Ihrmark et al. 2012) as described in Appendix A. 

Sequencing was done at the Next Generation Genome Sequencing Facility of the Western 

Sydney University (Australia). These data were used to calculate Shannon diversity indices 

for bacteria and fungi (see Maestre et al. 2015 for further details).  

 

NUMERICAL AND STATISTICAL ANALYSES 

We used the Relative Interaction index (RII; Armas, Ordiales & Pugnaire 2004) to estimate 

the magnitude of the fertile island effect for each function, defined as the relative difference 
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between plant canopies and open areas devoid of vascular vegetation for each measured 

variable. The RII was calculated as: 

RII = (Xc – Xo) / (Xc + Xo)       Eqn. (1) 

where X is the variable of interest and Xc and Xo are the values under the canopy and in 

open areas, respectively. This index ranges from -1 to 1, with RII values >0 representing 

situations in which values for soil fertility and functions are greater under plant canopies (i.e., 

there is a fertile island effect for a given variable). By using this index, we removed between-

site variation in uncontrolled factors that could affect soil fertility in the sampled patches but 

that are not related to the magnitude of the fertile island effect.  

We used a multiple threshold approach (Byrnes et al. 2014) to calculate an overall 

fertile island effect using fourteen soil biogeochemical variables (i.e., all variables measured 

except total soil P, for which we had missing values at some locations). This method assumes 

that a function is maximised when its value is above a given threshold (%) of functioning, 

based on the maximum value of that function across all sites, allowing to account for 

potential trade-offs in the effects of fertile islands for different functions. Thus, the fertile 

island effect can score integer values that range between zero and fourteen. Fertile islands are 

typically characterised for simultaneously enhancing several functions compared to the 

surrounding matrix of bare soil. Therefore, we assumed that the greater the number of 

functions that scored over a given threshold of functioning, the greater the magnitude of the 

fertile island effect at that given threshold is. The fertile island effects for thresholds between 

5-99% of maximum functioning were calculated using the ´multifunc´ package (Byrnes et al. 

2014) in R version 3.2.2 (R Core Team 2016). These calculations were done separately for 

each scale of analysis (i.e., sampling sites and focal plants) and for the subset of samples for 

which microbial data were available. In the latter analysis, and to account for the effect of 

differences in the abundance and diversity of microbial communities between vegetated and 
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non-vegetated microsites, we calculated four additional RII values using the abundance and 

Shannon diversity of both bacteria and fungi.             

  After these calculations, we used general and generalised linear models (LMs and 

GLMs; ´lm´ and ´glm´ functions from the basic ´stats´ package) to evaluate the effects of 

aridity class (arid, semiarid and dry-subhumid) and categorical functional traits (growth form 

[grass, shrub, tree], N fixing ability, and canopy architecture [canopy touching the ground or 

not]) on individual soil functions (LMs) and on the overall fertile island effect for thresholds 

ranging between 10-90% in 10% increment intervals (GLMs with a Poisson distribution). We 

also evaluated the effect of these categorical traits on the fertile island effect based on the 

average value of thresholds between 10-90% (hereafter referred to as average fertile island 

effect). We then calculated the relationship between the fertile island effect at thresholds 

between 5-99% and plant and microbial community attributes, continuous plant functional 

traits (SLA and height), and edapho-climatic (aridity, sand and pH) and topographic (altitude, 

slope) variables (Poisson regression). Given that it has been recently suggested that the 

formation of fertile islands strongly depends on grazing pressure (Allington & Valone 2014), 

we also evaluated the relationship between the fertile island effect at thresholds between 5-

99% and the percentage of land occupied by rangelands surrounding the study sites (data 

obtained from Ramankutty et al. [2010]). Due to the lack of a more direct measure of grazing 

pressure, we used this variable as our best surrogate for it. These analyses were done both at 

the scale relevant for each predictor variable, as already mentioned, and using the subset of 

sites for which all environmental drivers, plant community and individual plant-level data, 

and microbial variables were available (n = 68 sites; this number is slightly smaller than the 

number of microbial samples due to the absence of focal plant-level SLA data for some sites). 

In the very few cases in which a microbial sample corresponded to more than one focal plant, 
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we averaged the SLA and height values of the species under which soil samples had been 

collected from.  

