
This is a repository copy of Extending the functionality of a symbolic computational
dynamic solver by using a novel term-tracking method.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/136925/

Version: Accepted Version

Article:

Motazedi, N., Cartmell, M.P. and Rongong, J.A. orcid.org/0000-0002-6252-6230 (2018)
Extending the functionality of a symbolic computational dynamic solver by using a novel
term-tracking method. Proceedings of the Institution of Mechanical Engineers, Part C:
Journal of Mechanical Engineering Science, 232 (19). pp. 3439-3452. ISSN 0954-4062

https://doi.org/10.1177/0954406217737104

© 2017 IMechE. This is an author produced version of a paper subsequently published in
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science. Uploaded in accordance with the publisher's self-archiving policy.
Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Extending the Functionality of a Symbolic Computational

Dynamic Solver by Using a Novel Term-tracking Method

Niloufar Motazedi, Matthew Cartmell and Jem Rongong

Abstract
Symbolic Computational Dynamic (SCD) solvers are currently under development in
order to provide new and powerful tools for modelling nonlinear dynamical systems.
Such solvers consist of two parts; the core solver, which comprises an approximate ana-
lytical method based on perturbation, averaging, or harmonic balance, and a specialised
term-tracker. A term-tracking approach has been introduced to provide a powerful new
feature into computational approximate analytical solutions by highlighting the many
mathematical connections that exist, but which are invariably lost through processing,
between the physical model of the system, the solution procedure itself, and the final
result which is usually expressed in equation form. This is achieved by a highly robust
process of term-tracking, recording, and identification of all the symbolic mathematical
information within the problem. In this paper the novel Source and Evolution Encod-
ing Method is introduced for the first time and an implementation in Mathematica is
described through the development of a specialised algorithm.

1 Introduction

There are various advanced techniques for designing and predicting the responses of dy-
namical systems. Linear models and solutions are well established and frequently used
for systems operating over a limited performance range, but in reality all mechanisms and
systems are nonlinear. It is therefore important to develop an in-depth understanding of
the effect of local and global nonlinearities on the system’s response. Numerical methods
constitute one of the most powerful approaches for estimating the solution of nonlinear
systems and they can create tractable solutions for full scale problems. However, such
solutions are invariably dependent on the initial boundary conditions, and the presence
of nonlinearity in a system tends to make any interpolation and extrapolation of results
invalid. It is also important to appreciate that linear analytical modelling techniques
and numerical solution procedures both lend themselves to application to large systems,
for which the number of degrees of freedom can be in the hundreds or thousands. This
is not the case with approximate analytical methods which can be applied to nonlin-
ear models, and in these cases the general problem scale is very small because of the
limitations due to rapidly increasing algebraic complexity, and are usually of the order
of a few degrees of freedom at most. This has led to the term reduced order modelling

1

within the nonlinear dynamics community, and for the time being this general restriction
applies to the approaches to be described in this paper. It should be noted that despite
this limitation in scale reduced order models, if applied with care and ingenuity, can
frequently offer excellent phenomenological representations of the dynamics of a wide
range of nonlinear systems.

A natural path for development here is to consider the use of symbolic computation
for the formulation of a computational algorithmic methodology for solution, based on
some accepted mathematical technique such as perturbation, averaging, or harmonic
balancing. To this end a Symbolic Computational Dynamic (SCD) solver concept was
introduced, and an early version, with term-tracking, was proposed by Cartmell et al. [1].
SCD solvers can generally be considered to be constructed from two parts; a core solver
and a term-tracker. The solver part is based on a computational form of an approximate
analytical solution method and the term-tracker adds an extra dimension to the solver by
generating a range of internal mathematical information during and after the solution
process. This internal mathematical information comprises links and connections be-
tween quantities, functions, parameters, and coordinates and also between all the stages
which are needed to generate the emerging solution. Normally this information is lost
through the conventional processes of mathematics and also through the many algebraic
and numerical simplifications that take place, and so it is never seen. In the case of
the SCD approach everything is tracked, identified through encoding, and recorded, for
final visualisation, as an aid to the normal functionality obtained from a time or fre-
quency domain response generated numerically from an approximate analytical solution.

The first of this generation of symbolic solvers was programmed using the Mathe-
matica interface. The perturbation method of Multiple Scales [2, 3] was computerised
[4, 5, 6], and applied in several case studies [7, 8]. However, this solver structure was not
compatible with more recent ideas for term-tracking and so Forehand et al. [9] modified
the solver of Khanin et al. [4] and implemented an early term-tracker based on what
the authors then termed Source Encoding Method (SEM), again using the Mathematica
programming interface. This modification changed the structure of the solver in such a
way that users now had access to all stages of the analysis, as they would if using a pen
and paper.

Investigation of the results generated with the SEM method have clarified the poten-
tial of the term-tracking methods to be used for extracting more information within the
solution procedure. The SEM is designed to be used to create a tree-shaped history for
each term within the solution procedure. However, it is beneficial to extract the history
of each individual quantity within the terms as well. Furthermore, the ability to extract
the perturbation order or codify the changing significance of fundamental quantities as
the analysis proceeds can also be of great interest to the user.

The current study introduces the far more powerful Source and Evolution Encoding
Method (SEEM) term-tracking method, and discusses its implementation within a mod-

2

Figure 1: An overview of Symbolic Computational Dynamic solvers

ified multiple scales solver by the development of an adaptable and powerful encoding
algorithm which has been designed for accurate and automated term-tracking within the
procedures of symbolic computational dynamics solvers.

2 The Source and Evolution Encoding Method

Nonlinearity is an inherent part of all physical systems.There are several numerical and
analytical methods capable of modelling and solving nonlinear systems. The equation of
motion of a nonlinear system can sometimes be solved analytically, but frequently this
degenerates into a difficult mathematical problem, and very often one which is based on
assumptions which disregard aspects of the real physical system. As a case in point most
vibrational problems, for example, are fundamentally very complicated, and finding the
exact analytical solution is sometimes impossible. Therefore, some approximations must
be made in the system modelling and also within the actual solution procedure [10]. As
figure (1) shows, the SCD process creates valid connections between the physical model,
the solution method, and the final result. This can provide an essential understanding of
the problem and, importantly, highlight how these approximations can affect the results,
by using appropriate term-tracking methods such as those described in this paper.

2.1 A parametrically excited pendulum

In this paper the SEEM encoding method is demonstrated by using the same case study
as explored in [9] for the simpler term-tracking method.
Figure (2) shows a pendulum with a harmonic oscillating support, the finite rotation
of the pendulum is shown by θ(t). The external excitation is shown by W (t), which is
equal to qlcos(Ωt), and the damping torque φ is set to be equal to cl2θ̇ .

Equation (1) shows the SEEM method applied to the appropriate equation of motion

3

Figure 2: Parametric excitation of a pendulum based on [11].

for parametric excitation of a pendulum [11]. The information generated by the SEEM
is denoted by an under-bracket below each term, unlike in the SEM notation the position
of the encoding vectors (either above or below the line) is optional and does not have
any particular meaning.
The first level of the SEEM is unique for all the quantities, the equation number and
the order of the small parameter (epsilon). The first digit for all encoding vectors is
set to 1, as all the quantities are introduced in equation (1). The second digit for all
the quantities is set to 1 (i.e. the epsilon order), except for ω which is placed inside
the argument of the cosine function. It should be noted that the SEEM avoids the
application of encoding for the time and the dependent variables before the introduction
of the perturbation expansion. As a result (θ) and t have not been encoded.

