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Abstract:  

 

Introduction: Numerous clinical and pre-clinical studies have provided ample evidence supporting 

that the tumour microenvironment plays a significant role during breast cancer development, 

progression and in determining the therapeutic response.  

 

Areas covered: This review focuses on the evolving concept of the microenvironment as the critical 

participant in each step of the multi-stage process of malignant progression. Currently, only a small 

number of molecules form part of routine molecular diagnostics in breast caner, but 

microenvironment-derived biomarkers are potential additions to existing predictive and prognostic 

marker panels. We will discuss the dependency of the breast tumour cells on different components 

of the microenvironment for their survival, dissemination, dormancy and establishment in secondary 

sites to form overt metastasis, as well as the potential as a therapeutic target to improve breast 

cancer outcome.  

 

Expert commentary: Despite the importance in the development of breast cancer, the contribution 

of the microenvironment is not considered in routine diagnostic testing or informing therapeutic 

decisions. However, introduction of immunotherapy will increasingly require patient selection based 

on the stromal composition of the primary breast tumour. Better understanding of the role of 

specific microenvironment-derived molecules is likely to inform personalized therapy, leading to 

improved patient outcome. 
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1. Introduction: Despite the sequencing of the human genome and tremendous progress made in 

our understanding of cancer genetics and the molecular pathways involved in tumour development, 

cancer remains the leading cause of death. Breast cancer is the most frequently diagnosed cancer 

among women [1] and is still the prime cause of cancer-related death in women worldwide. 

Although organ-confined disease is mainly curable, metastatic and recurrent disease has poor 

prognosis with a 5-year survival of 22% [2]. Breast tumours display considerable cellular and 

molecular heterogeneity, including receptor status (ER, PR, and/or ERBB2/HER2), and recent 

molecular profiling has categorized breast cancer into at least six subtypes [3-8]. The intra-tumour 

heterogeneity present within a single biopsy is not only a challenge for accurate diagnosis/prognosis 

but also underpins the complexity of the dynamic and interconnected cellular states during 

metastatic progression [9].  This heterogeneity is not only due to the presence of different cancer cell 

clones; the content and composition of the tumour stroma also varies between different tumour 

areas. 

Pioneering experiments by the Bissell group showed that tumour epithelial cells can only thrive in an 

aberrant microenvironment composed of altered ECM and other non-transformed cells like 

fibroblasts, myofibroblasts, immune cells, myoepithelial cells and endothelial cells [10-13]. 

Subsequently it has been demonstrated that the gene expression signature of the breast tumour 

stroma can predict disease outcome, independent of the clinical and molecular tumour cell profile 

[14, 15]. In addition to prognostic information, a stromal signature has been reported that could 

predict tumour response to neoadjuvant treatment [16].  

The following sections summarises the role of the microenvironment in each stage of breast cancer 

development and progression, from primary tumour growth and local invasion through 

dissemination via the circulation and metastatic progression in distal sites. 

 

2. Defining the Tumour Microenvironment 

The tumour microenvironment encompasses the proliferating tumour cells along with a variety of 

non-cancerous cells (generally referred to as the stroma) present in the tumour. These include 

fibroblasts, immune cells, endothelial cells, infiltrating inflammatory cells, adipocytes as well as 

signalling molecules and extracellular matrix (ECM) components [17]. This is a constantly changing 

environment that unfolds with time and tumour progression, and may also vary between breast 

tumour types (e.g. basal vs luminal tumours). Stromal cells influence the behaviour of epithelial cells 

by secreting a range of ECM proteins, chemokines, cytokines and growth factors. The various 

proteins secreted by stromal cells can aberrantly activate autocrine and paracrine loops, which affect 

the cell behaviour in a paracrine or juxtacrine fashion. These interactions between stroma and 
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tumour cells, along with underlying genetic defects of the tumour cells, dictate the growth 

characteristics, morphology, and invasiveness of the tumour. In the context of this review we will 

describe each of the different environments that tumour cells encounter, highlighting key 

interactions suggested to regulate breast cancer progression.  

 

2.1 Context is everything: The role of the stroma in primary breast tumours  

As mentioned above, breast tumours comprise a community of epithelial-derived cancer cells 

supported by a variety of stromal components, often collectively referred to as ͚ƚŚĞ tumour 

ŵŝĐƌŽĞŶǀŝƌŽŶŵĞŶƚ͛ (Figure 1). The composition of the breast stroma is shown to influence breast 

density, which in turn plays a role in the development of tumours. Mammographic breast density 

measures the scale of radiodense fibroglandular tissue present in the breast, reflecting the relative 

amounts of various tissue elements, and is used as a predictor of breast cancer risk [18-24]. 

Increased mammographic breast density corresponds to higher fractions of stroma and epithelium as 

compared to adipose tissue [25]. Women with mammographically dense breasts have a 2 to 6-fold 

increase in their susceptibility to develop breast cancer, highlighting the link between the stroma and 

tumour progression [26, 27]. This is further supported by studies showing that tumours most often 

arise within the densest parts of the heterogeneous breast environment. [22, 28]. The IBIS-1 trial 

demonstrated that women treated with tamoxifen for 5 years who had a at least a 10% reduction in 

breast density had a 63% reduction in risk of breast cancer, whereas women who did not have 

reduced breast density had no reduction in breast cancer risk [29]. These results is a key example of 

how therapy-mediated alterations of the microenvironment affects subsequent breast tumour 

development. 

 

2.2 Tumour Infiltrating Lymphocytes 

Breast tumours are not generally considered to be immunogenic and hence having limited response 

to immunotherapy, but recent reports describe subset of breast cancers with a rich immune 

microenvironment [30]. Tumour infiltrating lymphocytes (TILs) are the most common mononuclear 

immune infiltrates, with TILs composed of mainly T cells reported in majority of breast cancer 

patients [31, 32]. High TIL counts have been associated with an improved clinical outcome, especially 

in patients with triple negative breast cancer [33, 34, 35]. TIL count has also been linked with better 

survival in patients with ER negative tumours [31, 36]. Retrospective studies have indicated the 

usefulness of TILS as a prognostic marker; showing that higher number of TILs was associated with 

improved prognosis or better response to treatment [37]. It was recently demonstrated that a high 

CD8(+) TIL and a high CD8/FOXP3 ratio in residual tumours following neoadjuvant chemotherapy can 
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accurately predict improved prognosis in TNBC patients [38]. Similarly, the CD8+/FOXP3+ TIL ratio 

(CFR) might be a useful biomarker to predict treatment response to neoadjuvant therapy in 

aggressive breast cancer subtypes, such as TNBC and HER2 breast cancer patients [39]. Although 

numerous studies have demonstrated the effectiveness of TILs as a prognostic factor, additional 

prospective clinical studies are needed to clarify their utility in routine clinical practice. This is of 

particular importance in selecting subsets of patients who have tumours that may respond better to 

the increasing numbers of immunotherapeutic agents, used alone or as part of combination therapy. 