To investigate the direct and indirect drivers of the magnitude of fertile islands, we 

selected one or two variables of each of the following categories (climate, soil properties, 

topography, plant functional traits and plant and microbial community attributes) to construct 

an a priori causal model that could be subsequently tested using structural equation 

modelling (SEM; Grace 2006). Due to sample size limitations, we sought a model with no 

more than ten independent variables plus the fertile island effect. We first screened the most 

informative predictors of the fertile island effect in each of the described categories. Predictor 

variables were selected based on their significant association with the fertile island effect in 

Figure 3 and Supplementary Figure 2. In cases when more than one indicator of topography, 

soil properties, plants or soil microbial communities appeared highly informative, we 

checked if these variables were weakly correlated (e.g., sand content and soil pH, SLA and 

height, relative woody cover and plant diversity, and fungal abundance and diversity), in 

which case they were both included in the model. We constructed an a priori model that 

contained four abiotic variables (aridity, altitude, sand content and soil pH) and six biotic 

attributes (relative woody cover, plant diversity, SLA, height, and fungal abundance and 

diversity). All relationships were modelled as linear relationships. Aridity and altitude were 

hypothesized to directly influence soil properties and all biotic attributes. Relationships 

between plant community attributes and functional traits were modelled as nondirectional, 

while they were considered to influence fungal abundance and diversity. Finally, all 

environmental variables and biotic attributes were predicted to directly affect the fertile island 

effect. Models were tested independently for the fertile island thresholds ranging between 10-

90% in 10% increment intervals and for the average fertile island effect (see Results and 

Supplementary Table 2). In addition, given that there was a substantial amount of variance 
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associated with each function not captured by our fertile island metric, we carried out 

separate models with all individual functions as focal dependent variables. All SEM analyses 

were done with the `lavaan` R package (Rosseel 2012). 

 

Results 

All evaluated functions and microbial abundances were consistently greater under plant 

canopies than in the open areas, as denoted by 95% confidence intervals of RII not 

overlapping zero (Figure 1 and Supplementary Figures 2-5). This was particularly evident for 

microbial abundance, enzymatic activities and recalcitrant C compounds (aromatics and 

phenols). In contrast, bacterial diversity was slightly smaller under plant canopies. The 

average fertile island effect was consistently greatest under semiarid climates, although arid 

climates also formed fertile islands at functioning thresholds between 40-80% (Figure 2a and 

Supplementary Figures 2-3). Fertile islands that simultaneously enhanced a higher number of 

functions were also associated with trees at all thresholds, whereas those fertile islands 

associated with shrubs and grasses were less pronounced (Fig. 2b and Supplementary Figure 

3). The fertile island effect at thresholds between 70-90% was significantly enhanced by 

canopies not touching the ground (Fig. 2c, Supplementary Table 3 and Supplementary Figure 

4). Total N and nitrate were the only functions that were significantly affected by canopy 

architecture (Supplementary Figure 4g,i). Nitrate availability was greater under plants with 

canopies in contact with the soil, while total N showed the opposite pattern. The magnitude 

of the fertile island effect was not related the ability of plants to fix N (Fig. 3d, 

Supplementary Table 3 and Supplementary Figure 5). However, N fixers showed greater 

amino acid concentration, but not available inorganic N, under their canopies (Supplementary 

Figure 5f, i).  
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At the site scale, the fertile island effect was positively related to aridity at thresholds 

between 27-90% (Fig. 3a), to plant cover at thresholds between 5-36% (Fig. 3c), to plant 

diversity at thresholds between 5-84% (Fig. 3d), and to relative woody cover at thresholds 

between 14-99% (Fig. 3e). Soil properties (sand content and pH) were associated with the 

fertile island effect at both high 58-88% and low 5-55% thresholds, respectively (Figure 

3b,c). Altitude and slope were negatively associated with the fertile island effect at thresholds 

between 25-62% and 31-99%, respectively (Supplementary Figure 6), indicating that greater 

fertile island effects are found in flatter areas at lower-elevation sites. The percentage of land 

covered by rangelands (our surrogate of potential grazing pressure) was only weakly related 

to the fertile island effect at thresholds 68-69%, 73-75% and 78% (Supplementary Figure 7). 

At the focal plant scale, the fertile island effect was negatively related to SLA at thresholds 

between 11-42% (Fig. 3f) and positively to plant height at thresholds between 5-99% (Fig. 