θ′′ + 2ǫβ
︸︷︷︸

(1,1)

θ′ − qǫω2

︸︷︷︸

(1,1)

θ cos(ω
︸︷︷︸

(1,0)

t) + ǫγ
︸︷︷︸

(1,1)

θ3 + θ = 0 (1)

In this case study the Method of Multiple Scales [3]is used because of its adaptabil-
ity and transparent structure. In this method the approximate solution is a function of
multiple independent time-scales, and the number of independent time-scales is limited
by the order at which the expression is truncated. All variables or coordinates must be
expressed by a uniformly valid equations to create a set of perturbation expansion. Con-
sequently, the terminology HOT is used as an abbreviation for higher order terms. The
final solution is built up gradually by utilising the solution to each level of perturbation
(i.e. θ0, θ1,... and θi) and then combining them appropriately.

θ(ǫ, t) =

n−1∑

i=0

ǫiθi (τ0, τ1, ..., τn)

where
τi = ǫit, i = 1, 2, ...

4

In this case study the perturbation equations up to and including the first order correc-
tion are used. Equation (2) shows the SEEM applied to the perturbed solution form.

The second level encoding information for θ0 is given as (2, 0), which highlights the
origin and the order of the quantity, respectively. Whilst due to the presence of ǫ, the
second term is encoded as (2, 1).

θ = θ0
︸︷︷︸

(2,0)

+ ǫθ1
︸︷︷︸

(2,1)

+HOT (2)

Equation (3) and (4) are the encoded versions of the perturbed time derivatives, noting
that these are constructed from the partial derivatives of the independent time-scales

(Dj =
∂

∂τi
).

d

dt
= D0

︸︷︷︸

(3,0)

+ ǫD1
︸︷︷︸

(3,1)

+HOT (3)

d2

dt2
= D2

0
︸︷︷︸

(9,0)

+2ǫD0D1
︸ ︷︷ ︸

(4,1)

+HOT (4)

When considering the equation of motion, it can be seen that the cubic form of the
dependent variable (θ3) can be written in an explicit form by using the perturbation
expansion. The second level of the SEEM is applied to equation (5), the explicit equation
number is added as the third encoding element to all the encoding vectors. Clearly the
origin of this variable is from equation (2), while the order of the term is zero and it has
became explicit in equation (5).

θ3 = θ30
︸︷︷︸

(2,0,5)

+HOT (5)

Then equations (2), (3), (4), and (5) are substituted into equation (1), resulting in
equation (6). In the early stages of the analysis the encoding information for all the
quantities within an equation is quite similar. However, the SEEM information becomes
more complex as the analysis progresses to the final stage.

θ0
︸︷︷︸

(2,0)

− qǫω2

︸︷︷︸

(1,1)

θ cos(ωτ0
︸︷︷︸

(1,0)

) + ǫγ
︸︷︷︸

(1,1)

θ30
︸︷︷︸

(2,0,5)

+ ǫθ1
︸︷︷︸

(2,1)

+

2ǫβ
︸︷︷︸

(1,1)

D0
︸︷︷︸

(3,0)

θ0
︸︷︷︸

(2,0)

+2ǫD0D1
︸ ︷︷ ︸

(4,1)

θ0
︸︷︷︸

(2,0)

+ D2
0

︸︷︷︸

(9,0)

θ0
︸︷︷︸

(2,0)

+ ǫ
︸︷︷︸

(2,1)

D2
0

︸︷︷︸

(9,0)

θ1
︸︷︷︸

(2,1)

= 0

(6)

The next step is to construct the zeroth and first order perturbation equations from
equation (6). The coefficients of the zeroth (ǫ0) and first (ǫ1) order are separated and
set to zero, leading to Equations (7) and (8), respectively.

θ0
︸︷︷︸

(2,0)

+ D2
0

︸︷︷︸

(9,0)

θ0
︸︷︷︸

(2,0)

= 0 (7)

5

θ1
︸︷︷︸

(2,1)

+ D2
0

︸︷︷︸

(9,0)

θ1
︸︷︷︸

(2,1)

= −

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

qω2

︸︷︷︸

(1,1)

θ cos(ωτ0
︸︷︷︸

(1,0)

) +

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

γ
︸︷︷︸

(1,1)

θ30
︸︷︷︸

(2,0,5)

+

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

2β
︸︷︷︸

(1,1)

D0
︸︷︷︸

(3,0)

θ0
︸︷︷︸

(2,0)

+

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(4,1)

2D0D1
︸ ︷︷ ︸

(4,1)

θ0
︸︷︷︸

(2,0)

(8)

Looking at Equation (8) one can see that normally in a standard multiple scales method,
the ǫs from both sides would cancel out. However, in the SEEM the cancellation of pa-
rameters within the solution procedure is avoided; unless both the quantity and two
first encoding digits are similar. ǫ → (1, 1) and ǫ → (2, 1) are both small parameters
but not necessary numerically equal, as ǫ → (1, 1) is introduced at the stage where the
choice is made to specify whether the system is lightly damped or softly nonlinear, while
correspondingly the ǫ→ (2, 1) is introduced by the choice of the perturbation expansion
and adding the correction term.This helps the analyst to identify the stages of analysis
that are affected by the initial assumptions during the modelling.

The solution of the zeroth order perturbation equation (7) has been given in equa-
tion (9). As θ0 has appeared explicitly, the third level of the SEEM has been applied
to the quantities with the first level of the SEEM, and new the first level of encoding
is introduced for the un-encoded quantities. In this equation A and Ā are unknown
complex functions of the slow time scaled τ1 coefficient and its complex conjugate.

θ0 = A
︸︷︷︸

(2,0,9)

exp
︸︷︷︸

(9,0)

(

(9,0)
︷︸︸︷

i τ0) + Ā
︸︷︷︸

(2,0,9)

exp
︸︷︷︸

(9,0)

(

(9,0)
︷︸︸︷

−i τ0) (9)

Then the solution of the zeroth-order perturbation equation is substituted into the cubic
form of the dependent variable θ30, resulting in equation (10). The encoding of A and
Ā are defined as (2,0,9,10), which clearly shows the origin of this zeroth order term is
equation (2), and that it has appeared in an explicit equation structure in Equation (9).
Furthermore, its structure has been modified in Equation (10).

θ30
︸︷︷︸

(1,0,5)

= A3
︸︷︷︸

(2,0,9,10)

exp
︸︷︷︸

(9,0)

(

(9,0)
︷︸︸︷

i

(1,0,10)
︷︸︸︷

3 τ0) + 3
︸︷︷︸

(10,0)

A2
︸︷︷︸

(2,0,9,10)

Ā
︸︷︷︸

(2,0,9,10)

exp
︸︷︷︸

(9,0)

(

(10,0)
︷︸︸︷

i τ0)

+ 3
︸︷︷︸

(10,0)

Ā2
︸︷︷︸

(2,0,9,10)

A
︸︷︷︸

(2,0,9,10)

exp
︸︷︷︸

(9,0)

(

(9,0)
︷︸︸︷

−i τ0) + Ā3
︸︷︷︸

(2,0,9,10)

−i
︸︷︷︸

(9,0,10)

exp
︸︷︷︸

(9,0,10)

(

(9,0)
︷︸︸︷

i

(1,0,10)
︷︸︸︷

3 τ0)

(10)

Equation (10) is an example of the complex logic behind the SEEM. For example, it
can be noted that there are two types of number 3, with the same numerical value
but dissimilar encoding sources. The first one is 3 → (1, 0, 10) within the index of the

6

exponential function, and this is referred to the first natural frequency of the system.
The second number 3 is (3→ (10, 0)), which is defined because of the algebraic procedure
in this equation.