 

2.3 T regulatory cells (Tregs) 

Regulatory T cells (Tregs) can suppress effector T cell responses as well as the activity of other 

immune cells, acting as key mediators of peripheral tolerance preventing undesirable immune 

responses. Increased presence of Tregs in breast tumor biopsies has been linked with an invasive 

phenotype and diminished relapse-free and overall survival [40, 41, 42]. Transient ablation of Tregs 

leads to significant reductions in primary and metastatic tumor growth in a poorly immunogenic, 

oncogene-driven model of mammary carcinoma [43]. A recent study addressed the role of tumor 

microenvironment in regulating the distinct transcriptional and functional characteristics of Tregs by 

analysing their features in untreated human breast carcinomas, normal mammary glands and 

peripheral blood [44]. Tumor-resident Treg cells were found to be potentially tumour suppressive as 

they had a similar gene expression pattern to Tregs isolated from normal breast tissue. This did 

however not resemble the expression profile of activated peripheral blood Treg cells. Claudin-low 

breast cancers are reported to be highly enriched with Tregs as compared to other subtypes. Tregs in 

the microenvironment had higher expression of PD-1 and their recruitment was partly through 

tumor-generated chemokine CXCL12 [45]. The authors provided evidence that recruitment of Tregs 

to the tumor microenvironment restrained an effective antitumor response. They propose early Treg 

recruitment as a possible mechanism for the lack of response to immune checkpoint blockade 

antibodies in specific subtypes of cancer that are heavily infiltrated with adaptive immune cells [45].  

A Meta analysis of 10,259 patients showed that high Foxp3+ Tregs infiltration is associated with poor 

recurrence free survival in breast cancer patients [46]. Patients who had high numbers of 

intratumoral tumor-infiltrating Tregs before chemotherapy had a significantly shorter overall survival 

compared to patients with low Treg infiltrates [47]. On the other it was also reported that presence 

of Tregs surrounding the tumor, but not within the tumor itself, is associated with a higher risk of 

relapse and death [48]. Collectively Treg infiltration may have profound effects on the prognosis of 

breast cancer patients. 
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2.4 Neutrophils 

Neutrophils are white blood cells derived from bone marrow myeloid precursors, responsible for 

elimination of invading microorganisms and the most common leukocyte type in the blood stream. 

Neutrophils can either promote or inhibit tumourgenesis, depending on the relative concentration of 

cytokines in the microenvironment. They can be functionally polarized in response to stimulatory or 

inhibitory factors rendering them protumourigenic [49] or antimetastatic [50]. A protumourigenic 

role was shown when neutrophils associated with primary tumour promoted tumour growth by 

producing factors which stimulated the tumour vasculature [51]. Using murine mammary tumour 

models it was reported that primary tumour can activate specific neutrophils known as tumour 

entrained neutrophils ͞TENƐ͟ that have unique capacity to inhibit metastatic seeding in the lung [50]. 

This was the first report which demonstrated an antimetastatic role for selected subsets of 

neutrophils. 

The neutrophil to lymphocyte ratio is a good indicator of the degree of inflammation, which plays an 

important role in tumour progression and metastasis. Meta-analyses of 12 and 8 studies involving 

7951 and 4293 breast cancer patients, respectively, demonstrated that patients with higher 

neutrophil-to-lymphocyte ratio (NLR) had poorer prognoses than those with low NLR [52, 53]. A 

further meta-analysis of 15 studies comprising a total of 8563 patients concluded that higher NLR is 

linked with adverse overall survival (OS) and disease free survival (DFS). A high NLR was particularly 

prognostic for reduced DFS in patients with ER-negative and HER2-negative breast cancer subtypes 

[54]. Similar reports have shown a significant association between elevated NLR and increased 

mortality in breast cancer patients in all subtypes [55].  

Neutrophils are potent suppressors of T-cell activation; the link between neutrophils and suppression 

of NK-cell activity was recently established showing that neutrophils were responsible for reduced 

NK-cell function, which in turn increased the intraluminal tumour cell survival time and facilitated 

metastasis [56]. The study used YAC-1 cells (well known targets of NK-cell clearance) and injected 

them intravenously into mice bearing 4T1 tumours, the number of cells that retained in the lungs of 

these mice after 4 hours were eightfold higher than that of those injected into naïve controls. In 

contrast, when 4T1 tumour bearing mice were depleted of neutrophils prior to YAC-1 injection, the 

number of tumour cells were retained to the same levels as in the naïve mice, suggesting that 

neutrophils were facilitating this retention by disrupting NK cell-mediated clearance [56]. Studies in 

model systems reported the role of neutrophils extracellular traps (NETs, a mechanism by which 

neutrophils capture and kill bacteria) in promoting cancer. The study found that 4T1 mammary 

tumours generate neutrophils that are predisposed to the formation of NETs, and that this 

phenomenon increases with advance in tumour stage [57]. Another report demonstrated that 
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metastatic breast cancer cells can induce neutrophils to form NETs after they arrive in the lungs of 

mice by using intravital imaging. They also documented the presence of NETs in clinical samples of 

the aggressive triple-negative subtype of human breast cancer [58].  

 

 

2.5 Macrophages  

Macrophages are members of mononuclear phagocyte system; they represent the most abundant 

leukocyte population in breast tumours and are suggested to be involved at each stage of cancer 

progression. Macrophages can differentiate into spectrum of discrete and functional phenotypes, 

which is regulated via signals from the microenvironment. Although macrophage populations are 

associated with plasticity and have overlapping markers, they are often broadly categorised as M1 

(tumour inhibitory) and M2 (tumour-promoting). M1, classically activated, macrophages express a 

wide range of pro-inflammatory genes. Alternatively activated (M2) macrophages are induced by 

type 2 cytokines and express high levels of anti-inflammatory genes. Increased M1 macrophages are 

found within the tumour microenvironment where annexin 1 (ANXA1) is the immumodulatory 

protein responsible for macrophage polarization and interaction [59]. M2 macrophages are shown to 

secrete CHI3L1, which promoted the metastasis of breast cancer cells both in vitro and in vivo [60]. A 

recent study reported that epithelial to mesenchymal plasticity in breast cancer cells is regulated by 

macrophage subtypes; M2 macrophages may confer tumour outgrowth whereas the M1 

macrophages contribute to dormancy of metastatic breast cancer cells [61].  