3g). Fungal abundance and diversity were positively and negatively related to the fertile 

island effect at thresholds between 30-99% and 45-99%, respectively (Fig. 3i,j). Bacterial 

diversity was weakly related to the fertile island effect at most thresholds between 61-99% 

(Fig. 3l).  

Our analyses using the reduced set of sites for which all variables were available (n = 

68) revealed that only a few of the abiotic and biotic attributes considered were still 

significantly related to the fertile island effect at any given threshold (Supplementary Figure 

6). Aridity, altitude, slope, sand content and soil pH were related to the fertile island effect at 

thresholds between 39-99%, 20-94%, 40-99% and 12-81%, respectively, while relative 

woody cover, fungal abundance and diversity were also significantly related to the fertile 

island effect at thresholds between 20-99%, 9-99% and 39-99%, respectively (Fig. 3 and 

Supplementary Figure 6). In contrast, plant diversity and total cover, functional traits, and 

bacterial abundance were not significantly related to the fertile island effect at any threshold.  
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Our SEM explained 37% of the variance of the average fertile island effect (Fig. 4 and 

Supplementary Table 2). The percentage of variance explained for individual thresholds 

ranged between 29 and 41%, but all models were highly comparable to one another. The 

average model indicated that, in agreement with our previous analyses, greater sand content 

and soil pH at lower-elevation sites, the presence of taller plants and greater fungal 

abundance directly enhanced the fertile island effect in drylands worldwide, while fungal 

diversity had the opposite effect (Figs. 3 and 4, Supplementary Table 2 and 3, and 

Supplementary Figure 8). The effects of aridity were mostly indirect through its direct control 

on soil properties and plant height, while the predominantly indirect role of low SLA values 

was mediated by greater fungal abundance under plant canopies.  

Models for separate functions consistently explained a lower proportion of the fertile 

island effect for each individual function than the most explicative model including all 

functions (models ranged between 17% [pentoses and ammonium] to 38% [pentoses]), 

although all models showed very good fit to our data, as indicated by low χ2/degrees of 

freedom values (< 2) and non-significant χ2 and RMSEA values (P > 0.1 in all cases; 

Supplementary Table 4). Considering all fifteen models reported in Supplementary Table 4, 

fungal abundance had a significant direct effect on the fertile island effect of nine functions, 

an effect that was particularly marked in the case of total nutrient contents and soil 

extracellular enzymes. Both functional traits (height and SLA) were direct positive drivers of 

the magnitude of the fertile island effect associated with aromatic compound accumulation. 

Plant diversity only contributed to the fertile island effect by increasing available nitrate 

under plant canopies, while greater relative woody cover enhanced the fertile island effect for 

hexoses, available P and proteins. Soil pH enhanced the magnitude of the fertile island effect 

for seven functions, while sand was a significantly direct driver only for total P. The 
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combination of both direct and indirect effects of greater sand content enhanced the fertile 

island effect in the case of phenols.  

 

Discussion 

Our results indicate that the fertile island effect is a widespread phenomenon in drylands 

worldwide. They also provide novel evidence that the attributes of plant communities and 

individuals, together with the abundance and diversity of soil fungal communities, are 

important drivers of the formation of fertile islands in global drylands. This suggests that the 

fertile island effect is not only attributable to the activity of vascular plants (Reynolds et al. 

1999), but should be extended to the microbial community present beneath the plant canopy. 

However, the abundance and diversity of soil microbial communities are known to be highly 

influenced by the amount and quality of plant litter inputs (Cleveland et al. 2014), implying 

an indirect plant trait control on the formation of fertile patches via microbial communities. 

The magnitude of the fertile island effect was greatest under trees and in arid and semiarid 

sites, as previously found by Pucheta et al. (2006) in Argentina. In addition, soils with 

relatively greater pH enhanced the fertile island effect for potential microbial degrading 

activity and recalcitrant carbon compound accumulation, supporting the tight control of pH 

on soil activity at global scales (Sinsabaugh et al. 2008) and also indicating the importance of 

soil properties for long-term C stabilization (Cotrufo et al. 2013).  