Then the exponential form of the harmonic function within the external excitation
term in equation (1) is given below:

cos ω
︸︷︷︸

(1,0)

τ0 =
1

2
exp(−iωτ0)

︸ ︷︷ ︸

(1,0,11)

+
1

2
exp(iωτ0)

︸ ︷︷ ︸

(1,0,11)

(11)

The solution of the zeroth order perturbation equation (9) and the cubic form of the
dependent variable (10) are substituted into the first order perturbation equation (8),
and the result is shown in equation (23).

D0
2

︸︷︷︸

(9,0)

θ1
︸︷︷︸

(2,1)

+ θ1
︸︷︷︸

(2,1)

=

−2
︸︷︷︸

(4,1)

(4,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

D1
︸︷︷︸

(4,1)

A
︸︷︷︸

(2,0,9)

i
︸︷︷︸

(9,0)

exp
︸︷︷︸

(9,0)

(

(9,0)
︷︸︸︷

i τ0)− 2
︸︷︷︸

(4,1)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

D1
︸︷︷︸

(4,1)

Ā
︸︷︷︸

(2,0,9)

−i
︸︷︷︸

(9,0)

exp
︸︷︷︸

(9,0)

(

(9,0)
︷︸︸︷

i τ0)

−2
︸︷︷︸

(4,1)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

β
︸︷︷︸

(1,1)

A
︸︷︷︸

(2,0,9)

i
︸︷︷︸

(9,0)

exp
︸︷︷︸

(9,0)

(

(9,0)
︷︸︸︷

i τ0) −2
︸︷︷︸

(4,1)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

β
︸︷︷︸

(1,1)

A
︸︷︷︸

(2,0,9)

i
︸︷︷︸

(9,0)

exp
︸︷︷︸

(9,0)

(

(9,0)
︷︸︸︷

i τ0)

−

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

γ
︸︷︷︸

(1,1)

A3
︸︷︷︸

(2,0,9,10)

exp
︸︷︷︸

(9,0)

(

(9,0)
︷︸︸︷

i

(10,0)
︷︸︸︷

3 τ0)−

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

γ
︸︷︷︸

(1,1)

3
︸︷︷︸

(10,0)

A2Ā
︸︷︷︸

(2,0,9,10)

exp
︸︷︷︸

(9,0)

(

(9,0)
︷︸︸︷

i τ0)

−

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

γ
︸︷︷︸

(1,1)

3
︸︷︷︸

(10,0)

Ā2A
︸︷︷︸

(2,0,9,10)

exp
︸︷︷︸

(9,0)

(

(9,0)
︷︸︸︷

−i τ0)−

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

γ
︸︷︷︸

(1,1)

Ā3
︸︷︷︸

(2,0,9,10)

exp
︸︷︷︸

(9,0)

(

(9,0)
︷︸︸︷

−i

(10,0)
︷︸︸︷

3 τ0)

+

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

qω2

︸︷︷︸

(1,1)

(1,0,11)
︷︸︸︷

1

2
︸︷︷︸

(1,0,11)

A
︸︷︷︸

(2,0,9)

exp
︸︷︷︸

(∗,12)

(i
︸︷︷︸

(∗,12)

τ0(ω
︸︷︷︸

(1,0,11)

+ 1
︸︷︷︸

(9,0)

)) +

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

qω2

︸︷︷︸

(1,1)

(1,0,11)
︷︸︸︷

1

2
︸︷︷︸

(1,0,11)

Ā
︸︷︷︸

(2,0,9)

exp
︸︷︷︸

(∗,12)

(−i
︸︷︷︸

(∗,12)

τ0(ω
︸︷︷︸

(1,0,11)

+ 1
︸︷︷︸

(9,0)

))

+

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

qω2

︸︷︷︸

(1,1)

(1,0,11)
︷︸︸︷

1

2
︸︷︷︸

(1,0,11)

A
︸︷︷︸

(2,0,9)

exp
︸︷︷︸

(∗,12)

(−i
︸︷︷︸

(∗,12)

τ0(ω
︸︷︷︸

(1,0,11)

+ −1
︸︷︷︸

(9,0)

)) +

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

qω2

︸︷︷︸

(1,1)

(1,0,11)
︷︸︸︷

1

2
︸︷︷︸

(1,0,11)

Ā
︸︷︷︸

(2,0,9)

exp
︸︷︷︸

(∗,12)

(i
︸︷︷︸

(∗,12)

τ0(ω
︸︷︷︸

(1,0,11)

+ −1
︸︷︷︸

(9,0)

))

(12)

The information added by implementation of the SEEM has created a large amount of
information for each term. It is possible to track each quantity to its origin and identify
the stages at which the term has been modified.

7

The SEEM signifies the distinctions between the 2 → (1, 1), 2 → (4, 1), and 2 →
(1, 0, 11) which relate to the damping term, the second derivative definition after intro-
ducing the perturbation expansion, and the exponential form of the external excitation
term, respectively. Moreover, the application of the compound encoding level of the
SEEM is used in this equation for the first time. For example, exp

︸︷︷︸

(∗,12)

(i
︸︷︷︸

(∗,12)

τ0(ω
︸︷︷︸

(1,0,11)

+ 1
︸︷︷︸

(9,0)

))

means exp(iτ0) → (9, 0) is subsumed into exp(−iωτ0) → (1, 0, 11) at equation (12) for
the first time. As a result, applying the compound level of the SEEM has helped to sim-
plify the structure of the equation, without losing any fundamental encoding information.

The perturbation expansion in the multiple scales method must be uniformly valid,
therefore, θ1 must always be smaller than θ0 . Terms that are causing a particular
perturbation solution contribution to grow too large too quickly are defined as secular.
Terms containing the natural frequency of the homogeneous system are resonant and
their sum must be zero in order to guarantee a valid perturbation expansion. In this
case, the natural frequency of the homogeneous system is equal to one, therefore, terms
containing exp(iτ0) are taken out and set to zero. There are some terms in equation (12)
that can be resonant depending on the value of ω, the external excitation frequency. If
ω is set to the numerical value of 2, then exp

︸︷︷︸

(∗,12)

(i
︸︷︷︸

(∗,12)

τ0(ω
︸︷︷︸

(1,0,11)

+ −1
︸︷︷︸

(9,0)

)) and its complex

conjugate are considered to be secular. As a result the principal parametric resonance
condition is given by equation (13).

ω = 2
︸︷︷︸

(13,0)

(13)

To study the near resonance condition, a small detuning parameter (ǫσ) around the
principal parametric resonance is defined, equation (14).