Several studies have reported a correlation between macrophage subtype, location and density in 

determining the survival of breast cancer patients [62, 63]. The density of tumour-associated 

macrophages (TAMs) has been linked to hormone status, lymph node metastasis and is ultimately 

related to invasive disease and poor prognosis [64-67].  CD68+ TAMs in tumour stroma is associated 

with worse prognosis in human breast cancer [68]. CD68 positive macrophages are found to 

accumulate in the normal tissue surrounding breast cancer lesions and mesenchymal stem cells and 

macrophages interact through IL-6 to promote inflammatory breast cancer [69]. TAMs have also 

been shown to produce matrix-degrading enzymes, potentially facilitating tumour cell dissemination 

and spread [70, 71]. Various cytokines released by TAMs play a critical role in mediating angiogenesis 

and invasion of cancer cells [72]. Studies in murine models of spontaneous breast cancers have 

demonstrated that macrophages are intimately involved in seeding and persistent growth of tumour 

cells at metastatic sites [73]. The study identified a population of host macrophages exhibiting a 

distinct phenotype characterized by a specific cell surface marker signature (F4/80+CSF-

1R+CD11b+Gr1-CX3CR1highCCR2high and VEGFR1high) that is recruited to extravasating pulmonary 

metastatic cells. Ablation of this population showed that these macrophages are essential for 
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efficient metastatic seeding and  growth [73]. Recently it was demonstrated that CCR2 acts as a 

functional signalling receptor capable of triggering a prometastatic chemokine cascade involving 

macrophage production of CCL3 [74]. Collectively, tumour associated macrophages facilitate 

neoplastic transformation, tumour immune evasion and support the metastatic cascade, however 

therapeutic targeting is likely to require tailoring to specific subsets. 

 

2.6 Endothelial cells and angiogenesis 

Endothelial cells, which form the lining of tumour blood vessels, are a major component of the 

tumour microenvironment stromal compartment, and are central to the process of tumour 

angiogenesis [75]. This hallmark of cancer is critical for the development and progression of primary 

breast cancer ensuring a constant supply of oxygen and nutrients, is permissive for extravasation of 

tumour cells into the systemic circulation, intravasation into the secondary or distal site and is a 

prerequisite for successful metastatic growth. The multistep process of angiogenesis is regulated by a 

plethora of growth factors, cytokines and oxygen sensing (hypoxia), with one of the key molecules 

being vascular endothelial growth factor (VEGF) which is regulated in part by the hypoxic 

microenvironment [76]. However tumour vessels are abnormal, have a disorganised structure, are 

often leaky and immature, lacking the recruitment of perivascular cells (pericytes) required for 

vascular maturation. This characteristic of tumour vessels can result in enhanced sensitivity to 

radiation and chemotherapy, suggesting that pericytes may promote therapeutic resistance. In solid 

cancers including breast, tumour microvascular density (MVD) a surrogate marker of angiogenesis is 

inversely correlated with patient survival irrespective of other prognostic factors and tumour hypoxia 

is positively associated with tumour cell invasion and metastasis [77]. Despite the promising 

preclinical studies demonstrating the efficacy of anti-angiogenic therapies, this has not translated to 

the clinical setting in breast cancer. Positive responses were initially reported before resistance to 

treatment [78] and significant cardiovascular toxicities were demonstrated, resulting in the closure of 

a number of trials. Although a number of potential therapeutic targets have been identified in 

preclinical studies including ephrins, neuropilins [79], Notch/Jagged [80] hypoxia and metabolism, 

current clinical strategies for breast cancer include the use of predominantly bevacizumab an anti-

VEGF-A therapy in metronomic regimes or in combination with other chemotherapeutic regimes in 

specific breast cancer subtypes.  

 

2.7 Cancer associated fibroblast  

Cancer associated fibroblasts (CAFs) are the most abundant stomal cell types present in primary 

tumours. Although normal fibroblasts and CAFs appear to have a very similar phenotype, differences 
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in mRNA and protein expression have been reported [81, 82]. A number of markers of fibroblasts 

have been identified, but none are specific for CAFs, hampering their identification in tumours. CAFs 

have been shown to express ɲ-SMA, p53, podoplanin, CD10, fibroblast activation protein (FAP), 

matrix metalloproteinases (MMPs), tenascin-C and platelet-derived growth factor ;PDGF‘ɲͬɴͿ and 

loss of caveolin-1 (Cav-1) expression [83]. Despite their prevalence in the tumour microenvironment, 

their origin has not been conclusively determined, and emergence both from resident fibroblast and 

from bone marrow derived mesenchymal stem cells is reported [84-87]. Breast cancer-associated 

fibroblasts have been demonstrated to aid tumourigenic progression of both pre-malignant as well 

malignant epithelial cells [88-90]. By secreting growth factors (including FGFs, HGF, TGF-ɴ and SDF-1) 

breast cancer-associated fibroblast promote tumour cell proliferation [91-95]. Cytokines secreted by 

fibroblasts also contribute to proliferation, angiogenesis, invasiveness and direct tumour growth [96-

99]. Mechanistically it is not yet clear whether these secreted factors are the consequence of the 

cancer cells modulating the CAFs, or whether they are initiated prior to malignant transformation. 

Recent data have suggested a role of breast cancer associated fibroblast in inducing epithelial to 

mesenchymal transitions [100, 102]. Tumour suppressive effects of breast cancer associated 

fibroblasts have also been reported. It was demonstrated that tumourigenic potential of breast 

cancer cells is regulated by an interaction between Robo1 receptor and its ligand Slit2, which is 

secreted by stromal fibroblasts. Specific stromal fibroblast expressing Slit2 can prevent Robo1 

expressing cancer cell from progression [103]. Another study investigated the role of Tiam1 in 

tumour-associated fibroblasts on epithelial cell invasiveness using retroviral delivery of short hairpin 

RNA to suppress Tiam1 levels in three different experimental models. Tiam 1 silencing in dermal 

fibroblasts led to increased invasiveness of epidermal keratinocytes and in mice model of human 

breast cancer, co-implantation of mammary fibroblasts inhibited tumour invasion. These results 

indicate that Tiam1 in tumour associated fibroblast might have a role in regulating the effects of the 

tumour microenvironment on malignant cell invasion and metastasis [104].  

 

Several studies have reported that breast cancer-associated fibroblasts may contribute to therapy 

resistance [105-108]. The ability of ER-ɲ+ tamoxifen-sensitive premalignant and ER-ɲ+ tamoxifen-

resistant breast cancer cells to interact with breast tumour-derived fibroblasts was investigated using 

contact-dependent 3D co-culture systems, showing a direct involvement of breast tumour fibroblasts 

in loss of hormone sensitivity and acquisition of endocrine resistance [105]. G-protein-coupled 

receptor (GPER) was shown to be expressed in the stromal fibroblasts of primary breast cancer 

tissues and cancer associated fibroblasts (CAFs) isolated from tumour tissues. There results 

concluded that GPER mediates CAF-dependent tamoxifen resistance in breast cancer [106]. Similarly 
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tamoxifen resistance was induced by CAFs in a co-culture model of ER+ MCF7 cells with fibroblasts 

and CAFs also protect MCF7 cells against apoptosis induced by other anticancer agents [107]. 

Addition of conditioned medium (CM) from activated breast cancer associated fibroblasts is found to  

cause increased resistance of  MDA-MB-231 breast cancer to doxorubicin treatment [108]. 

Successful therapeutic targeting of CAFs therefore has the potential to affect a number of key 

processes associated with breast cancer development, however this will require better 

understanding of the precise role of different CAF subsets and the identification of differential 

markers of these populations. 