Plant community attributes, particularly greater plant cover, could affect the 

magnitude of fertile islands through several mechanisms, including increasing nutrient 

redistribution efficiency (Schlesinger & Pilmanis 2010; Collins et al. 2014). Denser woody 

vegetation is likely to be associated with a more strongly developed root system that 

redistributes nutrients from the interspaces to the vegetated areas (Okin et al. 2015). Once 

acquired by the plant, these nutrients will recirculate more efficiently within the plant-soil 
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system and will be released as litter/ rhizodeposits beneath the plant canopy before being 

decomposed and either immobilised by soil microbes or taken up by plant roots (Ridolfi, Laio 

& D’Odorico 2008). Areas with greater plant diversity may, in turn, promote the fertile island 

effect by harbouring more beneficial and active soil microbial communities (Van der Heijden 

et al. 2008; Schnitzer et al. 2011), which may also enhance ecosystem functioning by 

mobilising and re-translocating nutrients such as N more efficiently from the surrounding soil 

matrix (Van Der Heijden et al. 2008; Schnitzer et al. 2011; Graham et al. 2016). Greater plant 

cover and relative woody cover are also likely to provide a more suitable habitat for 

microbial communities than areas with sparser vegetation by buffering patch-level 

temperature extremes and maintaining greater soil moisture values, thus resulting in greater 

soil fertility (Cortina & Maestre 2005).  

Our study also provides empirical support for the notion that plant traits are major 

drivers of fertile island formation. Taller species with relatively low SLA values were those 

that most enhanced the fertile island effect, in agreement with a recent study (Valencia et al. 

2015), although these effects were mostly indirect via fungal communities, particularly in the 

case of SLA. Possible mechanisms include the fact that taller trees tend to provide better 

branches for birds to perch (Pausas et al. 2006), better shading for animals (including 

livestock) due to a higher canopy density and larger canopy area (Linstädter et al. 2016), and 

a better capture of aeolian particles and a promotion of hydraulic lift (Okin et al. 2004). Taller 

woody plants also usually account for a higher biomass per individual, and hence produce 

more litter. These litter inputs will accumulate and, depending on their properties, decompose 

at different rates. High-SLA leaves are likely to be decomposed and/or consumed quickly, 

leaving little behind to contribute to the stable carbon pool (Diaz et al. 2004). However, low-

SLA litter will remain under the plant canopy for longer periods of time, and will most likely 

be incorporated into the stable organic matter pool. This process would be favoured by a 
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more active and abundant fungal community, as supported by our SEM. In contrast, the direct 

effects of SLA appeared to be consistently positive, particularly for C-degrading extracellular 

enzymes and aromatic compounds, suggesting that, in agreement with the recent literature 

(Cotrufo et al. 2015), labile C sources can be equally stabilised in the long-term organic 

matter pool. The direct and indirect effects of SLA on the fertile island effect cancelled each 

other out in our SEMs, supporting the lack of relationship between SLA and the fertile island 

effect at any given threshold in the reduced dataset. However, the negative association 

between SLA and the fertile island effect for thresholds between 11-42% when the analysis 

was carried out using the complete dataset suggests that the indirect negative effects of 

greater SLA through fungal abundance might be more important than the direct positive 

effects. The fact that we did not detect a clear link between the ability of nurse plants to fix N 

and the magnitude of their associated fertile island, as calculated with the multiple threshold 

approach, is surprising, as most studies assume a significant association between the ability 

of plants to symbiotically fix N and the formation of fertile islands (Bonanomi et al. 2011). 

However, we observed greater concentration of amino acids under the canopy of N fixers, 

and also a clear trend toward higher ammonium availability, a result consistent with what has 

been reported previously (Bonanomi et al. 2011).   

The formation of fertile islands has also been recently attributed to the effects of 

grazing (Allington & Valone 2014), a major driver of ecosystem change in drylands 

worldwide (Asner et al. 2004). In our study, we did not directly account for differences in 

grazing pressure, but evaluated the potential association of fertile islands with the proportion 

of land covered by rangelands, an indirect measure of potential grazing pressure. In contrast 

to this hypothesis, we found no clear evidence of an association between the proportion of 

land occupied by rangelands and the fertile island effect. However, we did show that the 

magnitude of the fertile island effect can be attributed to differences in plant cover, woody 
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cover, plant functional traits and fungal abundance and diversity, all attributes that have 

previously been shown to be influenced by grazing (Asner et al. 2004; Díaz et al. 2007). This 

leaves this question unresolved and, thus, open to be answered by a more targeted global 

survey accounting for the effects of grazing on fertile island formation.  