ω = 2
︸︷︷︸

(13,0)

+ ǫ
︸︷︷︸

(14,1)

σ
︸︷︷︸

(14,1)

(14)

To find the near-resonance solution, equation (14) must be substituted into the first
order perturbation equation (12). In a standard multiple scale analysis, all the epsilons
are equal and therefore, whenever it is required, the epsilons can be replaced with the
definition of the perturbation parameter, equation (15).

ǫ
︸︷︷︸

(2,1)

=
τ1

τ0
(15)

However, according to the SEEM concept, the epsilons in an analysis are not necessarily
equal and they must not cancel out. Below (a) is a selected term from equation (12),
and then applying the near-resonance condition leads to (b). For having a valid multiple

scales solution procedure, ǫ → (14, 1) must be equal to
τ1

τ0
, resulting in expression (c).

This provides enough evidence that the numerical value of the small parameter in the

8

detuning parameter, ǫ→ (14, 1), must be equal to the perturbation expansion, ǫ→ (2, 1).

(a) :

exp
︸︷︷︸

(∗,12)

(i
︸︷︷︸

(∗,12)

τ0(ω
︸︷︷︸

(1,0,11)

+ −1
︸︷︷︸

(9,0)

))

(b) :

exp
︸︷︷︸

(∗,12)

(i
︸︷︷︸

(∗,12)

τ0(2
︸︷︷︸

(13,0)

+ ǫσ
︸︷︷︸

(14,1)

+ −1
︸︷︷︸

(9,0)

))

(c) :

exp
︸︷︷︸

(∗,12)

(i
︸︷︷︸

(∗,12)

(2
︸︷︷︸

(13,0)

τ0 + σ
︸︷︷︸

(14,1)

τ1 + −1
︸︷︷︸

(9,0)

τ0))

(16)

Continuing the solution procedure (as shown in the appendix) would lead to determi-
nation of the response for the non-resonant case within this problem. In the stan-
dard multiple scales analysis [11], without applying the SEEM, the symbolic state-
ments for the amplitude (a) and phase (α) are given as a = a0exp(−βτ1) and α =

α0 −
3

8
a0

2 γ

2β
exp(−2βτ1), respectively. Equations (27) and (28), in the appendix, show

the full forms of these equations by avoiding any cancellation and then applying the
SEEM.

a = a0
︸︷︷︸

(27,0)

exp
︸︷︷︸

(27,0)

({

(4,1,27)
︷︸︸︷

2

2
︸︷︷︸

(10,0,20)

(1,1,27)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1,27)

(10,0,19)
︷ ︸︸ ︷

exp(iα)

exp(iα)
︸ ︷︷ ︸

(25,0,27)

(9,0,27)
︷︸︸︷

i

i
︸︷︷︸

(25,0,27)

} β
︸︷︷︸

(1,1,27)

T1) (17)

α = α0
︸︷︷︸

(28,0)

−

(10,0,28)
︷︸︸︷

3

2
︸︷︷︸

(10,0,20)

×(2
︸︷︷︸

(10,0,19)

)

2
︸︷︷︸

(2,0,9,10)

(

(27,0,28)
︷︸︸︷
a0)

(2,0,9,10)
︷︸︸︷

2 ×

{

(1,1,28)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1,28)

(10,0,19)
︷︸︸︷
exp (

(10,0,19)
︷︸︸︷

i

(2,0,9,10)
︷︸︸︷

2)

exp(iα)
︸ ︷︷ ︸

(10,0,20)

exp(iα)
︸ ︷︷ ︸

(26,0,28)

} γ
︸︷︷︸

(1,1,28)

{

(4,1,20)
︷︸︸︷

2

2
︸︷︷︸

(10,0,20)

(1,1,28)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1,28)

(10,0,19)
︷ ︸︸ ︷

exp(iα)

exp(iα)
︸ ︷︷ ︸

(25,0,27)

(9,0,27)
︷︸︸︷

i

i
︸︷︷︸

(25,0,27)

} 2
︸︷︷︸

(2,0,9,10)

β
︸︷︷︸

(1,1,28)

× exp
︸︷︷︸

(27,0,28)

({

(4,1,27)
︷︸︸︷

2

2
︸︷︷︸

(10,0,20)

(1,1,27)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1,28)

(10,0,19)
︷ ︸︸ ︷

exp(iα)

exp(iα)
︸ ︷︷ ︸

(25,0,27)

(9,0,27)
︷︸︸︷

i

i
︸︷︷︸

(25,0,27)

} −2
︸︷︷︸

(2,0,9,10)

β
︸︷︷︸

(1,1,28)

T1)

(18)

2.2 Logistics of the Source and Evolution Encoding Method

As shown in the case study the purpose of the Source and Evolution Encoding Method
(SEEM) is to highlight the contribution of each quantity to the analysis by applying a

9

relevant encoding. The generated encodings are stored in their encoding multipliers, and
these are of variable length, depending on the encoding level. The encoding multiplier
mainly contains from two to four elements, with four as the norm (i,j,k,l). The first
element (i) indicates the origin of the quantity (i.e. the equation number in which
the quantity is initially introduced), while j represents the order of the corresponding
term containing the quantity in the original differential equation of motion, k shows
the equation number where the quantity appears in an explicit form for the first time,
and l is the equation number where this explicit quantity has first been significantly
modified. This information assists in identifying the important stages of analysis for
each quantity, at all points the analysis. It is very important to be able to identify
the origin of the variable (i) and its relative numerical significance (j). The explicit
equations that emerge within the early stages of the approximate analytical solution
method play a major role in the final solution, and so the encoding logic upon which the
SEEM is based is summarised in Table (1).

Table 1: The SEEM term-tracking guidelines

The SEEM encoding logic

Encoding level Description Visualisation

Fist level Origin of the vari-
able and its order

(i, j)

Second level Equation number
in which the vari-
able has appeared
in an explicit
equation

(i, j, k)

Third level Equation number
in which the ex-
plicit form of the
variable has been
modified

(i, j, k, l)

Compound
level

(i, j, k, l)n sub-
sumed with
(i, j, k, l)m

(∗, k)

The main policy of the SEEM is to avoid any possible cancellation in order to ensure
that there is no information loss. Having said this it is obvious that keeping all the
quantities unmodified in their original form would make the equation forms unnecessarily
complicated. Therefore a compound level of encoding is suggested, and is found mainly
to focus on the exponential functions (e being the base of the natural logarithm and i

the imaginary number).
The following arbitrary expression demonstrates the application of the compound

level encoding. It is assumed that two exponential quantities, with different origins,
are to be subsumed together in an arbitrary equation (x). Considering the right hand

10

side (RHS) of this expression, one can see that this term is created by subsuming two
exponential terms created from arbitrary equation (n) and (m) of the preceding analysis.
If the exponential term is subsequently subsumed for a second, third and fourth time then
the #, $ and £ symbols are used, respectively to denote that this further compounding
has happened.

exp
︸︷︷︸

(n,0,21)

(

(n,0,21)
︷︸︸︷

i τ0)× exp
︸︷︷︸

(m,1,10)

(

(m,1,10)
︷︸︸︷

iω τ0)→ exp
︸︷︷︸

(∗,x)

(

(∗,x)
︷︸︸︷

i (

(n,0,21)
︷︸︸︷

1 +

(m,1,10)
︷︸︸︷
ω τ0)) (19)

3 Computerisation of the SEEM

Considering the relatively complex logic behind the SEEM approach a true generalisation
and therefore a guaranteed and completely accurate implementation of the method is
not a straightforward task. This method has taken the encoding level further than was
originally defined in the SEM method of [9] and so it can detect and track the history of
sub-terms as well. Therefore the SEEM must be capable of indicating and recognising
the precise type of functions, within each term, to be encoded or updated accordingly.