 

2.8 Adipocytes  

Presently the nature of interplay between adipocytes and cancer cells remains largely unknown, 

however recent investigations in the field indicate that the adipocyte occupies a important place in 

breast cancer progression. This lack of information about their role was mainly due to the fact that 

adipocytes disappear rapidly via the desmoplastic response of connective tissues during the early 

invasive steps, hence histological sections of breast tumour biopsies show very few adipocytes and 

are mostly totally devoid of them [109]. Reports have shown the dynamic desmoplastic events 

involving adipocytes in the histological sections of human breast carcinoma at the tumour invasive 

front located at the periphery of primary tumours [110, 111]. This tumour area is devoid of fully 

constituted stroma and exhibits a high ratio of adipocytes to fibroblasts. The cancer associated 

adipocytes (CAA) located at the interface exhibit reduce size and the center of the same tumour 

showed accumulation of fibroblast/fibroblast-like cells (CAFs), and adipocytes are no longer present 

[110, 111]. This size reduction of adipocytes implies lipolysis and tumour progression might depend 

on the CAA ͞ĂĐƚŝǀĂƚŝŽŶ͟ induced by invading cancer cell stimuli. Recent clinical studies have 

evaluated the prognostic importance of local adipose tissue invasion by cancer cells at the tumour 

margin, with the majority showing a positive correlation between adiposity and poor patient 

outcome [112-113]. The co-cultivation of human breast cancer cells with mature adipocytes led to 

increased invasive capacities both in vitro and in vivo [111]. The authors also show co-cultivated 

adipocytes generally exhibit a loss of lipid content, a decrease in late adipose markers, and 

overexpression of inflammatory cytokines and proteases. Therefore the CAA modified cancer cell 

characteristics and lead to a more aggressive phenotype. Breast cancer associated adipose tissue 

from freshly isolated tumours promote F-actin remodeling, cellular scattering, invasiveness, and 

spheroid reorganization of cultured breast cancer cells [114]. The authors identified paracrine 

secretion of oncostatin M (OSM) by cancer-associated adipose tissue which stimulated breast cancer 

progression. In addition, adipokines like adiponectin has been shown to stimulate the growth and 
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survival of breast tumour cells [115, 116]. Obesity, where in the normal balance of adipose tissue 

secretory proteins is disturbed, is identified as a negative prognostic factor for breast cancer [117, 

118] independent of menopausal status, tumour stage, and tumour hormoneʹbinding characteristics 

[119, 120]. Clinical studies have indicated that obese women exhibit at diagnosis an increase in 

lymph nodes involvement and a higher propensity to distant metastasis [121, 122].  

 

2.9 Myeloid-derived suppressor cells (MDSCs)  

MDSCs are a heterogeneous group of immature myeloid cells, which inhibit innate and adaptive 

immunity. It has been shown that levels of MDSCs correlates with the clinical stage and metastatic 

burden of disease in breast cancer patients. Through calculating the percentage of whole blood 

MDSCs by flow cytometry, increased levels of these cells were found in patients with later stage 

disease [123]. Similarly, a study of 25 patients with metastatic breast cancer demonstrated that 

those with higher than average levels of peripheral blood MDSCs following palliative systemic 

therapy had a shorter overall survival [124]. It has also been reported that high frequencies of MDSCs 

correlates with increased rate of recurrence and metastasis of breast cancer, with patients having 

significant enrichment of circulating monocytic-MDSCs (Mo-MDSCs). Presence of Mo-MDSCs 

correlated with disease severity, increased metastasis to lymph nodes and visceral organs [125]. In 

contrast, breast cancer patients with lower levels of circulating MDSCs have a higher possibility of 

achieving a pathological complete response (pCR) [126]. The mechanism underlying MDSCs-

mediated immunosuppression is not well understood and a recent study identified a poorly 

differentiated subset of MDSCs in breast cancer patients, which suppresses T-cell functions through 

STAT3-dependent indoleamine 2,3-dioxygenase (IDO) upregulation [127]. MDSCs can impair 

antitumor immunity and therefore have emerged as a significant barrier to cancer therapy, a report 

provided the first evidence of a critical role for interferon regulatory factorʹ8 (IRF-8) expressions in 

the transcriptional regulation of MDSC subset development. Levels of IRF-8 in MDSCs of breast 

cancer patients declined with increasing MDSC frequency, implicating IRF-8 as a negative regulator in 

human MDSC biology. The authors suggest that this mechanism may provide new avenues to target 

MDSCs [128]. MDSCs have been identified to undergo direct osteoclast differentiation thereby 

promoting enhanced bone destruction and tumour growth. MDSCs isolated from mice with bone 

metastasis were shown to differentiate into functional bone-resorbing osteoclasts in vitro and in 

vivo. These results indicate that MDSCs are primed to be osteoclast progenitors (OCP) and the bone 

microenvironment in-vivo triggers their differentiation into functional osteoclasts [129]. Tumour-

infiltrating MDSCs (tiMDSCs) were recently identified as the responsible cells for the distal 

colonization of breast cancer cells in the lung of murine orthotropic breast tumour models. 
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Furthermore tiMDSCs preferentially locate to hypoxic areas and produce higher levels of pro-

inflammatory factors and lower levels of anti-inflammatory factors [130]. Taken together targeting 

MDSCs actions may improve therapeutic outcomes. 

 

2.10 Extracellular Matrix (ECM)  

The tumour microenvironment comprises a rich ECM, a complex molecular network of components 

including collagens, fibronectin, laminins, glycoproteins and polysaccharides with different physical 

and biochemical properties [131, 132]. The ECM of the breast is described to provide the guiding 

force which regulates various stages of breast development and differentiation [133] and remodeling 

of the ECM composition can lead to alterations in the function and structure of organs [134, 135]. 

The ECM becomes progressively stiffer and more collagen- rich during tumour progression, a process 

called desmoplasia [136]. This is associated with increased collagen fibre linearization and thickening 

as a result of deposition and cross-linking of the collagen [137], the orientation of the collagen fibres 

is also significantly alerted [138]. Tumour cells respond to the mechanical changes in the ECM 

through mechanosignalling [139]. Mechanical changes and ECM stiffness leads to upregulation and 

clustering of integrins, and aid in tumour initiation as well as maintenance of proliferative capacity of 

late-stage tumour cells [140]. Increasing breast stiffness upregulates oncogenic microRNAs and 

various proliferative/invasive pathways implicated in breast cancer [141-143]. In model systems, 

ECM rigidity modulates the nature and number of immune infiltrates [144]. MMTV-PyVT tumours 

arising in a dense collagen microenvironment have increased cytokine expression as compared to 

tumours arising in a non-dense microenvironment. GM-CSF, PGDF-BB and IL-ϭɲ , factors involved in 

neutrophil maturation and recruitment were increased in dense-collagen tumours. The collagen-

dense tumour microenvironment can act as the deciding factor between a tumour promoting and 

tumour suppressing phenotype of neutrophils. Depletion of neutrophils significantly slowed the 

formation of new tumours and reduced lung metastases only in tumours arising in the collagen 

dense tumour microenvironment, but not in the wild type MMTV-PyVT mice. These results indicate 

that tumour progression in a collagen-dense microenvironment, compared to non-dense 

microenvironments, occurs through a distinct subpopulation of immune cell effectors [144]. Tumour 

growth and invasion requires formation of new blood vessels and there is an intimate link between 

ECM rigidity and vascular remodelling [145]. Studies have shown that vascular density is significantly 

higher in invasive ductal carcinoma in situ (DCIS) as compared to low grade DCIS [146] and that blood 

vessels within the tumour core are stiffer and thinner compared to those at the invasive front [147]. 