 

CONCLUDING REMARKS 

Our study provides new evidence suggesting that the formation of fertile islands in global 

drylands largely depends on attributes of the local plant and microbial communities and on 

environmental variables such as aridity, altitude and soil properties. Specifically, we have 

shown that the fertile island effect is enhanced in lower-elevation dense arid and semiarid 

shrublands and woodlands, where sand content and pH are greater and where vegetation is 

dominated by tall woody plants with leaves having low SLA values. These conditions are 

likely favouring the development of active and complex fungal communities under plant 

canopies, which our data suggest as one of the main direct drivers of fertile island formation. 

A more developed network of hyphal connections among scattered plants may result in a 

more efficient processing and redistribution of soil resources found in the interspaces, which 

are then remobilised towards the vegetated areas, further contributing to the creation of a 

mosaic landscape (Collins et al. 2008). Our study also has broad implications for the 

management and restoration of dryland ecosystems worldwide, where woody plants are 

commonly used as nurse plants to enhance the establishment and survival of beneficiary 

species (Cortina & Maestre 2005). For example, selection of adequate native woody, tall 

species based on their lower SLA values and inoculation with native, drought-resistant fungal 

strains could help to maximise restoration success rates by enhancing the formation of fertile 

islands. Finally, this study also helps us understand potential feedbacks between climate 
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change and dryland ecosystems, as forecasted widespread increases in aridity will likely 

increase the formation of fertile islands worldwide.         
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Figure legends 

 

Figure 1. Effects of plant canopies on soil fertility, as measured with the Relative Interaction 

Index (RII, Eqn. 1), for 15 soil functions related to the C (blue bars), N (green bars) and P 

(red bars) cycles, and microbial community attributes (fungal and bacterial abundance and 

diversity; yellow bars). N min = nitrogen mineralization. Bact/Fungal abund = 

bacterial/fungal abundance. Bact/fungal H’ = bacterial/fungal Shannon diversity. Bars are 

means ± 95% confidence intervals; confidence intervals not crossing the zero line indicate a 

significant fertile island effect. RII values higher than 0 indicate a positive fertile island effect 

(i.e., higher values of the function of interest under plant canopies compared to the bare 

interspaces). 

Figure 2. Effect of plant canopies on soil fertility, calculated as the average of thresholds 

between 10-90% of maximum functioning, depending on: (a) aridity class (n = 226), (b) plant 

functional type (n = 322), (c) canopy architecture (n = 326), and (d) the ability of the focal 

plant to fix atmospheric N (n = 326). The effect of aridity class was analysed at the site level, 

while the effects of functional traits were analysed at the focal plant level. Different 

lowercase letters indicate significant (P < 0.05) differences between groups (Tukey test). Bars 

are means ± 1SE.  

Figure 3. Slope of the relationship between the fertile island effect at thresholds between 5-

99% and selected biotic and abiotic drivers: (a) aridity (n = 226), (b) altitude (n = 226), (c) 

slope (n = 226), (d) sand (n = 226), (e) pH (n = 226), (f) cover (n = 226), (g) plant diversity (n 

= 226), (h) relative woody cover (RWC) (n = 226), (i) specific leaf area (SLA) (n = 240), (j) 

plant maximum height (n = 326), (k) fungal abundance (n = 80), (l) fungal diversity (n = 79). 

No overlap between the 95% confidence interval and the zero line for a given threshold 

indicates a significant association between the fertile island effect at that threshold and the 

variable of interest. Tmin and Tmax indicate the minimum and maximum thresholds at which 

the relationship between the fertile island effect and the predictor variable of interest are 
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significantly related, respectively, while Tme indicates the threshold at which the slope of that 

relationship is steepest within the Tmin-Tmax interval.    

Figure 4. Structural equation model showing the direct and indirect effects of abiotic and 

biotic drivers on the magnitude of fertile island formation (n = 68). The fertile island effect 

was calculated for the average fertile island effect (see Material and Methods). Solid black 

lines represent positive, linear associations, while dashed lines indicate negative, linear 

associations. The width of the arrows is proportional to the strength of the relationship 

(Supplementary Table 2). Non-significant direct effects tested in the model are shown in grey 

(for a greater detail of explanation, see Material and Methods). **P < 0.01, *P < 0.05. Square 

boxes indicate simple variables, although biotic factors have been grouped to ease visual 

interpretation. Nondirectional associations between plant community attributes and functional 

traits are not depicted to ease visualization.   
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