Figure 3 provides an overview of the process in which an input equation is converted
to the encoded form in 10 steps. The input of the SEEM algorithm is an equation
which can be either unencoded or encoded. The input equation is decomposed into two
expressions comprising the left-hand side and right hand side. Then, depending on the
type of equation, the encoding information is defined for each quantity for equations
that are as yet unencoded, or updated. Then the encoded quantities are combined in
term format and the encoded equation will be rebuilt from the encoded quantities.

The policy of the SEEM is to gather information about the fundamental quantities
in each equation, therefore the algorithm must be able to decompose each equation into
expressions, terms, sub-terms, and finally quantities. A schematic view of this action for
the equation of motion of a parametrically excited pendulum is shown in Figure (5). It
is possible to notice that this process completely depends on the function types in each
term, so the algorithm should have enough information to distinguish between different
function types and decompose sub-terms accordingly. For example, the trigonometric
function of cos(ωτ0) is decomposed down to ω ; however, the power function of ω2 is
decomposed into ω and 2.

The SEEM is implemented within a code written in Mathematica by defining the
SEEM algorithm. The output generated by the code for this algorithm can be pro-
cessed by any subsequently developed functions. Currently a displayer function has
been developed to show encoding outputs using the built-in Mathematica Tooltip func-
tion. The encoding information for each quantity becomes visible when the mouse is
hovered around it. To make it possible for the data to be used in later stages of anal-
ysis the encoding data must be stored in a special format inside each equation, and,
importantly, this has to be without creating any interruptions to the ongoing solution
procedure.

In the Mathematica language everything is an expression, so Head is used to show

11

Figure 3: A graphical representation of the SEEM encoding process

Figure 4: The decomposition of an equation into fundamental quantities

Figure 5: The process of generating an encoded equation from the encoded quantities

12

the type of expression. Therefore a new class of Head in Mathematica named envec
(where this is an abbreviation for encoding vector) is introduced for this purpose. As
all quantities inside the term are encoded separately, an identity factor is defined as
the string form of the quantity and is stored as the first element inside the encoding
multiplier. Therefore it is possible for the algorithm to identify the specific encoding
multiplier that describes each quantity in the later stages. Consequently, the encoding
vector is defined with a maximum of five elements, including the four encoding digits
of the SEEM encoding and identity factor. For example the third term of equation (1)
has to be encoded as qǫω2 cos(ωt) × envec[ǫ, 1, 1,nan,nan] × envec[q, 1, 1,nan,nan] ×
envec[ω2, 1, 1,nan,nan] × envec[ω, 1, 0,nan,nan]. In the case that one element of the
encoding vector is not available, ’nan’ (Not-A-Number) will be used instead.

The main duty of the encoder function is to assign or identify a valid encoding
multiplier for each quantity. The encoder function has three inputs, equation number
(n), the corresponding side of equation (m) and the reference origin (p). In most cases
equation number (n) and origin (p) are the same, except where a different form of a
variable is described in a new equation. For example the polar form of cos (ωτ0) in
equation (1) is given in equation (11), therefore the equation number (n) is 11, while
the origin (p) is 1.

cos ω
︸︷︷︸

(1,0)

τ0 =
1

2
exp(−iωτ0

︸ ︷︷ ︸

(1,0,11)

) +
1

2
exp(iωτ0

︸ ︷︷ ︸

(1,0,11)

) (20)

The SEEM algorithm is given in Algorithm (1) and it should be noted that all the
input expressions, terms and sub-terms are distinguished from the updated output by
using an accent (′). At first the function specifies the third digit (k) of the encoding (lines
2 to 6). Then it decomposes the expression’ into terms’, and the second digit of encoding
is extracted by specifying the ǫ order (j). Then the encoding multipliers (envec’) for each
term are defined and are stored in the name of indextrm. It is very important that the
function identifies the variable type correctly, and applies the encoding accordingly. For
example, for an exponential function the index and the base must be encoded separately.
Also to avoid any cancellation through the analysis this function converts all the inputs
to symbols. If a selected variable is matched with any identity factor inside the encoding
multipliers (line 14), the encoding vector must be updated, otherwise a new encoding
multiplier would need to be defined (line 25). During the updating process the third
digit of the previously defined encoding vector (k’) is updated (line 16). Furthermore if
the explicit form of the variable is modified (line 18), by that means, the identity factor
does not appear the same as the variable, and hence the fifth digit (l) is correspondingly
updated. Then the encoding multiplier is multiplied by the original sub-term (line 27)
to create the encoded terms, after which the encoded expression is formed by summing
all the encoded terms.

The compound level of encoding is applied to the exponential form of function. This
function has a logic in order to identify the correct encoding information for a variable,
especially when there is more than one instance of the same variable in the term. Also,

13

according to the SEEM logic, the dependent variable and its derivatives should not be
encoded before applying the perturbational form.

Algorithm 1 The SEEM encoding algorithm

1: function SEEMencode(n, m, p)
2: if eqn[n] = explicit then
3: k ← p
4: else
5: k ← nan
6: end if
7: break the expression’ to terms’
8: for each term’ do
9: indextrm ← envec’

10: j← ǫorder

11: break the terms′ to subterm′

12: for each subterm′ do
13: Check the variable type (exponential,trigonometric,integer, and etc.)
14: if subterm’ ∈ indextrm then
15: if 4th’ = ”nan” then
16: envec ← [”subterm”,i’,j’,k,nan]
17: else
18: if subterm’ 6= subterm and l ’=nan then
19: envec ← [”subterm”,i’,j’,k’,p]
20: else
21: envec ← envec’[”subterm”,i’,j’,k,l’]
22: end if
23: end if
24: else
25: envec←[”subterm”,p,j,k,nan]
26: end if
27: subterm←subterm’ ∗ envec
28: end for
29: term←subterms
30: end for
31: expression←

∑
terms

32: end function

3.1 Displaying term-tracking information

After the encoding vector is assigned to the equations, a function is required to process
the encoding into an understandable form for the user. To make this possible a displayer
function has been developed, see Algorithm (2). In order to ensure valid results equations
should be always encoded before being displayed. The displayer function separates the

14

encoding vectors term by term. Then it matches each variable with the identity factor
inside the encoding (line 8) to find the correct encoding multiplier. All the unnecessary
information, such as the nan and the identity factor are removed (line 9), and the rest
of the encoding information is displayed by using a Tooltip function (line 10). Finally,
the updated sub-term is replaced inside the equation.

Algorithm 2 Displayer

1: function Displayer(expression)
2: break the expression to terms
3: for each term do
4: indextrm ← envec
5: break the terms to subterm

6: for each subterm do
7: Check the variable type (exponential,trigonometric,integer, and etc.)
8: Find the envec describing subterm
9: Remove identity factor and ”nan” from envec

10: subterm ← Tooltip[subterm,(i,j,k,l)]
11: end for
12: term←subterms
13: expression←

∑
terms

14: end for
15: end function

Figure (6) is an example that shows how a sub-term such as e(iτ0+iωτ0) with the
encoding vectors of {[ei, 1, 0, 9], [ei, str, 12], [eiω, 1, 0, 11]} is displayed by applying the
display function. Also Figure (7) illustrates the way that an input of a derivative function
and itself can be displayed. This can be compared to D0θ0 in equation (6).