Endothelial permeability and leukocyte transmigration, which potentially mediates tumour 

progression and invasion, is also a consequence of increased ECM stiffness [148]. Recent studies 
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using model systems have suggested a role of ECM in creating tumour-hospitable pre-metastatic 

niches. The collagen cross-linking protein lysyl oxidase (LOX) has been shown to regulate invasion; 

high levels of LOX in primary breast tumours or systemic delivery of LOX leads to osteolytic skeletal 

lesion formation that was abrogated when LOX was genetically silenced [149].  

The biophysical properties of the ECM can also influence treatment outcome in breast cancer 

patients. Patients with softer breast tumour were found to be more responsive to neoadjuvant 

chemotherapy as compared to those with stiffer tumours [150]. Breast elastography (EG) was used 

to evaluate tumour stiffness and patients in the low EG group had significantly higher clinical 

complete response to neoadjuvant chemotherapy than the patients in the high EG group [150]. 

Cancer cell-ECM interactions perpetuate chemoresistance [151]. It has also been shown that hypoxia 

and stiff breast tumours stimulate proliferation of breast cancer stem-like cells [152]. Taken 

together, the evidence indicates that a stiffer ECM represents a tumour growth permissive 

environment, associated with therapeutic resistance and supporting tumour cell proliferation, 

invasion, vasculogenesis, and pro-oncogenic immune infiltration.  

 

3. The pre-metastatic Niche: Preparing for the future  

An epidemiological study of more than 12,000 breast cancer patients demonstrated that metastasis 

might be initiated already 5ʹ7 years before the diagnosis of the primary tumour [153]. Recent 

evidence supports that metastatic dissemination often occurs early during tumour formation, 

challenging the concept that late disseminated cancer cells possess higher ability to form metastases, 

and instead reported that mouse and human mammary cancer cells migrate and disseminate from 

morphologically very early lesions [154]. The history of cancer cell dissemination goes back to the 

pivotal discovery by Stephen Paget that hypothesized metastasis relies on interactions between 

͞ƐĞĞĚƐ-the cancer ĐĞůůƐ͟ and the ͞ƐŽŝů-the host ŵŝĐƌŽĞŶǀŝƌŽŶŵĞŶƚ͟ [155]. In line with this theory 

Isaiah Fidler demonstrated that metastatic colonization could occur only at certain organ sites [156]. 

Subsequent studies have revealed that tumours can induce formation of microenvironments in 

distant organs which are conducive to their survival and outgrowth before their actual arrival to 

these sites [157-160]. These preordained microenvironments are termed as ͚ƉƌĞ-metastatic ŶŝĐŚĞƐ͛ 

(PMNs). The majority of the work exploring the tumour-directed PMN formation has used 

orthotropic and transgenic mouse models of metastasis and most of it is based on lung metastasis 

[161-162]. Increasing clinical evidence to support the existence of PMNs in tissue samples from 

cancer patients has been observed in sentinel lymph nodes from patients with colorectal, prostate, 

breast, thyroid, bladder, gastric and renal cell carcinomas [159]. Breast cancer cells also display a 

propensity to metastasize to particular locations such as bone, liver and brain [163-165]. Pre-
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metastatic niche is the result of cooperative systemic effects of tumour-secreted factors [166] and 

tumour- shed extracellular vesicles (EVs), which create a temporal sequence of events and lead to 

the evolution of future metastatic sites.  Adhesion and ECM molecules like integrins and tenacin 

expressed by primary tumour cells have been shown to promote dissemination of cancer cells [167-

169]. Exosomes were isolated from organotropic human breast and pancreatic cancer cell lines that 

metastasize primarily to the lung, liver or both sites, labelled and injected into nude mice. ϮϰരŚ after 

injection, exosome biodistribution and uptake was quantified in distant organs. Organ specificity of 

exosome biodistribution matched the organotropic distribution of the cell line of origin in both 

immune-compromised and immune-competent models. Therefore, tumour derived exosomes lead 

to the formation of a favourable pre-metastatic microenvironment; the same study also identified 

determinants of exosome-mediated organ specific conditioning, capable of redirecting metastasis to 

other sites [170]. Exosomes contain MMPs, inflammatory cytokines and activated growth factor 

receptors that may affect breast cancer progression to metastatic disease [171, 172]. Extracellular 

vesicles (EVs) derived from brain metastatic breast cancer cells are capable of breaching the blood 

brain barrier (BBB) and promote extravasation of cancer cells through the BBB [173].  

Taken together, there is accumulating experimental evidence supporting that tumour-derived 

circulating exosomes and EVs might provide information not only to predict the metastatic 

propensity, but also to indicate the organ sites of future metastasis. Whether the pre-metastatic 

niche concept identified in model systems also holds true for human disease remains to be firmly 

established. 

 

4. Entering the circulation: a struggle for survival  

In order for tumour cells to escape from primary tumours and initiate the metastatic cascade, they 

undergo a process called epithelial-to-mesenchymal transition (EMT) [76, 174-176]. During EMT, 

cancer cells reduce expression of E-cadherin and increase MMP expression, accompanied by changes 

in a set of pleiotropically acting transcriptional factors orchestration the EMT process and the 

migratory potential of cancer cells [76]. As illustrated in figure 2, tumour cells then leave the original 

environment to which they are adapted and enter the blood stream, becoming circulating tumour 

cells (CTCs) [177]. The majority of CTCs die as a result of this shear stress and/or anoikis, loss of 

adhesion to extracellular matrix and immunological attack, hence only a fraction manage to 

extravasate at distant sites where they may persist as disseminated tumour cells (DTCs) [178, 179]. 