Figure 6: The displayer function output for an exponential sub-term

15

Figure 8: Screen-shot of the equation of motion of a parametrically excited pendulum

Figure 9: Screen-shot of the zeroth order perturbation equation for a parametrically
excited pendulum

Figure 7: The displayer function output for a differentiated function

The problem of a parametrically excited pendulum is solved with the developed SCD
solver. As Figure (8) shows, the equation of motion of this problem is encoded by this
method. This equation can be compared with equation (1).
Then the zeroth and first order perturbations equations are shown in Figures (9) and
(10). These equations can be compared with equation (7) and (8).

4 The SEEM applied to autoparametric resonance in a coupled beam

As a further case study a two degree of freedom (DoF) problem involving autoparamet-
ric resonance in a coupled beam system [12] is now investigated by using the current
version of the SCD solver. The system of a pair of coupled beams is shown in figure (11).
A single frequency external excitation is applied transversally onto the primary beam

16

Figure 10: Screen-shot of the first order perturbation equation for a parametrically
excited pendulum

17

(AB). Therefore, the transverse response of the main beam causes a predominantly ax-
ial excitation of the secondary beam (BC) at the coupling point, thereby introducing
a parametric excitation of the secondary beam through stiffness modulation. The sec-
ondary beam is considered to have a high flexural stiffness ratio, therefore the bending
deformation of BC in the ABC plane can be neglected. In this figure, X and Y represent
the physical in-plane and out-of-plane responses, respectively.

Figure 11: Coupled beam system based on [12]. AB is the primary beam, and BC is
the secondary beam. W(t) represents the external excitation

Figure 12: Screen-shot of the equation of motion for the out-of-plane system

The zeroth order perturbation equation for both the in and out of plane systems are
shown in Figures (13) and (14), respectively.

Figure 13: Screen-shot of the zeroth order perturbation equation the in-plane system

18

Figure 14: Screen-shot of the zeroth order perturbation equation the out-of-plane system

5 Discussion

After a general overview of the Symbolic Computational Dynamics solvers, a new version
of the term-tracker, the Source and Evolution Encoding method, is introduced and fully
computerised. The concept is fully explained using two cases studies; a parametrically
excited pendulum and autoparametric resonance in a coupled beam system. The SEEM
has introduced an extra dimension to the analysis, and it can directly connect each
mathematical symbol and numerical value to the physical concept behind it. A large
amount of information is created by the SEEM, and it can be useful in various ways.
For the novice user it can simply provide an insight into the solution procedure by
showing the reasoning behind each equation. As a result, the user is less likely to
be intimidated by the long and complicated solution procedure as understanding any
procedure is made much easier by having all the information available on the presence
of a quantity in a particular form in the specific equation. Also, the more experienced
user may find it deeply interesting to observe how physical quantities are expressed in a
chosen mathematical form, and the way each physical quantity is modified through the
solution procedure in order to construct a final solution according to a set of assumptions
and approximations. Furthermore, it is potentially possible to compare the structure of
different solution procedures and how they result in final solutions. For example, one
could compare the SEEM data generated by applying the Harmonic Balance to that
from the Multiple Scales method for a specific problem. There is also a strong argument
to be made for the development of a comprehensive yet assimilable visual user interface
for broad and deep interpretation of the SEEM data, and the inevitable fact that the
utility of this information will be enriched by the capability of the visualisation system
used to observe it. Work on visualisation continues apace and will be reported on at a
later date.

6 Conclusions

In this paper a new class of symbolic computational dynamics (SCD) solver is introduced
through the use of a novel encoding methodology. The Source and Evolution Encoding
Method has been fully explained and an application to the problem of a parametrically
excited pendulum is addressed in some detail. The implementation of this method
within code using the Mathematica interface was generalised by the development and
implementation of a novel algorithm. The computerisation of the method has been
completed and has been demonstrated across two case studies, one of which involves

19

a pair of coupled nonlinear ordinary differential equations, thereby paving the way for
larger scale multi-degree-of-freedom problem modelling. The output generated by this
type of SCD solver has the potential to be visualised in terms of breadth and depth, and
therefore to provide a new level of insight into the problem and also its solution. This
insight would otherwise be entirely lost to the user, and this is important because it
has a significant potential for increasing user awareness of how all terms and quantities
in the emerging solution interact, and also how initial assumptions within the solution
process propagate, and ultimately manifest as properties of the solution itself.

Notation

A Unknown complex function of the slow time scale
a The amplitude of the response of the pendulum case study

D Partial derivative notation of the independent time scale (Dj =
∂

∂τi
)

envec Encoding vector
HOT Higher Order Terms
l Pendulum rod length
nan Not A Number
q The external excitation amplitude
SCD Symbolic computational Dynamics solver
SEEM Source and Evolution Encoding Method
t The real time
θ0 Fast time scale
θ1 Slow time scale
W (t) The external excitation
X The physical in-plane response of the couple beam system
X0 The zeroth order perturbation of the in-plane response
X1 The first order perturbation term of the in-plane response
Y out of plane response of the coupled beam system
Y0 The zeroth order perturbation term for the out-of-plane response
Y1 The first order perturbation term for the out-of-plane response
α The phase response for the pendulum case study
γ The nonlinear stiffness coefficient
γns The nonlinear stiffness coefficient

20

ǫ A small parameter
ǫcplf A small parameter that scales the nonlinear stiffness term
ǫcpls A small parameter that scales the coupling term for the secondary beam
ǫdmpf A small parameter that scales the damping term for the primary beam
ǫdmps A small parameter that scales the damping term for the secondary beam
ǫdp A small parameter that scales the damping term for the pendulum
ǫex A small parameter that scales the external excitation amplitude
ǫns A small parameter that scales the stiffness term for the pendulum
ǫp A small perturbation parameter
ζ1 The damping coefficient for the primary beam system
ζ2 The damping coefficient for the secondary system
θ Finite rotation of the pendulum
θ0 The zeroth order perturbation term for the pendulum response
θ1 First order perturbation term
µ The coefficient of centripetal acceleration
Φ The damping torque
ω The first linear natural frequency of the pendulum
ω1 The first linear natural frequency for the primary beam
ω2 The first linear natural frequency for the secondary beam

Appendix

This section continues the non-resonant solution procedure for the parametric excitation
of a pendulum. Continuing from equation (12), for calculating the non-resonant con-
dition it is assumed that the numerical value of ω is far from the principal parametric
resonance condition. Taking the secular terms, the coefficient of exp(τ0), out from equa-
tion (12) and setting them to zero results in solvability conditions, equations (21) and
(22).

−2
︸︷︷︸

(4,1)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

D1
︸︷︷︸

(4,1)

A
︸︷︷︸

(2,0,9)

i
︸︷︷︸

(9,0)

− 2
︸︷︷︸

(4,1)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

β
︸︷︷︸

(1,1)

A
︸︷︷︸

(2,0,9)

i
︸︷︷︸

(9,0)

−

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

γ
︸︷︷︸

(1,1)

3
︸︷︷︸

(10,0)

A2Ā
︸︷︷︸

(2,0,9,10)

= 0 (21)

−2
︸︷︷︸

(4,1)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

D1
︸︷︷︸

(4,1)

Ā
︸︷︷︸

(2,0,9)

−i
︸︷︷︸

(9,0)

− 2
︸︷︷︸

(4,1)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

β
︸︷︷︸

(1,1)

A
︸︷︷︸

(2,0,9)

−i
︸︷︷︸

(9,0)

−

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

γ
︸︷︷︸

(1,1)

3
︸︷︷︸

(10,0)

Ā2A
︸︷︷︸

(2,0,9,10)

= 0 (22)

The first order perturbation equation (12), after removing the secular terms is shown
in equation (23). It is possible to calculate the solution for the first order perturbation
equation, but due to the large amount of calculation required this step is skipped and

21

only the amplitude and phase of the response is determined.

D0
2

︸︷︷︸

(9,0)

θ1
︸︷︷︸

(2,1)

+ θ1
︸︷︷︸

(2,1)

=

−

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

γ
︸︷︷︸

(1,1)

A3
︸︷︷︸

(2,0,9,10)

exp
︸︷︷︸

(9,0)

(

(9,0)
︷︸︸︷

i

(10,0)
︷︸︸︷

3 τ0)

−

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

γ
︸︷︷︸

(1,1)

Ā3
︸︷︷︸

(2,0,9,10)

exp
︸︷︷︸

(9,0)

(

(9,0)
︷︸︸︷

−i

(10,0)
︷︸︸︷

3 τ0)

+

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

qω2

︸︷︷︸

(1,1)

1

2
︸︷︷︸

(1,0,10)

A
︸︷︷︸

(2,0,9)

exp
︸︷︷︸

(∗,12)

(

(∗,12)
︷︸︸︷

i (

(1,0,10)
︷︸︸︷
ω +

(9,0)
︷︸︸︷

1)τ0)

+

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

qω2

︸︷︷︸

(1,1)

1

2
︸︷︷︸

(1,0,10)

A
︸︷︷︸

(2,0,9)

exp
︸︷︷︸

(∗,12)

(

(∗,12)
︷︸︸︷

i (

(1,0,10)
︷︸︸︷

−ω +

(9,0)
︷︸︸︷

1)τ0)

+

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

qω2

︸︷︷︸

(1,1)

1

2
︸︷︷︸

(1,0,10)

Ā
︸︷︷︸

(2,0,9)

exp
︸︷︷︸

(∗,12)

(

(∗,12)
︷︸︸︷

i (

(1,0,10)
︷︸︸︷
ω −

(9,0)
︷︸︸︷

1)τ0)

+

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

qω2

︸︷︷︸

(1,1)

1

2
︸︷︷︸

(1,0,10)

Ā
︸︷︷︸

(2,0,9)

exp
︸︷︷︸

(∗,12)

(

(∗,12)
︷︸︸︷

−i (

(1,0,10)
︷︸︸︷
ω +

(9,0)
︷︸︸︷

1)τ0)

(23)

The polar form of the A(τ1) and its conjugate are given in equations (24) and (25).
Note, a(τ1) and α(τ1) are the amplitude and phase and are real functions.

A =
a

2
exp(iα)

︸ ︷︷ ︸

(10,0,19)

(24)

Ā =
a

2
exp(−iα)

︸ ︷︷ ︸

(10,0,20)

(25)

The first derivatives of the complex function A(τ1) and Ā(τ1) with respect to slow
timescale τ1, and based on a(τ1) and α(τ1) are given in equations (26) and (27).

D1
︸︷︷︸

(4,1)

A
︸︷︷︸

(2,0,9)

=

(10,0,19,21)
︷︸︸︷

a′

2
︸︷︷︸

(10,0,19)

exp(iα)
︸ ︷︷ ︸

(10,0,19)

+

(10,0,19)
︷︸︸︷
a

(10,0,19)
︷︸︸︷

iα′

2
︸︷︷︸

(10,0,19)

exp(iα)
︸ ︷︷ ︸

(10,0,19,21)

(26)

22

D1
︸︷︷︸

(4,1)

Ā
︸︷︷︸

(2,0,9)

=

(10,0,20,22)
︷︸︸︷

a′

2
︸︷︷︸

(10,0,20)

exp(−iα)
︸ ︷︷ ︸

(10,0,20)

+

(10,0,20)
︷︸︸︷
a

(10,0,20)
︷︸︸︷

−iα′

2
︸︷︷︸

(10,0,20)

exp(−iα)
︸ ︷︷ ︸

(10,0,20,22)

(27)

Equations (24), (25), (26), and (27) are substituted into the solvability condition
equations (21) and (22), resulting in equations (28) and (29).

−

(4,1)
︷︸︸︷

2

2
︸︷︷︸

(10,0,19)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

exp(iα)
︸ ︷︷ ︸

(10,0,19)

(10,0,19,21)
︷︸︸︷

a′ i
︸︷︷︸

(9,0)

−

(4,1)
︷︸︸︷

2

2
︸︷︷︸

(10,0,19)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

exp(iα)
︸ ︷︷ ︸

(10,0,19,21)

(10,0,19)
︷︸︸︷
a

(10,0,19)
︷︸︸︷

α′ i
︸︷︷︸

(9,0)

i
︸︷︷︸

(10,0,20)

−

(4,1)
︷︸︸︷

2

2
︸︷︷︸

(10,0,20)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

β
︸︷︷︸

(1,1)

exp(iα)
︸ ︷︷ ︸

(10,0,19)

a
︸︷︷︸

(10,0,19)

i
︸︷︷︸

(9,0)

−

1

(10,0,20)

2
︸︷︷︸

×(2
︸︷︷︸

(10,0,19)

)

2
︸︷︷︸

(2,0,9,10)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

e
︸︷︷︸

(10,0,19)

(10,0,19)
︷︸︸︷

i
(2,0,9,10)

2
︸︷︷︸

exp(iα)
︸ ︷︷ ︸

(10,0,20)

3
︸︷︷︸

(10,0)

γ
︸︷︷︸

(1,1)

a
︸︷︷︸

(10,0,19)

(2,0,9,10)
︷︸︸︷

2 a
︸︷︷︸

(10,0,20)

= 0

(28)

23

−

(4,1)
︷︸︸︷

2

2
︸︷︷︸

(10,0,20)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

exp(−iα)
︸ ︷︷ ︸

(10,0,20)

(10,0,19,21)
︷︸︸︷

a′ −i
︸︷︷︸

(9,0)

−

(4,1)
︷︸︸︷

2

2
︸︷︷︸

(10,0,20)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

exp(−iα)
︸ ︷︷ ︸

(10,0,20,22)

(10,0,19)
︷︸︸︷
a

(10,0,20)
︷︸︸︷

α′ i
︸︷︷︸

(9,0)

i
︸︷︷︸

(10,0,20)

−

(4,1)
︷︸︸︷

2

2
︸︷︷︸

(10,0,20)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

β
︸︷︷︸

(1,1)

exp(−iα)
︸ ︷︷ ︸

(10,0,20)

a
︸︷︷︸

(10,0,20)

−i
︸︷︷︸

(9,0)

−

1

(10,0,20)

2
︸︷︷︸

×(2
︸︷︷︸

(10,0,19)

)

2
︸︷︷︸

(2,0,9,10)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

e
︸︷︷︸

(10,0,20)

(10,0,20)
︷︸︸︷

−i
(2,0,9,10)

2
︸︷︷︸

exp(iα)
︸ ︷︷ ︸

(10,0,20)

3
︸︷︷︸

(10,0)

γ
︸︷︷︸

(1,1)

a
︸︷︷︸

(10,0,20)

(2,0,9,10)
︷︸︸︷

2 a
︸︷︷︸

(10,0,19)

= 0

(29)

Equations (30) and (31) are the imaginary and real parts of equation (28), respec-
tively.