Direct interactions with platelets provide a shield to tumour cells, resulting in activation of the TGF-ɴ 

signaling pathway, which promotes metastasis, and invasion by inducing EMT and 

immunosuppression [174, 180]. An increase in circulating platelet count has been associated with a 
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poorer prognosis in breast cancer patients, suggesting a potential direct role in the pathogenesis of 

this disease [181, 182]. B-thromboglobulin and P-selection are two markers of platelet activation, 

which are increased in breast cancer patients [183, 184]. One mechanism by which platelets get 

activated is tumour cell-induced platelet aggregation (TCIPA), and the ability of tumour cells to 

induce platelet aggregation correlates with their metastatic potential [185, 186]. TCIPA can occur 

either by direct contact with the tumour cells or by different mediators like ADP, thromboxane A2, or 

serine proteinases, including thrombi [187-190]. Once platelets are activated, they release various 

factors that promote metastasis by increasing the survival capacity of cancer cells within the 

circulation and facilitate adhesion to the endothelium, extravasation, and finally the growth of 

tumour cells at the metastatic site [191-194]. Exposed collagen IV on tumour blood vessels has been 

shown to facilitate platelet recruitment in the tumour microenvironment and is considered as a 

marker for angiogenesis in breast cancer [195]. Autotaxin (ATX) which is stored in ɲ-granules of 

resting human platelets is released upon tumour cell-induced platelet aggregation leading to the 

production of lysophosphatidic acid (LPA), promoting skeletal metastasis of breast cancer [196]. 

Overall the microenvironment is considered key in many of the processes involved in regulating 

tumour cell dormancy and subsequent escape and disease progression. 

  

5. The Microenvironment and Cancer Cell Dormancy 

Breast cancer is associated with a dormant asymptomatic phase that can last for up to 25 years [197, 

198] followed by a relapse, however this varies between subtypes. Patients with HER2+ or TNBC 

subtype experience earlier relapse (<5 years from surgery) to lung, brain or liver, in contrast to 

patients with ER+ tumours which exhibit constant rate of relapse over several years and tend to 

predominantly metastasize to bone [199, 200]. Dormancy can be divided into three broad categories: 

cellular dormancy, angiogenic dormancy and immune-mediated dormancy [201]. Arrival in a new 

microenvironment poses a challenge to the tumour cells for growth and proliferation, resulting in 

cellular dormancy [201, 202]. A limited supply of nutrients and oxygen may lead to angiogenic 

dormancy, where tumour cells are able to proliferate to form micrometastatic lesions but require 

further stimulation through angiogenesis (angiogenic switch triggered locally or systemically) for 

their continued growth and progression to macrometastatic disease [203-205]. Immune dormancy 

describes the state where tumour cells are not eliminated but their outgrowth is limited by the 

resident immune cells [206]. Precisely how dormancy is maintained and subsequent escape triggered 

remains to be established, but several reports have shown a reduction in PI3K-AKT signaling 

associated with dormancy like phenotypes and might also be responsible for the quiescence of the 

disseminated tumour cells [207-209]. 
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6. Metastatic progression: The final battle  

Tumour cell survival at a distal site relies on successful extravasation, invasion, and establishment of 

cell-cell and cell-matrix interactions in the metastatic niche (Figure 3). Most disseminated cancer 

cells are likely to be poorly adapted to the microenvironment of the tissue in which they have 

arrived; only a small percentage of the cells that survive are capable of reinitiating growth in distant 

organs and have been termed as metastatic stem cells (MetSCs) [210-212]. Successful metastatic 

dissemination requires not only that cancer cells home to distal sites but also that they locate to 

specific environments termed ͞ŵĞƚĂƐƚĂƚŝĐ ŶŝĐŚĞƐ͞ in which interactions between tumour cells and 

the local microenvironment supports their survival and further growth. It is not yet known if 

metastatic niches exist in all organs, or whether the bone marrow serves as a reservoir for future 

dissemination once the tumour starts to progress due to its specialist niche environments that 

support hematopoietic stem cells (HSCs). However, the composition of the microenvironment differs 

significantly between lung, liver, brain and bone, hence tumour cells must adapt to vastly different 

new sites in order to successfully colonise different organs. Due to difficulties in accessing internal 

organs for studies of tumour cell dissemination, our knowledge of the processes involved comes 

largely from bone marrow samples (possible in the clinical setting) or from in vivo model systems.  

 

6.1  Homing to bone 

Bone is the most common site of metastasis in breast with median survival of around 2-3 years 

following initial diagnosis of skeletal involvement. It has been hypothesized that tumour compete for 

space the HSC niche located in the bone marrow, and once within this niche, they can be stimulated 

to proliferate [213-215]. In support of this, it has been demonstrated that increased expression of 

fibronectin allows tumour cells to adhere to the HSC [216, 217] and that the osteogenic niche 

supports metastasis of breast cancer cells to the bone [166, 218]. DTCs may remain dormant 

indefinitely, but in a proportion of patients they switch to a proliferative phenotype, causing 

increased osteoclast-mediated bone resorption ultimately resulting in osteolytic lesions associated 

with pain and skeletal complications. Why breast cancer cells preferentially home to bone is not fully 

understood, nor is it clear to what extent the bone marrow act as a reservoir of tumour cells for 

further dissemination to other organs. It is proposed that breast cancer cells can express molecules 

normally found in bone, a process called osteomimicry, facilitating their homing to and colonisation 

of the bone microenvironment [219]. As an example, CXCR4 has been shown to specifically aid in 

bone metastasis by stimulating tumour cell recruitment in response to its interaction with 

CXCL12/SDF-1a ligand [220]. However, expression of CXCR4 is not a universal feature bone 

metastasis, as the bone homing clones of MDA-MB-231 breast cancer cells do not express this 
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molecule [213, 214]. Evidence from model systems suggests that increased bone turnover caused by 

ovariectomy (mimicking post-menopausal bone) triggers proliferation of dormant breast cancer cells 

to form overt metastasis [221]. Crosstalk with cells of the bone environment then initiates a vicious 

cycle of tumour proliferation and bone destruction [222, 223]. Proliferating tumour cells secrete 

factors like parathyroid hormone-related protein (PTHrP), interleukins (IL-8, -11), MMP-1, 

cyclooxygenase-2 (COX-2), transcription factor GLI2 and HIF-ϭɲ that promote both the growth of 

tumour cells in bone marrow and also contribute to osteolysis. Osteoclast-mediated bone 

destruction in turn leads to the release of pro-tumourigenic growth factors (e.g. TGF-ɴ), which are 

otherwise stored in latent form [224, 225]. Although the presence of elevated bone turnover 

markers like CTX in patient serum is used to support a diagnosis of skeletal metastasis, there are no 

biomarkers of early dissemination in bone available for clinical use, hence bone metastases are 

frequently not detected until they become symptomatic [226]. 

 

6.2  Homing to other organs 

As discussed in the earlier sections of this review, metastasis is a non-random process and is 

dependent on intricate tumuor-stroma interactions in the target organ. Properties of circulating 

breast cancer cells and the microenvironment are imperative factors in organ-specific metastasis. 

Studies in model system using lung-tropic cells have focussed on the molecules that mediate the 

adhesion of cancer cells to the lung vascular endothelium. When the breast cancer cells arrive at the 

pulmonary capillaries, they can be physically trapped in the narrow blood vessels. The adhesion and 

extravasation of cancer cells to the lung is mediated by crosstalk between adhesion molecules on 

tumour cells and receptors on the endothelium. It was demonstrated that a transmembrane domain 

of metadherin is responsible in mediating the homing of breast cancer cells specifically to the lung, 

but not to other organs, by binding to an unknown receptor present in lung endothelium [227]. 

Metadherin is overexpressed in breast cancer tissue and tumour xenografts. Antibodies reactive to 

the lung homing domain of metadherin, inhibited breast tumour cells from forming experimental 

lung metastases, suggesting that metadherin mediates localization at the metastatic site [227]. Gene 

expression profiling has predicted lung metastasis gene signature and identified a set of genes that 

mediates breast cancer metastasis to lung and is clinically correlated with the development of lung 

metastasis when expressed in primary breast cancers [228, 229]. It is important to note that there is 

only a limited overlap between the genes involved in bone and lung metastasis signatures, indicating 

a discrete functional necessity for different organ-specific metastasis. It has been shown that ER 

positive luminal-like tumours display long latency periods and frequently colonize to bone, whereas 

ER negative tumours display a shorter course to metastasis development and frequently metastasize 
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to visceral organs [99, 100, 230, 231]. Her2 positive breast cancer is associated with increased risk of 

metastases to brain as compared to other subtypes. Metastatic breast carcinoma metastasis to CNS 

is common among patients receiving trastuzumab-based therapy, including patients responding to 

therapy outside the CNS [232, 233]. The molecular mechanisms involved in development of brain 

and liver metastases are not that well characterised. The highly restrictive structure of the blood 

brain barrier (BBB) poses a challenge to tumour cells for invasion into parenchyma and their growth 

as macro metastases. However, tumour cells take advantage of cytokines secreted by astrocytes such 

as IL-1, IL-3, IL-6, TNFɲ͕ IGF-1, and PDGF-1 to stimulate their invasive and survival capabilities [234, 

235].  

 

7. Therapeutic implications  

As highlighted in this review, the microenvironment is actively involved in every step of breast cancer 

development and progression, thus providing numerous potential therapeutic targets. However, as 

demonstrated by the failure of anti-angiogenic agents in treatment of breast cancer, even targeting 

key microenvironmental hallmarks of cancer does not guarantee successful anti-tumour effects in 

humans and may be associated with widespread toxicities [236]. Although only a few agents that 

specifically target the environment are in routine clinical use in breast cancer, these benefit large 

numbers of patients.  

 

Among the most widely used drugs that act through modifying the microenvironment are aromatase 

inhibitors (AIs), agents that prevent generation of estradiol from androgens in peripheral tissues 

through aromatisation. AIs like letrozole, anastrazole and exemestane are used to treat ER+ve breast 

cancer in postmenopausal women, reducing estradiol to near undetectable levels and thereby 

depriving ER+ve tumour cells of a growth stimulatory signal [237]. These drugs are mainly used in the 

adjuvant setting, with a recent study reporting that prolonged treatment (up to 10 years) with AIs 

continues to provide benefit by reducing the risk of recurrence [238]. AIs also have the potential to 

prevent development of breast cancer; results from 2 large trials with 8,424 participants showed that 

AIs reduced ER+ve breast cancer incidence by 53% [20, 239]. Despite this major benefit, AIs are not 

yet widely used in the preventive setting, even for high risk women, possibly due to the associated 

side effects [240]. In addition to increased use as adjuvant therapy, a  large number of trials exploring 

the effects of AIs in combination with other agents are ongoing in breast cancer, including in the 

metastatic setting, hence their use is growing.  
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Bone-targeted agents (mainly anti-resorptive bisphosphonates, BPs) have long been in routine use to 

treat breast cancer-induced bone disease in the metastatic setting, resulting in improved quality of 

life but without prolonging overall survival [241]. In the adjuvant setting, BPs have recently been 

shown in a meta analysis of more than 18,000 patients to reduce bone recurrence and improve 

breast cancer survival, specifically for post menopausal women [242]. The mechanisms responsible 

for this positive effect on survival remains to be determined, but increased use of BPs in the adjuvant 

setting will undoubtedly save many lives in the coming decades. A large adjuvant trial (D-CARE, 

NCT01077154 ) of another bone-targeted agent, Denosumab, is due to report in 2018. In this trial, 

4,500 patients with early breast cancer have received Denosumab (an antibody to RANKL) or placebo 

for 5 years. This trial will determine whether targeting the osteoclast through inhibition of RANK-

RANKL interactions also affects survival of patients with early breast cancer, as has been established 

for adjuvant BPs.  

 

Perhaps the most promising development for microenvironmental targeting is the emerging use of 

immunotherapy, and we are only at the very beginning of harnessing the anti-tumourigenic power of 

the immune system. Breast tumours are generally not highly immunogenic although this differs 

between subtypes; triple negative BC is considered the most inflamed subtype whereas ER+ve 

tumours, in particular Luminal A, have a non-inflamed phenotype. A range of different approaches to 

breast cancer immunotherapy are currently under development, including checkpoint inhibitors, co-

stimulatory antibodies, vaccines and immunostiumulatory agents [243]. Increasing use of 

immunotherapy is likely to identify particular patient subsets with tumours exhibiting specific 

immunophenotypic characteristics which will be more or less sensitive to these agents. 

 

An additional microenvironment-targeting agent undergoing clinical trials in breast cancer is the anti-

diabetic drug metformin, which acts by reducing hepatic glucose production and has been suggested 

to have both direct and indirect anti-tumour effects [244]. The window of opportunity trial 

(NCT00897884) 39 non-diabetic women with breast cancer were given 500 mg metformin three 

times per day for approximately 2 weeks prior to surgery. Compared to the diagnostic biopsy,  there 

was decreased tumor expression of the insulin receptor, combined with a reduction in both PI3K and 

Ras-MAPK signaling, following metformin administration, suggesting that metformin has indirect, 

insulin-dependent anti-tumour effects [245]. Further trials of metformin in breast cancer are ongoing 

(>39 currently listed on ClinicalTrials.gov), including a large study comparing 5 years of adjuvant 

metformin to placebo in over 3,900 patients, aiming to establish whether this agent has the potential 

to improve disease free survival (NCT01101438), [246]. Due to complete in 2020, this trial will be 
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instrumental when it comes to the utility of metformin in the adjuvant setting in breast cancer, and if 

positive is likely to alter clinical practice to include this well-tolerated agent, which has the added 

advantage of preventing or delaying development of type 2 diabetes. 

 

Finally, there are a number of current clinical trials that aim to determine whether anti-angiogenic 

agents (mainly the VEGF-A inhibitor Bevacizumab) can be beneficial as part of combination therapy 

in specific breast cancer patient populations, despite their failure as single agents. It is therefore 

possible that targeting the tumour vasculature, a key component of the supportive 

microenvironment, may still turn out to demonstrate clinical efficacy in subgroups of breast cancer 

patients receiving  specific therapeutic regimens. 