{−

(4,1)
︷︸︸︷

2

2
︸︷︷︸

(10,0,20)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

(10,0,19)
︷ ︸︸ ︷

exp(iα)

exp(iα)
︸ ︷︷ ︸

(25,0)

(9,0)
︷︸︸︷

i

i
︸︷︷︸

(25,0)

}

(10,0,19,21)
︷︸︸︷

a′ −

{

(4,1)
︷︸︸︷

2

2
︸︷︷︸

(10,0,20)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

(10,0,19)
︷ ︸︸ ︷

exp(iα)

exp(iα)
︸ ︷︷ ︸

(25,0)

(9,0)
︷︸︸︷

i

i
︸︷︷︸

(25,0)

} β
︸︷︷︸

(1,1)

a
︸︷︷︸

(10,0,19)

= 0

(30)

24

{

(4,1)
︷︸︸︷

2

2
︸︷︷︸

(10,0,20)

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

(10,0,19,21)
︷ ︸︸ ︷

exp(iα)

exp(iα)
︸ ︷︷ ︸

(26,0)

i
︸︷︷︸

(9,0)

i
︸︷︷︸

(10,0,20)

}

(10,0,20)
︷︸︸︷
a

(10,0,19)
︷︸︸︷

α′ −

1

2
︸︷︷︸

(10,0,20)

×(2
︸︷︷︸

(10,0,19)

)

2
︸︷︷︸

(2,0,9,10)

{

(1,1)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1)

(10,0,19)
︷︸︸︷
exp (

(10,0,19)
︷︸︸︷

i

(2,0,9,10)
︷︸︸︷

2)

exp(iα)
︸ ︷︷ ︸

(10,0,20)

exp(iα)
︸ ︷︷ ︸

(26,0)

}

3
︸︷︷︸

(10,0)

γ
︸︷︷︸

(1,1)

(a
︸︷︷︸

(10,0,19)

)

2
︸︷︷︸

(2,0,9,10) a
︸︷︷︸

(10,0,20)

= 0

(31)

It is then possible to obtain the final encoded symbolic form of the oscillation am-
plitude (a) and the phase (α).

a = a0
︸︷︷︸

(27,0)

exp
︸︷︷︸

(27,0)

({

(4,1,27)
︷︸︸︷

2

2
︸︷︷︸

(10,0,20)

(1,1,27)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1,27)

(10,0,19)
︷ ︸︸ ︷

exp(iα)

exp(iα)
︸ ︷︷ ︸

(25,0,27)

(9,0,27)
︷︸︸︷

i

i
︸︷︷︸

(25,0,27)

} β
︸︷︷︸

(1,1,27)

T1) (32)

α = α0
︸︷︷︸

(28,0)

−

(10,0,28)
︷︸︸︷

3

2
︸︷︷︸

(10,0,20)

×(2
︸︷︷︸

(10,0,19)

)

2
︸︷︷︸

(2,0,9,10)

(

(27,0,28)
︷︸︸︷
a0)

(2,0,9,10)
︷︸︸︷

2 ×

{

(1,1,28)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1,28)

(10,0,19)
︷︸︸︷
exp (

(10,0,19)
︷︸︸︷

i

(2,0,9,10)
︷︸︸︷

2)

exp(iα)
︸ ︷︷ ︸

(10,0,20)

exp(iα)
︸ ︷︷ ︸

(26,0,28)

} γ
︸︷︷︸

(1,1)

{

(4,1,20)
︷︸︸︷

2

2
︸︷︷︸

(10,0,20)

(1,1,28)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1,28)

(10,0,19)
︷ ︸︸ ︷

exp(iα)

exp(iα)
︸ ︷︷ ︸

(25,0,27)

(9,0,27)
︷︸︸︷

i

i
︸︷︷︸

(25,0,27)

} 2
︸︷︷︸

(2,0,9,10)

β
︸︷︷︸

(1,1,28)

×

exp
︸︷︷︸

(27,0,28)

({

(4,1,27)
︷︸︸︷

2

2
︸︷︷︸

(10,0,20)

(1,1,27)
︷︸︸︷
ǫ

ǫ
︸︷︷︸

(2,1,28)

(10,0,19)
︷ ︸︸ ︷

exp(iα)

exp(iα)
︸ ︷︷ ︸

(25,0,27)

(9,0,27)
︷︸︸︷

i

i
︸︷︷︸

(25,0,27)

} −2
︸︷︷︸

(2,0,9,10)

β
︸︷︷︸

(1,1,28)

T1)

(33)

25

References

[1] MP Cartmell and DIM Forehand. On the assumptions and decisions required for reduced
order modelling of engineering dynamical systems. In Proc. 6th Euromech Nonlinear Dy-
namics Conf.(ENOC-2008). IPACS Open Acces Library, 2008.

[2] AH Nayfeh. Introduction to perturbation techniques. John Wiley & Sons, 2011.

[3] AH Nayfeh and DT Mook. Nonlinear oscillations. John Wiley & Sons, 1979.

[4] R Khanin, MP Cartmell, and A Gilbert. Applying the perturbation method of multiple
scales. Mathematica in Education and Research, 8(2):19–26, 1999.

[5] R Khanin, MP Cartmell, and A Gilbert. A computerised implementation of the multiple
scales perturbation method using mathematica. Computers & Structures, 76(5):565–575,
2000.

[6] R Khanin and MP Cartmell. Parallelization of perturbation analysis: Application to large-
scale engineering problems. Journal of Symbolic Computation, 31(4):461–473, 2001.

[7] J Warmiński, G Litak, MP Cartmell, R Khanin, and MWiercigroch. Approximate analytical
solutions for primary chatter in the non-linear metal cutting model. Journal of Sound and
Vibration, 259(4):917–933, 2003.

[8] David IM Forehand, R Khanin, and Matthew P Cartmell. A lagrangian multibody code
for deriving the symbolic state-space equations of motion for open-loop systems containing
flexible beams. Mathematics and Computers in Simulation, 67(1):85–98, 2004.

[9] DIM Forehand and MP Cartmell. The implementation of an automated method for solution
term-tracking as a basis for symbolic computational dynamics. Proceedings of the Institution
of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(1):40–49,
2011.

[10] MP Cartmell. Introduction to linear, parametric and nonlinear vibrations. Chapman and
Hall London, 1990.

[11] JJ Thomsen. Vibrations and stability, order and chaos. 1997.

[12] JW Roberts and MP Cartmell. Forced vibration of a beam system with autoparametric
coupling effects. Strain, 20(3):123–131, 1984.

26