 

8. Expert commentary  

 

A common theme throughout this review is the considerable heterogeneity within the tumour 

microenvironment, represented by a range of cell populations and subtypes, each with their 

different function in tumour development and progression. In many cases, we are not able to reliably 

differentiate between these sub-populations, in particular in human samples, hence mapping their 

presence as well as any changes induced by therapy is not yet feasible. There is increasing 

understanding that successful therapeutic targeting of the microenvironment relies on the 

elimination or promotion of specific population subtypes, this in turn requires the identification of 

subtype-specific markers that represent potential ͚ĚƌƵŐĂďůĞ͛ targets. It is evident that we still have a 

long way to go before effective, subpopulation-specific targeting becomes part of the standard anti-

cancer therapeutic arsenal. However, several highly effective agents targeting enzymes (aromatase 

inhibitors), specific cell types (osteoclast inhibitors) or cell populations (immunotherapy) are in 

routine clinical practise, with their use expected to increase over the coming decades. For example, a 

recent large (n=1,918) clinical trial showed that extension of adjuvant treatment with aromatase 

inhibitors beyond 5 years is beneficial for women with hormone-receptor positive early breast 

cancer, preventing disease recurrence compared to the placebo group [238]. As a result, the large 

number of patients currently taking AIs are likely to continue to do so for up to 10 years as opposed 

to the previously recommended 5 years. Likewise, a meta-analysis of adjuvant bisphosphonate (BP) 

trials demonstrate that post-menopausal women with early breast cancer (irrespective of hormone 

receptor status) have a survival benefit from adjuvant use of bone-targeted BPs [242]. With their 

capacity to benefit large patient populations, increased uptake and duration of microenvironment-

targeting AIs or BPs in the adjuvant setting has the potential to save many thousands of lives. 

Similarly, the myriad of ongoing clinical trials of immunotherapies in breast cancer will almost 
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certainly result in new therapeutic regimens that modify the immune component of the tumour 

microenvironment entering mainstream clinical practice. In breast cancer this will rely on our success 

in developing approaches that render the tumours more immunogenic and hence susceptible to 

immune attack. Inevitably, these new developments come with a number of caveats that may 

restrict their uptake; in the case of adjuvant BPs, the reason why only post-menopausal women have 

a survival benefit remains to be established, and the most potent agent (Zoledronic Acid) can only be 

administered as an IV infusion. AIs are associated with considerable side effects (joint and muscle 

pain, loss of bone mass), as are immunotherapies (mucositis, skin reactions, flu-like symptoms), and 

Zoledronic acid may cause osteonecrosis of the jaw in a small number of patients. However, the 

considerable clinical benefit gained from these agents, combined with increasing experience in how 

to manage their side-effects, is likely to outweigh the negative effects for patients.  

The majority of patients with breast cancer undergo surgery to remove the tumour within a few 

weeks of diagnosis, hence all subsequent therapy is aimed at potential disseminated disease rather 

than the primary tumour. It remains to be established to what extent agents that target the 

microenvironment modify cancer development beyond the primary tumour. However, it is important 

to note that agents targeting non-cancer cells will almost invariably be combined with drugs that 

directly target the tumour cells themselves, in order to maximise the anti-tumour effect through a 

two-pronged attack. As demonstrated by the effective drugs currently in clinical use, and with the 

potential of immunotherapy to revolutionise cancer treatment over the coming decades, targeting 

the microenvironment is now considered an intrinsic part of successful anticancer strategies.   

 

9. Five-year view 

The introduction of novel therapeutics/diagnostics in breast cancer is challenging due to the 

generally excellent survival for patients with organ-confined disease. Around 80% of patients are 

alive 5 years after diagnosis, hence clinical trials require long follow up periods and inclusion of large 

number of patients in order to show benefit beyond best current treatment. To address this, there is 

considerable research efforts focussed on selection of patient sub-groups and development of early 

surrogate markers reflecting outcome. This is particularly important with the increasing introduction 

of expensive novel agents (CDK inhibitors, immunotherapy), where identification of the patients 

most likely to benefit based on their primary tumour characteristics is essential. The use of ͚ǁŝŶĚŽǁ 

ƚƌŝĂůƐ͛ is increasing, allowing assessment of biological changes (and hence identification of potential 

surrogate markers of benefit) in the primary tumour caused by therapy given prior to surgery. 

However, the ultimate effect of novel agents or biomarkers will not be clear until impact on disease-

free survival is established, often decades later. How the components of the local tumour 

microenvironment impacts the response to therapy remains to be fully established, but in the case of 
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immunotherapy the number of tumour infiltrating immune cells (assessed prior to treatment) has 

been shown to be an important predictor of outcome. In the next five years we can expect the 

results from several clinical breast cancer trails of agents targeting the distal microenvironment. This 

includes D-CARE (NCT01077154), investigating the effects of the bone-targeted agent Denosumab in 

the adjuvant setting in over 4,500 patients. If positive, this trial will further establish that adjuvant 

therapy targeting the distal microenvironment (bone) improves breast cancer survival, in agreement 

with results from trials with adjuvant bisphosphonates. In addition, ClinicalTrials.gov lists more than 

130 immunotherapy trials in all stages of breast cancer, alone and in combination with current 

standard therapy (including radiotherapy and surgery). This includes checkpoint inhibitors, immune 

modulators, vaccines and adoptive T cell transfer therapy. Positive findings are likely to result in 

rapid changes in clinical practise, in particular in triple negative and metastatic breast cancer where 

outcome currently are poor and novel therapeutic options are urgently needed. 

 

10. Key issues 

ͻ Cellular and molecular components of the microenvironment play a role in breast cancer 

development, progression and in determining response to therapy. 

ͻ The microenvironment comprises a multitude of different elements, including cells, soluble 

factors and extracellular matrix components, both locally (in the breast) and distally (at 

metastatic sites).  

ͻ Modification of the microenvironment by factors released from the primary breast tumour 

may contribute to preparing the future metastatic site (the pre-metastatic niche), but evidence 

for this from human disease is lacking. 

ͻ Despite its importance, the presence/composition of microenvironmental components are not 

routinely assessed as part of breast cancer diagnosis or in therapeutic decision making.  

ͻ With the introduction of immunotherapy, clinical evaluation of the degree of immune 

infiltration in the primary tumour is increasingly considered in order to select patients most 

likely to benefit. 

ͻ Aromatase inhibitors are examples of therapeutics in routine use for large, heterogeneous 

groups of breast cancer patients that target the microenvironment rather than the primary 

tumour directly. 

ͻ Bone-targeted agents (bisphosphonates) have been shown to significantly improve survival of 

post menopausal women in the adjuvant setting, their use is likely to increase for this patient 

population. 

ͻ Targeting the microenvironment will benefit specific patient subgroups, reflecting the 

heterogeneous composition of breast tumours.  
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ͻ In all cases, agents targeting the microenvironment will be used in combination with standard 

therapy to maximise the effect on breast cancer progression. 
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